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Regardless of how much data arti!cial intelligence agents have available, agents will
inevitably encounter previously unseen situations in real-world deployments. Reacting
to novel situations by acquiring new information from other people—socially situated
learning—is a core faculty of human development. Unfortunately, socially situated
learning remains an open challenge for arti!cial intelligence agents because they must
learn how to interact with people to seek out the information that they lack. In this
article, we formalize the task of socially situated arti!cial intelligence—agents that seek
out new information through social interactions with people—as a reinforcement learn-
ing problem where the agent learns to identify meaningful and informative questions
via rewards observed through social interaction. We manifest our framework as an
interactive agent that learns how to ask natural language questions about photos as it
broadens its visual intelligence on a large photo-sharing social network. Unlike active-
learning methods, which implicitly assume that humans are oracles willing to answer
any question, our agent adapts its behavior based on observed norms of which questions
people are or are not interested to answer. "rough an 8-mo deployment where our
agent interacted with 236,000 social media users, our agent improved its performance at
recognizing new visual information by 112%. A controlled !eld experiment con!rmed
that our agent outperformed an active-learning baseline by 25.6%. "is work advances
opportunities for continuously improving arti!cial intelligence (AI) agents that better
respect norms in open social environments.

human-centered AI | socially situated learning | computer vision | human–computer interaction

Today’s methods for training arti!cial intelligence (AI) agents are akin to locking each
agent alone in a room with a stack of books (1). Powered by large volumes of manually
labeled training data (2, 3) or scraped web content (4, 5) for the agent to consume,
machine learning has produced rapid progress in many tasks ranging from healthcare (6)
to sustainability (7). But, when a concept is absent from the training data, the agent has
no means to acquire it: Restricting an agent’s knowledge source to the books in the room
prevents the agent from learning any concepts not present in the room. Worse, these
methods ossify agents to ongoing changes to the world or to evolving human needs. So,
while the resulting agents often demonstrate strong test set performance, they struggle
when faced with novel situations or when deployed in the real world (8–10).

We present a formalization that enables AI agents to break out of the metaphorical room
by learning through ongoing interactions with people in real-world social environments.
We term this approach socially situated arti!cial intelligence and present evidence through
a !eld experiment that it enables AI agents to learn new concepts that never occurred in
their initial training data by simultaneously learning how to interact with people. Our
method is inspired by human development, which is a socially mediated process in which
children acquire new concepts and cultural norms through inquisitive dialogues with more
knowledgeable members of society (11, 12). Enabling socially situated AI is critical to
realizing many bene!cent applications, especially in which e"ective human interactions
are critical to improve an AI agent’s ability to understand and act accordingly, including
human–computer interaction (13), interactive robotics (14), personalized conversational
agents (15), and accessible technology (16).

To enable socially situated AI, the agent must not only gather data to learn new
concepts, but also learn how to interact with people to gather the data. At any given
moment, the agent must trade o" between these twin goals of interacting to learn and
learning to interact. #e task is made more challenging because the space of possible
interactions for the agent to traverse is vast, the space of useful social interactions is a sparse
subset of these possible interactions, and the space of informative interactions constantly
shifts as the agent learns. Reinforcement learning, which formalizes possible interactions
as an action space and feedback as a reward, requires hundreds of millions of interactions
to uncover this subspace of informative and prosocial interactions (17, 18); people will
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abandon such an agent long before it crosses such a threshold
(19, 20). As a result of this limitation, methods that learn from
human interaction have so far only seen success with manual
human labels (21–25) or with small action spaces such as games
and simulations with only a few dozen moves (26–28).

To overcome these challenges, we introduce a formalization of
socially situated arti!cial intelligence as an iterative reinforcement
learning problem where an agent seeks to improve an underlying
model by interacting with people in a social environment where
people may or may not respond informatively. Responses are
useful only if they contain new information that is useful to the
agent. #e agent must thus choose social interactions that elicit
new concepts useful for the model. Our formulation adopts a
knowledge reward to guide the agent to interactions that lead
to the discovery of new concepts and an interaction reward to
guide the agent to interactions that adhere to social norms in the
environment. New concepts are gathered from these interactions,
which are used as training data to update the model. As the
model improves at these concepts, the agent updates its policy
and begins learning how to ask questions about new concepts
where people are interested to answer but the model’s performance
is still poor. #is process of uncovering social norms, improving
the underlying model, and updating the interaction policy iterates
throughout the agent’s lifetime.

We explore the challenges associated with socially situated
learning through a large-scale !eld experiment: We deploy an
AI agent on a large photo-sharing social network to learn new
visual concepts, a challenging task for which prior models have
been criticized as being limited, brittle (29, 30), and prone to
problematic behavior (31). Our agent interacts with people on
social media by posting natural language questions as comments
(Figs. 1 and 2). In a !eld experiment, we compare our agent to
ablations that focus only on the knowledge reward (traditional
active learning) or only on the interaction reward. From 236,000
interactions, the one agent using both is capable of learning and
dramatically improves its visual intelligence while the control
variants stop receiving feedback or quickly stop learning.

Socially Situated AI Framework

Active learning is the most common framework consulted when
iteratively expanding a model’s capabilities. #e goal of active
learning is to optimize a sequence of labeling requests to acquire
new data D; the new data will be used to improve performance
on the model V : X → Y with as few requests as possible. Al-
though most active-learning methods design heuristic acquisition
algorithms (32), recent work has formalized the process as a

reinforcement-learning process (25). #ese attempts usually re-
move real humans from the pipeline and assume the existence of
an oracle that will provide labels for any request.

Although a pure active-learning approach could gather new
data through social interactions in social environments, recent
work in human–computer interaction has concluded that users do
not want to serve as simple oracles by repeatedly providing labels,
breaking a fundamental assumption in active learning (33–35).
Our work is a reaction to this observation: Traditional active
learning is not ecologically valid in realistic social environments.
In our !eld experiments, we empirically show that a baseline
active-learning approach generates interactions that people are not
interested in responding to (25).

We formalize socially situated arti!cial intelligence as an itera-
tive reinforcement-learning problem that generalizes conventional
active learning. #e agent is placed in a social environment E =
(S, A, P, P0). S is the state of environment; e.g., it could include
the history of dialogues for a conversational agent or the current
location of objects in a three-dimensional world for a robotic
agent. A is the space of possible interactions with people that
the agent can initiate; e.g., it can be the set of statements that a
conversational agent can ask or the set of motions a robotics agent
can perform. P : S × A → S is the transition dynamics; e.g., the
transition function encodes how people react to the agent’s past
actions and how the world changes as a result. Finally, P0 is the
probability measure on the initial state distribution.

Similar to active learning, the agent’s goal is to gather data D to
optimize V ’s performance with as few interactions as possible. We
design this agent’s decision-making process as an in!nite-horizon
Markov decision process M = (S̄,A, P̄, P̄0, R). Intuitively,
M jointly characterizes the evolution of the environment E ,
collected data history D, and the model V as the agent makes
interaction decisions to optimize the learning objective encoded
by the reward R. S̄ = (S × D × V) is a metastate that now
encodes the state of the environment S , the data history
D, and the current capabilities of the underlying model V .
So, at a given time step, s̄t ∈ S̄ = (st ,Dt , Vt ), where Dt =
{s0, a0, . . . , st} ∈ D is the dataset of past interactions. Dt is
a raw form of the data collected so far and can be postprocessed
to yield training data for Vt . #e metatransition dynamics are
P̄ : S̄ × A → S̄ such that st+1 ∼ P(·|st , at ), new interactions
are added to the dataset Dt+1 = Dt

⋃
{at , st+1}, and a new

model is trained from the accumulated data Vt+1 = train(Dt+1).
#e metainitial state distribution is P̄0(s̄ = (s ,D0, V0)) =
P(s) · 1[D0 = {}] · init(V), where init(V) is the prior dis-
tribution over V0 initialized parameters and D0 is an empty
dataset.

Parse responses to 
iden!fy social interac!ons

Genera!ng social yet 
informa!ve ques!ons

Visual intelligence through human interac!ons on a social network

Meta state with new 
image from social 
network

Agent: how many 
animals are in the 
photo?

Curate new 
informa!on

(re)trainn
ModelData

Knowledge reward

Interac!on reward

Update interac!on 
reward from past 
interac!ons

(Re-)train vision model 
with new image 
ques!on answers

Current computer vision

Q: how many 
animals are in the 
photo?
A: 2

Genera!ng s
informa!ve ques!ons

Update interac!on 
reward from past
interac!ons

Deploy in a 
social network

D Human: <no response>

Human: Those are deer

Human: I see 2

Human: Those are

Fig. 1. No matter how comprehensively we curate datasets, AI model deployments will inevitably encounter situations they have not previously seen, limiting
their utility in the real world. We introduce a framework for socially situated AI, a reinforcement-learning framework that enables agents to uncover useful social
interactions with people that result in the discovery of new information. With this formulation, we design a prototype to showcase the possibility of socially
situated learning for a visual intelligence task. Our prototype agent learns visual concepts by asking questions about pictures people upload on social media.
It parses how people respond to our agent into two rewards, which guide the agent toward interactions that are preferable for people and informative for its
underlying model.
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Q: Is this a commercial 
plane?
A: yes, you’re right! 
Flight coming from 
Amsterdam to Saint 
Martin!

Q: Is this person 
wearing a life vest?
A: Ahahah not at all ! 
She is wearing a big 
coat 

Q: What kind of building 
is that?
A: Is a medieval church 
in Siena (Tuscany,Italy) 
dedicated from its 
earliest days as a 
Roman Catholic Marian 
church, and now 
dedicated to the 
Assumption of Mary. 

Q: What is the dog's tail
resting on?
A: it’s a public restroom.

Q: What material is the 
counter?
A: It looks as though it is 
marble, however this 
isn't my design so I 
can't be 100%. It's 
gorgeous though isn't it!

Q: What kind are the 
pink ones?
A: Hi, it is japanese 
cherry flower - Prunus 
serrulata, the others: 
paeonia, anemone, 
ranuculus.

Q: Is this photo taken at 
night?
A: Hi ! It's at sunset :)

Q: What type of dessert
is that in the picture?
A: hi dear it’s coconut 
cake, it tastes amazing 
:)

Q; Is the board room 
carpeted?
A: we use wood floor.

Q: What is the shape of 
the sink?
A: It's a square.

Q: Is that a real bird?
A:  it's a 
crocodile

Q: What is on the 
counter?
A: On the counter you 
can find a wide variety 
of chocolates, dragees 
and all kinds of refined 
sweets!

Q: What kind of bird is 
this?
A: A Barn Owl.

Q; What is the green 
vegetable?
A: it’s bok choy!! So 
yummy 

Q: What is the white 
stu! on the table?
A: mayo!.

Fig. 2. Examples of the 236,000 interactions initiated by our agent with people on social media, demonstrating the diversity of its questions and responses.
Some questions verify concepts, while others ask about attributes such as types of buildings or materials of objects. The responses vary widely in length and
vocabulary. While some directly answer our question, such as “It’s a square,” others provide a lot of background information. Some responses also indicate
positive sentiment by using emojis, exclamations or phrases like “Hi dear.” Not shown here, each question is prepended with a self-disclosure introduction: “We
are a computer science research project.” To preserve privacy, photos displayed are under a creative commons license and are visually and semantically similar
to the ones uploaded by users on social media.

To make socially situated learning possible, we design rewards
that balance the twin goals of interacting to learn and learning
to interact. We design the reward R : S̄ → R = α · Rinteraction +
(1 − α) · Rknowledge, 0 ≤ α≤ 1, to be a linear combination of
two rewards: an interaction reward and a knowledge reward. #e
interaction reward encourages interactions within the commu-
nity’s prosocial norms. Unlike prior work (21, 24, 28), we do
not assume that people can be trained to provide explicit rewards
or assume that people would respond to every interaction with
useful information (25, 32). Instead, by drawing on the concept of
nonreactive measures from sociology (36, 37), which suggests that
humans learn social norms or interaction preferences by observing
how people in a community interact with them, our agent scalably
learns social norms established within the social environment E ,
not through repeated interactions with one person but through
a single interaction with hundreds of thousands of people within
the environment. #e knowledge reward encourages interactions
that result in data that maximally improve the performance of V .

For example, it can be modeled as an active-learning acquisition
function (32) with respect to V .

#e socially situated agent learns a policy π : S̄ → A that maps
from the current metastate to interactions. When interacting with
modalities such as language and motion, the spaces of possible
sentences and gestures are combinatorially vast; domain-speci!c
methods would need to develop techniques to make exploring the
space of A tractable. #e optimal policy maximizes the rewards:
π∗ = arg maxπ Eπ[

∑
t R(s̄t)]. We evaluate our agent’s perfor-

mance using two metrics. First, borrowing from active learning,
we report accuracy of the underlying model V on a held-out test
set of (X , Y) ∈ Dtest. Second, given the prior human–computer
interaction literature arguing that people will disengage when
they are not interested (38–41), we evaluate whether our agent
learns appropriate social interactions using the rate of informative
interactions: the percentage of the agent’s interactions that resulted
in new information. A higher informative response rate implies
a greater understanding of implicit social norms while a low
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informative response rate implies people are not responding,
which can slow down or even halt the socially situated learning
process.

By appropriately constructing M, we can recover di"erent
variants of traditional active learning (SI Appendix, section 1).
Prior work sets α to zero, making the assumption of an oracle
that will generate new information for any query or interaction. In
contrast, by extending the framework as a reinforcement-learning
problem that characterizes social interactions within the reward
Rinteraction, we explicitly model human-interaction preferences and
empirically show that it is necessary for socially situated learning.
Aside from active learning, this formulation also generalizes recent
work on social learning (42, 43) and machine theory of mind
(44). By designing the interaction reward as a dynamics model to
predict how others will act, we recover these related formulations.
Intuitively, the formulation a"ords a foundation that can be
applied to applications such as conversational assistants, teachable
agents in education, and assistive robotics (45).

Visual Intelligence through Human Interactions

In this section, we apply the socially situated AI framework to
computer vision using a photo-sharing social network. Modern
computer vision systems rely on large volumes of human-labeled
training data, but generating these datasets remains challenging.
In computer vision, for example, the ImageNet dataset (46) re-
quired 14 million labels such as whether an image contains a chair.
Unfortunately, this knowledge is both so simple that it is extremely
tedious for humans to label and so tacit that it is often absent
from the image’s metadata and the human annotators are required.
#is combination of tedious and tacit makes computer vision data
challenging to acquire; many volunteer data acquisition e"orts fail
(47, 48), limiting the scale and ambition of visual intelligence
e"orts.

To explore the potential of harnessing this tacit information
through social interactions, we empirically validate the utility
of the framework by deploying a socially situated agent on In-
stagram, a large photo-sharing social network (see SI Appendix,
section 2 about our Institutional Review Board [IRB]). #e agent
interacts with people by asking natural language questions qt ∈ A;
i.e., A is the space of possible language interactions. #e state st =
(it , anst) encodes a randomly sampled new image it uploaded
to the social network and the human answer anst to the agent’s
previous question qt−1. #e answer anst can be an empty string
if there is no response. #e answers are extracted from human re-
sponses using a natural language parser (see SI Appendix section 7
on parsing responses).

#e agent uses the answers extracted from human responses
to learn from its interactions. Using natural language to gather
visual knowledge allows us to test a whole host of common
computer vision recognition tasks: object detection (e.g., “What
is in the image?”), !ne-grained recognition (e.g., “What kind
of $owers are in the vase?”), attribute classi!cation (e.g., “What
material is the table made of?”), knowledge base reasoning (e.g.,
“Is this a food vegetarian?”), and commonsense reasoning (e.g.,
“Was this taken in the winter?”). Consequently, we design
V to be a computer vision question answering model. #e
inputs (it , qt ) ∈ X are an image and corresponding natural
language question and the output is anst ∈ Y , a natural
language answer. #e agent’s goal is to improve V ’s ability to
recognize visual concepts (see SI Appendix, section 3 discussion
#2 for more details). From its interactions, the acquired dataset
Dt = {(i0, q0, ans0), . . . , (it−1, qt−1, anst−1)} is used to train
Vt . Drawing on the active-learning literature, we design the
knowledge reward Rknowledge as V ’s uncertainty. Initially the

recognition model does not know how to recognize any concepts
but becomes more con!dent the more often it sees a particular
concept. For example, the recognition model might not know
how to recognize deer, resulting in high uncertainty whenever it
encounters one. If people identify the animal for the agent, its
uncertainty will decrease, guiding its behavior to ask about other
concepts.

#e agent uses its past interactions to learn how to interact.
Social science observes that each community develops distinct
norms and cultures, in$uencing how people interact with one
another (49, 50). On social networks, for instance, people prefer
answering shorter requests, providing factual knowledge, and
avoid rhetorical requests or vague questions (51). Every past
interaction is marked as either a positive (interactions that result in
new information) or a negative example (interactions that receive
no new information). #ese positive and negative examples are
used to continually train Rinteraction : S × A → [0, 1] as a binary
classi!er. #is interaction reward guides the agent’s behavior to-
ward the community’s prosocial norms.

Finding useful language interactions is a combinatorial search
problem; we draw on recent advances in machine learning to
tractably explore the combinatorial interaction space. A straight-
foward approach could devise the agent’s policy as an image-to-
question generation model, qt ∼ π(it), where qt is composed
of a sequence of words. #is combinatorial search process needs
to be iteratively repeated; as V ’s capabilities improve, the space
of informative interactions continuously shifts. To make this
search process tractable, we apply an observation from several
intersecting social science !elds: While the action space of all
possible behaviors is vast, most human–human interactions lie
on a low-dimensional space (52). For example, language use is
Zipf distributed (53), norms and social scripts encourage common
behaviors within groups (54, 55), and cultures develop preferred
interrelated emblem gestures (56). We learn an interaction rep-
resentation of realistic human–human interactions using existing
literature in information maximizing variational autoencoders
(57, 58). We use this representation, z , as an intermediate con-
straint by recon!guring the policy, zt ∼ πθ(it), to project the
input image it into the representation space and by designing a
decoder, qt ∼ decφ(z), to project from the representation to a
sequence of words. θ and φ parameterize the neural networks used
to de!ne the policy and the decoder. Once trained, the decoder
parameters, φ, are held constant throughout deployment, decou-
pling the agent’s need to concurrently learn what interactions to
initiate with how to generate those interactions. Rewards can be
assigned to a single action (z ) rather than a subset of the words in
the question (see SI Appendix, Section 3 for more details).

Field Experiment

#e socially situated AI framework sets up two simultaneous goals
for the agent: one to initiate social interactions that people want
to respond to with informative data and another to improve
its underlying model by gathering useful data. #ese two goals
de!ne the evaluation metrics we use to evaluate the deployed
agent. First, to evaluate the agent’s ability to garner responses, we
measure the rate of informative responses to its questions (38–
41), i.e., the percentage of the agent’s interactions that received an
answer. We detect informative responses using a response model
that identi!es whether the response contains an answer. Second,
to evaluate our agent’s ability to recognize new visual concepts,
we report accuracy of the knowledge reward’s recognition model
on a held-out test set of 50,104 social media images, questions,
and answers, collected using annotators from Amazon Mechanical
Turk (SI Appendix, section 10).
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To compare the socially situated agent designed using our
framework versus others, we also deploy a baseline approach and
two ablations of our agent. To isolate the e"ects of both the
interaction and the knowledge rewards, we deploy the human
preference ablation, which uses only the interaction reward, and
the active-learning ablation, which uses only the knowledge re-
ward. #e active-learning ablation is a reinforcement-based active
learning introduced in prior work (25). We also deploy a baseline
agent that does not use the pretrained interaction representation
as the action space and is allowed to !ne tune the decoder’s
parameters, allowing the agent to use the entire combinatorial
vocabulary space as the action space (59). #is baseline uses both
the rewards; we also add an extra language-modeling reward,
which encourages the generation of grammatically correct lan-
guage outputs and is used in prior literature (60). All agents
are trained using proximal policy gradients (61). All agents are
initialized using the same amount of data and have the same
policy and decoder architectures. #e agent self-identi!ed as an
AI research project, and workers on Amazon Mechanical Turk
vetted all questions prior to posting to ensure that none would be
problematic or o"ensive (see SI Appendix, section 8 for the vetting
task work$ow).

#rough a deployment of 8 mo where each agent was allowed
to initiate at least 200,000 interactions, we observe the bene!ts

of socially situated learning over other methods (Fig. 3A). #e
socially situated agent increases its informative response rate from
an initial 22% to 33% across 236,000 interactions, a relative
improvement of 50%. In comparison, both the active-learning
and baseline agents elicit fewer responses after every iteration,
ending at 6% and 12.3%, respectively. #e baseline agent, in its
e"ort to explore the combinatorial space of all possible language
interactions, inevitably generates incoherent questions, causing
response rates to decrease; this produces a vicious cycle where
the agent cannot identify useful interactions. We halted its de-
ployment once response rates dropped to 6%. #e active-learning
agent generates longer and harder questions that people are not
interested in answering. For example, some of its questions require
external knowledge: “Are these tools designed for someone left
handed or right handed?” requires knowledge about a speci!c
tool and whether it can be operated by either hand. #e human
preference agent achieves the highest response rate but reduces the
requests to a small set that people prefer answering. It asks easy-
to-answer questions, for example those that are time related (e.g.,
“What time of the day was this picture taken?”) and color related
(e.g., “What color is the shirt?”).

We also perform an experiment where we hire human annota-
tors to edit our questions to increase the likelihood of responses.
#is human-edited experiment, which achieves 37% responses,

C

BA

D

Human edited
Human preference (only interaction reward)
Socially situated (knowledge + interaction)
Active learning (only knowledge reward)
Baseline (no interaction representation)

Socially situated (knowledge + interaction)
Active learning (only knowledge reward)
Human preference (only interaction reward)
Baseline (no interaction representation)

Socially situated (knowledge + interaction)
Active learning (only knowledge reward)
Human preference (only interaction reward)
Baseline (no interaction representation)

Performance as a function of number of interactionsLearning human interaction preferences

Performance as a function of number of informative responses Socially situated data versus traditional datasets

Number of informative responses from people Number of training examples

Number of interactions with peopleNumber of interactions with people
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Learning from data collected from interactions with people
Learning from traditional datasets

Fig. 3. We show changes in informative response rate and recognition accuracy as agents interact with people and gather new visual knowledge. (A) We
plot informative response rate versus the number of interactions initiated. Socially situated and human preference agents, which use the interaction reward,
increase the likelihood of answers from people. Other agents observe a decrease in responses, stunting their data acquisition. (B) We visualize the performance
of the vision model versus the number of interactions initiated by the agent. Socially situated and active-learning agents, which use the knowledge reward,
gather useful data, with active learning requiring more interactions and plateauing since fewer people are responding. (C) We visualize the performance of
the vision model versus the number of responses from people. Even though socially situated is trading off the two rewards, its accuracy improvements are on
par with active learning, which solely maximizes the knowledge reward. (D) We report recognition accuracy as a function of number of training examples from
our socially collected data versus traditional datasets, demonstrating that socially situated agents can in fact acquire new information that is not present in
traditional datasets.
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measures the average human ability to elicit responses from our
chosen social environment assuming that the original intention
of the question remains the same. #is value measures how much
more data could be collected (i.e., how much the informative
response rate could be increased) if the AI agent had more social
capability. #is value is slightly higher than the agent’s !nal
performance of 33%. We also study how self-identifying as an AI
agent impacts the response rate and !nd no statistical di"erence,
suggesting that people’s responses are not a reaction to the novelty
or citizen science motivation to help a research project succeed
(SI Appendix, section 14).

Using the data collected to improve the computer vision model,
the socially situated agent improves accuracy using fewer inter-
actions than other agents. It achieves a model performance of

39.44% within 236,000 (Fig. 3B) interactions, from which it
receives 70,000 responses (Fig. 3C ). Meanwhile, active learning
initiates 274,893 interactions to receive only 30,000 responses
and begins to saturate performance at 31.4%; with the response
rate drop to 12.3%, these results empirically suggest that a pure
active-learning approach is not ecologically viable in some so-
cial environments. Even though the human preference agent
receives more responses per interaction, the data it collects do
not improve the underlying vision model. Since it favors collect-
ing answers to the same small set of questions, the underlying
vision model begins to over!t to generating only time-related
and color-related outputs. Finally, since the baseline agent begins
to generate incoherent questions, the data it collects are not
useful.

what !me of day is this?          was this photo taken with the sun out?

what is on the sandwich?           what is on the floor?     what is on the wall?

what type of flowers are those on the top of the building?          what breed dog is this?

what material is the pants?            what are the light posts made of?
what is the orange food?          what is the food on the table?

what type of socks is the person in this picture wearing?     Is that a winter jacket?

where is this path located?     where is the hummingbird?

why is the man wearing gloves?     why is that person's mouth open?

what are the bears doing?     what is the child doing?
what is holding the phone to the wire?     what is the baby holding?

how many cars is in this scene?     how many dogs are looking out at the window?

what is in front of the teddy?           what is on top of the cakes?

what is the color of the wall behind the fabric and the wooden brick?
is that a bear?           is this at a restaurant?           is this a fishing net?

Example ques!onsQues!on types

Change in frequency due to 
feedback

Response rate Change in accuracy
fefefeffeeffefeedededdbababab ckckckkkkkkkkkkk

Ques!on types

!me

preposi!ons

a"ribute

material
food

fashion

why

ac!on
transi!ve

coun!ng

spa!al

color
existence

loca!on

!me

preposi!ons

a"ribute

material
food

fashion

why
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color
existence
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Fig. 4. Our agent emergent behavior is consistent with social science literature on how people behave online. We group the generated questions into
categories and visualize the change in odds ratio of generating questions in that category, the response rate, and the change in recognition accuracy.
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We further compare how training using data collected by the
socially situated agent compares against that using data from
existing datasets (62, 63) (Fig. 3D). Training with the same
number of labels from existing datasets increases accuracy only
from 11.24% to 17.45%, vs. an increase from 18.13% to 39.44%
when training with our socially situated data, demonstrating that
socially situated agents are capable of adapting to the distribution
of data encountered in their social environment.

To examine what social norms were learned, we manually group
questions into 21 categories (Fig. 4) (57). Using a logistic regres-
sion, we report the log odds of our agent asking questions from
each category at the beginning versus at the end of its deployment.
Our agent’s learned behavior is consistent with human learned
behavior (39, 49, 51): It produces more tailored questions in
categories that can be easily interpreted and answered (50), such
as materials (e.g., “What are the light posts made of?”), existence
(e.g., “Is that a bear?”), and color (e.g., “What color is that vase?”);
it reduces the generation of questions that require e"ort to answer
or have multiple answers (49, 51), such as counting (e.g., “How
many cars are in the scene?”), actions (e.g., “What is the child
doing?”), and why (“Why is the man wearing gloves?”). It learns
to demonstrate social proof by mentioning recognizable concepts
(39), such as spatial (e.g., “What is in front of the teddy?”),
prepositions (e.g., “What is on the wall?”), and attributes (e.g.,
“What type of $owers are those on top of the building?”).

Conclusion

Our work presents a framework that relocates AI agents outside
of the metaphorical locked room of their training data and
enables ongoing collaborative learning with people. Agents can
guide their learning by interacting with real people in online
social environments. Our framework breaks the ecologically in-
valid assumption that oracles will always provide new concepts
and expects machines to socially engage in interactions to learn
from people. Our !eld study demonstrated that socially situated
learning is possible on large combinatorial interaction domains
such as natural language question generation, enabling agents to
discover new concepts and simultaneously uncover social norms.
Success required the development of design patterns to ensure
prosocial interactions: #e agent self-identi!ed as a research
project; we hired crowd workers to continually monitor and
prevent accidental antisocial agent behavior; we discontinued the
baseline agents when they began producing nonsensical inter-
actions (SI Appendix, section 15 on ethics). While we illustrate
our framework through a visual intelligence application using
language interactions, we believe that this work more broadly
advances opportunities for AI agents to interact as collaborative
partners—with applications including healthcare support robots
that can ask providers to clarify procedures, technologies that
can improve their interfaces through user feedback, and agents
that can learn from many di"erent communities to diversify their
understanding.

Materials and Methods
Informed-Consent Procedures. Our research was approved (protocol 50287)
by Stanford University’s IRB through an expedited nonmedical review. Our IRB
approves data collection from two online population pools: one from workers on
Amazon Mechanical Turk and another from users worldwide on a social network.

We poll images from a social network, generate questions about concepts in
the image, and ask social network users by posting the question on their posted
image. The questions are programmatically generated and vetted by Amazon
Mechanical Turk workers as not being problematic or offensive. Only questions
that are approved by workers are posted online to users.

Mechanical Turk workers are fully informed about the purpose of the study.
They are told that we plan to generate questions that would fit the social norms
within the community and would be likely to receive an answer from an online
social network user. Since our questions are automatically generated, workers are
asked to identify questions that might be construed as offensive or rude to ask.
They are informed that all questions that are vetted will be posted on social media.
They are shown the image associated with the question but are not provided with
links to the social network post or the poster’s account.

Social network users are informed that we are asking a question about their
image. All questions are preceded by the following introduction: “We are a
computer science research project.” The social network profile used to post the
question also has the same message printed as its biography. Regardless of
whether users respond, we debrief them of their participation by sending them
a direct message on the social network after 48 h of posting the question.
We provide them with an email address in case they have further questions
or reservations: “Thank you for responding to our question. Your answers will
be used to improve an AI agent’s ability to recognize concepts in images. Your
original image and answer will not be released publicly. If you wish that we do
not use your response or have questions about the study, please email us at
<EMAIL ADDRESS> or reply to this message.”

Data Privacy. We collect worker IDs from Mechanical Turk workers (which are
anonymized). We also collect usernames for social media participants, which are
publicly available (however, usernames, personal information, etc., will not be
used for any experiments or stored). Data are transferred using secured folders
on Stanford University’s file system. Since our primary contribution is a framework
and a proof-of-concept prototype, the data we collect will not be shared publicly.
Participants are contacted by us only if their posts are publicly accessible. We
collect only publicly available data.

Data, Materials, and Software Availability. Anonymized (images and text)
data have been deposited in https://github.com/stanfordvl/ssai.git (64) and
https://doi.org/10.5281/zenodo.6878328 (65). All other study data are included
in this article and/or supporting information. Our contribution is a framework
for machine learning agents to learn from interactions with humans, and not a
dataset. Following the guidelines set in our IRB, we are unable to release user
images and user-generated questions as they may contain private information
about the users. SI Appendix section 14 discusses the risks of releasing such data
and proposes directions for future research work to safely release user generated
data.
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