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Regardless of how much data artificial intelligence agents have available, agents will
inevitably encounter previously unseen situations in real-world deployments. Reacting
to novel situations by acquiring new information from other people—socially situated
learning—is a core faculty of human development. Unfortunately, socially situated
learning remains an open challenge for artificial intelligence agents because they must
learn how to interact with people to seek out the information that they lack. In this
article, we formalize the task of socially situated artificial intelligence—agents that seek
out new information through social interactions with people—as a reinforcement learn-
ing problem where the agent learns to identify meaningful and informative questions
via rewards observed through social interaction. We manifest our framework as an
interactive agent that learns how to ask natural language questions about photos as it
broadens its visual intelligence on a large photo-sharing social network. Unlike active-
learning methods, which implicitly assume that humans are oracles willing to answer
any question, our agent adapts its behavior based on observed norms of which questions
people are or are not interested to answer. Through an 8-mo deployment where our
agent interacted with 236,000 social media users, our agent improved its performance at
recognizing new visual information by 112%. A controlled field experiment confirmed
that our agent outperformed an active-learning baseline by 25.6%. This work advances
opportunities for continuously improving artificial intelligence (AI) agents that better
respect norms in open social environments.

human-centered Al | socially situated learning | computer vision | human-computer interaction

Today’s methods for training artificial intelligence (Al) agents are akin to locking each
agent alone in a room with a stack of books (1). Powered by large volumes of manually
labeled training data (2, 3) or scraped web content (4, 5) for the agent to consume,
machine learning has produced rapid progress in many tasks ranging from healthcare (6)
to sustainability (7). But, when a concept is absent from the training data, the agent has
no means to acquire it: Restricting an agent’s knowledge source to the books in the room
prevents the agent from learning any concepts not present in the room. Worse, these
methods ossify agents to ongoing changes to the world or to evolving human needs. So,
while the resulting agents often demonstrate strong test set performance, they struggle
when faced with novel situations or when deployed in the real world (8-10).

We present a formalization that enables Al agents to break out of the metaphorical room
by learning through ongoing interactions with people in real-world social environments.
We term this approach socially situated artificial intelligence and present evidence through
a field experiment that it enables Al agents to learn new concepts that never occurred in
their initial training data by simultaneously learning how to interact with people. Our
method is inspired by human development, which is a socially mediated process in which
children acquire new concepts and cultural norms through inquisitive dialogues with more
knowledgeable members of society (11, 12). Enabling socially situated Al is critical to
realizing many beneficent applications, especially in which effective human interactions
are critical to improve an Al agent’s ability to understand and act accordingly, including
human—computer interaction (13), interactive robotics (14), personalized conversational
agents (15), and accessible technology (16).

To enable socially situated Al, the agent must not only gather data to learn new
concepts, but also learn how to interact with people to gather the data. At any given
moment, the agent must trade off between these twin goals of interacting to learn and
learning to interact. The task is made more challenging because the space of possible
interactions for the agent to traverse is vast, the space of useful social interactions is a sparse
subset of these possible interactions, and the space of informative interactions constantly
shifts as the agent learns. Reinforcement learning, which formalizes possible interactions
as an action space and feedback as a reward, requires hundreds of millions of interactions
to uncover this subspace of informative and prosocial interactions (17, 18); people will
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abandon such an agent long before it crosses such a threshold
(19, 20). As a result of this limitation, methods that learn from
human interaction have so far only seen success with manual
human labels (21-25) or with small action spaces such as games
and simulations with only a few dozen moves (26-28).

To overcome these challenges, we introduce a formalization of
socially situated artificial intelligence as an iterative reinforcement
learning problem where an agent seeks to improve an underlying
model by interacting with people in a social environment where
people may or may not respond informatively. Responses are
useful only if they contain new information that is useful to the
agent. The agent must thus choose social interactions that elicit
new concepts useful for the model. Our formulation adopts a
knowledge reward to guide the agent to interactions that lead
to the discovery of new concepts and an interaction reward to
guide the agent to interactions that adhere to social norms in the
environment. New concepts are gathered from these interactions,
which are used as training data to update the model. As the
model improves at these concepts, the agent updates its policy
and begins learning how to ask questions about new concepts
where people are interested to answer but the model’s performance
is still poor. This process of uncovering social norms, improving
the underlying model, and updating the interaction policy iterates
throughout the agent’s lifetime.

We explore the challenges associated with socially situated
learning through a large-scale field experiment: We deploy an
Al agent on a large photo-sharing social network to learn new
visual concepts, a challenging task for which prior models have
been criticized as being limited, brittle (29, 30), and prone to
problematic behavior (31). Our agent interacts with people on
social media by posting natural language questions as comments
(Figs. 1 and 2). In a field experiment, we compare our agent to
ablations that focus only on the knowledge reward (traditional
active learning) or only on the interaction reward. From 236,000
interactions, the one agent using both is capable of learning and
dramatically improves its visual intelligence while the control
variants stop receiving feedback or quickly stop learning.

Socially Situated Al Framework

Active learning is the most common framework consulted when
iteratively expanding a model’s capabilities. The goal of active
learning is to optimize a sequence of labeling requests to acquire
new data D; the new data will be used to improve performance
on the model V: X — Y with as few requests as possible. Al-
though most active-learning methods design heuristic acquisition
algorithms (32), recent work has formalized the process as a
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reinforcement-learning process (25). These attempts usually re-
move real humans from the pipeline and assume the existence of
an oracle that will provide labels for any request.

Although a pure active-learning approach could gather new
data through social interactions in social environments, recent
work in human—computer interaction has concluded that users do
not want to serve as simple oracles by repeatedly providing labels,
breaking a fundamental assumption in active learning (33-35).
Our work is a reaction to this observation: Traditional active
learning is not ecologically valid in realistic social environments.
In our field experiments, we empirically show that a baseline
active-learning approach generates interactions that people are not
interested in responding to (25).

We formalize socially situated artificial intelligence as an itera-
tive reinforcement-learning problem that generalizes conventional
active learning. The agent is placed in a social environment £ =
(S, A, P, Py). S is the state of environment; e.g., it could include
the history of dialogues for a conversational agent or the current
location of objects in a three-dimensional world for a robotic
agent. A is the space of possible interactions with people that
the agent can initiate; e.g., it can be the set of statements that a
conversational agent can ask or the set of motions a robotics agent
can perform. P : § x A — § is the transition dynamics; e.g., the
transition function encodes how people react to the agent’s past
actions and how the world changes as a result. Finally, Py is the
probability measure on the initial state distribution.

Similar to active learning, the agent’s goal is to gather data D to
optimize V’s performance with as few interactions as possible. We
design this agent’s decision-making process as an infinite-horizon
Markov decision process M = (S, A, P, Py, R). Intuitively,
M jointly characterizes the evolution of the environment &,
collected data history D, and the model V as the agent makes
interaction decisions to optimize the learning objective encoded
by the reward R. S = (S x D x V) is a metastate that now
encodes the state of the environment S, the data history
D, and the current capabilities of the underlying model V.
So, at a given time step, 5; € S = (s¢, D¢, V), where Dy =
{50, G, ..., 8t} €D is the dataset of past interactions. D; is
a raw form of the data collected so far and can be postprocessed
to yield training data for V;. The metatransition dynamics are
P:S x A— S such that 8,11 ~ P(+|s¢, a;), new interactions
are added to the dataset D;11 = Dy |J{at, St41}, and a new
model is trained from the accumulated data V41 = train(Dy11).
The metainitial state distribution is Po(s = (s, Do, Vo)) =
P(s) - 1[Dy ={}] - init(V), where init(V) is the prior dis-
tribution over Vp initialized parameters and Dy is an empty
dataset.

Visual intelligence through human interactions on a social network
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Fig. 1.

No matter how comprehensively we curate datasets, Al model deployments will inevitably encounter situations they have not previously seen, limiting
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their utility in the real world. We introduce a framework for socially situated Al, a reinforcement-learning framework that enables agents to uncover useful social
interactions with people that result in the discovery of new information. With this formulation, we design a prototype to showcase the possibility of socially
situated learning for a visual intelligence task. Our prototype agent learns visual concepts by asking questions about pictures people upload on social media.
It parses how people respond to our agent into two rewards, which guide the agent toward interactions that are preferable for people and informative for its
underlying model.
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Q: Is this person
wearing a life vest?
A: Ahahah not at all !
She is wearing a big
coat

Q: What is the shape of
the sink?
A: It's a square.

Q: What is the white
stuff on the table?
A: mayol.

Q: What kind of building
is that?

A: Is a medieval church
in Siena (Tuscany,ltaly)
dedicated from its
earliest days as a
Roman Catholic Marian
church, and now
dedicated to the
Assumption of Mary. =

Q: Is this a commercial
plane?

A: yes, you're right!
Flight coming from
Amsterdam to Saint
Martin!

o

S S e
Q: Is that a real bird?
A8 it'sa
crocodile

Q: What material is the
counter?

A: It looks as though it is
marble, however this
isn't my design so |
can't be 100%. It's
gorgeous though isn't it!

Q: Is this photo taken at
night?
A: Hi! lt's at sunset :)

Q: What is on the
counter?

A: On the counter you
can find a wide variety
of chocolates, dragees
and all kinds of refined
sweets!

Q: What kind are the
pink ones?

A: Hi, it is japanese
cherry flower - Prunus
serrulata, the others:
paeonia, anemone,
ranuculus.

Q; Is the board room
carpeted?
A: we use wood floor.

Q; What is the green
vegetable?

A: it’s bok choy!! So
yummy 2 @&

Q: What is the dog's tail
resting on?
A: it’s a public restroom.

Q: What type of dessert
is that in the picture?

A: hi dear it’s coconut
cake, it tastes amazing

)

Q: What kind of bird is
this?
A: A Barn Owl.

Fig. 2. Examples of the 236,000 interactions initiated by our agent with people on social media, demonstrating the diversity of its questions and responses.
Some questions verify concepts, while others ask about attributes such as types of buildings or materials of objects. The responses vary widely in length and
vocabulary. While some directly answer our question, such as “It's a square,” others provide a lot of background information. Some responses also indicate
positive sentiment by using emojis, exclamations or phrases like “Hi dear.” Not shown here, each question is prepended with a self-disclosure introduction: “We
are a computer science research project.” To preserve privacy, photos displayed are under a creative commons license and are visually and semantically similar

to the ones uploaded by users on social media.

To make socially situated learning possible, we design rewards
that balance the twin goals of interacting to learn and learning
to interact. We design the reward R : § = R = & - Rinteraction +
(1 = @) - Rinowledge; 0 < @ <1, to be a linear combination of
two rewards: an interaction reward and a knowledge reward. The
interaction reward encourages interactions within the commu-
nity’s prosocial norms. Unlike prior work (21, 24, 28), we do
not assume that people can be trained to provide explicit rewards
or assume that people would respond to every interaction with
useful information (25, 32). Instead, by drawing on the concept of
nonreactive measures from sociology (36, 37), which suggests that
humans learn social norms or interaction preferences by observing
how people in a community interact with them, our agent scalably
learns social norms established within the social environment &,
not through repeated interactions with one person but through
a single interaction with hundreds of thousands of people within
the environment. The knowledge reward encourages interactions
that result in data that maximally improve the performance of V.

PNAS 2022 Vol. 119 No.39 2115730119

For example, it can be modeled as an active-learning acquisition
function (32) with respect to V. -

The socially situated agent learns a policy 7 : S — A that maps
from the current metastate to interactions. When interacting with
modalities such as language and motion, the spaces of possible
sentences and gestures are combinatorially vast; domain-specific
methods would need to develop techniques to make exploring the
space of A tractable. The optimal policy maximizes the rewards:
m* = argmax; E-[Y, R(5;)]. We evaluate our agent’s perfor-
mance using two metrics. First, borrowing from active learning,
we report accuracy of the underlying model V on a held-out test
set of (X, ) € Diey. Second, given the prior human—computer
interaction literature arguing that people will disengage when
they are not interested (38-41), we evaluate whether our agent
learns appropriate social interactions using the rate of informative
interactions: the percentage of the agent’s interactions that resulted
in new information. A higher informative response rate implies
a greater understanding of implicit social norms while a low

https://doi.org/10.1073/pnas.2115730119 3 of 8
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informative response rate implies people are not responding,
which can slow down or even halt the socially situated learning
process.

By appropriately constructing M, we can recover different
variants of traditional active learning (SI Appendix, section 1).
Prior work sets o to zero, making the assumption of an oracle
that will generate new information for any query or interaction. In
contrast, by extending the framework as a reinforcement-learning
problem that characterizes social interactions within the reward
Rinteraction> we explicitly model human-interaction preferences and
empirically show that it is necessary for socially situated learning.
Aside from active learning, this formulation also generalizes recent
work on social learning (42, 43) and machine theory of mind
(44). By designing the interaction reward as a dynamics model to
predict how others will act, we recover these related formulations.
Intuitively, the formulation affords a foundation that can be
applied to applications such as conversational assistants, teachable
agents in education, and assistive robotics (45).

Visual Intelligence through Human Interactions

In this section, we apply the socially situated Al framework to
computer vision using a photo-sharing social network. Modern
computer vision systems rely on large volumes of human-labeled
training data, but generating these datasets remains challenging.
In computer vision, for example, the ImageNet dataset (46) re-
quired 14 million labels such as whether an image contains a chair.
Unfortunately, this knowledge is both so simple that it is extremely
tedious for humans to label and so tacit that it is often absent
from the image’s metadata and the human annotators are required.
This combination of tedious and tacit makes computer vision data
challenging to acquire; many volunteer data acquisition efforts fail
(47, 48), limiting the scale and ambition of visual intelligence
efforts.

To explore the potential of harnessing this tacit information
through social interactions, we empirically validate the utility
of the framework by deploying a socially situated agent on In-
stagram, a large photo-sharing social network (see SI Appendix,
section 2 about our Institutional Review Board [IRB]). The agent
interacts with people by asking natural language questions ¢; € A;
i.e., A is the space of possible language interactions. The state s; =
(it, ans;) encodes a randomly sampled new image i; uploaded
to the social network and the human answer ans; to the agent’s
previous question ¢;_1. The answer ans; can be an empty string
if there is no response. The answers are extracted from human re-
sponses using a natural language parser (see S/ Appendix section 7
on parsing responses).

The agent uses the answers extracted from human responses
to learn from its interactions. Using natural language to gather
visual knowledge allows us to test a whole host of common
computer vision recognition tasks: object detection (e.g., “What
is in the image?”), fine-grained recognition (e.g., “What kind
of flowers are in the vase?”), attribute classification (e.g., “What
material is the table made of?”), knowledge base reasoning (e.g.,
“Is this a food vegetarian?”), and commonsense reasoning (e.g.,
“Was this taken in the winter?”). Consequently, we design
V to be a computer vision question answering model. The
inputs (i, q:) € X are an image and corresponding natural
language question and the output is ans; €Y, a natural
language answer. The agent’s goal is to improve V’s ability to
recognize visual concepts (see SI Appendix, section 3 discussion
#2 for more details). From its interactions, the acquired dataset
Dy ={(do, g0, anso), - - ., (it—1, G1—1, ans;—1) } is used to train
V;. Drawing on the active-learning literature, we design the
knowledge reward Rinowledge as V’s uncertainty. Initially the
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recognition model does not know how to recognize any concepts
but becomes more confident the more often it sees a particular
concept. For example, the recognition model might not know
how to recognize deer, resulting in high uncertainty whenever it
encounters one. If people identify the animal for the agent, its
uncertainty will decrease, guiding its behavior to ask about other
concepts.

The agent uses its past interactions to learn how to interact.
Social science observes that each community develops distinct
norms and cultures, influencing how people interact with one
another (49, 50). On social networks, for instance, people prefer
answering shorter requests, providing factual knowledge, and
avoid rhetorical requests or vague questions (51). Every past
interaction is marked as either a positive (interactions that result in
new information) or a negative example (interactions that receive
no new information). These positive and negative examples are
used to continually train Rineraction : S X A — [0, 1] as a binary
classifier. This interaction reward guides the agent’s behavior to-
ward the community’s prosocial norms.

Finding useful language interactions is a combinatorial search
problem; we draw on recent advances in machine learning to
tractably explore the combinatorial interaction space. A straight-
foward approach could devise the agent’s policy as an image-to-
question generation model, ¢; ~ (i), where ¢ is composed
of a sequence of words. This combinatorial search process needs
to be iteratively repeated; as V’s capabilities improve, the space
of informative interactions continuously shifts. To make this
search process tractable, we apply an observation from several
intersecting social science fields: While the action space of all
possible behaviors is vast, most human-human interactions lie
on a low-dimensional space (52). For example, language use is
Zipf distributed (53), norms and social scripts encourage common
behaviors within groups (54, 55), and cultures develop preferred
interrelated emblem gestures (56). We learn an interaction rep-
resentation of realistic human—human interactions using existing
literature in information maximizing variational autoencoders
(57, 58). We use this representation, z, as an intermediate con-
straint by reconfiguring the policy, z; ~ my(i;), to project the
input image %; into the representation space and by designing a
decoder, ¢; ~ decy(z), to project from the representation to a
sequence of words. 6 and ¢ parameterize the neural networks used
to define the policy and the decoder. Once trained, the decoder
parameters, ¢, are held constant throughout deployment, decou-
pling the agent’s need to concurrently learn what interactions to
initiate with how to generate those interactions. Rewards can be
assigned to a single action (z) rather than a subset of the words in
the question (see ST Appendix, Section 3 for more details).

Field Experiment

The socially situated Al framework sets up two simultaneous goals
for the agent: one to initiate social interactions that people want
to respond to with informative data and another to improve
its underlying model by gathering useful data. These two goals
define the evaluation metrics we use to evaluate the deployed
agent. First, to evaluate the agent’s ability to garner responses, we
measure the rate of informative responses to its questions (38—
41), i.e., the percentage of the agent’s interactions that received an
answer. We detect informative responses using a response model
that identifies whether the response contains an answer. Second,
to evaluate our agent’s ability to recognize new visual concepts,
we report accuracy of the knowledge reward’s recognition model
on a held-out test set of 50,104 social media images, questions,
and answers, collected using annotators from Amazon Mechanical

Turk (87 Appendix, section 10).
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To compare the socially situated agent designed using our
framework versus others, we also deploy a baseline approach and
two ablations of our agent. To isolate the effects of both the
interaction and the knowledge rewards, we deploy the human
preference ablation, which uses only the interaction reward, and
the active-learning ablation, which uses only the knowledge re-
ward. The active-learning ablation is a reinforcement-based active
learning introduced in prior work (25). We also deploy a baseline
agent that does not use the pretrained interaction representation
as the action space and is allowed to fine tune the decoder’s
parameters, allowing the agent to use the entire combinatorial
vocabulary space as the action space (59). This baseline uses both
the rewards; we also add an extra language-modeling reward,
which encourages the generation of grammatically correct lan-
guage outputs and is used in prior literature (60). All agents
are trained using proximal policy gradients (61). All agents are
initialized using the same amount of data and have the same
policy and decoder architectures. The agent self-identified as an
Al research project, and workers on Amazon Mechanical Turk
vetted all questions prior to posting to ensure that none would be
problematic or offensive (see S/ Appendix, section 8 for the vetting
task workflow).

Through a deployment of 8 mo where each agent was allowed
to initiate at least 200,000 interactions, we observe the benefits
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of socially situated learning over other methods (Fig. 34). The
socially situated agent increases its informative response rate from
an initial 22% to 33% across 236,000 interactions, a relative
improvement of 50%. In comparison, both the active-learning
and baseline agents elicit fewer responses after every iteration,
ending at 6% and 12.3%, respectively. The baseline agent, in its
effort to explore the combinatorial space of all possible language
interactions, inevitably generates incoherent questions, causing
response rates to decrease; this produces a vicious cycle where
the agent cannot identify useful interactions. We halted its de-
ployment once response rates dropped to 6%. The active-learning
agent generates longer and harder questions that people are not
interested in answering. For example, some of its questions require
external knowledge: “Are these tools designed for someone left
handed or right handed?” requires knowledge about a specific
tool and whether it can be operated by either hand. The human
preference agent achieves the highest response rate but reduces the
requests to a small set that people prefer answering. It asks easy-
to-answer questions, for example those that are time related (e.g.,
“What time of the day was this picture taken?”) and color related
(e.g., “What color is the shire?”).

We also perform an experiment where we hire human annota-
tors to edit our questions to increase the likelihood of responses.
This human-edited experiment, which achieves 37% responses,
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Fig. 3. We show changes in informative response rate and recognition accuracy as agents interact with people and gather new visual knowledge. (A) We
plot informative response rate versus the number of interactions initiated. Socially situated and human preference agents, which use the interaction reward,
increase the likelihood of answers from people. Other agents observe a decrease in responses, stunting their data acquisition. (B) We visualize the performance
of the vision model versus the number of interactions initiated by the agent. Socially situated and active-learning agents, which use the knowledge reward,
gather useful data, with active learning requiring more interactions and plateauing since fewer people are responding. (C) We visualize the performance of
the vision model versus the number of responses from people. Even though socially situated is trading off the two rewards, its accuracy improvements are on
par with active learning, which solely maximizes the knowledge reward. (D) We report recognition accuracy as a function of number of training examples from
our socially collected data versus traditional datasets, demonstrating that socially situated agents can in fact acquire new information that is not present in

traditional datasets.
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measures the average human ability to elicit responses from our
chosen social environment assuming that the original intention
of the question remains the same. This value measures how much
more data could be collected (i.e., how much the informative
response rate could be increased) if the Al agent had more social
capability. This value is slightly higher than the agent’s final
performance of 33%. We also study how self-identifying as an Al
agent impacts the response rate and find no statistical difference,
suggesting that people’s responses are not a reaction to the novelty
or citizen science motivation to help a research project succeed
(81 Appendix, section 14).

Using the data collected to improve the computer vision model,
the socially situated agent improves accuracy using fewer inter-
actions than other agents. It achieves a model performance of

39.44% within 236,000 (Fig. 3B) interactions, from which it
receives 70,000 responses (Fig. 3C). Meanwhile, active learning
initiates 274,893 interactions to receive only 30,000 responses
and begins to saturate performance at 31.4%; with the response
rate drop to 12.3%, these results empirically suggest that a pure
active-learning approach is not ecologically viable in some so-
cial environments. Even though the human preference agent
receives more responses per interaction, the data it collects do
not improve the underlying vision model. Since it favors collect-
ing answers to the same small set of questions, the underlying
vision model begins to overfit to generating only time-related
and color-related outputs. Finally, since the baseline agent begins
to generate incoherent questions, the data it collects are not

useful.

what breed dog is this?

what is on the wall?

Question types Example questions
time what time of day is this? was this photo taken with the sun out?
attribute what type of flowers are those on the top of the building?
food what is the orange food? what is the food on the table?
material what material is the pants? what are the light posts made of?
spatial what is in front of the teddy? what is on top of the cakes?
prepositions what is on the sandwich? what is on the floor?
color what is the color of the wall behind the fabric and the wooden brick?
existence is that a bear? is this at a restaurant? is this a fishing net?
location where is this path located? where is the hummingbird?
counting how many cars is in this scene? how many dogs are looking out at the window?
why why is the man wearing gloves? why is that person's mouth open?
transitive what is holding the phone to the wire?  what is the baby holding?
action what are the bears doing? what is the child doing?
fashion what type of socks is the person in this picture wearing?

Question types  Change in frequency due to

Response rate

Is that a winter jacket?

Change in accuracy

time E —e—— o~ *——:
attribute o . —n
food | - =
material He— . *—"
spatial | E —»
prepositions ° e
color . @ ° ——»
existence | e . ——
location ® : ° oo
counting . . —w»
Why »—o—|§ H@H |®
transitive ' S
action i B—
fashion ° ! ® o
0.5 1?0 1.5 20 0.0 0.1 0.2 03 04 0 20 40 60

Odds Ratios (with 95% confidence intervals)

Response rate (%) Application accuracy (%)

Fig. 4. Our agent emergent behavior is consistent with social science literature on how people behave online. We group the generated questions into
categories and visualize the change in odds ratio of generating questions in that category, the response rate, and the change in recognition accuracy.
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We further compare how training using data collected by the
socially situated agent compares against that using data from
existing datasets (62, 63) (Fig. 3D). Training with the same
number of labels from existing datasets increases accuracy only
from 11.24% to 17.45%, vs. an increase from 18.13% to 39.44%
when training with our socially situated data, demonstrating that
socially situated agents are capable of adapting to the distribution
of data encountered in their social environment.

To examine what social norms were learned, we manually group
questions into 21 categories (Fig. 4) (57). Using a logistic regres-
sion, we report the log odds of our agent asking questions from
each category at the beginning versus at the end of its deployment.
Our agent’s learned behavior is consistent with human learned
behavior (39, 49, 51): It produces more tailored questions in
categories that can be easily interpreted and answered (50), such
as materials (e.g., “What are the light posts made of?”), existence
(e.g., “Is that a bear?”), and color (e.g., “What color is that vase?”);
it reduces the generation of questions that require effort to answer
or have multiple answers (49, 51), such as counting (e.g., “How
many cars are in the scene?”), actions (e.g., “What is the child
doing?”), and why (“Why is the man wearing gloves?”). It learns
to demonstrate social proof by mentioning recognizable concepts
(39), such as spatial (e.g., “What is in front of the teddy?”),
prepositions (e.g., “What is on the wall?”), and attributes (e.g.,
“What type of flowers are those on top of the building?”).

Conclusion

Our work presents a framework that relocates Al agents outside
of the metaphorical locked room of their training data and
enables ongoing collaborative learning with people. Agents can
guide their learning by interacting with real people in online
social environments. Our framework breaks the ecologically in-
valid assumption that oracles will always provide new concepts
and expects machines to socially engage in interactions to learn
from people. Our field study demonstrated that socially situated
learning is possible on large combinatorial interaction domains
such as natural language question generation, enabling agents to
discover new concepts and simultaneously uncover social norms.
Success required the development of design patterns to ensure
prosocial interactions: The agent self-identified as a research
project; we hired crowd workers to continually monitor and
prevent accidental antisocial agent behavior; we discontinued the
baseline agents when they began producing nonsensical inter-
actions (87 Appendix, section 15 on ethics). While we illustrate
our framework through a visual intelligence application using
language interactions, we believe that this work more broadly
advances opportunities for Al agents to interact as collaborative
partners—with applications including healthcare support robots
that can ask providers to clarify procedures, technologies that
can improve their interfaces through user feedback, and agents
that can learn from many different communities to diversify their
understanding.
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