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ABSTRACT

Modern high-throughput single-cell immune profiling technologies,
such as flow and mass cytometry and single-cell RNA sequencing
can readily measure the expression of a large number of protein or
gene features across the millions of cells in a multi-patient cohort.
While bioinformatics approaches can be used to link immune cell
heterogeneity to external variables of interest, such as, clinical out-
come or experimental label, they often struggle to accommodate
such a large number of profiled cells. To ease this computational bur-
den, a limited number of cells are typically sketched or subsampled
from each patient. However, existing sketching approaches fail to
adequately subsample rare cells from rare cell-populations, or fail to
preserve the true frequencies of particular immune cell-types. Here,
we propose a novel sketching approach based on Kernel Herding
that selects a limited subsample of all cells while preserving the un-
derlying frequencies of immune cell-types. We tested our approach
on three flow and mass cytometry datasets and on one single-cell
RNA sequencing dataset and demonstrate that the sketched cells
(1) more accurately represent the overall cellular landscape and
(2) facilitate increased performance in downstream analysis tasks,
such as classifying patients according to their clinical outcome.
An implementation of sketching with Kernel Herding is publicly
available at https://github.com/vishalathreya/Set-Summarization.
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1 INTRODUCTION

Advances in high throughput single-cell technologies have trans-
formed our understanding of cellular heterogeneity across a range
of biological and clinical applications. For example, single-cell mea-
surements have been used to construct whole organism cell atlases
[9, 34] that can serve as prototypical healthy references that assist
in the discovery of novel disease cell states [24]. Translationally,
single-cell modalities have provided insight into complex immune
responses linked to clinical outcomes, such as surgical recovery [15],
pregnancy [2], tumor heterogeneity [22], and infectious disease [3].

Single-cell flow and mass cytometry (e.g. CyTOF) technologies
have been particularly useful for gaining an in-depth understanding
of the diversity of immune cell-types and their relation to disease,
as they simultaneously profile 20-45 proteins collectively across
all of the cells profiled in a multi-patient cohort [5, 23, 36]. This
data can be leveraged in statistical models for identifying differ-
entially abundant cell-populations [12, 26, 40], kernel density esti-
mation methods to characterize treatment resistant cells [8], and
classification algorithms to predict a patient’s clinical outcome
[41]. Similarly, genomic technologies such as single-cell RNA se-
quencing (scRNA-seq) technologies can profile 20, 000 or more gene
expression measurements in thousands of cells [25]. Given the large
number of cells measured in such datasets, downstream analysis
tasks present a computational challenge and quickly become in-
tractable. Traditional approaches for reducing the size of input data,
such as uniform downsampling or clustering, may fail to identify
rare but clinically meaningful cell-populations. This limits both
the utility of these algorithms and the ability to obtain meaningful
results.

Two alternative sketching-based approaches have been devel-
oped to intelligently select a subset of cells such that the overall
cellular landscape of the full data is preserved. Geometric Sketching
first approximates the underlying geometry of the data through a
covering of equal volume hypercubes, then evenly samples points
from each at random [19]. Alternatively, Hopper constructs a sketch
by iteratively minimizing the Hausdorff distance to ensure points in
the full data are well-represented in the sketch [13]. Both methods
provide an even sampling of cells that focuses on capturing rare
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Figure 1: Overview of Kernel Herding for Sketching Single-Cell Data. Multiple sample-sets are created after profiling the
expression of several genomic or protein features in single cells across multiple individuals. We used Kernel Herding to select a
limited representative subset of cells from sample-sets for each individual. Our approach was then evaluated in terms of the
quality of cellular landscape preservation and classification performance of sample-sets according to the clinical outcomes of

the associated patients.

cell-types. However, as a result, they fail to preserve the overall
distributions of cell-type frequencies which can be crucial for clini-
cal outcome prediction and biological interpretation [15, 28]. In a
philosophical divergence with this previous sketching work, here
we prioritize the sketch’s ability to act as a stand-in for the original
sample-set. That is, here we consider sketches that obtain similar
downstream outcomes to the original sample-sets when analyzed.
In some respects, this goal is a generalization of prior formulations,
since rare-cell types must be preserved if the sketch can act as a
stand-in. However, our formulation also allows for the preservation
of general downstream analysis, which may not be entirely depen-
dent on rare-cell types. Thus, this work presents a novel, more
direct approach to sketching single-cell samples.

We propose to preserve downstream analysis of a single-cell sam-
ple by explicitly preserving the distribution in the sketched sample.
In this work, we show that this can be achieved via Kernel Herding
[10], a kernel-based approach to sub-sampling. Furthermore, we
show how to efficiently compute Kernel Herding sketches through
random Fourier features [33], which allows our sketch approach to
scale to large sample-sets. We first evaluate our approach on three
diverse flow and mass cytometry datasets by computing several sta-
tistics to quantify cellular landscape preservation and performance
in downstream tasks, such as patient classification according to
clinical outcome. Furthermore, we demonstrate how this approach
can be used across single-cell data modalities with a single-cell RNA
sequencing application. Our Kernel Herding sketching approach
(outlined in Fig. 1) now makes it possible to select a limited subset
of cells from each profiled sample-set that adequately represents
immune cell-types and their relative frequencies.

2 METHODS

Here we are considering the problem of finding a representative
subset to an original sample-set of cells X = {x; € Rd};’zl. If subsets
are to act as a stand-in for original sample-sets, then they should
provide similar outcomes when processed as the original sets. Thus,

we consider a subset, X = {%:}Z, c X, to be representative if it
maintains the distribution of the original set X and yields similar
results to X when processed.

Problem Formulation At an abstract level, we shall construct
a subset X whose statistics match the original sample-set X. Of
course, for any finite number of statistics, there may be an ambi-
guity over the original distribution. For instance, a large variety of
samples may share the same mean, thus simply finding a subset
of a similar mean as the original set will not suffice to ensure a
representative subsample. Instead, we shall use the kernel mean
embedding [31] as the target ‘statistic’ to match in the subset. We
briefly explain kernels and kernel mean embedding below.

Kernel Mean Embedding Kernel methods have been successfully
applied in a myriad of machine learning problems such as regres-
sion [39], classification [11], and dimensionality reduction [29].
Underlying kernel methods is a positive definitive kernel function
K :RXR + R, which induces a reproducing kernel Hilbert space
(RKHS) (e.g. see [6] for further details). In addition to working over
typical vector-values data, recently kernels have also been deployed
to operate over distributions (e.g. [31]). The kernel mean embedding
Up : R > R represents a distribution, p, as:

Hp(+) = Bxwplk(x, )] (1)

Note that p, is itself a function, defined by the expected kernel
evaulation to points drawn from a distribution p. For a special class
of ‘characteristic’ kernels, k, such as the common radial-basis func-
tion (RBF) kernel k(x,x") = exp(—%“x —x'|13), llp — pgll = 0 if
and only if p = q. Thus, for characteristic kernels the kernel mean
embedding will be unique to its distribution and matching the ker-
nel embedding exactly guarantees that one matches a distribution.

!Kernels may also generalize over non-real domains
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In general, the distance? || — j1q| induces a divergence, the maxi-
mum mean discrepancy (MMD) [16], between distributions, which
has been useful in comparing distributions (e.g. [17]).

In this work we sketch a sample-set with a subset X C X that
preserves the empirical distribution found in the original sample-set
X with the mean embedding px where:

px () = %gkm, ). @

That is, we look for a subset X whose empirical distribution has
a small MMD from that of the original set X, ||u3 — pxl|. Note
that a uniform subsample U c X provides a reasonable approxi-
mation when the cardinality || is large enough. That is puq, () =
ﬁ Yixeq k(x,-), shall approximate px when using enough uni-
formly subsampled points. However, as shown by [10], one may
get a more representative subsample through Kernel Herding as
described below.

Kernel Herding Kernel herding is a greedy algorithm to approxi-
mate a mean embedding p, with a subset of a set of samples X ~ p,
using a subset of points X= {%i}Z, ¢ X. Here, we consider the
empirical distribution p = % 2, 8(xi), where § is the Dirac-delta
function. Hence, we look to approximate y1y with X being our orig-
inal sample. Kernel herding is especially applicable for synthesizing
a large number of cells, due to the following properties. First, the
rate of convergence for the error ||ux — % Z}":l k(%;, )| is O(%),
which is much faster than the O(\/Lm) rate for a uniformly ran-
dom subsample. That is, Kernel Herding can provide a synthesized
subset of \/m points that approximates the target distribution as

well as m uniformly subsampled points. This property implies that
the Kernel Herding subset shall maintain the distributional proper-

ties found in the original sample-set. Second, it can be shown that

the Kernel Herding subset X also approximates the expectation of
any function h3, Ex~p[h(x)], with a mean over X, # Z;":l h(%;).
This property enables one to obtain similar downstream models
when using the summarized subset as the expectation of functions
evaluated.

The Kernel Herding subset X is computed as follows:

Algorithm 1 CoMPUTE SUBSAMPLED SET USING KERNEL HERDING

Require: A set of cells X, from which the number of cells subsam-
pled is m, Radial-Basis Function kernel k.
1: Initialize j « 1, X—0
2: while j < m do

1 1
3 X argmax — Y ex k(xx") — =2, _ o k(x,x")

veX N j x'eX
¢ Xe—XUg)
5. jej+1
6: end while
7: return/?

Random Fourier Features Performing Kernel Herding with a
kernel function k, however, may not scale since an iteration requires

2Corresponding to the RKHS norm
3In the corresponding reproducing kernel Hilbert space (RKHS).
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an O(n?) computation (equivalent to computing the Gram matrix
of pairwise kernel evaluations on X). To rectify this, we propose to
use random Fourier frequency features [33]. For a shift-invariant
kernel (such as the RBF kernel), random Fourier features provide
a feature map ¢(x) € RP such that the dot product in feature
space approximates the kernel evaluation, (p(x)T(p(x’) ~ k(x,x")
(e.g. see [32, 33, 33] for further details). Using the dot product of
¢(x), our mean embedding becomes py = % D=1 ©(xi), where
ux(x’) = % e e(xi)Te(x’). In practice, the random features
are constructed by drawing frequencies, W € Rdx%, at random
(iid column-wise) once, and holding them fixed to construct the
features

ow (x) = [sin(WTx), cos(WTx)] € RP, 3)

where [, -] denotes concatenation. For instance, to approximate the
RBF kernel, k(x,x”) = exp(—%”x - x'||?), we would draw the d-
dimensional frequencies W; iid N(0,y~11) [33]. It is simple to show
that when using the approximation gy (x)T gy (x”) = k(x, x”), one
may compute Algorithm 1 with O(n) iterates by avoiding pairwise
kernel computations [10]; we detail this below.

Algorithm 2 CoMPUTE SUBSAMPLED SET USING RBF KERNEL HERD-
ING WITH RANDOM FEATURES

Require: A set of cells X with dimensionality d, from which the
number of cells subsampled is m, dimensionality of the random
feature space D and kernel hyperparameter y.

1: # Draw random Fourier frequencies
2: Compute W € RA*7 by sampling its elements independently
Wi~ N(0, )l,)

: # Subsampling using Kernel Herding

. Initialize j « 1, X —0,0) — %Z?:l ow (xi)

: while j < mdo

X < argmax 9}"_1<pw(xi)

xeX

G W

7. X —XU{&}

8: 9j <—9j_1+90—q0w(§()
9. jej+1

10: end while

11: returnX

2.1 Single-Cell Datasets Used in Experiments

In all experiments, we used publicly available, multi-sample flow,
mass cytometry (CyTOF), and single-cell RNA sequencing datasets.
For the flow and mass cytometry datasets, each sample-set con-
sists of a collection of protein markers (up to ~45) measured across
individual cells. For the single-cell RNA sequencing dataset, each
sample-set consists of a collection of gene expression measure-
ments (~20k) measured across individual cells. Here, we briefly
introduce the multi-sample publicly available datasets used in our
experiments. All preprocessed data are available in the Zenodo
repository: https://zenodo.org/record/6546964.

e Preeclampsia The preeclampsia CyTOF dataset [18] includes
samples collected longitudinally from 12 healthy women and
11 women with preeclampsia throughout their pregnancies. All
patient samples were downloaded from Flow Repository under
Repository ID FR-FCM-ZYRQ (http://flowrepository.org/id/FR-
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Figure 2: t-SNE visualizations of the sketches produced under each method. The distribution of points sketched with Kernel
Herding (KH) (dark purple points) follows that of the original data (gray, background points representing a large number
of randomly sampled cells). Sketches with Kernel Herding adequately represent rare populations and retain their relative
frequencies, while Geometric Sketching and Hopper struggle with these aspects.

FCM-ZYRQ). Classification tasks distinguished between healthy
from preeclamptic women.

e HVTN The HIV Vaccine Trials Network (HVTN) is a Flow
Cytometry dataset and consists of 96 total sample-sets of T-
cells that were each subjected to stimulation with either Gag
or Env [1] (downloaded from Flow Repository, ID FR-FCM-
ZZZV http://flowrepository.org/id/FR-FCM-ZZZV). Classifica-
tion tasks distinguished Gag from Env stimulated samples

o NK-Cell The NK-Cell CyTOF dataset profiled NK-Cells across
21 individuals who were either positive or negative for Cy-
tomegalovirus (CMV) [4] (downloaded from https://github.com/
eiriniar/CellCnn). Classification tasks distinguished CMV posi-
tive (CMV+) from CMV negative (CMV-) samples.

e MS The multiple sclerosis (MS) single-cell RNA sequencing
dataset [35] consists of peripheral blood samples collected from
4 MS patients and 4 healthy controls. Patient samples were ac-
cessed from the Gene Expression Omnibus using the accession
code GSE138266. We performed standard single-cell RNA se-
quencing data preprocessing, including filtering cells according
to read depth and distribution of molecular counts, removing
cells with greater than 20 percent mitochondrial transcripts, and
retaining genes that were expressed amongst a minimum of 5
cells. Following quality control filtering, we normalized the data
to account for differences in sequencing depth by estimating
size factors using Scran pooling normalization v1.20.1 [27] and
scaling them across batches using Batchelor v1.8.0. We then per-
formed batch effect correction using ComBat [20]. Lastly, we
restricted the feature space by selecting for highly variable genes
on log+1 transformed data using a normalized dispersion mea-
sure in Scanpy v1.8.1 (flavor = Seurat, minimum mean = 0.012,
minimum dispersion = 0.25, maximum mean = 5). In our subse-
quent experiments, we performed principal component analysis
on the preprocessed dataset and used the top 50 components for
downstream tasks.

3 RESULTS

We compared the performance of Kernel Herding to sketches ob-
tained using Geometric Sketching, Hopper, and IID subampling
for tasks related to the overall preservation and usefulness of the
resulting immunological landscape. That is, we sought to evaluate
whether or not the sketches adequately represented all major im-
mune cell-types and their relative frequencies and could be used
to produce meaningful immunological features for downstream
tasks. Code for reproducing the results of all subsequent experi-
ments is publicly available at https://github.com/vishalathreya/Set-
Summarization.

3.1 Description of Related Algorithms

Here, we briefly define the sketching approaches that were com-
pared to in our experiments.

o Geometric Sketching Geometric Sketching introduced in Ref.
[19] infers a plaid covering of cells in the high-dimensional
space. Cells are sketched through volume-dependent sampling
by selecting the same number of cells from sections of the high-
dimensional plaid covering.

e Hopper Hopper introduced in Ref. [13] forms a sketch by using
fastest first traversal, which is a greedy approximation to the k-
center problem. Intuitively, this sketching approach sequentially
adds cells to the sketch that are sufficiently different from those
that were already included in the sketch.

¢ Independent and Identically Distributed Subsampling (IID)
IID sketches were generated by simply selecting a random sub-
sample of cells from each sample-set. Here, each cell had the
same probability of being selected in the sketch.

3.2 t-SNE Visualizations of Sketched Regions of
the Cellular Landscape

We begin with a qualitative assessment of sketching approaches
on cytometry data (Fig. 2). In order to get a visual understanding
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of the regions of the cellular landscape included in the sketches
produced by each method, we plotted a 2d t-SNE projection of re-
spective sketches (colored points) along with a set of overall cells
from a large sub-sample of the original set (gray-colored points).
Le. Fig. 2, plots cells from three samples, one for each respective
dataset (similar results may be obtained from other samples). Fur-
thermore, we projected cluster centroids (15, from k-means) as
large yellow crosses. Taken together, the respective plots give an
overview of the cells found in each original sample-set (gray), and
which cells were then included in sketches (colored). Note that
an IID sketch would stem from a uniform sub-sample of the gray
points, which was omitted for visual clarity. One can observe that
the Geometric Sketching (Geo, pink, Fig. 2) sketches concentrate
over a few sub-regions of the cellular-space, leaving large regions
of cells underrepresented in the sketch. This is also true of Hopper
(Hopper, green, Fig. 2), though to slightly lesser extent. Finally, we
can observe that our proposed Kernel Herding (KH, purple, Fig. 2)
sketches yield a more representative coverage of the cell-space.
Following our philosophical goal of obtaining sketches that may
act as general stand-ins for original sample-sets, it is intuitive that
the discrepancy in representation of sketches to the original shall
result in discrepancies of outputs of downstream analysis. More-
over, following the insights gained from Kernel Herding (Sec. 2), it
is intuitive that IID sketches shall be less representative than those
from Kernel herding. In subsequent experiments below, we show
that these intuitions hold empirically.

Kernel Herding D

60 -40 -20 0 20 40 60 -75  -50 25 0 2 50

Geo-Sketch Hopper

o
ot0s,
3% g

Figure 3: t-SNE visualizations of cells sketched from the NK-
Cell dataset colored by their the third nearest neighbor dis-
tances in the original protein-marker feature space.

We provide additional context to the aforementioned t-SNE pro-
jections (Fig. 2) with a volumetric analysis. In particular, as t-SNE
projections may not be volumetrically preserving (areas in the 2d
space need not scale to areas in the original space), it may be the
case that sketched points seem overly warped and are not repre-
sentative of their coverage in the original high-dimensional protein
marker feature space. To obtain a clearer view of the representation
of sketched cells in the original space, we visualize the third nearest
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neighbor distance in the original space when scattering the cells in
the 2d t-SNE space (Fig. 3 plots this for a sample-set in the NK-Cell
dataset). That is, dark-colored points stem from sparsely populated
regions in the original space, since the nearest neighbor of such
points in the original space was far. Similarly, light-colored points
stem from densely populated regions in the original space. As sus-
pected above, Geo-Sketch and Hopper sketches are concentrated
in sparse regions of the space. While this acceptable for certain
applications, the resulting sketches largely ignore denser regions of
the cell-space, which prevents sketches from acting as a stand-in for
downstream analysis. In contrast, we observe that Kernel Herding
obtains good coverage of the original space, while still including
cells from sparser regions.

3.3 Random Function Fidelity

As previously discussed, our aim is to produce sketches that may
act as a stand-in for general analysis of samples. To test how well
sketches estimate the output of a wide-range of analyses, we be-
gin by evaluating randomly generated functions on sketches and
comparing their outputs to that of the original sample (Fig. 4).
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Figure 4: Random Function Evaluation We evaluated a ran-
dom function using the full and sketched versions for the
HVTN, Preeclampsia and NK-Cell datasets, for sketch sizes
between 200 and 2500 cells. Sketches with Kernel Herding
generally produce random function evaluations (RFEs) that
are the most similar to that obtained when using all cells.

We generate random cell-wise functions, f : R4 i R, that are
evaluated on sets, X, as : f(X) = ﬁ Yixex f(x). We compare the
function evaluation on the original sample, X, to a sketched sub-
sample, X, using the #; distance: |[f(X) —f (X)]. We parameterize
functions through random features (3): fyy g(x) = @w(x)T B, where
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@w(x) are the random features w.r.t. a drawn set of frequencies, and
f are coefficients. Note that fy Vi (x) is a highly non-linear function
in x. Thus, testing the discrepancies |fyy g(X) — fiy g (X)| between
multiple W, § shall give a robust measure of the representative
power of sketches. For each dataset, we draw 5 random functions
(by drawing 5, W at random) and report the average #; discrepancy
for sketches produced with each respective method for various
sketch cardinalities (see Fig. 4, note the log-scale). Perhaps not
surprisingly in light of our qualitative analysis, we see that Geo-
Sketch and Hopper yield sketches that are poor stand-ins for this
task. Interestingly, we also see a large advantage in Kernel Herding
sketches to IID sketches. This highlights that although IID sketches
retain distributional properties, Kernel Herding sketches provide a
more efficient and accurate synthesis.

3.4 Singular Value Fidelity

Above we studied sketches’ ability to act a stand-in for general non-
linear evaluations on original sample-sets. Here, we now consider
a specific analysis based on singular values. In particular, we study
how well the singular values of the original n X d (cell X protein
marker matrices) sample compares to the singular values of corre-
sponding mXd sketches with the #; metric: || \/iﬁc?(z\’) - V%B'()?ﬂ l1,
where o is the vector of corresponding singular values to sample
or sketch. Note that this #; metric directly relates to differences
of eigenvalues of corresponding covariance matrices, and hence
is indicative of how well sketches may act as a stand-in for linear
subspace analyses such as PCA.
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Figure 5: Singular Value Distribution Evaluation Differences
in singular value distributions of cell X protein marker ma-
trices as quantified with an L1-norm were used to summa-
rize the quality of sketches over a range of sketch sizes,
for preserving the overall cellular landscape in the HVTN,
Preeclampsia and NK-Cell datasets (top, middle, bottom, re-
spectively).
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As before, we see that Geo-sketch and Hopper sketches are also
unable to act as stand-ins for a singular-value analysis; a problem
that does not improve as sketch sizes increase. Given that many sin-
gle cell analyses rely on capturing the lower dimensional structure
in samples (e.g. [30, 38]), this underlying bias in previous sketching
approaches is limiting to their ability to act as reliable stand-ins.
Moreover, we similarly observe that our proposed Kernel Herding
sketches act as more faithful stand-ins to the naive IID sketches.

3.5 Cluster Frequency Fidelity

Next, we study sketches’ abilities to retain the overall cellular fre-
quencies that were found in the original sample. Cell-type frequen-
cies can be crucial for clinical outcome prediction and biological
interpretation [7, 37]; thus, a sketch’s ability to retain cell-type
frequencies is pivotal for its ability to act as a stand-in to the orig-
inal set in many impactful tasks. Here we automatically detect
cell-populations through an unsupervised, kmeans cluster analysis.
All cells in the original sample-set are used to compute the cluster
centroids, which then provide the cluster association for cells from
sketches of that set. Once the centroids are computed for the original
sample, each sketch is summarized according to the frequencies of
the clusters in that sketch. That is, for each sketch, we compute the
portion of its cells that were assigned to each cluster, p(X ) € [0, 1]X,
pr(X) = ﬁ er)? I{k = argmin,||x — v¢||}, where vy,..., vk are
the cluster centroids. Similarly to above, we may compare the out-
comes of analyzing the original sample-set, X, to that of a corre-
sponding sketch, X, with an £ metric: || p(X)- p(X )||1 and average
this distance over all sets in the dataset.

We plot the ¢ discrepancies in frequencies for various sketch-
ing cardinalities and number of clusters in Fig. 6. Following the
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Figure 6: Cell-Population Frequency Evaluation k-means was
used to partition sketched sample-sets (between 200 to 2500
cells) into cell-populations (10, 30, 50 clusters). In compari-
son to IID, Geometric Sketching, and Hopper, Kernel Herd-
ing sketches most closely preserve the frequencies of cell-
populations observed using all cells in the sample-set.
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same major pattern to previous experiments, we see that alterna-
tive sketching approaches (Geo-Sketch and Hopper) were unable to
properly act as a stand-in to computing the cell-population frequen-
cies in the original set. This trend is also not assuaged by increasing
those sketch’s sub-sampling size. Kernel Herding avoids these is-
sues, whilst also providing a better representative sketch than IID
sub-sampling. We see similar results across various number of clus-
ters, which studies the sketches’ fidelity with different granularities
of cell-populations.

3.6 Classification Effectiveness

Finally, we explicitly test to see if the cell-population discrepancies
found in Fig. 6 are relevant to producing immunological features
that are useful for classifying samples according to the clinical
outcomes of their associated individuals. That is, here we explicitly
test that clinically relevant cell populations (such as rare-cells) are
maintained in sketches. We hypothesized that the sketches with
more accurately represented frequencies (e.g. as in Sec. 3.5) may be
more predictive of a clinical outcome of interest.

As in Sec. 3.5, for each of the three cytometry datasets, cells were
clustered into one of thirty clusters. Here the clusters are found
from an aggregate collection of the multiple sketched sample-sets
in each dataset. That is, the clusters are determined via a concate-
nation of all the sketched cells from all the sample sets that are
in respective training sets. The frequency, or proportion of cells
assigned to each population, p()% ), was used as input for a down-
stream classification task to predict the clinical outcome for each
sketched set. Note that here we trained a classifier based on multi-
sample dataset {(p (Xy), y,-)}ﬁ\il, where X; is the sketch for the i-th
sample-set, and y; is the corresponding label. Classification exper-
iments were performed in the HVTN, Preeclampsia and NK-Cell
datasets (left, middle, and right of Figure 7, respectively) by splitting
individuals according to leave-one-out cross validation and training
an RBF support vector machine (SVM). Surprisingly, we found that
notwithstanding the explicit focus on maintaining rare-cell types,
Geo-sketch and Hopper were unable to produce sketches that lead
to better accuracies than IID sub-sampling in this setting. In con-
trast, we found that our proposed Kernel Herding sketches lead to
higher mean accuracies than IID sketching. This held true for other
cluster sizes as well (K=15,K=50). Our results show that in general,
sketching with Kernel Herding produces sketches that are more
clinically predictive than the baseline methods. This is especially
apparent in the preeclampsia dataset, where IID sketching produces
highly variable classification accuracy.

3.7 Single-cell RNA Sequencing Fidelity

For a cross-modality comparison, we tested the performance of
Kernel Herding to the sketches obtained using Geometric Sketch-
ing, Hopper, and IID subsampling on single-cell RNA sequencing
(scRNA-seq) data. This modality poses an additional challenge,
as scRNA-seq data typically contains 20-30 thousand gene mea-
surements across all cells and has a high degree of sparsity and
technical noise due to capture inefficiency, amplification noise, and
stochasticity [21]. Leveraging a single cell RNA sequencing dataset
of patients with multiple sclerosis (MS) and healthy controls, we
tested whether sketched cells resulted in similar random function
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Table 1: Runtimes (in seconds) of sketching methods on
HVTN, Preeclampsia and NK-Cell datasets (number of cells
(n and number of features (d) shown underneath in paren-
theses) as measured on an Intel(R) Xeon(R) Gold 6226R CPU.
Note that our Kernel Herding implementation was not opti-
mized and was coded for readability.

Methods HVIN Preeclampsia NK Cell
(n=200k, d=11) | (n=215k, d=33) | (n=13k, d=43)
1D 0.012 % 0.001 0.016 + 0.003 0.004 + 0.001
Hopper 3.13 £0.12 443 £0.15 1.12 £ 0.09
Geo Sketch 23.76 % 0.06 77.92 +0.15 12.29 + 0.06
Kernel Herding |  26.56 +4.38 | 2259+138 | 3.64+035

evaluations, similar singular value distributions, and gave similar
cell population frequencies. As shown in Figure 8, we found that
Kernel Herding produces sketches that are most closely aligned
with the results obtained using the full original sample. More specif-
ically, across a range of sketch sizes for each sample-set, Kernel
Herding achieves the least #; distance to the random function esti-
mates in the original dataset (Fig 8A), has the most similar singular
value distributions to the original data (Figure 8B), and best pre-
serves cell population frequencies with the least #; norm between
true and sketched cell populations (Figure 8C).

4 DISCUSSION AND CONCLUSION

Here, we presented a distribution-based, Kernel Herding approach
to select a limited number of representative cells from each sample-
set. Of particular note, we recast the focus of sketching sample-sets
to providing a smaller sketch that can act as a stand-in to the original
set. That is, we explicitly and quantitatively assess sketch’s ability
to faithfully maintain downstream outcomes when used in place of
the original set. In contrast to existing sketching approaches, such
as, Geometric Sketching [19] and Hopper [13], we found that Ker-
nel Herding strikes a powerful middle-ground between preserving
rare cell-populations, while also representing all major cell-types
and retaining their relative frequencies. Moreover, maintaining the
overall distribution of the original sample is necessary as adequate
preservation of cell-population frequencies is important for linking
cellular heterogeneity to clinical phenotype or external variables of
interest [7, 37], and for developing novel diagnostics or prognostics
[14, 15, 18]. Given the modern widespread use of cytometry and
scRNA-sequencing technologies in clinical applications with large
patient cohorts, the presented Kernel Herding based sketching ap-
proach makes such data more manageable for downstream analysis
and interpretation. We showed that Kernel Herding was effective
across multiple varied single cell modalities including flow and
mass cytometry, as well as scRNA-seq data.

We demonstrated the usefulness of Kernel Herding at providing
sketches that can serve as a stand-in for the original sample-set by
measuring the fidelity of non-linear function evaluations, singular
value distributions, and cell-population frequencies between the
original and sketched sample-sets. Additionally, we showed the
usefulness of sketching through Kernel Herding for downstream
tasks, such as clinical outcome prediction; here, Kernel Herding had
the most stable performance across datasets, number of clusters,
and number of sketched cells. This consistency makes it a reliable
method that can be employed to obtain a representative subset,
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Figure 7: Clinical Outcome Classification Accuracy. Sketches of 500 samples per sample set were obtained each with Geo-
metric Sketching, Hopper, IID subsampling, and Kernel Herding and cells were partitioned amongst 30 clusters forming
cell-populations. The cell-population frequencies were used as features to predict the clinical outcomes of the associated
individuals for each sample-set in the HVTN, Preeclampsia, and NK-Cell datasets (left, middle, and right, respectively). We
performed leave-one-out cross validation experiments for this classification task. Kernel Herding and IID produce sketches
and associated features that are more predictive than those obtained through Geometric Sketching. Kernel Herding also
significantly reduces the variance in classification accuracy in the Preeclampsia dataset.
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Figure 8: Single-cell RNA Sequencing Evaluation We evaluated Hopper, Geometric Sketching, IID, and Kernel Herding on
producing sketches that preserve the overall cellular landscape of single-cell RNA sequencing data. Method performance was
quantified using an L1 norm between random function evaluations of original and sketched samples (A), an L1 norm between
singular value distributions (B), and an L1 norm between true and sketched cell-population frequencies (C) across a range of
sketch sizes (200 - 2500). Sketches with Kernel Herding produce more similar random function evaluations, similar singular
value distributions, and best preserve the cell population frequencies that are observed when using all cells.

small or large, of the original distribution of samples. The run- Future work could consider the implications of sketching with
times of different methods reported in Table 1 add to the practical Kernel Herding in a broader range of tasks required to understand
usefulness of Kernel Herding. single-cell datasets, such as, differential abundance analysis [12,

26, 40], or for rapid identification of phenotype-associated cells
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[8]. Finally, another area of future work may focus on generating
variable sketch sizes across different subsections of the cellular
landscape, depending on prior knowledge or scientific question.
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