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ABSTRACT
Modern high-throughput single-cell immune profiling technologies,

such as flow and mass cytometry and single-cell RNA sequencing

can readily measure the expression of a large number of protein or

gene features across the millions of cells in a multi-patient cohort.

While bioinformatics approaches can be used to link immune cell

heterogeneity to external variables of interest, such as, clinical out-

come or experimental label, they often struggle to accommodate

such a large number of profiled cells. To ease this computational bur-

den, a limited number of cells are typically sketched or subsampled

from each patient. However, existing sketching approaches fail to

adequately subsample rare cells from rare cell-populations, or fail to

preserve the true frequencies of particular immune cell-types. Here,

we propose a novel sketching approach based on Kernel Herding

that selects a limited subsample of all cells while preserving the un-

derlying frequencies of immune cell-types. We tested our approach

on three flow and mass cytometry datasets and on one single-cell

RNA sequencing dataset and demonstrate that the sketched cells

(1) more accurately represent the overall cellular landscape and

(2) facilitate increased performance in downstream analysis tasks,

such as classifying patients according to their clinical outcome.

An implementation of sketching with Kernel Herding is publicly

available at https://github.com/vishalathreya/Set-Summarization.
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1 INTRODUCTION
Advances in high throughput single-cell technologies have trans-

formed our understanding of cellular heterogeneity across a range

of biological and clinical applications. For example, single-cell mea-

surements have been used to construct whole organism cell atlases

[9, 34] that can serve as prototypical healthy references that assist

in the discovery of novel disease cell states [24]. Translationally,

single-cell modalities have provided insight into complex immune

responses linked to clinical outcomes, such as surgical recovery [15],

pregnancy [2], tumor heterogeneity [22], and infectious disease [3].

Single-cell flow and mass cytometry (e.g. CyTOF) technologies

have been particularly useful for gaining an in-depth understanding

of the diversity of immune cell-types and their relation to disease,

as they simultaneously profile 20-45 proteins collectively across

all of the cells profiled in a multi-patient cohort [5, 23, 36]. This

data can be leveraged in statistical models for identifying differ-

entially abundant cell-populations [12, 26, 40], kernel density esti-

mation methods to characterize treatment resistant cells [8], and

classification algorithms to predict a patient’s clinical outcome

[41]. Similarly, genomic technologies such as single-cell RNA se-

quencing (scRNA-seq) technologies can profile 20, 000 or more gene

expression measurements in thousands of cells [25]. Given the large

number of cells measured in such datasets, downstream analysis

tasks present a computational challenge and quickly become in-

tractable. Traditional approaches for reducing the size of input data,

such as uniform downsampling or clustering, may fail to identify

rare but clinically meaningful cell-populations. This limits both

the utility of these algorithms and the ability to obtain meaningful

results.

Two alternative sketching-based approaches have been devel-

oped to intelligently select a subset of cells such that the overall

cellular landscape of the full data is preserved. Geometric Sketching

first approximates the underlying geometry of the data through a

covering of equal volume hypercubes, then evenly samples points

from each at random [19]. Alternatively, Hopper constructs a sketch

by iteratively minimizing the Hausdorff distance to ensure points in

the full data are well-represented in the sketch [13]. Both methods

provide an even sampling of cells that focuses on capturing rare

https://github.com/vishalathreya/Set-Summarization
https://doi.org/10.1145/3535508.3545539
https://doi.org/10.1145/3535508.3545539
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3535508.3545539&domain=pdf&date_stamp=2022-08-07
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Figure 1: Overview of Kernel Herding for Sketching Single-Cell Data. Multiple sample-sets are created after profiling the
expression of several genomic or protein features in single cells across multiple individuals. We used Kernel Herding to select a
limited representative subset of cells from sample-sets for each individual. Our approach was then evaluated in terms of the
quality of cellular landscape preservation and classification performance of sample-sets according to the clinical outcomes of
the associated patients.

cell-types. However, as a result, they fail to preserve the overall

distributions of cell-type frequencies which can be crucial for clini-

cal outcome prediction and biological interpretation [15, 28]. In a

philosophical divergence with this previous sketching work, here

we prioritize the sketch’s ability to act as a stand-in for the original

sample-set. That is, here we consider sketches that obtain similar
downstream outcomes to the original sample-sets when analyzed.

In some respects, this goal is a generalization of prior formulations,

since rare-cell types must be preserved if the sketch can act as a

stand-in. However, our formulation also allows for the preservation

of general downstream analysis, which may not be entirely depen-

dent on rare-cell types. Thus, this work presents a novel, more

direct approach to sketching single-cell samples.

We propose to preserve downstream analysis of a single-cell sam-

ple by explicitly preserving the distribution in the sketched sample.

In this work, we show that this can be achieved via Kernel Herding

[10], a kernel-based approach to sub-sampling. Furthermore, we

show how to efficiently compute Kernel Herding sketches through

random Fourier features [33], which allows our sketch approach to

scale to large sample-sets. We first evaluate our approach on three

diverse flow and mass cytometry datasets by computing several sta-

tistics to quantify cellular landscape preservation and performance

in downstream tasks, such as patient classification according to

clinical outcome. Furthermore, we demonstrate how this approach

can be used across single-cell data modalities with a single-cell RNA

sequencing application. Our Kernel Herding sketching approach

(outlined in Fig. 1) now makes it possible to select a limited subset

of cells from each profiled sample-set that adequately represents

immune cell-types and their relative frequencies.

2 METHODS
Here we are considering the problem of finding a representative

subset to an original sample-set of cellsX = {𝑥𝑖 ∈ R𝑑 }𝑛𝑖=1. If subsets
are to act as a stand-in for original sample-sets, then they should

provide similar outcomes when processed as the original sets. Thus,

we consider a subset,
ˆX = {𝑥𝑖 }𝑚𝑖=1 ⊂ X, to be representative if it

maintains the distribution of the original set X and yields similar

results to X when processed.

Problem Formulation At an abstract level, we shall construct

a subset
ˆX whose statistics match the original sample-set X. Of

course, for any finite number of statistics, there may be an ambi-

guity over the original distribution. For instance, a large variety of

samples may share the same mean, thus simply finding a subset

of a similar mean as the original set will not suffice to ensure a

representative subsample. Instead, we shall use the kernel mean

embedding [31] as the target ‘statistic’ to match in the subset. We

briefly explain kernels and kernel mean embedding below.

Kernel Mean Embedding Kernel methods have been successfully

applied in a myriad of machine learning problems such as regres-

sion [39], classification [11], and dimensionality reduction [29].

Underlying kernel methods is a positive definitive kernel function

𝐾 : R×R ↦→ R 1
, which induces a reproducing kernel Hilbert space

(RKHS) (e.g. see [6] for further details). In addition to working over

typical vector-values data, recently kernels have also been deployed

to operate over distributions (e.g. [31]). The kernel mean embedding
𝜇𝑝 : R ↦→ R represents a distribution, 𝑝 , as:

𝜇𝑝 (·) = E𝑥∼𝑝 [𝑘 (𝑥, ·)] (1)

Note that 𝜇𝑝 is itself a function, defined by the expected kernel

evaulation to points drawn from a distribution 𝑝 . For a special class

of ‘characteristic’ kernels, 𝑘 , such as the common radial-basis func-

tion (RBF) kernel 𝑘 (𝑥, 𝑥 ′) = exp(− 1

2𝛾 | |𝑥 − 𝑥
′ | |2), | |𝜇𝑝 − 𝜇𝑞 | | = 0 if

and only if 𝑝 = 𝑞. Thus, for characteristic kernels the kernel mean

embedding will be unique to its distribution and matching the ker-

nel embedding exactly guarantees that one matches a distribution.

1
Kernels may also generalize over non-real domains
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In general, the distance
2 | |𝜇𝑝 − 𝜇𝑞 | | induces a divergence, the maxi-

mum mean discrepancy (MMD) [16], between distributions, which

has been useful in comparing distributions (e.g. [17]).

In this work we sketch a sample-set with a subset
ˆX ⊂ X that

preserves the empirical distribution found in the original sample-set

X with the mean embedding 𝜇X where:

𝜇X (·) =
1

𝑛

𝑛∑︁
𝑖=1

𝑘 (𝑥𝑖 , ·) . (2)

That is, we look for a subset
ˆX whose empirical distribution has

a small MMD from that of the original set X, | |𝜇
ˆX − 𝜇X | |. Note

that a uniform subsampleU ⊂ X provides a reasonable approxi-

mation when the cardinality |U| is large enough. That is 𝜇U (·) =
1

|U |
∑
𝑥 ∈U 𝑘 (𝑥, ·), shall approximate 𝜇X when using enough uni-

formly subsampled points. However, as shown by [10], one may

get a more representative subsample through Kernel Herding as

described below.

Kernel Herding Kernel herding is a greedy algorithm to approxi-

mate a mean embedding 𝜇𝑝 with a subset of a set of samples X ∼ 𝑝 ,
using a subset of points

ˆX = {𝑥𝑖 }𝑚𝑖=1 ⊂ X. Here, we consider the
empirical distribution 𝑝 = 1

𝑛

∑𝑛
𝑖=1 𝛿 (𝑥𝑖 ), where 𝛿 is the Dirac-delta

function. Hence, we look to approximate 𝜇X with X being our orig-

inal sample. Kernel herding is especially applicable for synthesizing

a large number of cells, due to the following properties. First, the

rate of convergence for the error ∥𝜇X − 1

𝑚

∑𝑚
𝑗=1 𝑘 (𝑥𝑖 , ·)∥2 is O(

1

𝑚 ),
which is much faster than the O( 1√

𝑚
) rate for a uniformly ran-

dom subsample. That is, Kernel Herding can provide a synthesized

subset of

√
𝑚 points that approximates the target distribution as

well as𝑚 uniformly subsampled points. This property implies that

the Kernel Herding subset shall maintain the distributional proper-

ties found in the original sample-set. Second, it can be shown that

the Kernel Herding subset
ˆX also approximates the expectation of

any function ℎ3, E𝑥∼𝑝 [ℎ(𝑥)], with a mean over
ˆX, 1

𝑚

∑𝑚
𝑗=1 ℎ(𝑥 𝑗 ).

This property enables one to obtain similar downstream models

when using the summarized subset as the expectation of functions

evaluated.

The Kernel Herding subset
ˆX is computed as follows:

Algorithm 1 Compute Subsampled Set using Kernel Herding

Require: A set of cells X, from which the number of cells subsam-

pled is𝑚, Radial-Basis Function kernel 𝑘 .

1: Initialize 𝑗 ← 1,
ˆX ← ∅

2: while 𝑗 ≤ 𝑚 do

3: x̂← argmax

𝑥 ∈X

1

𝑁

∑
𝑥 ′∈X 𝑘 (𝑥, 𝑥 ′) −

1

𝑗

∑
𝑥 ′∈ ˆX 𝑘 (𝑥, 𝑥

′)

4:
ˆX ← ˆX ∪ {x̂}

5: 𝑗 ← 𝑗 + 1
6: end while
7: return ˆX

Random Fourier Features Performing Kernel Herding with a

kernel function𝑘 , however, may not scale since an iteration requires

2
Corresponding to the RKHS norm

3
In the corresponding reproducing kernel Hilbert space (RKHS).

an 𝑂 (𝑛2) computation (equivalent to computing the Gram matrix

of pairwise kernel evaluations on X). To rectify this, we propose to

use random Fourier frequency features [33]. For a shift-invariant

kernel (such as the RBF kernel), random Fourier features provide

a feature map 𝜑 (𝑥) ∈ R𝐷 such that the dot product in feature

space approximates the kernel evaluation, 𝜑 (𝑥)𝑇𝜑 (𝑥 ′) ≈ 𝑘 (𝑥, 𝑥 ′)
(e.g. see [32, 33, 33] for further details). Using the dot product of

𝜑 (𝑥), our mean embedding becomes 𝜇X = 1

𝑛

∑
𝑖=1 𝜑 (𝑥𝑖 ), where

𝜇X (𝑥 ′) = 1

𝑛

∑
𝑖=1 𝜑 (𝑥𝑖 )𝑇𝜑 (𝑥 ′). In practice, the random features

are constructed by drawing frequencies,𝑊 ∈ R𝑑×
𝐷
2 , at random

(iid column-wise) once, and holding them fixed to construct the

features

𝜑𝑊 (𝑥) = [sin(W𝑇 𝑥), cos(W𝑇 𝑥)] ∈ R𝐷 , (3)

where [·, ·] denotes concatenation. For instance, to approximate the

RBF kernel, 𝑘 (𝑥, 𝑥 ′) = exp(− 1

2𝛾 | |𝑥 − 𝑥
′ | |2), we would draw the 𝑑-

dimensional frequencies𝑊𝑖
𝑖𝑖𝑑∼ N(0, 𝛾−1𝐼 ) [33]. It is simple to show

that when using the approximation𝜑𝑊 (𝑥)𝑇𝜑𝑊 (𝑥 ′) ≈ 𝑘 (𝑥, 𝑥 ′), one
may compute Algorithm 1 with 𝑂 (𝑛) iterates by avoiding pairwise

kernel computations [10]; we detail this below.

Algorithm 2 Compute Subsampled Set using RBF Kernel Herd-

ing with Random Features

Require: A set of cells X with dimensionality 𝑑 , from which the

number of cells subsampled is𝑚, dimensionality of the random

feature space 𝐷 and kernel hyperparameter 𝛾 .

1: # Draw random Fourier frequencies

2: ComputeW ∈ R𝑑×
𝐷
2 by sampling its elements independently

W𝑖, 𝑗 ∼ N(0, 1𝛾 )
3: # Subsampling using Kernel Herding
4: Initialize 𝑗 ← 1,

ˆX ← ∅, 𝜃0 ← 1

𝑛

∑𝑛
𝑖=1 𝜑W (𝑥𝑖 )

5: while 𝑗 ≤ 𝑚 do
6: x̂← argmax

𝑥 ∈X
𝜃𝑇
𝑗−1𝜑W (𝑥𝑖 )

7:
ˆX ← ˆX ∪ {x̂}

8: 𝜃 𝑗 ← 𝜃 𝑗−1 + 𝜃0 − 𝜑W (x̂)
9: 𝑗 ← 𝑗 + 1
10: end while
11: return ˆX

2.1 Single-Cell Datasets Used in Experiments
In all experiments, we used publicly available, multi-sample flow,

mass cytometry (CyTOF), and single-cell RNA sequencing datasets.

For the flow and mass cytometry datasets, each sample-set con-

sists of a collection of protein markers (up to ∼45) measured across

individual cells. For the single-cell RNA sequencing dataset, each

sample-set consists of a collection of gene expression measure-

ments (∼20k) measured across individual cells. Here, we briefly

introduce the multi-sample publicly available datasets used in our

experiments. All preprocessed data are available in the Zenodo

repository: https://zenodo.org/record/6546964.

• Preeclampsia The preeclampsia CyTOF dataset [18] includes

samples collected longitudinally from 12 healthy women and

11 women with preeclampsia throughout their pregnancies. All

patient samples were downloaded from Flow Repository under

Repository ID FR-FCM-ZYRQ (http://flowrepository.org/id/FR-

https://zenodo.org/record/6546964
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
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Figure 2: t-SNE visualizations of the sketches produced under each method. The distribution of points sketched with Kernel
Herding (KH) (dark purple points) follows that of the original data (gray, background points representing a large number
of randomly sampled cells). Sketches with Kernel Herding adequately represent rare populations and retain their relative
frequencies, while Geometric Sketching and Hopper struggle with these aspects.

FCM-ZYRQ). Classification tasks distinguished between healthy

from preeclamptic women.

• HVTN The HIV Vaccine Trials Network (HVTN) is a Flow

Cytometry dataset and consists of 96 total sample-sets of T-

cells that were each subjected to stimulation with either Gag

or Env [1] (downloaded from Flow Repository, ID FR-FCM-

ZZZV http://flowrepository.org/id/FR-FCM-ZZZV). Classifica-

tion tasks distinguished Gag from Env stimulated samples

• NK-Cell The NK-Cell CyTOF dataset profiled NK-Cells across

21 individuals who were either positive or negative for Cy-

tomegalovirus (CMV) [4] (downloaded from https://github.com/

eiriniar/CellCnn). Classification tasks distinguished CMV posi-

tive (CMV+) from CMV negative (CMV-) samples.

• MS The multiple sclerosis (MS) single-cell RNA sequencing

dataset [35] consists of peripheral blood samples collected from

4 MS patients and 4 healthy controls. Patient samples were ac-

cessed from the Gene Expression Omnibus using the accession

code GSE138266. We performed standard single-cell RNA se-

quencing data preprocessing, including filtering cells according

to read depth and distribution of molecular counts, removing

cells with greater than 20 percent mitochondrial transcripts, and

retaining genes that were expressed amongst a minimum of 5

cells. Following quality control filtering, we normalized the data

to account for differences in sequencing depth by estimating

size factors using Scran pooling normalization v1.20.1 [27] and

scaling them across batches using Batchelor v1.8.0. We then per-

formed batch effect correction using ComBat [20]. Lastly, we

restricted the feature space by selecting for highly variable genes

on log+1 transformed data using a normalized dispersion mea-

sure in Scanpy v1.8.1 (flavor = Seurat, minimum mean = 0.012,

minimum dispersion = 0.25, maximum mean = 5). In our subse-

quent experiments, we performed principal component analysis

on the preprocessed dataset and used the top 50 components for

downstream tasks.

3 RESULTS
We compared the performance of Kernel Herding to sketches ob-

tained using Geometric Sketching, Hopper, and IID subampling

for tasks related to the overall preservation and usefulness of the

resulting immunological landscape. That is, we sought to evaluate

whether or not the sketches adequately represented all major im-

mune cell-types and their relative frequencies and could be used

to produce meaningful immunological features for downstream

tasks. Code for reproducing the results of all subsequent experi-

ments is publicly available at https://github.com/vishalathreya/Set-

Summarization.

3.1 Description of Related Algorithms
Here, we briefly define the sketching approaches that were com-

pared to in our experiments.

• Geometric Sketching Geometric Sketching introduced in Ref.

[19] infers a plaid covering of cells in the high-dimensional

space. Cells are sketched through volume-dependent sampling

by selecting the same number of cells from sections of the high-

dimensional plaid covering.

• Hopper Hopper introduced in Ref. [13] forms a sketch by using

fastest first traversal, which is a greedy approximation to the 𝑘-

center problem. Intuitively, this sketching approach sequentially

adds cells to the sketch that are sufficiently different from those

that were already included in the sketch.

• Independent and IdenticallyDistributed Subsampling (IID)
IID sketches were generated by simply selecting a random sub-

sample of cells from each sample-set. Here, each cell had the

same probability of being selected in the sketch.

3.2 t-SNE Visualizations of Sketched Regions of
the Cellular Landscape

We begin with a qualitative assessment of sketching approaches

on cytometry data (Fig. 2). In order to get a visual understanding

http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZYRQ
http://flowrepository.org/id/FR-FCM-ZZZV
https://github.com/eiriniar/CellCnn
https://github.com/eiriniar/CellCnn
https://github.com/vishalathreya/Set-Summarization
https://github.com/vishalathreya/Set-Summarization
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of the regions of the cellular landscape included in the sketches

produced by each method, we plotted a 2𝑑 t-SNE projection of re-

spective sketches (colored points) along with a set of overall cells

from a large sub-sample of the original set (gray-colored points).

I.e. Fig. 2, plots cells from three samples, one for each respective

dataset (similar results may be obtained from other samples). Fur-

thermore, we projected cluster centroids (15, from k-means) as

large yellow crosses. Taken together, the respective plots give an

overview of the cells found in each original sample-set (gray), and

which cells were then included in sketches (colored). Note that

an IID sketch would stem from a uniform sub-sample of the gray

points, which was omitted for visual clarity. One can observe that

the Geometric Sketching (Geo, pink, Fig. 2) sketches concentrate
over a few sub-regions of the cellular-space, leaving large regions

of cells underrepresented in the sketch. This is also true of Hopper

(Hopper, green, Fig. 2), though to slightly lesser extent. Finally, we

can observe that our proposed Kernel Herding (KH, purple, Fig. 2)
sketches yield a more representative coverage of the cell-space.

Following our philosophical goal of obtaining sketches that may

act as general stand-ins for original sample-sets, it is intuitive that

the discrepancy in representation of sketches to the original shall

result in discrepancies of outputs of downstream analysis. More-

over, following the insights gained from Kernel Herding (Sec. 2), it

is intuitive that IID sketches shall be less representative than those

from Kernel herding. In subsequent experiments below, we show

that these intuitions hold empirically.

Figure 3: t-SNE visualizations of cells sketched from the NK-
Cell dataset colored by their the third nearest neighbor dis-
tances in the original protein-marker feature space.

We provide additional context to the aforementioned t-SNE pro-

jections (Fig. 2) with a volumetric analysis. In particular, as t-SNE

projections may not be volumetrically preserving (areas in the 2𝑑

space need not scale to areas in the original space), it may be the

case that sketched points seem overly warped and are not repre-

sentative of their coverage in the original high-dimensional protein

marker feature space. To obtain a clearer view of the representation

of sketched cells in the original space, we visualize the third nearest

neighbor distance in the original space when scattering the cells in

the 2𝑑 t-SNE space (Fig. 3 plots this for a sample-set in the NK-Cell

dataset). That is, dark-colored points stem from sparsely populated

regions in the original space, since the nearest neighbor of such

points in the original space was far. Similarly, light-colored points

stem from densely populated regions in the original space. As sus-

pected above, Geo-Sketch and Hopper sketches are concentrated

in sparse regions of the space. While this acceptable for certain

applications, the resulting sketches largely ignore denser regions of

the cell-space, which prevents sketches from acting as a stand-in for
downstream analysis. In contrast, we observe that Kernel Herding

obtains good coverage of the original space, while still including

cells from sparser regions.

3.3 Random Function Fidelity
As previously discussed, our aim is to produce sketches that may

act as a stand-in for general analysis of samples. To test how well

sketches estimate the output of a wide-range of analyses, we be-
gin by evaluating randomly generated functions on sketches and

comparing their outputs to that of the original sample (Fig. 4).

Figure 4: Random Function Evaluation We evaluated a ran-
dom function using the full and sketched versions for the
HVTN, Preeclampsia and NK-Cell datasets, for sketch sizes
between 200 and 2500 cells. Sketches with Kernel Herding
generally produce random function evaluations (RFEs) that
are the most similar to that obtained when using all cells.

We generate random cell-wise functions, 𝑓 : R𝑑 ↦→ R, that are
evaluated on sets, X, as : f (X) = 1

|X |
∑
𝑥 ∈X 𝑓 (𝑥). We compare the

function evaluation on the original sample, X, to a sketched sub-

sample,
ˆX, using the ℓ1 distance: |f (X) − f ( ˆX)|. We parameterize

functions through random features (3): 𝑓𝑊,𝛽 (𝑥) = 𝜑𝑤 (𝑥)𝑇 𝛽 , where
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𝜑𝑤 (𝑥) are the random features w.r.t. a drawn set of frequencies, and

𝛽 are coefficients. Note that 𝑓𝑊,𝛽 (𝑥) is a highly non-linear function
in 𝑥 . Thus, testing the discrepancies |f𝑊,𝛽 (X) − f𝑊,𝛽 ( ˆX)| between
multiple𝑊, 𝛽 shall give a robust measure of the representative

power of sketches. For each dataset, we draw 5 random functions

(by drawing 𝛽,𝑊 at random) and report the average ℓ1 discrepancy

for sketches produced with each respective method for various

sketch cardinalities (see Fig. 4, note the log-scale). Perhaps not

surprisingly in light of our qualitative analysis, we see that Geo-

Sketch and Hopper yield sketches that are poor stand-ins for this

task. Interestingly, we also see a large advantage in Kernel Herding

sketches to IID sketches. This highlights that although IID sketches

retain distributional properties, Kernel Herding sketches provide a

more efficient and accurate synthesis.

3.4 Singular Value Fidelity
Above we studied sketches’ ability to act a stand-in for general non-

linear evaluations on original sample-sets. Here, we now consider

a specific analysis based on singular values. In particular, we study

how well the singular values of the original 𝑛 × 𝑑 (cell × protein

marker matrices) sample compares to the singular values of corre-

sponding𝑚×𝑑 sketches with the ℓ1 metric: | | 1√
𝑛
®𝜎 (X)− 1√

𝑚
®𝜎 ( ˆX)||1,

where ®𝜎 is the vector of corresponding singular values to sample

or sketch. Note that this ℓ1 metric directly relates to differences

of eigenvalues of corresponding covariance matrices, and hence

is indicative of how well sketches may act as a stand-in for linear

subspace analyses such as PCA.

Figure 5: Singular Value Distribution Evaluation Differences
in singular value distributions of cell × protein marker ma-
trices as quantified with an L1-norm were used to summa-
rize the quality of sketches over a range of sketch sizes,
for preserving the overall cellular landscape in the HVTN,
Preeclampsia and NK-Cell datasets (top, middle, bottom, re-
spectively).

As before, we see that Geo-sketch and Hopper sketches are also

unable to act as stand-ins for a singular-value analysis; a problem

that does not improve as sketch sizes increase. Given that many sin-

gle cell analyses rely on capturing the lower dimensional structure

in samples (e.g. [30, 38]), this underlying bias in previous sketching

approaches is limiting to their ability to act as reliable stand-ins.

Moreover, we similarly observe that our proposed Kernel Herding

sketches act as more faithful stand-ins to the naive IID sketches.

3.5 Cluster Frequency Fidelity
Next, we study sketches’ abilities to retain the overall cellular fre-

quencies that were found in the original sample. Cell-type frequen-

cies can be crucial for clinical outcome prediction and biological

interpretation [7, 37]; thus, a sketch’s ability to retain cell-type

frequencies is pivotal for its ability to act as a stand-in to the orig-

inal set in many impactful tasks. Here we automatically detect

cell-populations through an unsupervised, kmeans cluster analysis.

All cells in the original sample-set are used to compute the cluster

centroids, which then provide the cluster association for cells from

sketches of that set. Once the centroids are computed for the original

sample, each sketch is summarized according to the frequencies of

the clusters in that sketch. That is, for each sketch, we compute the

portion of its cells that were assigned to each cluster, 𝜌 ( ˆX) ∈ [0, 1]𝐾 ,
𝜌𝑘 ( ˆX) = 1

| ˆX |
∑
𝑥 ∈ ˆX I{𝑘 = argmin𝑐 | |𝑥 − 𝜈𝑐 | |}, where 𝜈1, . . . , 𝜈𝐾 are

the cluster centroids. Similarly to above, we may compare the out-

comes of analyzing the original sample-set, X, to that of a corre-

sponding sketch,
ˆX, with an ℓ1 metric: | |𝜌 (X)−𝜌 ( ˆX)||1 and average

this distance over all sets in the dataset.

We plot the ℓ1 discrepancies in frequencies for various sketch-

ing cardinalities and number of clusters in Fig. 6. Following the

Figure 6: Cell-Population Frequency Evaluation 𝑘-means was
used to partition sketched sample-sets (between 200 to 2500
cells) into cell-populations (10, 30, 50 clusters). In compari-
son to IID, Geometric Sketching, and Hopper, Kernel Herd-
ing sketches most closely preserve the frequencies of cell-
populations observed using all cells in the sample-set.



Distribution-based Sketching of Single-Cell Samples BCB ’22, August 7–10, 2022, Northbrook, IL, USA

same major pattern to previous experiments, we see that alterna-

tive sketching approaches (Geo-Sketch and Hopper) were unable to

properly act as a stand-in to computing the cell-population frequen-

cies in the original set. This trend is also not assuaged by increasing

those sketch’s sub-sampling size. Kernel Herding avoids these is-

sues, whilst also providing a better representative sketch than IID

sub-sampling. We see similar results across various number of clus-

ters, which studies the sketches’ fidelity with different granularities

of cell-populations.

3.6 Classification Effectiveness
Finally, we explicitly test to see if the cell-population discrepancies

found in Fig. 6 are relevant to producing immunological features

that are useful for classifying samples according to the clinical

outcomes of their associated individuals. That is, here we explicitly

test that clinically relevant cell populations (such as rare-cells) are
maintained in sketches. We hypothesized that the sketches with

more accurately represented frequencies (e.g. as in Sec. 3.5) may be

more predictive of a clinical outcome of interest.

As in Sec. 3.5, for each of the three cytometry datasets, cells were

clustered into one of thirty clusters. Here the clusters are found

from an aggregate collection of the multiple sketched sample-sets

in each dataset. That is, the clusters are determined via a concate-

nation of all the sketched cells from all the sample sets that are

in respective training sets. The frequency, or proportion of cells

assigned to each population, 𝜌 ( ˆX), was used as input for a down-

stream classification task to predict the clinical outcome for each

sketched set. Note that here we trained a classifier based on multi-

sample dataset

{
(𝜌 ( ˆX𝑖 ), 𝑦𝑖 )

}𝑁
𝑖=1

, where
ˆX𝑖 is the sketch for the 𝑖-th

sample-set, and 𝑦𝑖 is the corresponding label. Classification exper-

iments were performed in the HVTN, Preeclampsia and NK-Cell

datasets (left, middle, and right of Figure 7, respectively) by splitting

individuals according to leave-one-out cross validation and training

an RBF support vector machine (SVM). Surprisingly, we found that

notwithstanding the explicit focus on maintaining rare-cell types,

Geo-sketch and Hopper were unable to produce sketches that lead

to better accuracies than IID sub-sampling in this setting. In con-

trast, we found that our proposed Kernel Herding sketches lead to

higher mean accuracies than IID sketching. This held true for other

cluster sizes as well (K=15,K=50). Our results show that in general,

sketching with Kernel Herding produces sketches that are more

clinically predictive than the baseline methods. This is especially

apparent in the preeclampsia dataset, where IID sketching produces

highly variable classification accuracy.

3.7 Single-cell RNA Sequencing Fidelity
For a cross-modality comparison, we tested the performance of

Kernel Herding to the sketches obtained using Geometric Sketch-

ing, Hopper, and IID subsampling on single-cell RNA sequencing

(scRNA-seq) data. This modality poses an additional challenge,

as scRNA-seq data typically contains 20-30 thousand gene mea-

surements across all cells and has a high degree of sparsity and

technical noise due to capture inefficiency, amplification noise, and

stochasticity [21]. Leveraging a single cell RNA sequencing dataset

of patients with multiple sclerosis (MS) and healthy controls, we

tested whether sketched cells resulted in similar random function

Table 1: Runtimes (in seconds) of sketching methods on
HVTN, Preeclampsia and NK-Cell datasets (number of cells
(𝑛 and number of features (𝑑) shown underneath in paren-
theses) as measured on an Intel(R) Xeon(R) Gold 6226R CPU.
Note that our Kernel Herding implementation was not opti-
mized and was coded for readability.

Methods HVTN Preeclampsia NK Cell
(n=200k, d=11) (n=215k, d=33) (n=13k, d=43)

IID 0.012 ± 0.001 0.016 ± 0.003 0.004 ± 0.001

Hopper 3.13 ± 0.12 4.43 ± 0.15 1.12 ± 0.09

Geo Sketch 23.76 ± 0.06 77.92 ± 0.15 12.29 ± 0.06

Kernel Herding 26.56 ± 4.38 22.59 ± 1.38 3.64 ± 0.35

evaluations, similar singular value distributions, and gave similar

cell population frequencies. As shown in Figure 8, we found that

Kernel Herding produces sketches that are most closely aligned

with the results obtained using the full original sample. More specif-

ically, across a range of sketch sizes for each sample-set, Kernel

Herding achieves the least ℓ1 distance to the random function esti-

mates in the original dataset (Fig 8A), has the most similar singular

value distributions to the original data (Figure 8B), and best pre-

serves cell population frequencies with the least ℓ1 norm between

true and sketched cell populations (Figure 8C).

4 DISCUSSION AND CONCLUSION
Here, we presented a distribution-based, Kernel Herding approach

to select a limited number of representative cells from each sample-

set. Of particular note, we recast the focus of sketching sample-sets

to providing a smaller sketch that can act as a stand-in to the original
set. That is, we explicitly and quantitatively assess sketch’s ability

to faithfully maintain downstream outcomes when used in place of

the original set. In contrast to existing sketching approaches, such

as, Geometric Sketching [19] and Hopper [13], we found that Ker-

nel Herding strikes a powerful middle-ground between preserving

rare cell-populations, while also representing all major cell-types

and retaining their relative frequencies. Moreover, maintaining the

overall distribution of the original sample is necessary as adequate

preservation of cell-population frequencies is important for linking

cellular heterogeneity to clinical phenotype or external variables of

interest [7, 37], and for developing novel diagnostics or prognostics

[14, 15, 18]. Given the modern widespread use of cytometry and

scRNA-sequencing technologies in clinical applications with large

patient cohorts, the presented Kernel Herding based sketching ap-

proach makes such data more manageable for downstream analysis

and interpretation. We showed that Kernel Herding was effective

across multiple varied single cell modalities including flow and

mass cytometry, as well as scRNA-seq data.

We demonstrated the usefulness of Kernel Herding at providing

sketches that can serve as a stand-in for the original sample-set by

measuring the fidelity of non-linear function evaluations, singular

value distributions, and cell-population frequencies between the

original and sketched sample-sets. Additionally, we showed the

usefulness of sketching through Kernel Herding for downstream

tasks, such as clinical outcome prediction; here, Kernel Herding had

the most stable performance across datasets, number of clusters,

and number of sketched cells. This consistency makes it a reliable

method that can be employed to obtain a representative subset,
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Figure 7: Clinical Outcome Classification Accuracy. Sketches of 500 samples per sample set were obtained each with Geo-
metric Sketching, Hopper, IID subsampling, and Kernel Herding and cells were partitioned amongst 30 clusters forming
cell-populations. The cell-population frequencies were used as features to predict the clinical outcomes of the associated
individuals for each sample-set in the HVTN, Preeclampsia, and NK-Cell datasets (left, middle, and right, respectively). We
performed leave-one-out cross validation experiments for this classification task. Kernel Herding and IID produce sketches
and associated features that are more predictive than those obtained through Geometric Sketching. Kernel Herding also
significantly reduces the variance in classification accuracy in the Preeclampsia dataset.

Figure 8: Single-cell RNA Sequencing Evaluation We evaluated Hopper, Geometric Sketching, IID, and Kernel Herding on
producing sketches that preserve the overall cellular landscape of single-cell RNA sequencing data. Method performance was
quantified using an L1 norm between random function evaluations of original and sketched samples (A), an L1 norm between
singular value distributions (B), and an L1 norm between true and sketched cell-population frequencies (C) across a range of
sketch sizes (200 - 2500). Sketches with Kernel Herding produce more similar random function evaluations, similar singular
value distributions, and best preserve the cell population frequencies that are observed when using all cells.

small or large, of the original distribution of samples. The run-

times of different methods reported in Table 1 add to the practical

usefulness of Kernel Herding.

Future work could consider the implications of sketching with

Kernel Herding in a broader range of tasks required to understand

single-cell datasets, such as, differential abundance analysis [12,

26, 40], or for rapid identification of phenotype-associated cells
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[8]. Finally, another area of future work may focus on generating

variable sketch sizes across different subsections of the cellular

landscape, depending on prior knowledge or scientific question.
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