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ABSTRACT

Time series imputation is a fundamental task in understanding se-
quential data. Existing methods either rely on recurrent models that
suffer heavily from error compounding or fail to exploit the hierar-
chical information of temporal data, both of which degrade perfor-
mance severely with sparsely observed data. In this work, we refor-
mulate time series as sets and propose a novel non-recurrent impu-
tation model, Non-Recurrent Time Series Imputation (NRTSI), that
does not impose any recurrent structures. Taking advantage of the
set formulation, we design a principled and efficient hierarchical im-
putation procedure. In addition, NRTSI can perform multiple-mode
stochastic imputation, directly handle irregularly-sampled time se-
ries, and handle data with partially observed dimensions. Empiri-
cally, we show that NRTSI achieves state-of-the-art performance on
multiple benchmarks.

Index Terms— Time Series, Non-recurrent Models, Set Mod-
eling, Transformer, Hierarchical Methods

1. INTRODUCTION

Missing values are common in real-world time series, e.g. trajecto-
ries often contain missing data due to unreliable sensors or object
occlusion. Recovering those missing values is useful for the down-
stream analysis of time series. Modern approaches impute missing
data in a data-driven fashion. For example, recurrent neural net-
works (RNNs) are applied in [1, 2, 3], methods built on Neural Or-
dinary Differential Equations (NODEs) [4] are proposed in [5, 6, 7],
and a family of models called Neural Process [8] that learns a dis-
tribution over functions based on the observed data could also be
leveraged. However, these existing works all have their own defi-
ciencies. Models that are built on RNNs or NODEs usually employ
a sequential imputation order, meaning that the imputed data xt at
timestep t is predicted based on the already imputed data xt−1 at the
previous timestamp t− 1. Since xt−1 inevitably contains errors, xt

is even more inaccurate and the errors will accumulate through time,
resulting in poor long-horizon imputations for time series that are
sparsely observed. This problem is known as error compounding in
the fields of time series analysis [9, 10] and reinforcement learning
[11]. Neural Process models [8] do not impose any recurrent struc-
tures. However, they impute all the missing data at once without
exploiting the hierarchical information of temporal data.

In this work, we propose NRTSI, a Non-Recurrent Time Series
Imputation model. One of our key insights is that when imputing
missing values in time series, the valuable information from the ob-
served data is what happened and when. This information is most
naturally represented as a set of (time, data) tuples. We propose a
novel imputation model to encode observed data as a set of (time,
data) tuples and impute the unobserved missing data. This is in stark
contrast to previous works (e.g. NAOMI [12]) where observed data
are embedded recurrently so that the temporal information (when

things happened) is unnecessarily entangled with the order of points
being processed. Our natural set representation not only disentan-
gles the data processing order from the temporal information, but
also enables us to design an hierarchical imputation strategy that is
efficient and principled. To the best of our knowledge, we are the
first to jointly leverage the set formulation of time series and hier-
archical imputation. Without the set formulation, we have to use
the inferior hierarchical algorithm in [12] due to the RNN sequential
constraints; without the hierarchical formulation, we find directly
using set formulation (e.g. [13, 8]) leads to much worse imputation
performance. Despite its simplicity, we find that NRTSI effectively
alleviates the problems of the existing methods in a single frame-
work. Our contributions are as follows: (1) We reinterpret time
series as a set of (time, data) tuples and propose a time series im-
putation approach NRTSI. (2) We propose an effective hierarchical
imputation strategy that takes advantage of the non-recurrent nature
of NRTSI and imputes data in a multiresolution fashion. (3) We
show that NRTSI can flexibly handle irregularly-sampled data, data
with partially observed time dimensions, and perform stochastic im-
putations for non-deterministic data. (4) We perform experiments on
a wide range of datasets to demonstrate state-of-the-art performance
of NRTSI. Codes: https://github.com/lupalab/NRTSI.

2. RELATED WORK

Time Series Imputation Deep generative models offer a flexible
framework for imputation. Several variants of RNNs [2, 3, 14] are
proposed to impute time series. Models based on NODEs [4], such
as LatentODE [5], ODE-RNN [6] and NeuralCDE [7], are also pro-
posed to impute irregularly-sampled data. Generative adversarial
networks are leveraged in [15, 16]. However, all of these works
are recurrent. NAOMI [12] performs time series imputation via a
non-recurrent imputation procedure that imputes from coarse to fine-
grained resolutions using a divide-and-conquer strategy. However,
NAOMI relies on RNNs to process observed time points, which lim-
its its application for irregularly-sampled time data and loses the op-
portunity to efficiently impute multiple time points in parallel.
Set Formulation of Time Series Similar to NRTSI, SeFT [13], at-
tentive neural process (ANP) [8] and Conditional Score-based Diffu-
sion Models (CSDI) [17] view a temporal sequence as an unordered
set. SeFT has shown that this set formulation is superior to several
strong recurrent baselines for time series classification. However,
only time series classification is considered in SeFT and [18], while
we propose a novel model that targets at time series imputation and
allows effective information exchanges between observed data and
missing data. Although ANP is applicable for the imputation task,
the information of what timesteps to impute (target input) is not uti-
lized when ANP uses self-attention to compute the representations
of observed data (context input/output pairs). Multi-Time Attention
Networks (mTAN) [19] learn an embedding of continuous time val-
ues and use an attention mechanism for interpolation and classifica-IC
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Fig. 1: Illustration of the imputation procedure. Given a time se-
ries with 2 observed values and 32 missing values, the imputation
procedure starts at the first row and ends at the bottom row. Blue,
green and red boxes respectively represent missing data, observed
data, and data to impute next. Numbers inside each box represent the
missing gap to the closest observed data and we assume the missing
gap of observed data to be 0. When deciding which data to impute
next, we always select the group of data with the largest missing gap.

tion. However, mTAN still contains recurrent modules (e.g. bidi-
renctional RNN). Besides, ANP, CSDI and mTAN do not exploit the
multiresolution information of sequences, which may impact their
imputation performance shown in our Experiments.

3. METHODS

Motivation To remedy the error compounding problem discussed
in Section 1, we reinterpret time series as a set of (time, data) tu-
ples. The set formulation allows us to conveniently develop a hierar-
chical scheme that reduces the number of imputation steps required
compared to the sequential scheme and thus effectively alleviates the
error compounding problem. It also directly enables imputing irreg-
ularly sampled time points, since the set can contain tuples for arbi-
trary time points. Note that since the time information is provided in
the (time, data) tuples, the sequential order of the time series is not
lost, and we can easily transform the set back to a sequence.
Formulation Throughout the paper, we denote a set as X =
{xi}Ni=1 with set elements xi ∈ X , where X represents the domain
of each set element. We denote a time series with N observations
as a set S = {si}Ni=1, where each observation si is a tuple (ti,xi),
where ti ∈ R+ denotes the observation time and xi ∈ Rd repre-
sents the observed data. Given an observed time series S, we aim
to impute the missing data based on S. We also organize data to
impute as a set Ŝ = {ŝj}Mj=1, where M is the number of missing
time points. Each set element ŝj is a tuple (t̂j ,∆t̂j), where t̂j ∈ R+

is a timestep to impute and ∆t̂j ∈ R+ denotes the missing gap (i.e.
the time interval length between t̂j and its closest observation time
in S). Formally, ∆t̂j is defined as ∆t̂j = min(ti,xi)∈S |ti − t̂j |.
Note that both t̂j and ti can be real-valued scalars rather than fixed
grid points, which enable NRTSI to handle irregularly-sampled
timesteps. The missing gap ∆t̂j is essential for our hierarchical
imputation procedure. As will be discussed in Sec 3, we select a
subset G ⊆ Ŝ to impute at each hierarchy level based on the missing
gap of the target time points. The imputation results are denoted
as H = {hj}|G|

j=1 with hj ∈ Rd, where H is predicted using an
imputation model f as H = f(G;S).
Hierarchical Imputation Generative models have benefited from
exploiting the hierarchical structure of data [20, 21]. Here, we pro-
pose to leverage a multi-resolution procedure for time series impu-
tation. Specifically, we divide the missing time points into several
hierarchy levels using their missing gaps (i.e. the closest distance to
an observed time point). Intuitively, missing data that are far from
the observed data are more difficult to impute. According to their
missing gaps, we can either impute from (nearby) small gap time
points to (faraway) large gap ones or vice versa. Empirically, we
find starting from (faraway) large missing gaps works better (as also
indicated by [12]). Given the imputed values at the current hierar-

Fig. 2: Imputation model.

chy level, the imputation at the higher hierarchy level will depend on
those values. Note that the hierarchical imputation inevitably intro-
duces some recurrent dependencies among missing time points, but
since the number of hierarchy levels is typically much smaller than
the number of missing time points, the error compounding problem
of NRTSI is not as severe as the sequential models. We illustrate the
imputation procedure in Fig 1 where at each hierarchy level NRTSI
can impute multiple missing points in parallel thanks to the set rep-
resentation of time series.
Imputation Model To reduce the imputation error at each level, we
utilize a separate imputation model f l

θ for each level l. The model
takes in a set of known time points S (either observed or previously
imputed at lower hierarchy levels) and imputes the values for a set
of target time points G. Theoretically, any set modeling method can
be seamlessly plugged in. Representative methods include DeepSets
[22], ExNODE [23], kernel methods [24, 25], and attention models
[26, 27, 28, 29]. In this work, we adopt the self-attention mecha-
nism in Transformers for its established strong capability of model-
ing long-range interactions.
Implementation At each hierarchy level l, a subset of missing time
points G are first selected based on their missing gaps ∆t̂j , then the
imputation model f l

θ imputes the missing values by H = f l
θ(G;S),

where S = {(ϕ(ti),xi)} and G = {ϕ(t̂j)}. Here ϕ : R → Rτ is
the time encoding function proposed in [13] to provide information
of time to Transformers. Note that ∆t̂j are ignored here since they
are only used to define the hierarchy levels. The elements in S and G
are transformed to tensors by concatenating the data x ∈ Rd and the
time encoding vector ϕ(t). Since the elements in G do not contain
x, we use d-dimensional zero vectors 0 ∈ Rd as placeholders. We
also add a binary scalar indicator to distinguish missing values and
observed values. That is,

si = (ϕ(ti),xi) ∈ S → si = [ϕ(ti),xi, 1] ∈ Rτ+d+1,

gj = ϕ(t̂j) ∈ G → gj = [ϕ(t̂j),0, 0] ∈ Rτ+d+1,
(1)

where [·] represents the concatenation operation. Now that the ele-
ments in S and G are all transformed to vectors with same dimen-
sionality, we can combine them into one set and pass it through the
imputation model f l

θ , i.e. H = f l
θ(S;G). Specifically, we imple-

ment f l
θ by the following steps:

S(1) ∪G(1) = fin(S ∪G)

S(2) ∪G(2) = fenc(S
(1) ∪G(1))

H = fout(G
(2)).

(2)

At the first step, a linear layer fin : Rτ+d+1 → Rdh maps the
input data to a high-dimensional space in a point by point fashion.
Then, a Transformer encoder fenc : Rdh → Rdh is used to model
the interactions between S(1) and G(1). The Transformer encoder
is composed of multiple alternating multi-head self-attention layers
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Table 1: Quantitative comparison on Billiards dataset. Statistics closer to the expert indicate better performance.
Models Linear KNN GRUI MaskGAN ANP mTAN CSDI SingleRes NAOMI NRTSI Expert

Sinuosity 1.121 ± 0 1.469 ± 0 1.859 ± 0 1.095 ± 0 1.364 ± 0.012 1.099 ± 0.010 1.231 ± 0.012 1.019 ± 0 1.006 ± 0 1.003 ± 0.002 1.000
step change (×10−3) 0.961 ± 0 24.59 ± 0 28.19 ± 0 15.35 ± 0 18.95 ± 2.82 14.59 ± 2.17 14.92 ± 2.05 9.290 ± 0 7.239 ± 0 5.621 ± 0.752 1.588

reflection to wall 0.247 ± 0 0.189 ± 0 0.225 ± 0 0.100 ± 0 0.134 ± 0.013 0.091 ± 0.010 0.089 ± 0.011 0.038 ± 0 0.023 ± 0 0.021 ± 0.002 0.018
MSE (×10−2) 19.00 ± 0 5.381 ± 0 20.57 ± 0 1.830 ± 0 3.762 ± 0.659 1.102 ± 0.316 1.115 ± 0.392 0.233 ± 0 0.067 ± 0 0.024 ± 0.003 0.000

(a) Observed (b) Gap 16 (c) Gap 8 (d) Gap 4 (e) Gap 2 (f) Gap 1 (g) NAOMI (h) NRTSI
Fig. 3: Imputation procedure on the Billiards dataset. The red points denote imputed data while the green points denote observed data. The
purple solid line is the ground-truth trajectory. The initial observed data is shown in (a), the imputed data with missing gaps 16 to 1 are shown
in (b)-(f). We omit the intermediate results at missing gaps 15, 7, 6, and 3 due to the limitation of space. In (g) and (h) we show the forward
prediction results of NAOMI and NRTSI.

and feedforward layers, allowing the elements in S(1) and G(1) to
effectively exchange information, i.e. G(1) can attend to S(1) to
gather the observed information and S(1) can be informed about
what timestamps to impute by attending to G(1). Finally, the impu-
tation results H are obtained via another linear layer fout : Rdh →
Rd on G(2). The architecture of the imputation model is illustrated
in Fig 2.
Training Objective We denote our imputation model with learnable
parameters θ at level l as f l

θ , which include the two linear layers and
the Transformer encoder. The optimization objective is

min
θ

EG∼p(G),S∼p(S),Y∼p(Y)

[
1

|G|

|G|∑
j=1

L(hj ,yj)

]
, (3)

where hj ∈ H = f l
θ(G;S) is an imputed data and yj ∈ Y denotes

the corresponding ground truth imputation target. For deterministic
datasets, we use Mean Square Error (MSE), i.e. L(hj ,yj) = ||hj −
yj ||22. For stochastic datasets (e.g. Football Player Trajectory in
Section 4), we minimize the negative log-likelihood of a Gaussian
distribution with diagonal covariance, i.e.

L(hj ,yj) = −logN (yj |µ(hj), diag(σ(hj))), (4)

where µ : Rd → Rd and σ : Rd → Rd are two linear mappings.
Irregularly-sampled Time Series For irregularly-sampled time se-
ries, missing time points tend to have unique missing gaps. There-
fore, imputing from large missing gaps to small missing gaps will
reduce to an autoregressive model, which could incur a high com-
putation demand. Therefore, we choose to impute time points with
similar missing gaps together.
Stochastic Time Series For stochastic datasets, our model can
impute multiple potential time series conditioned on the observed
points (see Fig 4). When sampling from the distribution (4), the
samples may be incongruous if we sample for all the elements in
G simultaneously. This is because the intermediate imputations
should affect the conditional distribution of later imputed steps. To
solve this problem, we impute data with large missing gaps one by
one. Based on the observation that missing data with small missing
gaps are almost deterministic, they can be imputed simultaneously
in parallel to avoid the high complexity of sampling sequentially.
Partially Observed Time Series In practice, a timestep may be only
partially observed, i.e. only a subset of features is missing at that
time. Our hierarchical imputation procedure can be easily extended
to this scenario. We modify the hierarchical algorithm to impute
the timesteps with the most missing dimensions first rather than the

Table 2: Traffic data MSE loss (×10−4).
Linear GRUI KNN MaskGAN ANP CSDI mTAN SingleRes NAOMI NRTSI

15.59 ± 0 15.24 ± 0 4.58 ± 0 6.02 ± 0 6.93 ± 1.91 5.89 ± 0.52 5.23 ± 0.44 4.51 ± 0 3.54 ± 0 3.22 ± 0.12

timesteps with the largest missing gap. We also modify the data rep-
resentation to si = [ϕ(ti),xi,mi] ∈ Rd+τ+d where mi ∈ {0, 1}d
is a binary mask indicating which dimensions are observed.

4. EXPERIMENTS

In our experiments, extensive hyperparameter searching is per-
formed for all the baselines. For fair comparisons, we use the same
training/validation/testing splits for all the methods. During train-
ing, we follow previous works [12, 14, 5] to randomly mask out a
subset of observed data and use the masked data as the ground truth
imputation target to train models. We use the same method to ran-
domly mask out data for all the methods. Experiments conducted in
this paper are repeated 5 times to compute the standard deviations.
Billiards Ball Trajectory Billiards dataset [30] contains regularly-
sampled trajectories of Billiards balls in a rectangular world. Each
trajectory is rolled out for 200 timesteps. We report MSE, Sinuos-
ity, step change and reflection to wall, as reported in [12] to assess
the realism of the imputed trajectories. We follow the setting in [12]
and compare to all baselines mentioned there. We also include ANP
[8], mTAN [19] and CSDI [17] as baselines. Results are reported in
Table 1, where Expert denotes the ground truth trajectories. Fol-
lowing [12], we randomly select 180 to 195 timesteps as missing for
each trajectory. From Table 1, we can see NRTSI reduces the L2 loss
by 64% compared to NAOMI and compares favorably to other base-
lines. In Fig 3, we visualize the hierarchical imputation procedure.
The final imputed trajectory not only aligns well with the ground
truth but also maintains a constant speed and straight lines between
collisions. In Fig 3 (g), (h), we respectively show the forward predic-
tion (predict the last 195 missing values based on the first 5 observed
values) results of NAOMI and NRTSI. The trajectories predicted by
NRTSI is more accurate and realistic compared to NAOMI, indicat-
ing the advantage of using a non-recurrent imputation model.
Traffic Time Series The PEMS-SF traffic [31] is a multivariate
dataset with 963 dimensions at each time point, which represents
the freeway occupancy rate from 963 sensors. The occupancy rate is
regularly-sampled every 10 minutes throughout the day, resulting in
the length of each time series being 144. Time series in this dataset is
non-stationary as statistical properties (e.g. mean of the occupancy
rate) are not constant over time. Similar to the Billiards experiment
above, we train and evaluate using MSE loss. We also compare to
the same set of baselines as the Billiards experiment. Following
[12], we generate masked sequences with 122 to 140 missing values
at random and repeat the testing set 100 times. The MSE losses are
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Table 3: MuJoCo dataset MSE loss (10−3) comparison.
Method 10% 20% 30% 50%

RNN GRU-D 19.68 ± 0 14.21 ± 0 11.34 ± 0 7.48 ± 0
ODE-RNN 16.47 ± 0 12.09 ± 0 9.86 ± 0 6.65 ± 0

NeuralCDE 13.52 ± 0.71 10.71 ± 0.57 8.35 ± 0.49 6.09 ± 0.41
Latent-ODE 3.60 ± 0 2.95 ± 0 3.00 ± 0 2.85 ± 0

ANP 7.65 ± 0.47 4.37 ± 0.38 3.21 ± 0.36 2.97 ± 0.33
CSDI 6.64 ± 0.35 3.79 ± 0.37 2.96 ± 0.31 2.62 ± 0.32
mTAN 5.90 ± 0.45 3.17 ± 0.36 2.51 ± 0.32 2.35 ± 0.28
NAOMI 4.42 ± 0.41 2.32 ± 0.35 1.46 ± 0.13 0.93 ± 0.11
NRTSI 4.06 ± 0.38 1.22 ± 0.11 0.63 ± 0.09 0.26 ± 0.02

imputation
ground truth
observation

(a) 5 timesteps observed

imputation
ground truth
observation

(b) 2 timesteps observed
Fig. 4: Imputed trajectories of football players.

reported in Table 2.
MuJoCo Physics Simulation MuJoCo is a physical simulation
dataset created by [5] using the “Hopper” model from the Deepmind
Control Suite [32]. Initial positions and velocities of the hopper are
randomly sampled such that the hopper rotates in the air and falls
on the ground. The dataset is 14-dimensional. MSE loss is used to
train and evaluate NRTSI. Baseline models include Latent-ODE [5],
ODE-RNN [5], GRU-D [2], NeuralCDE [7], ANP [8], mTAN [19],
CSDI [17] and NAOMI [12]. We report the MSEs with different
observation rates in Table 3. NRTSI compares favorably to all base-
lines with 20%, 30% and 50% observed data. When only 10% data
are observed, NRTSI is comparable to Latent-ODE and NAOMI.
Football Player Trajectory This dataset is from the NFL Big Data
Bowl 2021 [33], which contains the 2D trajectories of 6 offensive
players and is therefore 12-dimensional. During training and test-
ing, we treat all players in a trajectory equally and randomly per-
mute their orders. Every time series contain 50 regularly-sampled
time points. This dataset is stochastic since there could be many
possible trajectories based on the sparsely observed data. Therefore,
we follow [34] to use minMSE to evaluate the precision and the ratio
between avgMSE and minMSE to evaluate the diversity of multiple
imputed trajectories. Similar to [12], we also use average trajec-
tory length and step change to assess the quality of imputation. For
this dataset, we minimize the negative log-likelihood as in (4). For
each trajectory, we randomly select 40 to 49 timesteps as missing.
According to the discussion in Sec 3, data with missing gaps larger
than 4 are imputed one by one, while data with smaller missing gaps
are imputed in parallel. We compare to baselines such as Latent-
ODE, NAOMI, CSDI and ANP that can impute stochastically. As
shown in Table 4, NRTSI compares favorably to the baselines.
Irregularly-sampled Time Series We evaluate NRTSI on an
irregularly-sampled Billiards dataset. The only difference between
this dataset and the regularly-sampled Billiards dataset is that this
dataset is irregularly-sampled. We compare NRTSI with two rep-
resentative ODE-based approaches that can deal with irregularly-
sampled data, i.e. Latent-ODE and NeuralCDE. We also modify

Table 4: Quantitative comparison on Football Player Trajectory. A
larger avgMSE / minMSE indicate better diversity. Other statistics
closer to the expert indicate better performance.

Models Latent-ODE NAOMI CSDI ANP NRTSI Expert

step change (×10−3) 1.473±0.154 3.227±0.216 1.543±0.297 1.754±0.211 2.401±0.087 2.482
avg length 0.136±0.009 0.236±0.008 0.201±0.009 0.145±0.007 0.175±0.004 0.173

minMSE (×10−3) 19.53±1.44 4.079±0.487 8.142±1.005 6.652±0.881 1.908±0.101 0.000
avgMSE / minMSE 1.16±0.09 1.12±0.07 1.53±0.07 1.19±0.10 2.13± 0.08 —

Table 5: Irregularly-sampled Billiards data L2 loss (×10−2).
Latent-ODE NeuralCDE ANP mTAN CSDI NAOMI-∆t NRTSI

19.48±1.64 34.01±1.99 29.31 ±1.53 3.542±0.447 3.823±0.521 1.121±0.265 0.042±0.008

Table 6: The MSE comparison under different missing rates.

Dataset Method missing rate
20% 40% 60% 80%

Air

Latent-ODE .2954±.0109 .3291±.0118 .3569±.0124 .3762±.0127
NeuralCDE .3129±.0271 .3524±.0285 .4074±.0290 .4865±.0319

BRITS .2076 ±.0000 .2088 ±.0000 .2660 ±.0000 .3421 ±.0000
RDIS .1807±.0000 .1977±.0000 .2528±.0000 .3178±.0000
CSDI .1236±.0032 .1411±.0041 .1648±.0044 .2155±.0057
mTAN .1192±.0034 .1261±.0033 .1403±.0046 .1885±.0049

NRTSI .1155±.0035 .1250±.0038 .1378±.0039 .1790±.0041

Gas

Latent-ODE .1282±.0039 .1299±.0041 .1387±.0044 .1979±.0049
NeuralCDE .0773±.0024 .1044±.0028 .1538±.0045 .3011±.0097

BRITS .0226 ±.0000 .0279 ±.0000 .0406 ±.0000 .1595 ±.0000
RDIS .0226 ±.0000 .0251 ±.0000 .0321 ±.0000 .0837 ±.0000
CSDI .0297±.0009 .0273±.0009 .0352±.0011 .0591±.0017
mTAN .0215±.0007 .0259±.0008 .0497±.0012 .0886±.0016

NRTSI .0195±.0007 .0229±.0007 .0311±.0010 .0445±.0012

NAOMI to handle irregularly-sampled data, which we call NAOMI-
∆t. The time gap information between observations is provided
to the RNN update function of NAOMI-∆t. We also compare to
ANP, mTAN and CSDI which can handle irregularly-sampled data.
According to Table 5, NRTSI outperforms the baselines by a large
margin despite extensive hyperparameter search for these baselines.
To investigate the poor performance of Latent-ODE, NeuralCDE,
and ANP, we visualize their imputed trajectories with different num-
bers of observed data and find that when the observation is dense
(150 points observed), they all perform well. However, they have
difficulty predicting the correct trajectories when the observation
becomes sparse (e.g. with only 5 points observed). The excellent
performance of NRTSI and NAOMI-∆t indicates the benefits of the
multiresolution imputation procedure. Furthermore, the superior-
ity of NRTSI over NAOMI-∆t demonstrates the advantage of the
proposed set modeling approach.
Partially Observed Time Series The air quality dataset [35] and the
gas sensor dataset [36] are used to evaluate the partially observed
scenario. Data in these datasets are 11 and 19-dimensional respec-
tively. For both datasets, we follow RDIS [14] to select 48 consec-
utive timesteps to construct one regularly-sampled time series. We
compare NRTSI to RDIS, BRITS, Latent-ODE, NeuralCDE, CSDI
and mTAN. In Table 6, we report the MSEs by randomly masking
out some dimensions for all timesteps with different missing rates.
NRTSI outperforms the baselines on all of the missing rates.

5. CONCLUSION AND DISCUSSION

In this work, we introduce a novel time-series imputation approach
named NRTSI. NRTSI represents time series as a set and leverages
a Transformer-based architecture to impute the missing values. We
also propose a hierarchical imputation procedure where missing data
are imputed in the order of their missing gaps. NRTSI is broadly ap-
plicable to numerous applications, such as irregularly-sampled time
series, partially observed time series, and stochastic time series.
Extensive experiments demonstrate that NRTSI achieves state-of-
the-art performance on commonly used imputation benchmarks.
Throughout the experiments, we conduct an extensive hyperparam-
eter searching for the baselines to make sure they perform as well as
they can be. We find that the best configurations of these baselines
are not improved by increasing their model capacities. Thus, the
superiority of NRTSI is due to the novel architecture rather than
naively using more parameters.
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