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Abstract
An unsupervised text-to-speech synthesis (TTS) system learns
to generate speech waveforms corresponding to any written
sentence in a language by observing: 1) a collection of un-
transcribed speech waveforms in that language; 2) a collec-
tion of texts written in that language without access to any
transcribed speech. Developing such a system can signifi-
cantly improve the availability of speech technology to lan-
guages without a large amount of parallel speech and text data.
This paper proposes an unsupervised TTS system based on an
alignment module that outputs pseudo-text and another syn-
thesis module that uses pseudo-text for training and real text
for inference. Our unsupervised system can achieve com-
parable performance to the supervised system in seven lan-
guages with about 10-20 hours of speech each. A careful study
on the effect of text units and vocoders has also been con-
ducted to better understand what factors may affect unsuper-
vised TTS performance. The samples generated by our mod-
els can be found at https://cactuswiththoughts.
github.io/UnsupTTS-Demo, and our code can be found
at https://github.com/lwang114/UnsupTTS.
Index Terms: speech synthesis, speech recognition, unsuper-
vised learning

1. Introduction
Text-to-speech (TTS) synthesis is an essential component of a
spoken dialogue system. While capable of generating high-
fidelity, human-like speech for languages such as English and
Mandarin, the existing state-of-the-art TTS systems such as
Tacotron 1&2 [1, 2], Deep Voice 3 [3], FastSpeech [4] and
Transformer TTS [5] are trained with a large amount of parallel
speech and textual data. The reliance on a large amount of tran-
scribed speech makes such systems impractical for the majority
of the languages in the world. Training a supervised text-to-
speech (TTS) system requires dozens of hours of single-speaker
high-quality recordings [6], but collecting a large amount of
single-speaker, clean, and transcribed speech corpus can be
quite time-consuming and expensive [7]. A potential way to
relax such a requirement is to use non-parallel untranscribed
speech and text corpora in the same language. Such corpora
are much easier to obtain in practice since no human annota-
tors are required in the data collection process, thanks to the
abundance of text data on the Internet. Learning to perform
TTS using non-parallel speech and text, or unsupervised TTS,
poses unique challenges: first, standard supervised training cri-
teria such as autoregressive mean-squared error are no longer
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applicable; further, to learn a latent alignment between the spo-
ken frames and text units, the model now needs to search over
every utterance and every transcript in the entire corpus instead
of limiting the search space within a single utterance-transcript
pair.

This paper proposes the first model for solving the unsu-
pervised TTS problem. We decompose training the model into
two tasks, learning an alignment module that assigns a sin-
gle pseudo-transcript to each utterance and learning a synthesis
module that learns from pseudo-text and utterance pairs. The
alignment module is motivated by the best publicly available
unsupervised ASR system, wav2vec-U [8], and can generalize
seamlessly to future updates of the wav2vec-U model. We con-
duct our unsupervised TTS experiments on seven languages.
We further provide an in-depth analysis of the effect of several
components on unsupervised TTS performance, including the
grapheme-to-phoneme (G2P) converter and the vocoder.

2. Related works
Several recent works have attempted to develop TTS systems
for low-resource scenarios. One direction of research is to re-
place ground truth phoneme or grapheme labels required for su-
pervised TTS with other units obtained with less or no supervi-
sion, such as articulatory features [9], or acoustic units discov-
ered by self-supervised speech representation models such as
vector-quantized variational auto-encoder (VQ-VAE) [10, 11]
and HuBERT [12, 13, 14]. The unsupervised, textless approach
can be applied to any language, including those without any
written form. However, the performance of such a system is
limited by the quality of the acoustic units used, which can be
quite noisy due to the difficulty of acoustic unit discovery. To
address this limitation, [15, 16, 17, 18] have studied the use
of other sensory modalities such as images in place of textual
transcripts as a weaker form of supervision for conditional gen-
eration of speech, or “TTS without T”, using various attention
mechanisms over the visual features. Another approach to ad-
dress this issue is to allow a small amount of transcribed speech
and train the TTS in a semi-supervised fashion [19, 6]. Specifi-
cally, [19] leveraged unpaired speech and text data by construct-
ing pseudo-corpora via dual transformation between ASR and
TTS systems with on-the-fly refinement followed by knowledge
distillation, while LRSpeech [6] trained an ASR and a TTS
system that used only several minutes of paired single-speaker,
high-quality speech for TTS, and several hours of low-quality,
multi-speaker data for ASR.

Our approach is motivated by the most recently published
unsupervised automatic speech recognition (ASR) system [8],
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Figure 1: Network architecture for unsupervised speech synthesis, splitted into an alignment module (left) and a synthesis module
(right)

which learns to recognize phones by leveraging pre-trained
speech representations and an unpaired text corpus. Other
works on unsupervised ASR typically try to match the empir-
ical prior and posterior distributions of phonemes either using
cross-entropy [20] or adversarial loss [21]. Using powerful
self-supervised, pre-trained acoustic features such as wav2vec
2.0 [22] and a generative adversarial network (GAN)-based sys-
tem, the adversarial approach with self-training achieves com-
parable performance to its supervised counterpart on large-scale
speech datasets for multiple languages [8].

3. Proposed method
The proposed unsupervised TTS system contains two modules:
an alignment module to obtain pseudo-text for each utterance
and a synthesis module that trains on pseudo-text. We evaluate
the proposed unsupervised TTS system in English, as well as in
six other languages (Hungarian, Spanish, Finnish, German, and
Japanese).

3.1. Alignment Module

Motivated by wav2vec-U [8], our alignment module greedily
proposes a pairing relationship (which we denote as an align-
ment) between real speech utterances and pseudo-transcripts.
The alignment module follows a two-step approach: GAN
training and self-training. In the GAN training step, a 1-layer
CNN acts as the generator, which takes the segment representa-
tions extracted from a pre-trained wav2vec 2.0 model [22] and
outputs a sequence of distributions over text units, where con-
secutive segments with the same argmax value are collapsed.
The discriminator, a 3-layer CNN trained against the genera-
tor, tries to tell which source (real or generated) the input se-
quence is from. This is achieved by iteratively maximizing
the likelihood of the generated phoneme sequence to train the
generator and minimizing the binary cross-entropy loss to train
the discriminator. In addition, since GAN training can be very
unstable, we search over the weights for regularization losses
such as gradient penalty loss, segment smoothness penalty, and
phoneme diversity loss as described in [8]. We also validate
the model with 50-100 transcribed utterances from the corpus
to ensure convergence instead of using the unsupervised metric
in [8]. After GAN training, greedy decoding is applied to the
generator’s output over the training set. We then train a hid-
den Markov model (HMM) with framewise speech representa-

tions extracted from a wav2vec 2.0 model as input and pseudo-
text decoded by the generator as output. Finally, we decode
the entire corpus again using the newly-trained HMM to obtain
pseudo-transcripts for the supervised TTS system. Except for
English, we opt not to further fine-tune a wav2vec 2.0 model
with the pseudo-transcripts from the HMM.

3.2. Synthesis Module

The synthesis module uses the proposed alignment pairs from
the alignment module and learns to synthesize speech from
pseudo-text. Our synthesis module is motivated by Tacotron
2 [2] with guided attention loss [23]. During training, we
perform an unsupervised model selection process by feeding
the module with pseudo-transcripts when computing validation
loss. During evaluation, ground truth transcripts are used as in-
puts to the synthesis module. Character error rates (CER) and
word error rates (WER) are used to measure how much linguis-
tic content is preserved by the synthesis module. We train a
fully supervised TTS system using real text instead of pseudo-
text and calculate the CER and WER on the same subset for
comparison. To obtain the CER and theWER on each language,
we either directly use a publicly available wav2vec 2.0 speech
recognizer (for English) or fine-tune a pre-trained wav2vec 2.0
model on each language individually.

4. Experiments
4.1. Unsupervised TTS on English

We first evaluated the two-stage unsupervised TTS system on
English. To train the alignment module, we used speech ut-
terances from the 24-hour single-speaker LJSpeech corpus [24]
and text samples from the LibriSpeech language modeling cor-
pus [25]. We set aside about 300 utterances for validation and
about 500 utterances for testing. We kept the ground truth tran-
scripts for validation and test sets and used the rest for training
without ground truth transcripts. The speech representations
were extracted using a publicly available wav2vec 2.0 Large
model trained on LibriLight [26], and the segment representa-
tions were built following the pre-processing procedures in [8].

The non-parallel text samples used for training, as well as
the ground truth transcripts for the validation and test utter-
ances, were converted to phones using a grapheme-to-phoneme
(G2P) converter [27]. The best weights for the auxiliary penal-
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Table 1: Alignment module results on the LJSpeech dataset us-
ing English wav2vec 2.0 pre-trained features

Language Duration (hr) Unsup ASR (PER)

No ST ST

English 24 12.37 3.59

Table 2: Unsupervised TTS results on the LJSpeech dataset us-
ing English wav2vec 2.0 pre-trained features

Language Unsup TTS Supervised TTS

CER WER CER WER

English 4.56 11.95 3.93 10.76

ties of the GAN system, i.e., code penalty, gradient penalty, and
smoothness weight, c.f. [8], were determined by grid search,
and we chose the best model based on its PER over the valida-
tion set after 150k steps with a batch size of 160. GAN train-
ing is sometimes unstable in ways that we could only detect by
using 50-100 supervised validation examples, which were the
only places during training where we used paired data. The re-
sults of this stage is shown in Table 1. After determining the
best GAN model, its output phone sequence was then refined
using a self-training (ST) process [8] as follows. First, we used
framewise wav2vec 2.0 features after PCA transformation as in-
put and pseudo phone sequences transcribed by the generator as
targets to train a triphone HMM. The triphone output from the
HMM was decoded into words with an HCLG decoding graph,
and we further fine-tuned a wav2vec 2.0 Large model using the
pseudo character targets obtained from the above step, under the
Connectionist Temporal Classification (CTC) loss [28]. Both
steps were validated with the corresponding pseudo-text for the
validation set. As shown in Table 1, ST reduces the phone error
rate on the test set by 70% relative and provides very accurate
transcripts for the second-stage TTS system. We used the pub-
licly available wav2vec-U model in the Fairseq toolkit [29] to
train the GAN and used the Kaldi toolkit [30] to train the tri-
phone HMM and to build the decoding graph.

To train the synthesis module, we used the Tacotron 2
[2] implementation in ESPnet [31]. The ESPnet implementa-
tion follows the original Tacotron 2 model, except that another
guided attention loss [23] was calculated on top of the encoder-
decoder attention matrix so that it is not too far from being
diagonal. During training, the synthesis module takes pseudo
phone transcripts as inputs, and outputs 80-dimensional mel-
spectrograms. These pseudo phone transcripts are converted
by G2P from the word-level hypotheses generated by the fine-
tuned wav2vec 2.0 model (in the final step of alignment mod-
ule training). The synthesis module was trained for 80 epochs,
with the same validation and test splits used for training the
alignment module. During validation of the synthesis mod-
ule, we calculated the reconstruction loss based on pseudo-text
instead of real text. During testing, we fed the trained syn-
thesis module with real, phonemicized text transcripts for the
test set to obtain mel-spectrograms and synthesized raw audios
with HiFi-GAN [32]. We calculated the CERs and raw WERs
without additional language models using a publicly available
wav2vec 2.0 Large model fine-tuned on LibriSpeech. Table 2
shows the two error rates on the synthesized test utterances

512

1024

2048

4096

H
z

0 0.5 1 1.5 2 2.5 3 3.5
Time

512

1024

2048

4096

H
z

Figure 2: Mel-spectrograms for ground truth (upper) and syn-
thetic speech by the unsupervised TTS model (lower) for the
English sentence “in being comparatively modern.”

using our proposed unsupervised system (Unsup TTS). Com-
pared with a fully-supervised Tacotron 2 model trained and val-
idated with real, phonemicized text transcripts, our unsuper-
vised system only lags behind 0.63% absolute in terms of CER
and 1.19% absolute in terms of WER. Figure 2 plots the mel-
spectrogram of a synthetic speech example by our unsupervised
model, which shows that except for the temporal patterns, the
mel-spectrogram by the unsupervised TTS looks very similar to
the ground truth with very little loss of linguistic content.

4.2. Unsupervised TTS on CSS10 Languages

Table 3: Unsupervised ASR results on the CSS10 dataset using
English wav2vec 2.0 pretrained features

Language Duration (hr) Unsup ASR (CER)

No ST ST

Japanese 15 26.12 17.81
Hungarian 10 25.08 15.26
Spanish 24 20.80 14.57
Finnish 10 29.78 21.00
German 17 26.31 19.47
Dutch 14 45.65 39.24

Table 4: Unsupervised TTS results on the CSS10 dataset using
English wav2vec 2.0 pretrained features

Language Unsup TTS Supervised TTS

CER WER CER WER

Japanese 17.98 47.81 17.87 36.23
Hungarian 27.78 76.82 18.05 63.14
Spanish 23.03 55.52 18.19 36.74
Finnish 36.05 84.46 22.84 58.67
German 17.25 56.78 11.28 40.94
Dutch 53.01 89.41 34.53 76.71

We evaluated our unsupervised TTS system on six addi-
tional languages: Japanese, Hungarian, Spanish, Finnish, Ger-
man and Dutch from the CSS10 dataset [33]. The total duration
of each language is listed in Table 3. The experiments followed
similar steps as the English experiment in Sec 4.1. The align-
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Table 5: The effect of different pretrained vocoders (Griffin-Lim,
HiFi-GAN) on unsupervised TTS results for LJSpeech and var-
ious languages from CSS10

Language Griffin-Lim HiFi-GAN

CER WER CER WER

English 5.02 12.83 4.56 11.95
Japanese 17.98 47.81 20.58 54.09
Hungarian 27.78 76.82 26.92 76.60
Spanish 23.03 55.52 29.41 68.82
Finnish 36.05 84.46 37.66 87.48
German 17.25 56.78 18.45 59.90

Table 6: The effect of different text units on unsupervised TTS
using Griffin-Lim vocoder

Language Phoneme Grapheme

CER WER CER WER

Hungarian 22.73 68.80 27.78 76.82
Finnish 27.58 67.87 36.05 84.46
Dutch 22.04 56.85 53.01 89.41

ment module extracts speech representations from the same En-
glish wav2vec 2.0 Large model, followed by GAN training and
self-training. The results for the alignment module are shown in
Table 3. There were still a few differences in details in this mul-
tilingual experiment. Due to resource limits, these multilingual
experiments used a potentially easier setting where both the au-
dio and text were drawn from the same CSS10 dataset with their
paired relationship broken up, instead of from different datasets
as for English. We did not convert graphemes into phonemes
and directly used the characters in each language as text unit.
We split the audio and text data into training and validation sets
with a ratio of 99 to 1, leaving about 50 to 100 validation ut-
terances depending on the dataset size. The self-training step
of the first stage only contained a character-based HMM (in-
stead of a triphone HMM with HCLG decoding) for generating
pseudo-text, and we did not have a second step of fine-tuning
a wav2vec 2.0 model as for English. During the evaluation of
the synthesis module, we used a Griffin-Lim vocoder to syn-
thesize the audios from the generated mel-spectrogram, and the
results reported in Table 4 were calculated using audios from
the Griffin-Lim vocoder instead of the HiFi-GAN vocoder. We
switched to the Griffin-Lim vocoder because we empirically
found that it yielded lower error rates on these languages. To
calculate CER and raw WER, we fine-tuned a publicly avail-
able wav2vec 2.0 Base model for each language individually,
using paired speech and character-level transcripts from each
CSS10 corpus.

The multilingual results in Table 4 confirm the conclusions
we reach in the English experiments. Although the self-training
step is simplified to only a character-based HMM, the self-
training step still greatly reduces the error rates by 25% to 40%
relative to all the languages. Compared to the fully-supervised
Tacotron 2 models trained using real text transcripts, the CERs
of our unsupervised systems differ by only about 9% absolute
on average while requiring only a few paired utterances during
validation. Further, we observe that the gap in WER between
supervised and unsupervised TTS systems generally is about

10-20% absolute for all languages except Finnish, a much larger
gap than CER. We hypothesize that it may be due to the lack of
a robust language model in the TTS systems, making it harder
for the model to preserve word-level information when training
with noisy (pseudo-)transcripts. Last but not least, we observe
that the performance of the alignment module does not always
limit the performance of unsupervised TTS. In the case of Ger-
man, the TTS trained with pseudo-transcripts achieves a lower
CER compared to the alignment module alone, which suggests
that the TTS has some internal mechanism to correct the noise
in the pseudo-transcripts.

4.3. Comparison Between Griffin-Lim and HiFi-GAN

A comparison between the error rates of using Griffin-Lim and
HiFi-GAN vocoders is presented in Table 5. We observe that
the Griffin-Lim vocoder yields lower CERs and WERs than the
HiFi-GAN vocoder in all languages except English and Hun-
garian, even though informal listening suggests that HiFi-GAN
generates more natural speech with fewer artifacts. We hypoth-
esize that HiFi-GAN works better for English because it is pre-
trained on the English LJSpeech dataset and may not generalize
very well when applied to datasets of different languages.

4.4. Comparison Between Phoneme and Grapheme

We trained additional phoneme-based unsupervised TTS mod-
els in Hungarian, Finnish, and Dutch to study how the text
units affect system performance. The training procedure was
the same as that described in Sec 4.2, except that for train-
ing the alignment module, we converted the language-specific
graphemes to the phonetic annotations, i.e., the International
Phonetic Alphabet, using LanguageNet G2Ps [34]. We then use
the phonetic outputs from the HMM within the alignment mod-
ule to train the synthesis module. The CERs and WERs are re-
ported in Table 6. The table shows that the phone-based systems
yield significantly lower error rates than the grapheme systems.
As graphemes are the smallest functional unit of a writing sys-
tem, it involves extra complexity on top of the phone systems.
Thus, modeling the grapheme systems is harder than modeling
the phone systems, as indicated by its higher error rates. The
gap between grapheme and phoneme systems is considerably
smaller for Hungarian and Finnish than for Dutch. One proba-
ble explanation is that spelling and phonetic transcription is far
more regular for the former two languages than for Dutch.

5. Conclusions
In this work, we combined an alignment module and a synthesis
module to build a unsupervised TTS system that trains without
paired data. The final unsupervised TTS system demonstrates
competitive intelligibility in English and a slight degradation
in intelligibility in six other languages on the level of super-
vised TTS models. We further show that phonemes work better
than graphemes as text units for our systems. In the future, we
would like to explore unsupervised TTS with truly non-parallel
datasets for languages other than English and ways to improve
the stability for the alignment module.
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