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ABSTRACT

Modern single-cell flow and mass cytometry technologies measure
the expression of several proteins of the individual cells within
a blood or tissue sample. Each profiled biological sample is thus
represented by a set of hundreds of thousands of multidimensional
cell feature vectors, which incurs a high computational cost to
predict each biological sample’s associated phenotype with ma-
chine learning models. Such a large set cardinality also limits the
interpretability of machine learning models due to the difficulty in
tracking how each individual cell influences the ultimate prediction.
We propose using Kernel Mean Embedding to encode the cellular
landscape of each profiled biological sample. Although our foremost
goal is to make a more transparent model, we find that our method
achieves comparable or better accuracies than the state-of-the-art
gating-free methods through a simple linear classifier. As a result,
our model contains few parameters but still performs similarly to
deep learning models with millions of parameters. In contrast with
deep learning approaches, the linearity and sub-selection step of our
model makes it easy to interpret classification results. Analysis fur-
ther shows that our method admits rich biological interpretability
for linking cellular heterogeneity to clinical phenotype.
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« Computing methodologies — Machine learning algorithms; «
Applied computing — Computational biology.
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1 INTRODUCTION

Modern immune profiling techniques such as flow and mass cy-
tometry (CyTOF) enable comprehensive profiling of immunological
heterogeneity across a multi-patient cohort [12, 20]. In recent years,
such technologies have been applied to numerous clinical applica-
tions. In particular, these assays allow for both the phenotypic and
functional characterization of immune cells based on the simultane-
ous measurement of 10-45 protein markers [3]. To further connect
the diversity, abundance, and functional state of specific immune
cell-types to clinical outcomes or external variables, modern bioin-
formatics approaches have focused on how to engineer or learn a
set of “immune features” that adequately encodes a profiled indi-
vidual’s immunological landscape. In general, existing approaches
for creating immunological features either rely heavily on manual
human effort [14, 16, 20], clustering [5, 26, 32], or do not produce
immunological features that are readily interpretable or informative
for follow-up experiments, diagnostics, or treatment strategies [39].
To efficiently and accurately link cellular heterogeneity to clinical
outcomes or external variables, here we introduce Cell Kernel Mean
Embedding (CKME), a method based on kernel mean embeddings
[23] that directly featurizes cells in samples according to their ag-
gregate distribution. We show that CKME is simple enough to be
readily interpreted by a human, and learns individual cell scores.
Empirical studies show that CKME achieves competitive to state-of-
the-art classification accuracy in clinical outcome prediction tasks.

Flow and Mass Cytometry Assays Produce a Dataset of Sets
To comprehensively profile the immune systems of biological sam-
ples collected across multiple individuals, a unique data structure
of multiple sample-sets is ultimately produced. Each sample-set is
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Figure 1: Single-cell profiles produce a sample-set of (typically
thousands of) multidimensional feature vectors of measured
features per cell (illustrated as scatter plots). Thus, a dataset

of multiple biological samples will result in a dataset of mul-
tiple sets (shown above).
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likely to contain hundreds of thousands of cells collected from an
individual, and machine learning models are often used to predict
their associated clinical or experimental labels. This concept is illus-
trated in Fig. 1. In profiling multiple individuals with a single-cell
technology, a dataset of sets is produced and is a non-traditional
data structure that breaks the standard convention of a dataset of
feature vectors. This produces complexity for learning over individu-
als (e.g. patients), as single-cell data requires a model to characterize
and compare across multiple sets of multiple vectors (where each
vector represents a cell). Another challenge of analyzing single-cell
data is the large number of cells in each sample-set, which incurs a
computational cost and obscures the decision-making process of
machine learning models.

Related Work The first class of methods for identifying coherent
cell-populations and specifying their associated immunological fea-
tures are gating-based', and operate by first assigning cells to pop-
ulations either manually, or in an automated manner by applying
an unsupervised clustering approach [1, 20]. After an individual’s
cells have been assigned to their respective cell-populations, cor-
responding immunological features are specified by 1) computing
frequencies or the proportion of cells assigned to each population
and 2) computing functional readouts as the median expression of a
particular functional marker [32]. Though gating-based approaches
can be automatic without human intervention, they have several
drawbacks: 1) they tend to be sensitive to variation in the parame-
ters of the underlying clustering algorithms [32]. 2) the underlying
clustering algorithms typically do not scale well to millions of cells.
3) they typically need to rerun the expensive clustering process
whenever a new sample-set is given [18]. Furthermore, partitioning
cells into discrete clusters can be inadequate in the context of con-
tinuous phenotypes such as drug treatment response and ultimately
limits the capacity of having a single-cell resolution of the data.
To address these limitations, the second class of methods are
gating-free and rely on representing, or making predictions based
on individual cells [2, 17, 39]. For example, CytoDx [17] uses a
linear model to first compute the response of every single cell in-
dividually, then the responses are aggregated by a mean pooling

!Gating refers to partitioning cells into populations
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function. Finally, the aggregated result is used by another linear
model to predict clinical outcomes. CellCNN [2] uses a 1-d convo-
lution layer to learn filters that are responsive to marker profiles
of cells and aggregates the responses of cells to different filters via
a pooling layer for prediction. Since both CytoDx and CellCNN
only contain a single linear or convolution layer before the pooling
operation, they enable human interpretation. However, this prop-
erty also limits their expressive power. To enhance model flexibility,
CytoSet [39] employs a deep learning model similar to Deep Set
[40] to handle set data with a permutation invariant architecture
that stacks multiple intermediate permutation equivariant neural
network layers. As a result, the sample-set featurization that Cy-
toSet achieves, while discriminative and accurate, is opaque and
a black box, making it difficult to analyze downstream for biolog-
ical discoveries. In addition, CytoSet usually contains millions of
parameters, further obfuscating the underlying predictive mech-
anisms. Our method CKME belongs to this gating-free class; we
show that CKME achieves interpretability without harming model
expressiveness.

Summary and Contribution of Results CKME tackles the
challenges highlighted above by computing a kernel mean embed-
ding (KME) [23] of sample-sets to represent the characteristics of
each sample-set’s composition (and distribution). For classification
tasks, we train a linear classifier (e.g. linear SVM) in the KME feature
space. Despite its simplicity, CKME achieves comparable to state-of-
the-art gating-free performance on three flow and mass cytometry
datasets with multiple sample-sets and associated clinical outcomes.
We show that CKME may be used to obtain an individual cell score
for each cell in a sample-set, where the ultimate prediction is the
result of the average cell score. As a result, CKME is highly inter-
pretable since one can quantify the individual contribution of every
cell to the final prediction. Predictions are then synthesized further
using kernel herding [9], which identifies key cells to retain in a
subsample. We leverage the transparency of CKME in a thorough
analysis to understand predictions. First, we study the semantics
of cell scores from CKME, and show that they follow several de-
sirable, intuitive properties. After, we explore cell scores to obtain
biological insights from our models, and show that discoveries from
CKME are consistent with existing knowledge. We release publicly
available code at https://github.com/shansiliu95/CKME.

2 METHODS

Notation for Sample-sets A sample refers to the collection of
cells from an individual’s blood or tissue, and is further represented
as a sample-set of many, n, cells: X = {x(i) };’:1, where x() ¢ RY
denotes the vector of d features (e.g. proteins or genes) measured
in cell i. A multi-sample dataset D contains multiple sample-sets
(across multiple, N, individuals and conditions): D = {X (k) }szl =
{{x(k’i)}?jl}szl, where X0 = {x(k”.)}?:k1 is the sample-set for
the k-th profiled biological sample. Sample-sets often have an as-
sociated labels of interest, y, such as their clinical phenotype or
conditions. In this case, our dataset consists of sample-set and label

tuples: D = {(X®), y(k))}fj:r
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Figure 2: The pipeline of CKME to process the dataset and train the classifier. The left rectangle shows a dataset with 3
sample-sets and each sample-set contains 5 features vectors in the original feature space R?. In the middle rectangle, we use
¢(-) to transform the data into random Fourier feature space R” and compute the mean embedding y x> Hx @,y for every
sample-set (eq. 4). Finally, in the right rectangle, we train a linear discriminative model f (eq. 6) upon the mean embeddings to

predict the label of each sample-set.

Problem Formulation Given a dataset of multiple sample-sets
as discussed above, we wish to build a discriminative model to
predict patient-level phenotypes or conditions based on the cel-
lular composition that is found within a sample-set, X — y. If
the model is human interpretable, it will help researchers make
sense of how the cell feature vectors in a sample-set influence the
predicted phenotype or conditions of a patient, which eventually
will lead to an improved understanding of biological phenomena
and enable better diagnoses and treatment for patients. Below we
propose a methodology to featurize and classify input sample-sets
in a way that is more transparent and human-understandable than
comparably performant models (e.g. [39]).

Kernel Mean Embedding To classify labels of interest, y, given an
input sample-set, X, we featurize X so that we may learn an estima-
tor over those features. However, unlike traditional data-analysis,
which featurizes a single vector instance x € R? with features
d(x) : R — RY, here we featurize a set of multiple vectors (one
vector for each cell in a sample-set) X = {x® e 9(X) € RY. Fea-
turizing a set presents a myriad of challenges since typical machine
learning approaches are constructed for statically-sized, ordered
inputs. In contrast, sets are of varying cardinalities and are un-
ordered. Hence, straight-forward approaches, such as concatenating
the sample-set elements into a single vector (xM, . x(M) ¢ grd
shall fail to provide mappings that do not depend on the order that
elements appear in. To respect the unordered property of sample-
sets one must carefully featurize X in a way that is permutation-
invariant. That is, the features ¢(X) should be unchanged regard-
less of what order that the elements of X are processed. Recently,
there have been multiple efforts to create methods based on neu-
ral networks to featurize sets in a permutation invariant manner
[19, 25, 30, 31, 40]. Although these approaches provide expressive,
non-linear, discriminative features, they are often opaque and diffi-
cult to understand in how they lead to their ultimate predictions.
In contrast, we propose an approach based on kernels and random
features that is more transparent and understandable whilst being
comparably accurate.

Kernel methods have achieved great success in many distinct ma-
chine learning tasks, including: classification [10], regression [37],
and dimensionality reduction [21]. They utilize a positive definite

kernel function k : R? x R? - R 2, which induces a reproducing
kernel Hilbert space (RKHS) (e.g. see [4] for further details). Kernels
have also been deployed for representing a distribution, p, with the
kernel mean embedding yy : R? — R:

Hp () = Bx~p[k(x,)]. (1)
Note that p,, is itself a function (see e.g. [23] for more details). For
“characteristic” kernels, k, such as the common radial-basis func-
tion (RBF) kernel k(x,x”) = exp(—%”x — x’||?), the kernel mean
embedding will be unique to its distribution; i.e., for characteristic
kernels, ||pp — pigl| = 0if and only if p = q. In general, the distance?
[lp — pgll induces a divergence, the maximum mean discrepancy
(MMD) [15], between distributions.
For our purposes, we propose to use kernel mean embeddings
to featurize sample-sets:

1¢ ;

() == 3 kD) = (), (2)
where p is the underlying distribution (of cell features) that X
was sampled from. That is, the set embedding px (eq. 2) also ap-
proximately embeds the underlying distribution of cells that the
sample-set was derived from. To produce a real-valued output from
the mean embedding, one would take the (RKHS) inner product
with a learned function f:

1% ; 1< ;
) =~ ;a«x( L fOy =~ ;f(x< DINC)

where the last term follows from the reproducing property of the
RKHS. For example, eq. 3 can be used to output the log-odds for a
target y given X: p(y = 1|X) = (1 + exp(—{ux, f)))~!. Using the
representer theorem [29] it can be shown that f may be learned
and represented using a “Gram” matrix of pairwise kernel evalua-
tions, k(x, x”). This, however, will be prohibitive in larger datasets.
Instead of working directly with a kernel k, we propose to leverage
random Fourier features for computational efficiency and simplicity.

Random Fourier Features We propose to use random Fourier
frequency features [27] to build our mean embedding [23]. For
a shift-invariant kernel (such as the RBF kernel), random Fourier

2Note that kernels may be defined over non-real domains, this is omitted for simplicity.
3In the RKHS norm.
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features provide a feature map ¢(x) € RP such that the dot product
in feature space approximates the kernel evaluation, ¢ (x)T ¢(x’) ~
k(x,x").Le. ¢(x) acts as an approximate primal space for the kernel
k (please see [24, 27, 33, 34] for further details). Using the dot
product of ¢(x), our mean embedding becomes:

p=5 2o eRD puxt) =5 Y oMo (@)
i=1 i=1

T
D/2

with random frequencies w; ~ p drawn once (and subsequently
held fixed) from a distribution p that depends on the kernel k. For
instance, for the RBF kernel, p is an iid multivariate independent
normal with mean 0 and variance that depends (inversely) on the
bandwidth of the kernel, y.

When computing the mean embedding in the ¢(-) feature space
(eq. 4), one may directly map ux to a real value with a dot product
with learned coefficient 8 € RP:

n T n
b = (1 > <o(x“>>) =0 )
i=1 i=1

That is, we may learn a linear model directly operating over the D
dimensional feature vectors y1x, which are composed of the average
random features found in a sample-set. Below we expound on how
to build a discriminative model based on px.

where ¢(x) = (sin(wlTx), ..., sin(wh . x), cos(wlTx) ..... cos(wg/zx))

Linear Classifier with Interpretable Scores With the mean

embedding of sample-sets {,uX(k) }fj:l Uyt € RP, we can build

a discriminative model f : RP — R to predict their labels. If we

choose f as a linear model (e.g. linear SVM), then f(px) can be
generally expressed as

_ T 1SN kT _ 155

fluxw) = pya B+b= E;w— —kz; :

s(ki)

(6)
where § € RP and b € R are the weight and the bias of the linear
model (see Fig.2 for illustration). From eq. 6, we can express the
output response of f as the mean of all s(kD) which we denote as
the score of the i-th cell in the k-th sample-set X (). This formu-
lation naturally allows to quantify and interpret the contribution
of every cell to the final prediction, which can potentially lead to
an improved understanding of biological phenomena and enable
better diagnoses and treatment for patients.

Kernel Herding When using random features (eq. 4), pxy may be
understood as the average of random features for cells found in a
sample-set. Predicted outputs based on px (eq. 6) may be further
interpreted as the average “score” of cells, s in the respective
sample-set. However, sample-sets may contain many (hundreds
of) thousands of cells, making it cumbersome to analyze and syn-
thesize the cell scores in a sample-set. To ease interpretability, we
propose to sub-select cells in the sample-set in a way that yields a
similar embedding to the original sample-set. That is, we wish to
find a subset X C X such that y % ® px, which implies that one
may make similar inferences using a smaller (easier to interpret)
subset of cells as with the original sample-set. Although a uniformly

Shan et al.

Algorithm 1 CoMPUTE THE MEAN EMBEDDING AFTER SUB-
SELECTION VIA KERNEL HERDING

Require: A sample-set X, number of cells kept after sub-selection
m, dimensionality of the random feature space D, kernel hy-
perparameter y.

1: # Compute Random Fourier Frequency Features

2. Compute W € RIZ by sampling its elements independently
wij ~ N(O, %)

3. for each x() € X do

4 <p(x(i)) — [sin(WTx®D), cos(WTx())] € RP, where [, ]
denotes concatenation.

: end for

. # Sub-selection with Kernel Herding

. Initialize j « 1, X0, 0) — %Z:’ﬂ (p(x(i)), 6 «— 0y

: while j < mdo

*

i* « argmax GT(p(x(i))

© ® N o G

1
100 XeXu {qo(x(i*))},
1m: 0« 0+6 —q)(x(i*))
122 jej+1
13: end while
14: # Compute the mean embedding of the Sub-selected
Sample-set
15 By = g Lk 2
16: return My

random subsample of X would provide a decent approximation y

for large enough cardinality (X)), it is actually a suboptimal way
of constructing an approximating subset [9]. Instead, we propose
to better construct synthesized subsets (especially for small cardi-
nalities) using kernel herding (KH) [9]. KH can provide a subset
of m points that approximates the mean embedding as well as m?
uniformly sub-sampled points. We expound on KH for producing
subsets of key predictive cells in Algorithm 1. We denote the dataset

with the sub-selected sets as D = {(X(k), y(k))}lk\]:l.

3 RESULTS
3.1 Datasets

We used publicly available, multi-sample-set flow and mass cytom-
etry (CyTOF) datasets. Each sample-set consists of several protein
markers measured across individual cells.

Preeclampsia. The preeclampsia CyTOF dataset profiles 11 women
with preeclampsia and 12 healthy women throughout their pregnan-
cies. Sample-sets corresponding to profiled samples from women
are publicly available*. Our experiments focused on uncovering
differences between healthy and preeclamptic women.

HVTIN. The HVTN (HIV Vaccine Trials Network) is a Flow Cy-
tometry dataset that profiled T-cells across 96 samples that were
each subjected to stimulation with either Gag or Env proteins >

“http://flowrepository.org/id/FR-FCM-ZYRQ
Note these are proteins meant to illicit functional responses in immune cell-types.
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Table 1: Classification accuracies on the three datasets. Stan-
dard deviations are computed from 5 independent runs.

‘ HVTIN ‘ Preeclampsia ‘ COVID-19
CytoDx [17] | 65.24 +1.90 56.17 £ 3.95 68.82 = 3.15
CellCNN [2] | 81.87 = 1.77 58.51 £3.25 75.93 £ 2.62
CytoSet [39] | 90.46 +2.20 | 62.85 +3.42 | 86.55 + 1.76

CKME | 90.68 + 1.69 | 63.52 +2.22 | 86.38 = 1.92

Table 2: Number of parameters (x10°) for different methods
on different datasets.

| HVIN | Preeclampsia | COVID-19

CytoDx [17] | 0.01 0.03 0.03

CellCNN [2] | 40.7 202 405

CytoSet [39] | 330.2 80.0 330.0
CKME | 20 | 2.0 | 20

[1]. The data are publicly available®. Our experiments focused on
uncovering differences between Gag and Env stimulated samples.

COVID-19. The COVID-19 dataset analyzes cytokine production
by PBMCs derived from COVID-19 patients. The dataset profiles
healthy patients, as well patients with moderate and severe covid
cases. Specifically, the dataset consists of samples from 49 total
individuals and is comprised of 6 healthy, 23 labeled intensive-care-
unit (ICU) with moderately severe COVID, and 20 Ward (non-ICU,
but covid-severe) labeled individuals with severe COVID cases,
respectively. The data are publicly available’. Our experiments
focused on uncovering differences between sample-sets from ICU
and Ward patients.

3.2 Baselines

We focus our comparison to current state-of-the-art gating-free
methods CytoDx [17], CellCNN [2], CytoSet [39], which look to
assuage the drawbacks of gating-based methods. Please refer to
Sec. 1 “Related Work” for a detailed discussion about these methods.

3.3 Implementation Details

Given the limited number of sample-sets, we used 5-fold cross-

validation to report the classification accuracies on the three datasets.

We tuned hyperparameters (e.g. the bandwidth parameter y) on the
validation set. On the HVTN and the Preeclampsia datasets, y was
set to 1 while on the COVID-19 dataset y was set to 8. The dimen-
sionality D was set to 2000 for all datasets. The linear classifier in
eq. 6 is implemented by a linear SVM. For all the methods, m = 200
cells are sub-selected for all datasets. The best hyperparameters of
CytoSet, CellCNN and CytoDx are selected based on the validation
performance. CytoSet, CellCNN, CytoDx was run using their public
implementation®.

3.4 Classification Accuracies

We report accuracies in Table 1 and numbers of model parame-
ters in Table 2. Although our foremost goal is to make a more

Chttp://flowrepository.org/id/FR-FCM-ZZZV
"http://flowrepository.org/id/FR-FCM-Z2KP

8CytoSet: https:/github.com/CompCy-lab/cytoset, CellCNN: http://eiriniar.github.io/
CellCnn/code.html, CytoDx: http://bioconductor.org/packages/CytoDx
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Figure 3: The influence of the number of cells selected by KH
and uniform sub-sampling, m, on the classification accuracy.
m =“inf” means no sub-selection.

Table 3: Ablation Studies.

|  HVIN | Preeclampsia | COVID-19
CKMEW/Unif‘ 80.26 + 1.53 ‘ 55.52 + 4.33 ‘ 84.28 + 1.74

Naive Mean 64.24 + 3.17 57.60 + 4.20 83.07 £ 2.29

CKME | 90.68 + 1.69 | 63.52 +2.22 | 86.38 + 1.92

transparent model, we find that CKME achieves comparable or
better accuracies than the state-of-the-art gating-free methods. The
strength of CKME’s performance is impressive when taking into
account that: 1) CKME contains on average two orders of magni-
tude fewer parameters than CytoSet; 2) unlike CytoSet, which has
an opaque, uninterpretable set-featurization and prediction model,
CKME uses a simple average score over cells; 3) comparably simple
models, such as CytoDX and CellCNN, have significantly poorer
accuracies than CKME. We believe that CKME’s success is due to
the expressive ability of random Fourier features, which provide
flexible non-linear mappings (to cell scores) over input cell features
without the need to learn additional featurization (e.g. from a neural
network). Moreover, the average of the random Fourier features,
the mean map embedding (Sec. 2 “Random Fourier Features”), is
descriptive of the overall distribution and composition of respective
sample-sets; since the discriminator is trained directly on the mean
map embeddings, CKME is able to classify based on the cell com-
position of sample-sets. Lastly, when a sample-set is sub-selected
with kernel herding (Sec. 2 “Kernel Herding”), the selected cells are
explicitly a salient, descriptive subset that distills the sample-set
whilst preserving overall characteristics.

3.5 Ablation Studies

Ablation Studies on Sub-sampling We first ablate the number
of sub-samples to study the impact of cell sub-selection on accuracy.
Fig. 3 shows the classification accuracies of CKME on the HVTN
dataset with different numbers of cells selected by Kernel Herding
(KH) and uniform sub-selection. We found that KH consistently
outperforms uniform sub-selection and the accuracy of KH quickly
saturates with as few as 50 cells sub-selected for every sample-set,
confirming the strong capacity of Kernel Herding to maintain the
distribution of the original sample-sets after sub-selection. More-
over, in Table 3, we show the performance of CKME with 200 cells
sub-selected by uniform sub-sampling (CKME w/ Unif). Compared
to sub-selection with Kernel Herding, we find that using uniform
sub-sampling leads to a worse result. This confirms that Kernel
Herding is more effective than uniform sub-sampling.
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Figure 4: Cluster scores computed by the two methods are positively correlated.

Ablation Studies on Naive Mean Embedding Here, we investi-
gate the performance of mean embeddings without using random
Fourier features. In this case, we still used Kernel Herding to sub-
select m cells but represented the summarized sample-set in the
original feature space as (k) = % Z;”zl #(kJ) e R9. We call this
approach “Naive Mean”. As shown in Table 3, “Naive Mean” is
worse than CKME, which indicates that simple summary statistics
(X(k), the mean of input features) does not suffice for classification;
in contrast, the random feature kernel mean embedding is able to
provide an expressive enough summary of sample-sets.

4 ANALYSIS
4.1 Semantic Analysis of Cell Scores

Recall that CKME can compute a score, s& (eq. 6), for every
cell feature vector £(59) in the KH sub-selected sample-set X,
Although this already enables our model to be more transparent,
we hope that these scores are semantically meaningful and con-
sistent with intuitive properties that one would want. We draw
an analogy to natural language processing word-embeddings [22],
where one constructs word-level featurizations (embeddings) that
one hopes are semantically meaningful. For example, the sum of
a group of consecutive words-embeddings in a sentence should
yield a sentence-embedding that maintains the characteristics of
that sentence as a whole. Here, we study the semantics of scores of
regions (groups) of cells induced by our cell scores.

We may assign scores to regions in two ways: 1) averaging scores
of cells in a nearby region ; 2) directly compute the score of the cen-
troid of the respective region. That is, for cells in a nearby region,
G= {x(i)};zl, their average score is s(G) = % >n qa(x(i))Tﬁ +b,
where ¢ : R? — RP are the Fourier features, and B, b are the pa-
rameters of the learned linear model. In contrast, one may directly
compute the score of the centroid of this region, v = % Z;’; 1 x(® ,
as s(v) = o(v)T B + b (note the abuse of notation on s). Both s(G)
and s(v) score a region. Analogously to word-embeddings we hope
that the score of cells (“words”) retains the semantics of the regions
(“sentences”). Below we study the semantic retention of cell scores
through a comparative analysis between s(G) and s(v), and a pre-
dictive analysis.

Regions We construct nearby regions with a k-means cluster
analysis of cells in each dataset. Le., we obtain C cluster centroids,
vi,..., Ve, and respective partitions G, = {x € Ulk\]:1 X&) e =
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Figure 5: The histogram of the clustering assignments on the
HVTN dataset. The scores of all clusters computed by linearly
transforming the corresponding centrioid embedding, s(v.),
is shown on the top of each corresponding bar.

10

argminy||v; — x||}. Below we set C = 10. The distribution of cluster
assignments among cells from positive and negative classes on
HVTN is shown in Fig. 5. One can see that clusters with a negative
score (e.g. Clusters 1 & 3) tend to be more heavily represented in
negative sample sets than in positive sample sets (and vice-versa
for positive clusters such as Cluster 9).

Comparative Analysis First, we analyze the semantic retention
of scores by studying the correlation between the direct scores of
cluster centroids s(v¢) = ¢(ve)T f+b, to the average score of cells in
respective clusters s(G.) = ﬁ YxeG, ¢(x)T B +b. Both s(v.) and
s(G¢) assign scores to the same region, however, due to the nonlin-
earity of Fourier features there is no guarantee that s(G) will match

. W\ T

s(v) as generally % Z;’zll (p(x(’))Tﬁ +b#¢ (% Zl'-':ll x(l)) p+b.
Notwithstanding, if cell scores are semantically meaningful, then
s(vc) and s(G¢) should relate to each other as they both score re-
gions. When observing the scatter plot of s(v.) vs. s(G.) across our
datasets (see Fig. 4), we see that both scores on regions are heavily
correlated; this shows that our scores are capable of semantically
retaining the characteristics of regions. The respective Pearson cor-
relation coefficients for COVID-19, HVTN, and Preeclampsia are
0.9785, 0.8234, and 0.7654.

Predictive Analysis Next, we further study the semantic retention
of cell scores with a predictive analysis. Traditionally [5, 26, 32] one
may predict a label y using a cluster analysis through a frequency-

featurization. E.g. with a linear model f(X(k)) = chzl ()

rL‘
e

o +a,

where is the proportion of cells in X k) assigned to cluster c,
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Table 4: Classification accuracies on the three datasets. Stan-
dard deviations are computed from 5 independent runs.

HVTIN ‘ Preeclampsia ‘ COVID-19

Linear 78.66 = 2.86 | 56.64 + 4.16 | 76.92 £ 2.05
Centroid CKME | 76.48 +2.62 | 60.57 £3.19 | 77.88 + 2.11
Average CKME | 74.51 £ 2.46 | 60.80 +3.03 | 76.17 + 2.13
Average MELD | 64.52 £ 0.92 | 59.64 +3.47 | 59.16 £ 2.72

and a, a are parameters of a learned linear model. In contrast to
learning a linear model, one may directly build a predictor using
scores for clusters. That is, it is intuitive to combine the scores of
clusters using a convex combination according to the frequency
of clusters in a sample-set: J‘;(X(k)) = ch=1 fc(k)sc, where s, is the
(pre-trained) score of the c-th region as described above, which
is acting as a linear coefficient in the predictor fS Le. if we have
scores for each cluster (coming from a pre-trained CKME model),
then weighing these scores according to their respective prevalence
in sample-sets should be predictive. Note that although this line
of reasoning is semantically intuitive, the CKME cell scores were
not trained to be used in this fashion, hence there is no guarantee
that fs will be predictive. We compare the accuracy of learning a
linear model over cluster frequency features (denoted as Linear),
f , to directly predicting using fixed cluster scores, f;, in Table 4.
We consider cluster scores coming directly from respective cen-
troids s¢ = s(v¢) = q)(vc)T,B + b as Centroid CKME, and cluster
scores coming from averages s = s(G¢) = ﬁ 2xeG, o(x)Tp+b
as Average CKME. As an additional baseline, we also considered
building a predictor through cell scores derived from MELD [6].
MELD is an alternative method that computes a score for every cell
by first estimating the probability density of each sample along a
kNN graph and then computes the relative likelihood of observing
a cell in one experimental condition relative to the rest. As MELD
cannot directly assign scores to post-hoc centroids, we utilize the
average MELD scores for prediction s, = ﬁ 2xeG. sMELD " e
noted as Average MELD. As shown in Table 4, predictors based
on both CKME cluster scores (Centroid CKME and Average CKME)
perform comparably to learning a linear model (Linear). Here we
see that these scores are semantically meaningful since they retain
intuitive predictive properties after manipulations. Again, this is
surprising given that our CKME cell scores were not trained for
this purpose (for prediction with cluster frequencies). This point is
further emphasized by the lesser predictive performance of scores
from MELD (Average MELD), which also seeks to provide semanti-
cally meaningful scores and was not trained for prediction in this
fashion.

4.2 Biological Validation

An important advantage of interpretable models is their capacity
to uncover scientific knowledge [7]. Therefore, we would like to
know whether the patterns automatically learned by CKME are
consistent with existing knowledge discovered independently via
manual analysis. To do so, we focus our analysis on a salient cluster
in the Preeclampsia dataset. More specifically, we used our scores
to prioritize cells that were different between control (healthy) and
preeclamptic women. Cells across sample-sets were clustered into
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Figure 6: We computed the frequency of (e.g. number of)
cells assigned to each of 10 clusters, or cell-populations. We
further computed the score of corresponding centroids (value
shown above each bar).

one of 10 clusters. We then computed the average score of the cells
assigned to each cluster. We first identified cell-populations associ-
ated with patient phenotype using CKME scores for each cluster, fol-
lowed by a finer per-cell analysis highlighting clinically-predictive
individual cells and lastly identifying their defining features.

4.2.1 Identifying Phenotype-Associated Cell-Populations. To link
particular clusters (e.g. cell-populations) to clinical phenotype, we
first prioritized cluster 2, based on its highly negative score accord-
ing to CKME (—8.74, see Fig. 6). A highly negative score implies that
it likely contained a large number of cells predicted as “control”. The
prominent protein markers expressed in cluster 2 were CD3, CD4,
CD45RA, and MAPKAPK?2 and indicated this is a cell-population of
naive CD4" T cells expressing MAPKAPK?2 (Fig. 7a). The negative
score of cluster 2 aligns with previous work, which showed that
women with preeclampsia exhibit a decrease in MAPKAPK2" naive
CD4* T-cells during the course of pregnancy, while healthy, women
exhibit an increase [16].

We first compared the distributions of frequencies of cells as-
signed to cluster 2 (i.e. this population of naive CD4" T cells ex-
pressing MAPKAPK?2) between sample-sets from preeclamptic and
healthy control women (Fig. 7¢). Consistent with our previous
observations, sample-sets from control women had a statistically
significantly higher proportion of cells assigned to cluster 2 in
comparison to preeclamptic women (see Fig. 7c¢ with a p-value of
p = 0.038 under a Wilcoxon Rank Sum Test). As a complementary
visualization, we constructed a k-nearest neighbor graph between
sample-sets according to the computed frequencies across all cell-
types (Fig. 7d-e). Here, each node represents a sample-set and an
edge represents sufficient similarity between a pair of sample-sets
according to the frequencies of cells across cell-populations. In
Fig. 7d, sample-sets (nodes) are colored by the probability of their
cells belonging to cluster 2. In comparison to sample-sets (nodes)
colored by their ground-truth labels (Fig. 7e), we observed that
control, healthy sample-sets such as the densely connected set of
blue nodes in the bottom of Fig. 7e tend to have high frequencies
of cells assigned to cluster 2.

4.2.2  tSNE Visualizations of Per-Cell CKME Scores in Patient Sam-
ples in the Preeclampsia CyTOF Dataset. Next, we perform a fine-
grained analysis of individual cell scores. In contrast to previous
approaches to identifying phenotype-associated cell-populations
on a population level [5, 32], CKME provides much finer resolu-
tion and instead is able to highlight individual cells (in a digestible,
synthesized KH subset) that are likely driving particular clinical
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Figure 7: Our predicted scores prioritized cluster 2 (CD4* naive T-cells) as cell-population likely to have frequency differences
between control and preeclamptic samples. (a) Cluster 2 was identified to correspond to a population of MAPKAPK2" CD4*
naive T-cells according to protein markers (denoted with arrows). (b) Gradients of CKME scores for cluster centroids v,
Vaelex)TP)] x=v,, where ¢(x) are random Fourier features and f§ are the learned model weights (eq. 5). (c) The distributions of
frequencies of cells assigned to cluster 2 in sample-sets from preeclamptic and control women. (d) A k-NN graph connecting
samples-sets (nodes) according to computed frequencies across cell-populations reveals a higher frequency of cells assigned to
cluster 2 in control samples-sets. (¢) The k-NN graph from (d), with each sample-set (node) colored by its ground-truth label.

Patient 1
Preeclampsia
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Preeclampsia

Patient 12
Control

Patient 4
Control

Figure 8: Visualizing computed per-cell CKME scores via tSNE. Cells in gray represent a general, patient-wide cellular landscape.
Cells colored red (blue) imply high (low) associations with the preeclampsia phenotype.

phenotypes. For example, by combining cells from samples col-
lected from healthy and preeclamptic women in the preeclampsia
CyTOF dataset, we closely examined the patterns in the computed
per-cell CKME scores and how they related to patient phenotypes.
Briefly, 200 cells were sub-selected with Kernel Herding from each
patient and the sub-selected cells from all patients are together pro-
jected into two dimensions with tSNE [35] to establish a general,
patient-wide cellular landscape (gray cells in Fig. 8). For each patient,
their sub-selected cells in the two-dimensional space are colored
by their computed CKME score (Fig. 8). In particular, a cell colored

red (blue) implies a high (low) association with the preeclampsia
phenotype. In Fig. 8, we visualized scores for patients sampled
from two preeclamptic patients (Patients 0 and 1) and two control
patients (Patients 12 and 4)°. Remarkably, in the two preeclamp-
tic women, we identified prominent subsets of red-colored nodes
(outlined in red rectangles), implying a strong association with
the preeclampsia phenotype. Based on the expression of pheno-
typic markers, these cells were identified as memory CD4+ T-cells
(based on the expression of CD3, CD4, and CD45RA). In contrast,

9These patients were from a testing set and were not used to learn the CKME scores.
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Figure 9: Distributions of features p38 for the cells inside the
rectangles of Fig. 8.

the memory CD4+ T-cells in the healthy patients exhibited low
scores (blue-colored cells outlined in blue rectangles), indicating
their negative association with the healthy phenotype. Taken to-
gether, the CKME scores highlighted the memory CD4+ T-cells as
a key predictive population (also shown in previous work [16]). To
further unravel the association between specialized immune cells
and the preeclamptic and control patient phenotypes according
to CKME scores, we investigated the prominent protein feature
co-expression patterns of the subset of cells outlined in the rect-
angles in Fig. 8. Comparing the two preeclamptic (patients 0 and
1) to the two control (patients 4 and 12) sample-sets (Fig. 8), we
quickly identified further nuanced cellular subsets associated with
the cells with high (red) and low (blue) scoring CKME scores. A
particular differentiating protein marker between the preeclamptic
and control patients in this memory CD4* T-cell population was
p38. The distribution of its expression in cells in the rectangular
regions is shown in Fig. 9 and reveals prominent differences be-
tween the preeclamptic and control patients. p38 is a functional
protein marker, indicating likely differences in signaling responses
between control and preeclamptic samples. Interestingly, previous
work [16] also independently showed that the expression of p38
in memory CD4* T-cells was an important feature for predicting
preeclampsia status.

4.2.3  Assessing Protein Features in Preeclamptic and Healthy Pa-
tients. Lastly, we investigated the protein feature coexpression pat-
terns of immune cell types from preeclamptic and healthy patients
to further determine whether CKME scores are consistent with
existing knowledge and could be used for hypothesis generation.
To identify the cell populations associated with extremely positive
or negative average CKME scores, we further annotated the clusters
according to the expression of known protein markers (Fig. 7a).
We found that the cell types that were strongly associated with
the preeclampsia phenotype (positive average CKME score) were
clusters 1 and 9, corresponding to classical monocytes and mem-
ory CD4" T cells (Table 5). In contrast, the cell types associated
with the control phenotype (negative average CKME score) were
clusters 2, 4, and 5 corresponding to naive CD4* T cells expressing
MAPKAPK2, naive CD4" T cells, and naive CD8" T cells (Table 5).
Notably, this is consistent with previous work that found that the
absolute monocyte count was significantly higher in preeclampsia
patients than in controls [36, 38]. Moreover as highlighted previ-
ously, an abundance of naive CD4* T cells (Fig. 7c-e) or memory
CD4* T cells (Fig. 8) are strong indicators of healthy or preeclampsia
status, respectively [8, 11].

We also provide an alternative investigation of important protein
markers in CKME scores. In particular, we study how minuscule
changes in the expression of the protein markers defining the cluster
(cell type) would increase the CKME score and thus have a stronger
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Table 5: Gradient analysis of each cell-population highlights
prominent features in clinically-associated cell-populations.

cell type
(expression)

cell type

ID/CKME score (gradient)

gradient

1/4.1031 classical monocytes 1 CD14 1 CD16 1 STAT1
9/11.8123 memory CD4* T cells 1CD4 | CD45RA 1 STAT3

2/-8.7411 naive CD4* MAPKAPK2* T cells T CD45RA | MAPKAPK2 T p38

4/-8.0372 naive CD4* T cells 1 Thet T GATA3
5/-4.5961 naive CD8" Tbet™ T cells T Thet T p38

nonclassical monocytes STAT1*
memory CD4" STAT3" T cells
naive CD4* p38* T cells

CD4* Thet* GATA3" T cells
naive CD8" Thet* p38* T cells

association with the clinical phenotype. To do so, we computed the
gradient of the CKME score with respect to the cluster centroid.
Le. we compute V. (¢(x)7 ) |x=v, for cluster centroids v, , where
¢(x) are random Fourier features and f are the learned model
weights (eq. 5). Doing so will uncover what small changes in protein
markers alter the CKME of cluster centers, which serves as one
proxy for feature importance.

The gradient heatmap (as shown in Fig. 7b) provides a value for
each feature within a centroid, where the corresponding direction
of change specifies whether an increase (positive) or decrease (neg-
ative) in protein expression would increase the association with the
preeclampsia phenotype. By prioritizing large magnitude changes
in particular features that define cell types, in addition to signal-
ing markers, we observed a shift in the expression of prioritized
proteins. When examining the gradient feature changes in cluster
1 (generally defined as classical monocytes by the expression of
CD14" CD167), we observed a decrease in CD14 and an increase
in CD16 expression (Fig. 7a-b, Table 5). This indicates that a tran-
sition to a nonclassical monocyte phenotype (CD14™¢d CD16™ed)
may cause a sample-set to appear more preeclamptic. Interestingly,
previous work has indicated that the subpopulation composition
of monocytes (classical, intermediate, nonclassical) significantly
varies between preeclamptic and control patients [36]. With respect
to cluster 2 (naive CD4* T cell population expressing MAPKAPK?2),
we observed a decrease in MAPKAPK?2 and an increase in p38 ex-
pression (Fig. 7a-b, Table 5). This further highlights that p38 may
be a good functional marker for distinguishing between healthy
and preeclamptic patients in both naive and memory CD4" T cells.

5 DISCUSSION AND CONCLUSION

In this work, we introduced CKME (Cell Kernel Mean Embedding)
as a method to link cellular heterogeneity in the immune system to
clinical or external variables of interest, while simultaneously facil-
itating biological interpretability. As high-throughput single-cell
immune profiling techniques are being readily applied in clinical
settings [13, 14, 16], and there are critical needs to 1) accurately
diagnose or predict a patient’s future clinical outcome and 2) to
explain the particular cell-types driving these predictions. Recent
bioinformatic approaches have uncovered [5, 17, 32] or learned
[2, 39] immunological features that can accurately predict a pa-
tient’s clinical outcome. Unfortunately, these existing methods must
often make a compromise between interpretability (e.g. simpler,
more transparent methods, such as [2, 17] and accuracy (e.g. more
complicated, opaque methods, such as [39]). Our experimental re-
sults show that CKME allows for the best of both worlds, yielding
state-of-the-art accuracies, with a simple, more transparent model.

We leveraged the transparency of CKME with a thorough analy-
sis. First, we showed that cell scores stemming from CKME retain
intuitive desirable properties for cell contributions. We studied the
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semantics of CKME cell scores in tasks that CKME was not explicitly
trained for and found that CKME cell scores were useful for those
scenarios. This suggests that, through simple supervised training,
CKME can be used to obtain insights in a myriad of analyses that
it was not trained for. Furthermore, cell-population, individual-
cell, and protein feature coexpression analyses yielded insights that
aligned with previous literature (e.g. [16]). This suggests that CKME
is a robust approach for uncovering scientific knowledge.

In summary, CKME enables a more comprehensive, automated
analysis and interpretation of multi-patient flow and mass cytome-
try datasets and will accelerate the understanding of how immuno-
logical dysregulation affects particular clinical phenotypes. Future
directions may include alternate synthesizing approaches to Kernel
Herding and variants that weigh cells differently. Furthermore, in
addition to the gradient-based analysis presented in Sec. 4.2.3, we
shall explore other methodologies for assessing feature importance
in CKME scores such as fitting local, sparse models [28].
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