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LysR-type transcriptional regulators (CT'TRs) form one of the largest fam-
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ilies of bacterial regulators. They are widely distributed and contribute to
All rights reserved gu y y

all aspects of metabolism and physiology. Most are homotetramers, with
each subunit composed of an N-terminal DNA-binding domain followed
by a long helix connecting to an effector-binding domain. T 'TRs typically
bind DNA in the presence or absence of a small-molecule ligand (effector).
In response to cellular signals, conformational changes alter DNA inter-
actions, contact with RINA polymerase, and sometimes contact with other
proteins. Many are dual-function repressor-activators, although different
modes of regulation may occur at multiple promoters. This review presents
an update on the molecular basis of regulation, the complexity of regulatory
schemes, and applications in biotechnology and medicine. The abundance
of LT'TRs reflects their versatility and importance. While a single regulatory
model cannot describe all family members, a comparison of similarities and
differences provides a framework for future study.
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1. INTRODUCTION

LysR-type transcriptional regulators (LT'TRs) were first described more than three decades ago,
when few transcription factors had been characterized (49). Since then, it has become clear that a
significant portion of bacterial genomic DNA encodes transcription factors (12, 16, 75). Of these
transcriptional regulators, often classified into 15-20 families, LI'TRs form one of the largest
families (75, 96, 99). They are widely distributed in bacteria and are also in some (but not many)
archaea and eukaryotes. This review focuses on bacterial regulators.

LTTR prevalence within individual bacteria does not correlate with any specific lifestyle or
phylogeny, and LT'TRs commonly represent 10-20% of the entire regulatory repertoire (99). In
bacterial strains of Acinetobacter, Agrobacterium, Burkbolderia, Escherichia, and Pseudomonas, as many
as 40-120 LTTR genes are present per genome. This abundance correlates with involvement of
LTTRs in diverse functions associated with essentially all aspects of bacterial life.

LTTR features have been reviewed elsewhere (24, 68, 80, 114) and are revisited here. Given
the size of the family and diversity of its members, no single model can describe all LysR-type
regulators (89). The goal of this review is to highlight progress in understanding the molecular
basis of functionality in bacteria, the role of LT'TRs in several complex regulatory schemes, and
the development of IT'TR-based applications in biotechnology and medicine. In addition, we
highlight aspects of transcriptional control that remain unclear, including LT'TR interactions with
RINA polymerase (RINAP).

2. GENERAL LTTR CHARACTERISTICS:
A FUNDAMENTAL FRAMEWORK

The following overview provides background for subsequent sections. However, for most traits,
there are exceptions to the rule. Therefore, care should be taken in drawing inferences about any
individual LT TR based on studies of homologs.
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Figure 1

(@) Representative LysR-type transcriptional regulator (CT'TR) subunit depicting common secondary
structures. Each subunit (~300 residues) is composed of a DNA-binding domain (DBD), which is a
three-helix bundle (~60 residues), followed by a B-hairpin (3—p) that extends into a linker helix (LH;

~20 residues). The LH is followed by two five-stranded p-sheets with helical crossovers making up
subdomains of the effector-binding domain (EBD), EBD-I and EBD-II. Here, we introduce notation to
establish a consistent naming scheme. Strands within the sheets are designated by letters A-J (sans serif font),
and the crossover helices are designated by Roman numerals I-IX (serif font). Appending § and a symbols to
distinguish unusual features should help with structural comparisons. The DBD-LH helices are numbered
1-4 (sans serif font). This scheme follows that introduced for CysB-EBD (126) and modifies notation that
was first used for CbnR (91). Crossovers are shown in front of or behind strands with spatial orientations
following a right-handed rule. The effector-binding site lies between the two B-sheets. (b)) BenM illustrates
nomenclature to address individual variations (109). In this structure, there is no helix associated with feature
1V; it is a coiled-coil region. To cover N-terminal additions (not shown), primes can be introduced, going
backward from helix a1. For example, in the full-length structure of AphB (122), which has a B-strand at the
N terminus before a1, these additional regions would be denoted p1” and B2’. Note that aV is split in BenM
and is thus labeled aVa and aVb.

2.1. Domain Organization

LTTRs are typically homotetramers; a subunit is shown in Figure 1. The most highly conserved
portion, the DNA-binding domain (DBD), is at the N terminus and contains a winged-helix—
turn-helix (WHTH) motif (2, 68). This domain is connected by a linker helix (LH) to a domain
that usually binds a small molecule (68). Since this molecule may be a coactivator, an inducer,
and/or a corepressor, we use the term effector. The effector-binding domain (EBD) is sometimes
called a regulatory domain, an inducer-binding domain, a ligand-binding domain, or a companion
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domain. Regardless of terminology, this domain resembles a periplasmic binding protein in which
a cleft between two subdomains binds an effector.

Different EBDs are structurally similar, despite individual recognition of diverse effectors and
substantial variations in sequence. UT'TRs can bind organic acids, metal ions, flavonoids, sugar
phosphates, nucleotides, and many other metabolites (83). Moreover, the response can be highly
specific. For example, two paralogs in Acinetobacter baylyi together regulate aspartate catabolism,
yetone, DarR, responds to p-Asp and the other, AalR, to L-Asp (8, 61). Identifying specific effectors
is challenging, and in most cases, signals to which LT'TRs respond remain unknown.

2.2. Genetic Context

LTTR genes are often near regulated target genes. In the canonical model (114), an LT TR gene is
divergent to a target gene or operon, as shown for BenM and CatM of 4. baylyi (Figure 2). These
LTTRs as well as a third, SalR, regulate clustered genes and operons for aromatic compound
degradation. It is common for multiple LT'TRs to participate in interrelated pathways. In this ex-
ample, SalR is encoded by a gene near one regulated target, s#/4, and is convergently positioned
relative to sa/D and salE, all needed for salicylate consumption (62). While most LT'TR genes are
monocistronic, s#/4 and salR are cotranscribed. In Rbodococcus equi, an LT'TR gene, virR, is part
of an operon involved in virulence (15). The virR promoter allows five genes to be cotranscribed
at low levels, whereas a second promoter within the virR coding sequence enables regulated ex-
pression of the four downstream genes. The precise role of VirR in positive regulation of the
downstream genes is not clear (15). In other examples, LI'TR genes are convergent to a target
locus, such as for DarR and MdcR (8, 121).

Context can be used to predict LI'TR function (8, 24, 61, 121). However, the entire comple-
ment of genes regulated by any specific LI'TR cannot be revealed solely by genetic context. The
evaluation of LT'TR function is improved by methods of systems biology and gene cluster analysis
integrated with phylogenetic footprinting, which evaluates conservation among diverse microbes
(61, 105-107). One study investigated seven Escherichia coli LT'TRs of unknown function (106).
The workflow combined information from transcriptomics (110), determination of DNA-binding
sites with an in vivo chromatin immunoprecipitation method (41), and mutants lacking specific
LTTRs. Models based on metabolic and genetic contexts were further tested. This approach es-
tablished the function of four new LT'TRs and identified the targets of three others (106). The
results highlight that individual LT'TRs regulate multiple loci, have complex direct and indirect
effects, and affect diverse aspects of metabolism.

2.3. Consensus LT'TR Sequence (T-Nj;-A)

The DNA-binding sites for LT'TRs have been investigated using genome-wide protein-DNA-
binding techniques (106, 107, 129). Not only do LTTRs often regulate multiple genes and
operons, but also they sometimes serve as global regulators (39, 72, 82). In one study, BsrA from
Pseudomonas aeruginosa PAO1161 was inferred to regulate 35 genes directly, and many others
indirectly (88). Regulated functions included vital metabolic pathways, transport, and the forma-
tion of surface appendages. Binding sites were evaluated for possible matches to a known LTTR
consensus sequence (T-Nj;-A), sometimes called the LT'TR box (114).

This consensus lies within a small region of dyad symmetry such that the exact sequence varies
for different LT'TRs. Conserved interactions between the DBD of an UT'TR and its recognition
box were first structurally characterized for BenM (2) and, more recently, CbnR (67). The BenM
recognition box (ATAC-N7-GTAT) corresponds to an operator site (OSg;) in Figure 2¢. The
dyad symmetry of this LT'TR box, typically around 15 nucleotides in length, reflects interactions
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Figure 2

Examples of regulation by LysR-type transcriptional regulators (LT TRs) in Acinetobacter baylyi. (a) Clustered and functionally related
chromosomal genes for aromatic compound degradation are regulated by three LT'TRs, SalR, BenM, and CatM. BenM and CatM have
overlapping functions at four loci (black and gray circles), with the extent of regulation indicated by the size of the circle. Transcriptional
activation of benA is mediated primarily by BenM, with a minor role for CatM. The reverse is true for czzB. BenM and CatM play equal
roles in regulating benP and catA (24). SalR activates transcription of the s#/4R operon and may or may not regulate s#/D and salE (62).
(b) Promoter regions are aligned relative to known transcriptional start sites. Each of three highlighted motifs for benA differs by no
more than one nucleotide compared with the consensus LT'TR box (ATAC-N7-GTAT) for binding two DNA-binding domains
(DBDs) of a CatM or BenM tetramer. (c) Relative positions of the start of divergent coding sequences for BenM and BenA. Three
operator sites (OSs; blue boxes) are shown relative to the transcriptional start sites for benA and benM (+1). Open ovals indicate the
binding positions for four DBDs of an LT'TR tetramer in the absence or presence of effectors. (d) Promoter regions of genes involved
in aspartate metabolism are aligned relative to known transcriptional start sites (8). A conserved LT'TR box (ATGC-N7-GCAT) could
bind two DBDs of an AalR or DarR tetramer. A so-called half-site sequence (GCAT) is also conserved at a position that abuts the —35
site of the promoter, where one DBD of a tetramer may bind and interact with RNA polymerase to activate transcription.

www.annualreviews.org o LysR-Type Transcriptional Regulators 321



Annu. Rev. Microbiol. 2023.77. Downloaded from www.annualreviews.org
Access provided by University of Georgia on 08/02/23. For personal use only.

MI77CH16_Neidle ~ ARjats.cls ~ May 29, 2023 9:32

with two wHTH motifs. This site is sometimes called the RBS, an abbreviation not used here
to avoid confusion with a ribosome-binding site. Since LUT'TRs usually function as tetramers, one
operator site accounts for binding of half the subunits.

A unified model of regulation is difficult to formulate, because of variations in the number,
sequence, and position of operator sites. A repressor will bind DNA in a fashion that interferes
with RNAP binding, whereas an activator is likely to contact and recruit RNAP (12). Thus, the
relative positions of promoter and operator sites are critical. LI'TRs that activate transcription
when bound to effectors usually bind DNA and repress transcription in the absence of effectors. In
these cases, deletion of the LT'TR gene often causes low-level (approximately twofold) derepressed
transcription of the target. However, high-level transcription most often involves repositioning of
the activated LT'TR and, presumably, contact with RNAP. Thus, LT'TR activators are usually dual-
mode regulators. In other examples, such as NdhR, LT'TRs work principally as repressors (58).
Furthermore, the relative operator—promoter positions can vary at multiple targets for the same
LTTR, allowing different modes of regulation within the cell. Sequence analysis using a single
T-Nj;-A binding motif can be problematic, as this site neither indicates the binding position of
the entire oligomer nor reflects possible RNAP contact.

Computational approaches to find LT'TR-binding sites are more accurate in conjunction with
properties such as oligomeric conformations, multiple binding sites, promoter positions, coopera-
tivity, and constraints on DNA flexibility (94). A multifaceted computational approach was tested
using a set of six LI'TR-regulated genes. A refined regulatory model emerged that includes com-
mon features of tandem inverted repeats. Each gene in this set had an LTTR box centered at
position —63 to —66 relative to the transcriptional start site (94). A second inverted repeat was
identified (centered at —41 to —45), and, in some cases, a third inverted repeat was identified
(centered at either —34 or —10). Sequence similarity was highest for the LT'TR box (OSg)), and
reduced levels of conservation at other positions were attributed to lower-affinity binding inter-
actions that were nonetheless important. In the case of OdcR, a single-nucleotide change in the
LTTR box appears to modulate transcription for different promoters in its regulon (20).

Complexity is evident in an alignment of four promoter regions where BenM and/or CatM
activate transcription (Figure 25b). These paralogs have overlapping roles in the regulation of
aromatic compounds, and they recognize the same LT'TR box (OSg;, ATAC-N;-GTAT) (24). At
the benA promoter, in the absence of effector(s), BenM binds the DNA with a long footprint,
consistent with two DBDs of a tetramer binding OSg; and the other two DBDs binding OSg;
(14). Since OSg; overlaps the —10 region of the promoter, benA transcription is repressed when
no effector is present. An effector-mediated response causes the tetramer to shift, consistent with
binding of OSgy and OS,. This repositioning of the DBDs (Figure 2c¢), called the sliding-dimer
model (76), should promote interaction with RNAP to activate transcription (125). The signal-
mediated compaction of the EBD affects the entire protein-DNA complex, and it changes the
bending angle of the DNA (76, 124). The result, which may seem counterintuitive, is that effector
binding relaxes the DNA bend angle.

Similar binding events (Figure 3a,b) illustrate that OSg, does not always overlap the —10
region of the target promoter (94). In this example, OSg, blocks the —35 region of the promoter,
and in response to the effector, repositioning occurs from OSg, (Figure 34) to OS, (Figure 3b).
This shift helps recruit RNAP (Figure 3¢).

For benA, both OSg; and OS, differ from OSg; by one nucleotide (Figure 25). However, in
the alignment of comparable BenM-regulated regions (such as caz4 and benP), sequence conser-
vation is much lower for OSg; and OS, than for OSg;. A pattern of multiple operator sites is not
always evident. For example, in Figure 24, the promoter region of AalR-regulated aspA is aligned
with comparable regions of other genes involved in aspartate metabolism in A. baylyi (8). In this
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Effector

Transcription complex

Figure 3

Binding of a tetrameric LysR-type transcriptional regulator (CT'TR) to an operator—promoter region. (#) In
the absence of effectors, both the LT'TR gene and a divergent target gene are repressed. Two DNA-binding
domains (DBDs; ovals) bind the LT'TR recognition box (OSr1; gray rectangle) and a repression site (OSgr2;
pink rectangles). Each half-site of the OS binds one DBD. (b) The effector binds to the effector-binding
domains (EBDs) (the two subdomains, EBD-I and EBD-II, are depicted as green and brown spheres).
Effector-mediated conformational changes reposition two DBDs to an adjacent site (OSa; blue rectangles).

(¢c) Repositioning of the LT'TR helps recruit RNA polymerase (RNAP) and activates transcription of the
target gene. The different positions of OSg; for this generic LT'TR and for BenM (Figure 2) highlight some
observed variations among different LT'TRs (94).

example, the LT'TR box (OSg;) is ATGC-N;-GCAT. However, no neighboring sequence obvi-
ously resembles the full OSg; site. Interestingly, half of that sequence (GCAT) is conserved not
only within these 4. baylyi promoter regions but also in bacteria of other genera (8). This half-
site could bind the DBD of one AalR subunit and might affect transcriptional activation. Many
variations in operator—promoter sequence patterns, such as this one, have unknown significance.

2.4. Autoregulation and Other Control of LTTR Levels

LTTR expression tends to be low and subject to negative autoregulation. Such control makes
signaling responsive to small changes in effector concentration and accelerates response times
in transcriptional networks (108). The presence of a transcription factor-binding site upstream
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of its own coding sequence can be used to discover the sequences of such cis-acting sites by
bioinformatic analysis (5). For many LT'TRs, a divergent gene configuration provides a simple
mechanism whereby the same binding site(s) used for transcriptional regulation of the target
can repress expression of the LI'TR (Figure 2¢). A complicated type of negative autoregulation
occurs for the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. This un-
usual LTTR does not require an effector molecule, and regulation of its target genes depends
on NAC expression levels (9). A two-component NtrBC regulatory system activates nac tran-
scription from a 654-dependent promoter when nitrogen is limiting and NtrC is phosphorylated.
NAC represses transcription from its own promoter by binding a site that restricts the bending or
flexibility of DNA, preventing necessary contact between phosphorylated NtrC and RNAP. With
this exception, NAC-regulated targets have typical 670-dependent promoters (9).

Autoregulation can also occur when LT'TR genes are not divergent to a target. For example,
binding of VirR in R. equi blocks its own promoter, repressing transcription of a five-gene operon
to maintain low-level expression. Regulated transcription of the downstream genes is mediated at
a second promoter (15). For SalR (Figure 24), the sal4 promoter also controls sa/R transcription
(62). This arrangement results in positive autoregulation (52), which can also occur for other
LTTRs, such as a regulator of linoleic acid production in Lactobacillus plantarum (77) and LrhA
in E. coli, which controls transcription of genes for motility and flagellar synthesis (74). ThnR
mediates positive autoregulation by transcriptional activation of genes, including its own, needed
to degrade tetralin in Sphingopyxis granuli (38). Some LT'TRs are not autoregulated; these include
PA2206, which affects oxidative stress responses in P. aeruginosa (104), and HexA, a major regulator
in Photorhabdus luminescens (70). Another nonautoregulated LT'TR is ArgP in E. coli, which controls
arginine export, DNA replication, and amino acid metabolism (92). The ArgP-mediated effect on
disparate functions, as well as its lack of autoregulation, may relate to a role as a nucleoid-associated
protein (NAP) (93), as discussed below.

While less is known about the cellular stability of LT'TRs, proteolysis also contributes to reg-
ulation. Mutational approaches suggest that ClpAP-mediated proteolysis affects the stability of
DarR either directly or indirectly (8). For HexA, in P, luminescens, differential proteolysis in two
cell types appears to control regulation by this LI'TR (70). In another example from Pseudomonas
protegens H78, an LT'TR, PItR, activates biosynthetic genes for synthesis of pyoluteorin (Plt), an
antibiotic. The regulation of Plt production involves a regulatory cascade with multiple signals
and transcription factors. The Lon protease reduces Plt synthesis by acting at several points in
the cascade, including the direct degradation of PItR (131). In a different P. protegens strain, Plt
synthesis was shown to be regulated by rare codons in p/tR (133).

3. MOLECULAR BASIS OF REGULATION

Structural characterization is hindered by the inherent difficulty of obtaining pure, concentrated
LTTR proteins that do not rapidly aggregate (34, 109). Initially, atomic structures were limited
to the EBD regions. The first EBD structures of CysB (126) and OxyR (21) were soon followed
by others. In 2003, a full-length LT'TR crystal structure was characterized, that of CbnR from
Cupriavidus necator (veclassified from Ralstonia eutropha) (91). In another advancement, molecular
interactions were mapped between BenM-DBDs and their cognate DNA (2). The culmination
of crystallographic study is the full-length CbnR complex with promoter DNA (44). Currently,
structures are available for 16 different full-length UT'TRs, 38 different EBDs, and 6 DBDs, not
including structures of the same LT'TR from different species, different variants, or the same
regulator bound to different effectors. Structural features of LT'TRs have been reviewed elsewhere
(68), and we expand here on a few points of interest.
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3.1. Assembly of Oligomers

Figure 1 depicts the DBD, LH, and EBD regions of a typical subunit. Although some LT'TRs
appear to have N-terminal extensions, these additions may reflect incorrect identification of the
translational start. Problems can arise if expression constructs include extra residues at the N
terminus, a region that interacts directly with DNA. Thus, N-terminal tags for LI'TR purification
should be avoided (14). Misannotation of homologs can result because of low sequence similarity
among LH and EBD regions of homologs, even for LT'TRs with the same function. In databases,
many putative LT'TRs are incorrectly designated CysB. While functional residues in orthologs are
usually highly conserved, such as those for effector binding, they tend to be distributed throughout
the sequence and difficult to detect.

We propose a general notation scheme to facilitate CI'TR comparisons based on secondary
structures (Figure 1). Strands BDE and BIJ extend between the EBD subdomains to create a flex-
ible hinge. In many structures, strands D-E and/or I-J are continuous. T 'TRs can have significant
insertions or deletions in so-called crossover regions between the strands of the highly conserved
pB-sheets. Most crossover regions are helices, but a few include p-hairpin loops (as in the structure
of an uncharacterized LTTR; Protein Data Bank identifier 3MZ1). Other crossovers are mean-
dering coiled loops, as in PqsR (MvfR) (54, 132). Structural diversity in crossover regions is most
common in EBD-IL.

CbnR structures revealed that subunits of the same LT'TR can assume different conformations
within an oligomer (91) (Figure 44,b). In CbnR, the quaternary structure is a dimer of dimers
with DNA-binding sites aligned along a concave surface (as in Figure 3). We refer to similar full-
length structures (e.g., ArgP, TsaR, BenM, AphB, OxyR, DntR, HypT, and DarR) as CbnR-like. Of
three oligomerization interfaces identified in 2010 (109), only two are characteristic of nearly all
subsequently analyzed structures. At these interfaces, the types of interactions tend to be similar,
but diversity in sequence may help prevent the misassociation of different LI'TR subunits.

One interface, conserved in all known structures, consists of two DBD-LH domains that form
homodimers through interactions between the LH faces (a4—o4’ in Figure 1), with the DBD re-
gion contributing to dimeric stability (Figure 4c). This structure positions the DBDs to interact
with dyadic DNA sequences in LT'TR recognition boxes. The second conserved interface guid-
ing quaternary assembly consists of two EBDs interacting head to tail in the region of fB—all
and aVII, previously termed a6-$2 and a1l (Figure 4d) (109). This interface positions the two
trans-EBD strands, BDE and BIJ, facing outward, with the effector-binding clefts oriented toward
the interior of the dimeric unit. There is (at least) one exception to the presence of this inter-
face, which is absent in crystal structures of the PqsR (MvfR) EBD from P, aeruginosa (54, 132).
Instead, there is an interface consisting of antiparallel f-strands, PB-BB’, and a large coiled-coil
region. In this example, the effector-binding clefts are oriented toward the exterior of the dimeric
unit.

The third previously identified tetramerization interface, between aVI and VI’ (Figure 1),
earlier called a10-a10 (109), is not always observed. This interface may play a role in conforma-
tional changes associated with DNA binding and transcriptional activation in response to effector
binding (65). However, since it is missing in many CbnR-like proteins, such as OxyR (59) and
DarR (130), a role in quaternary structural assembly is more likely specific to individual LT'TRs
rather than a general feature.

Another structural feature concerns the interdomain angle between DBD-LH and EBD
units (109). Rotation between a4 and strand BA creates a range of possible subunit structures
from the same sequence. In full-length CbnR structures (Figure 4e), two subunits have open
conformations (Figure 44) and two closed (Figure 4b). Changing the relative angles of the units

www.annualreviews.org o LysR-Type Transcriptional Regulators



Annu. Rev. Microbiol. 2023.77. Downloaded from www.annualreviews.org
Access provided by University of Georgia on 08/02/23. For personal use only.

MI77CH16_Neidle ARjats.cls May 29,2023 9:32

allows a range of quaternary structures, including a tetrameric HypT having a single subunit
conformation; a CrgA octamer with a single subunit conformation that orients the DBD-LH
dimers externally (Figure 4g); a tetrameric AphB structure with both DBD-LH dimers oriented
inside the tetramer using two subunit conformations (Figure 45); and a remarkable conformation
with one DBD-LH dimer inside the tetramer and one dimer outside, as in a HypT homolog from

a b
Closed ’ g g n
conformation Open EBD-EBD

conformation LH-LH association
association

f
CbnR tetramerization @

HypT homolog tetramerization

o 4
€L

AphB tetramerization

CrgA octomerization

v

(Caption appears on following page)
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Figure 4 (Figure appears on preceding page)

Oligomerization schemes for LysR-type transcriptional regulators (CT'TRs). LT'TRs have significant
flexibility between the DNA-binding domain-linker helix (DBD-LH) domain and the effector-binding
domains (EBDs). In several atomic structures of full-length LT'TRs, (#) a closed conformation and (4) an
open conformation are sometimes observed. These distinctions in subunit conformations are not depicted in
the other panels of the figure. In all known structures of DBD-LHs and full-length IT'TRs, (¢) an LH
interacts with another LH, while (d) most structures use the same EBD-EBD interface. Dimeric LT'TRs in
solution are most likely LH dimers. Combinations of the structures shown in panels ¢ and 4 can result in
diverse oligomeric states. (¢) Assembly of the CbnR tetramer (44) is prototypical of many UT'TRs. However,
changes in the DBD-LH relationship to the EBD create a wide range of alternative quaternary structures.
(f) In a HypT homolog from Vibrio vulnificus, VV2_1132, the DBDs of two subunits are oriented inside the
tetramer, while two DBDs are exposed (55). (g) CrgA forms an octamer. Biochemical studies support the
binding of two octamers to DNA (111). (b) A hypothetical LI'TR could bind to DNA in a nonprototypical
way, for example, lacking the classic T-N1-A spacing. The tetrameric structure of AphB assembles with the
internal DBD domains sterically inaccessible to DNA (122). The remaining flanking DBDs, not associated
directly through contacting LH domains, could bind DNA. Note that such binding has not been
demonstrated for AphB, but it offers insight into other binding models. Other oligomerization schemes have
been observed for LT'TRs that are not represented here.

Vibrio vuinificus (Figure 4 f). As these structures illustrate, CbnR should no longer be considered
the sole LT'TR prototype.

In solution, many full-length UT'TRs appear to be tetramers, whereas others, including MetR
(85), CatR (97), AmpR (11), ClcR (22), CbbR from Xanthobacter flavus (127), and OccR (1), appear
to be dimers. In the case of OccR, a tetramer associates with DNA (1). No structures of dimeric
LTTR proteins have been observed, and it is difficult to explain the quaternary assembly of a
functional dimer using the assembly interfaces described above, which would be precluded by
steric hindrance. Additional studies are needed to determine definitively whether T 'TRs function
as dimers and, if so, to characterize such atomic-level structures.

3.2. Molecular Features of Effector Binding

Structures of BenM-EBD and CatM-EBD bound to their effectors established the presence of an
effector-binding pocket between EBD-I and EBD-II (33). Dipoles from four helices of one EBD
subunit are organized such that opposing charges in the effector contribute to protein-ligand
binding. Some effectors, such as cis,cis-muconate and benzoate in BenM (33), p-toluenesulfate in
TsaR (90), salicylate in DntR (29), citrate in CcpE (18), shikimate in QuiR (102), and sulfite in
YeiE (51), are strongly polar and form significant hydrogen bond networks with amino acid side
chains that determine ligand specificity. In other cases, lipophilic components of the effectors
(or designed therapeutics) can reach far into hydrophobic cavities within the EBDs, as in PqsR
structures (54, 66, 137). Effector binding can draw EBD-I and EBD-II together, inducing a large
conformational change in the quaternary structure. A so-called rotary switch model is based on the
large angular rotation between helices in the EBD structure of OccR (65). These conformational
changes can occur without effectors, such as for LeuO hyperactive variants (39).

Not all effectors bind in the typical pocket. In BenM, a secondary site binds benzoate (33),
and DntR has a similarly positioned binding site (29). In BenM, binding of cis,cis-muconate in the
principal site and benzoate in the secondary site enables a synergistic response to both (14, 33).
Allosteric regulation mediated by two effectors at different sites has also been suggested for CysB-
EBD structures complexed with natural ligands (87). In another interesting example, NdhR is a
repressor that coordinates nitrogen and carbon metabolism in autotrophic cyanobacteria via the
mutually exclusive binding of two different effectors (58). One effector binds at the interface of
two EBD subunits as a corepressor to enhance DNA binding. The other is an inducer that binds in
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the typical effector-binding pocket to mediate conformational changes that release NdhR from its
operator sites. In a different study of AdmX, two different indoles bind competitively, with only
one causing large conformational changes (43). Several LI'TRs, such as RipR, bind antagonists
that inhibit the response to their functional effectors (64).

Not all LT'TRs bind effectors, as noted above for NAC (9). In another example, OxyR con-
trols transcription in a redox-dependent manner by responding to hydrogen peroxide (H,O,) (6,
138). A model based on the oxidation of cysteine residues has been reevaluated and altered (21, 59,
98, 112). Interestingly, OxyR catalyzes the reduction of H,O,, to mitigate further cellular damage
and cause a conformational change needed for OxyR-activated transcription. A disulfide-driven al-
losteric structural change occurs at the EBD interface (98). Like H, O,, hypochlorous acid (HOCI)
can generate hydroxyl radicals. To resist cellular damage, HypT, regulates multiple genes that help
Salmonella enterica survive in macrophages. HypT is activated by HOCI-dependent oxidation of
a methionine (60). In AphB from Vibrio cholerae, a virulence factor that senses low pH and low
oxygen, cysteine residues may act as thiol-based switches (17, 69, 78).

Sometimes, effectors are found in crystal packing sites distant from the expected binding
pocket, as in TsaR and CysB-EBD bound with O-acetylserine (87). Caution should be used in
assessing such binding. During experimental procedures, small molecules, such as benzoate (33)
and 2-morpholinoethanesulfonic acid monohydrate (130), may bind tightly and cause artifacts. Ex-
haustive dialysis is recommended to remove tightly bound ligands. While bound ions can affect
data interpretation (23), they can also guide structural analysis (118).

3.3. Interactions with RINA Polymerase

We have reviewed research on LT'TR-RNAP interactions elsewhere (24). Briefly, mutational
studies and footprinting methods have been used with some I'T'TRs to assess contacts with key
regions of RNAP holoenzyme (12). Interactions were indicated between the C-terminal domain
of the a-subunit of RNAP (a-CTD) and IT'TRs such as MetR, CysB, CatR, GevA, and OxyR (40,
79, 86, 120). However, interactions between an individual LT'TR and regions of a-CTD differed
at multiple promoters (40, 79). Promoter-specific differences were also observed for GevA, which
interacted with the 670 subunit at some promoters and a-CTD at others (120). In addition, amino
acids in the turn region of the wHTH of the DBD of several LT'TRs exerted positive control of
transcription (79, 120). In studies of LT'TR-mediated repression, CrgA in Neisseria meningitidis
promoted RNAP binding via interactions with a-CTD that prevented promoter clearing and
resulted in abortive transcripts (28).

LTTR interactions with RNAP remain largely uncharacterized. Based on structures of BenM-
DBD bound to DNA, a model was built of an initiation complex with RNAP at the benA promoter
(125). It appears that BenM-DBDs do not directly contact 670. In this model, there is an “UP-
element,” a promoter feature that increases transcription via interactions with the RNAP o-CTD.
However, the relative position of the LT'TR to promoter elements differs from that of a classical
class I promoter, in which a transcription factor contacts the RNAP a-CTD (12). Similar models,
such as in Figure 3¢, address promoter elements of other LI'TR-regulated genes (e.g., 94).

4. COMPLEX REGULATION AND INTRICATE CIRCUITRY

LTTRs participate in intricate regulatory circuits, but specific regulatory schemes differ signif-
icantly between bacteria, even closely related species. Such differences may reflect evolutionary
pressures during niche adaptation. Selection during adaptation tends to favor global rewiring of
regulatory networks (45). This section describes several examples of LT'TRs involved in complex,
multilevel regulation.
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4.1. LTTRs and Regulation by Small RNA

Posttranscriptional regulation often involves sSRNA molecules that alter mRNA translation and/or
stability. Interestingly, oxyS, which is one of the best-studied sSRNAs involved in pleiotropic regula-
tory circuits, was discovered because of its proximity to a divergently transcribed LT'TR gene, oxyR
(3). Sometimes, the Hfq chaperone promotes SRNA-mRINA pairing (63). LT'TRs can affect this
posttranscriptional regulation by controlling transcription of sSRINAs. For example, VtIR plays crit-
ical roles in host-microbe interactions in diverse Alphaproteobacteria. VtIR (or its homolog, LsrB)
regulates the transcription of multiple sSRNAs, influencing posttranscriptional control of hun-
dreds of genes (13, 32, 42). Another example of LT'TR-mediated control of sSRNA transcription
is provided by HexA of P. luminescens (70).

LTTR-encoding mRNA can also be affected by sSRNA. In Dickeya dadantii, a plant pathogen, an
Hfqg-dependent sSRNA represses the translation of an LT'TR, PecT (136). In turn, PecT represses
transcription of another sSRNA, rsmB, that is part of a global posttranscriptional regulatory net-
work. In this network, 7s7B availability is further titrated through RsmA-mediated sequestration.
In this system, which controls many virulence factors, additional regulatory interplay involves
cyclic di-GMP diguanylate cyclases (136).

ThnR, mentioned above, controls genes for tetralin consumption. However, in the presence
of preferred growth substrates, carbon catabolite repression is mediated by an sSRINA that binds
thnR transcripts in an Hfq-dependent manner (38). Lowered translation of this LT'TR thereby
decreases expression of the tetralin catabolic enzymes (38).

4.2. LTTRs as Global Regulators

While the definition of a global regulator is imprecise, many LT'TRs have pleiotropic effects,
control diverse functions, and regulate many genes. LeuO from E. co/i activates and/or represses
more than 100 targets affecting functions such as pathogenicity, CRISPR-Cas immunity, nitrogen
metabolism, and biofilm formation (39). There is an overlap in genes affected by LeuO and H-NS,
a NAP (50). NAPs bend DNA, bind many DNA sites, and affect genome architecture. Moreover,
NAPs also regulate gene expression. H-NS forms extended nucleoprotein complexes with AT-
rich DNA, thereby repressing transcription. There are many intriguing H-NS-LeuO interactions,
some antagonistic (113). For regulators that bind numerous genomic sites, questions arise about
the relative importance of specific nucleotide operator sequences compared with indirect readout,
arecognition process based on shape. Such issues suggest that there may not always be a distinction
between transcription factors and NAPs (31). For example, ArgP, an T'TR also known as IciA, is a
global regulator that can bind DNA in a non-sequence-specific fashion, and it has been designated
a NAP (93).

When engineered for high-level expression, LeuO, and other transcriptional regulators, can
cause nucleoid compaction (135). However, LeuO expression is normally very low, despite the
observation of multiple /ezO promoters (113). A typical palindromic site was identified for LeuO
at some promoters (39). Hyperactive LeuO variants were characterized that presumably mimic
changes normally occurring in response to currently unknown effectors or signals.

ScmR of Burkholderia thailandensis is also a global regulator (72, 82). SemR controls the synthe-
sis of secondary metabolites, quorum sensing, pH homeostasis, and virulence. This LT'TR, which
is highly conserved in the Burkholderia genus, plays a major role in quorum sensing. Not only does
it affect the production of signaling molecules such as N-acyl-L-homoserine lactones (AHLs) and
LuxR-type regulators, but also expression of sezR is itself regulated by quorum sensing. SemR
regulates some genes independently of quorum sensing, and it affects the production of several
other transcriptional regulators (72, 82).
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4.3. LTTRs, Other Regulators, and Regulatory Cascades

PhcA, from a plant pathogen, Ralstonia solanacearum, is a master regulator affecting approximately
30% of the genes in its genome either directly or indirectly (100). PhcA-regulated genes include
approximately 166 transcriptional regulators. PhcA has been studied because of its importance
in controlling many virulence factors, yet the regulatory network extends beyond pathogenicity.
When the bacteria are in the plant, PhcA-mediated gene expression differs from what is observed
for bacteria cultured in nutritionally replete medium, and, in some cases, up- or downregulated
effects are reversed under these conditions (100).

LTTRs are frequently implicated in quorum-sensing networks, yet the types of interactions
can vary. In V. cholerae, an RNA sponge, called QrrX, binds multiple sRINAs that modulate quorum
sensing. An RNA sponge is a type of noncoding sSRNA that can base-pair with other regulatory
sRNAs, thereby neutralizing their activities. In this example, an LT'TR, QrrT, controls transcrip-
tion of the QrrX sponge (53). In a different example in P. seruginosa, PqsR (Mv{R) is an LT'TR
that controls alkyl-quinolone-dependent quorum sensing (54). PqsR drives autoinduction of alkyl-
quinolone signals by activating the transcription of genes encoding biosynthetic enzymes for these
compounds. In contrast, the effect of an LI'TR (ABUW_1132) in Acinetobacter baumannii on quo-
rum sensing is less direct (123). This LT'TR is a global regulator that affects multiple functions,
including capsule expression and virulence. ABUW_1132 appears to control how the quorum-
sensing signal, an AHL, is secreted from the cell (123). Additional studies are needed to clarify the
regulatory mechanism(s) of this LI'TR.

The ways that UT'TRs participate in regulatory cascades, and their positions within these
cascades, are diverse. For example, CrgA in R. solanacearum directly represses transcription of
the master regulator (FIhDC) of flagellar biosynthesis, thereby negatively affecting cell motil-
ity and virulence at an early regulatory step (36). PItR, described above as an example of an
LTTR regulated by proteolysis, is in the middle of a regulatory cascade (131). In this example, a
two-component regulatory system (GacA/GacS) and several other regulators control PItR avail-
ability and activity. In some cases, there may be no obvious hierarchical scheme. In Enterococcus
faecalis, iron homeostasis was studied using treatments of iron excess and limitation in the pres-
ence and absence of a non-LT'TR regulator (Fur). Iron availability stimulated a large network of
transcriptional regulators, including LT'TRs (71). It is not always clear how varied signals are in-
tegrated, although some interactions involve protein—protein contacts between T TRs and other
regulators, such as ThnR-ThnY (38), CbbR-RegA (26), and AtzZR-NtrC (101).

5. APPLICATIONS IN BIOTECHNOLOGY AND MEDICINE

Because of the abundance and importance of LT'TRs, efforts to engineer bacterial metabolism
often involve some aspect of LT'TR-mediated regulation. While various types of bacterial
transcription factors can be used similarly, the choice of LT'TRs for biotechnology has recently
proven effective 37, 99). In this section, we describe a few key roles for LI'TRs in new methods
for metabolic engineering and synthetic biology. Finally, we address the potential use of LT'TRs
in medical applications.

5.1. Metabolic Engineering and Synthetic Biology

Controlled gene expression is a central feature of metabolic engineering and synthetic biology
(73). As the need to develop sustainable economic practice increases, so does demand for using
bacteria as cellular factories. Traditional engineering involves “static” genetic modifications
that do not alter expression levels according to variability in intracellular conditions. However,
new approaches incorporate automatic and dynamic responses to intracellular variation (25).
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One example that uses an LT'TR in a bifunctional dynamic system illustrates how this type of
regulation can distribute bacterial resources between growth and production (134). CatR, from
Pseudomonas putida, is a ciscis-muconate-responsive homolog of CatM and BenM. CatR was
expressed in E. coli and used to regulate its native promoter to increase transcription of target
genes. In a clever combination, this muconate-driven upregulation was paired with a different
construct in which muconate-driven transcription generates antisense RNA to downregulate its
target, genes funneling carbon to the tricarboxylic acid cycle. CatR-controlled genes expressed
enzymes to synthesize muconate as an effector molecule. Additionally, muconate was the desired
end product since there is commercial demand for this platform chemical. The antisense system
decreases carbon entry into the tricarboxylic acid cycle in a dose-dependent fashion as muconate
concentration increases. Thus, an autonomous distribution of carbon flux between growth and
biosynthesis results from variation in muconate concentration. This dynamic system increased
the yield of muconate compared with an optimized static system (134).

Metabolic engineering in P. putida can generate muconate via multiple strategies (10). A CatM-
based biosensor was developed to monitor the production of muconate. In this application, CatM
detects intracellular muconate and responds by increasing transcription of a fluorescent protein
gene. This output allows fluorescence-activated cell sorting to select strains with the best perfor-
mance. Many biotechnology applications for LT TR-based biosensors exist (4, 27, 117, 119), and
the sensitivity, specificity, and dynamic range of the biosensor can be optimized (57,95, 115). Muta-
tional approaches have typically focused on the regulated promoter, the DNA-binding properties
of the LT'TR, and the ligand specificity of the EBD. A new strategy optimizes LT'TR biosensors
by focusing on the LH region (103). High-throughput methods, computational approaches, and
systems biology techniques are being used to identify new transcriptional regulators and clarify
LTTR-effector interactions (47, 48, 56).

5.2. Drug Targets and Therapeutics

Biosensors also have many environmental, diagnostic, and medical applications (46). One intrigu-
ing approach is the development of LT'TR-based applications in chromosome-free cells called
SimCells (simple cells). In such devices, the chromosome is specifically degraded, yet, for a while,
expression of a synthetic genetic circuit continues. SimCells do not replicate and may be used to
avoid problems that could be caused by whole bacteria. SalR from A. baylyi (Figure 2) was used in
SimCells derived from E. co/i to demonstrate that catechol can be synthesized and safely delivered
to various cell lines as a potent anticancer drug (35). SalR had already been optimized in E. coli
and SimCells for use as an aspirin-inducible biosensor (19). To generate catechol, SalR-positive
autoregulation was exploited to activate transcription of s#/4 and a fluorescent reporter such that
salicylate was hydroxylated to generate catechol (35).

LTTRs have additionally drawn attention as drug targets to treat infections. Traditional ther-
apeutics, such as antibiotics, affect essential bacterial growth pathways. However, with the rapid
development of antibiotic resistance, new strategies are focusing on bacterial virulence factors
(30). The aim is to disrupt pathways or compounds that cause disease by damaging the host or
helping the pathogen evade the immune system. As indicated above, several LT'TRs play key roles
in the expression of virulence factors, often as part of complex regulatory circuits. One approach
is to determine inhibitors that bind LTTRs, or other transcriptional regulators, to prevent the
expression of virulence factors. This approach was used to search for nonlethal inhibitors of tran-
scriptional virulence regulators in a bacterium causing a widespread and incurable disease in citrus
(7). In another example, drugs that are already approved for human use were repurposed to de-
termine possible inhibition of an LT'TR from V. cholerae, AphB, which regulates genes for cholera
toxin and a coregulated pilus (81). In this case, an antiviral drug, ribavirin, suppressed V. cholerae
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pathogenesis in animal models. This same drug also inhibited an LTTR (Hrg) from S. enterica
serotype Typhi (81).

A different LT'TR in P, aeruginosa is similarly being used as the target of antivirulence drugs (66,
84, 128). This regulator, described above as PqsR for its role in alkyl-quinolone quorum sensing,
is also known as Mv{R, based on its regulation of multiple virulence factors. Using computational
and screening methods, promising inhibitors were identified and are now in preclinical trials.
Many new studies are focusing on the exciting promise of addressing infections causing critical
illness with drugs that inhibit Mv{R (116).

6. CONCLUSIONS AND FUTURE PERSPECTIVES

LTTRs are among the most abundant and widespread types of bacterial transcriptional regulators.
Their prevalence and participation in complex regulatory networks highlight their importance, as
they participate in essentially every type of physiological and metabolic function. Great progress
has been made in characterizing LT'TR structures. However, in most cases, signaling molecules
remain unclear. Future studies are needed to clarify the mechanistic basis of transcriptional control
and interactions with RNA polymerase. Detailed differences between the operator-promoter re-
gions of specific LI'TRs are often downplayed in efforts to generate a uniformly applicable model
of regulation. Similarly, questions about oligomerization, assembly, and quaternary complexes do
not appear to be answered by a single model. As molecular details emerge, it becomes increasingly
important to characterize and highlight differences as well as similarities among these ubiquitous
bacterial proteins. The promise of exciting applications for LT'TRs in many areas of biotech-
nology, biomanufacturing, environmental remediation, and medicine are being realized through
novel strategies of metabolic engineering and synthetic biology.
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