Applied Mathematics and Computation 457 (2023) 128185

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Artificial neural network solver for time-dependent)
Fokker-Planck equations =

Yao Li*, Caleb Meredith

Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01002, USA

ARTICLE INFO ABSTRACT
Article history: Stochastic differential equations (SDEs) play a crucial role in various applications for mod-
Received 3 January 2023 eling systems that have either random perturbations or chaotic dynamics at faster time

Revised 27 April 2023

scales. The time evolution of the probability distribution of a stochastic differential equa-
Accepted 10 June 2023

tion is described by the Fokker-Planck equation, which is a second order parabolic partial
differential equation (PDE). Previous work combined artificial neural networks and Monte
Carlo data to solve stationary Fokker-Planck equations. This paper extends this approach
to time dependent Fokker-Planck equations. The main focus is on the investigation of al-
gorithms for training a neural network that has multi-scale loss functions. Additionally,
a new approach for collocation point sampling is proposed. A few 1D and 2D numerical
examples are demonstrated.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The Fokker-Planck equation plays an important role in various applications because it describes the time evolution of
a stochastic differential equation, which is widely used to study noise-perturbed systems or models. Since most Fokker—
Planck equations have no explicit solution, numerical Fokker-Planck solvers are necessary. Previously, the main difficulty of
solving a Fokker-Planck equation was that the long-term stability of the Fokker-Planck solution comes from the drift term
of the stochastic differential equation rather than its own boundary condition. The lack of a suitable boundary condition
on the numerical domain, coupled with high dimensionality, makes many traditional methods less effective. This problem
is partially solved by the first author’s series of papers [1,2], in which a data-driven Fokker-Planck solver is developed. An
artificial neural network version of the data-driven Fokker-Planck solver for stationary Fokker-Planck equations is proposed
and studied in Zhai et al. [3]. In this paper, we will both extend the work in Zhai et al. [3] to time-dependent Fokker-Planck
equations and further investigate the training methods of artificial neural networks for the neural network Fokker-Planck
solver. Many unaddressed problems regarding neural network training and training point sampling in Zhai et al. [3] are
studied in this paper.

The main idea of the data-driven solver is that the Fokker-Planck equation has a probabilistic representation, hence
its solution can be approximated by a Monte Carlo simulation. The data-driven solver only requires rough Monte Carlo
simulation data, which is highly noisy but can be obtained at low computational cost. One important observation is that

* Corresponding author.
E-mail addresses: yaoli@math.umass.edu (Y. Li), cmeredith@umass.edu (C. Meredith).

https://doi.org/10.1016/j.amc.2023.128185
0096-3003/© 2023 Elsevier Inc. All rights reserved.

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

the error term in the Monte Carlo simulation data is largely spatially uncorrelated. Therefore, the Monte Carlo simulation
data can be used to guide either a classical PDE solver or an artificial neural network. The data-driven Fokker-Planck solver
can be seen as a data regularization process: the noisy Monte Carlo data is regularized by the Fokker-Planck operator. The
goal of training is to make the solution fit the data and satisfy the Fokker-Planck equation (or its discretization). This idea
is similar to the physics-informed neural network (PINN) [4,5]. The main difference is that the values at collocation points
are from Monte Carlo sampling rather than initial or boundary conditions.

The loss function of the neural network Fokker-Planck solver has two parts: one comes from the Fokker-Planck operator,
denoted by L11°55. and the other comes from the Monte Carlo approximation of the Fokker-Planck solution, denoted by L‘2°55.
Due to the low accuracy of the Monte Carlo simulation, the neural loss has a multi-scale feature. In the early phase of
training, a randomly generated artificial neural network usually has large second-order derivatives, so we have L']OSS > L12°55.
Later in the training, L12OSS may become the dominant term due to errors in the Monte Carlo approximation. In [3], the
problem of optimizing two loss functions at different scales was solved by an algorithm called “Alternating Adam,” which
alternates two Adam optimizers [6] for the two loss functions. Interestingly, we later found that this approach does not
work well when the differential operator in the loss term is not fully elliptic, which includes time-dependent Fokker-Planck
equations and the stationary Fokker-Planck equation with a degenerate elliptic term.

Therefore, in this paper we use time-dependent Fokker-Planck equations as an example to carefully examine the meth-
ods of optimizing artificial neural networks and sampling training points. We test and compare several different methods.
Ultimately, we conclude that the most robust training method is the “Gradient-Based Momentum Weight” method, which
gradually changes the relative weight of the two loss functions based on the gradients of the two loss functions from the
previous epoch. We also test different methods of sampling training points. In addition to sampling training points pro-
portional to the probability density, as discussed in Zhai et al. [3], we find that it is beneficial to concentrate collocation
points (meaning training points with approximated probability density) at the initial distribution and a few selected time
“anchors.” We believe this is because the temporal variable is only regularized by the first-order derivative. As a result, the
neural network can easily learn the “shape” of the solution but needs more data at “anchors” to learn the correct scale of
the solution.

We remark that this paper is not a trivial generalization of Zhai et al. [3]. It carefully investigates the training methods of
the artificial neural network with multiple loss functions at different scales. It is known that PINNs have similar issues when
the data at collocation points come from experiments [7]. Many non-PDE neural network training methods also need to
balance training loss functions at different scales. In the examples that we have tested, the new training methods developed
in this paper have superior performance compared to both the “Alternative Adam” proposed in Zhai et al. [3] and the
idea of trainable weight proposed in Gu et al. [8], Liu and Wang [9], McClenny and Braga-Neto [10]. We expect these new
discoveries to be applied to other applications in the future.

The organization of this paper is as follows. Section 2 reviews stochastic differential equations, the Fokker-Planck equa-
tion, and the data-driven Fokker-Planck solver with both the discretization version and the neural network version. The
neural network solver is described in Section 3. Section 4 investigates a few different ideas for training a neural network
with multi-scale loss functions, which is one of the main focuses of this paper. The numerical examples are demonstrated
in Section 5. Section 6 presents some numerical examples to demonstrate the improved training results from a better sam-
pling method. Section 7 is the conclusion. The Appendix discusses the implementation of training methods, hyper-parameter
selections, training point selection, and further performance improvements in full detail.

2. Preliminary
2.1. Stochastic differential equations and the Fokker-Planck equation

Consider a stochastic differential equation (SDE) that is of the form

where f is a vector field in RY, o is a d x m matrix-valued function, and W; is the standard Wiener process in R™. The so-
lution of (1), denoted by X = {X; |t € R}, is a stochastic process on RY. Since the theme of this paper is about the numerical
method, throughout this paper we assume that f and o have sufficient regularities such that Eq. (1) admits a weak solution.
It is well known that X; is a continuous-time Markov process with an infinitesimal generator £ satisfying

n 1 n
Lh=— Zfihx,» + 5 Z Di.jhx,»,xj, (2)
i=1

ij=1

where D =070 is a d x d matrix-valued function.

The Fokker-Planck equation is a parabolic partial differential equation that describes the time evolution of the probability
density function of an SDE. More precisely, let u = u(t,x) be the probability density function of the solution X; to Eq. (1),
such that u(t,x) is the probability density at x € RY at time t. Let D =00 be the diffusion matrix. The Fokker-Planck

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

equation reads

n n
1
U =L'u= - Z(fiu)xi + 5 Z (Di,ju)x,v,xW (3)
i=1 i,j=1
where £* is the adjoint operator of the generator L.

In addition, if the SDE (1) admits an invariant probability measure 7, then the probability density function of v, denoted
by u(x), must satisfy the stationary Fokker-Planck equation, which is given by

L£*u =0 and / udx =1, (4)
Rd

2.2. Data-driven stationary Fokker-Planck equation solver

The Fokker-Planck solver studied in this paper is based on the data-driven solver for stationary Fokker-Planck equa-
tions described in Li [2]. As discussed in the introduction, when solving the Fokker-Planck equation, many traditional PDE
solvers have problems with unbounded domains and high dimensionality, while Monte Carlo simulations usually have ac-
curacy issues. This problem is partially solved by the data-driven hybrid method proposed in Dobson et al. [1], which
considers local Fokker-Planck equations on a subset of the entire domain without the knowledge of the boundary con-
dition. Instead, Monte-Carlo simulation is used to provide a reference solution that makes up for the lack of a boundary
condition.

Take the 2D stationary Fokker-Planck as an example. Let D = [ag, bg] x [ay, b1] be the numerical domain, which is further
split into an N x M grid of boxes. The numerical solution u € RN*M of the stationary Fokker-Planck equation is an approxi-
mation of the probability density of u at the center of each grid box. Now let A represent the discretization of the operator
£* on D with respect to all interior boxes. Then A is an (N —2)(M — 2) x (NM) matrix that provides the linear constraint
on u given by

Au=0 (5)

Next, we run a long trajectory of X; and count the sample points in each grid box, which gives an approximated invariant

probability density function denoted by v = {v; j}z:j”]]fj/’ The numerical solution u is then given by the optimization problem

(6)

miny ||u - ||
subject to Au =0

It is further proved in Dobson et al. [1] that the error in the reference solution v is significantly removed by the projection
in solving the optimization problem.

The data-driven solver for stationary Fokker-Planck equations has an artificial neural network version proposed in Zhai
et al. [3]. The idea is that the constrained optimization problem above can be replaced by a unconstrained optimization
problem

min ||Au|[3 + ||lu—v||3 (7)

that preserves the key numerical properties of the original data-driven solver in Li [2]. This motivates us to represent u by an
artificial neural network i(x;, @), where 0 are the trainable parameters. Since artificial neural networks are differentiable, we
can further replace the discretized operator A by the differential operator £*. Instead of the whole domain, the optimization
problem is solved with respect to a set of training points.
Mimicking the unconstrained optimization problem in (7), a loss function L(8) is given by
1 ¥ 1 ¥
L(0) = WZ(ZJ*LT(XI-J’))ZJr WZ(ﬁO’jﬁ) —-v(y;))? (8)
i=1 Jj=1
where 6 represents the neural network parameters that can be updated during training, @i(x,) is the neural network ap-
proximation for the probability density at x for specific parameters 6, x;,y; e R" forie1,2,..., NXand jel,2,...,N' are
training points without Monte Carlo approximation and collocation points with Monte Carlo approximation respectively, and
v(y;) are the Monte Carlo approximations for the probability density at those collocation points.

3. Neural network solver for time-dependent Fokker-Planck equations

The general idea behind our artificial neural network solver for time-dependent Fokker-Planck equations largely resem-
bles the stationary case, although the implementation and training details have many differences.
Consider the initial value problem

U =L'U=— Z?:] (fiu)x,- + % Zgj=1 (Di,ju)x,-,x]
u(0,x) = ug(x)

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Similarly to the stationary case, the Fokker-Planck equation is defined on an unbounded domain and the only boundary
condition is that u(0,x) vanishes at infinity. Let [0,T] x D c R x R be the numerical domain that we are interested in.
Let ii(t,x, @) be the neural network approximation of the time dependent solution to the Fokker-Planck Eq. (9). Let X :=
{(t;,x) €[0,T]xD|iel,2,..., NX} be training points without Monte Carlo approximation, 2) := {(tj.y)) €0, T]xD| je
1,2,....1",I¥ +1,...,N'} be collocation points from the initial distribution for j <I' and collocation points with Monte
Carlo approximation for j > I, and v(tj,y;) for jel,2,..., NY be up(yj) if j < I¥ and Monte Carlo approximation of the
probability density at collocation point (¢, y;) for j > IY. Similarly to (8), we attempt to minimize the optimization function

1 & N 1 &
L) = % DL, %, 0) — e (t5, ;. 0)) + T > ity 35, 0) — v(t;. y5))? =LY + LY (10)
i=1 j=1

Below we will address three key components of the neural network Fokker-Planck solver, i.e., the selection of collocation
points, the Monte Carlo simulation that provides a reference solution, and the training of the artificial neural network.

3.1. Sampling collocation points

To train the neural network, we must first sample points for X and 2. The standard method is based on the sampling
method used in Dobson et al. [1], and can be used for sampling both X and %). It consists of two parts, sampling uniformly
across the entire numerical domain, and sampling proportional to the probability density function. Due to the fact that the
density tends to concentrate near global attractors of the deterministic part of the SDE, solely uniform sampling may not
be sufficient, as too many points may be chosen from low density regions. On the other hand, solely sampling according
to the probability density leaves scarce points in low density regions, which can cause notable error. This can be resolved
by sampling o% of the points uniformly and (1 —)% of the points proportional to density for some « < [0, 1]. Sampling
collocation points according to the probability density of the solution means to sample them from trajectories of equation
(1). Those samples are collected at discrete times because Eq. (1) is computed numerically at multiples of a fixed step
size 0 < 8t « 1. Since &t is very small (0.001 in our simulations), it would not affect the result because very few, if any,
collocation points may have the same time component. To facilitate Monte Carlo approximation of the probability density
function, when sampling 2) we move the collocation point (t;,y;) to the center of the grid h-box it is in if i > IY. However,
when uniformly sampling for X there is no need to constrain the points to a grid, so the uniformly sampled points are left
unaltered. The pseudocode for this algorithm can be seen below in Algorithm 1. For simplicity, assume that D = [aq, b1] x
[ay, by] x ... x [ag4, by] has been split into a grid of boxes with side length h, and [0, T| has been discretized with time steps
of ét.

An alternative of Algorithm 1 is the “anchor method”, which is introduced in this paper and explored in more detail
in Section 6. The main motivation of the anchor method is that the spatial and temporal variables of the solution are
regularized by the first and second order derivatives respectively. The second order derivative is more sensitive against
changes of network parameters. Hence the spatial variables are much easier to train. Since the solution of the Fokker-
Planck equation is uniquely determined by its initial value, training leOSS with just points from the initial distribution and
Lll055 with the standard set of points (See Section 3.3 for details) can usually determine the shape of the solution. However,
the scale of the solution is usually less accurate the further away from the initial distribution it is calculated because the
temporal variable is less regularized. Zhai et al. [3] demonstrated that the inclusion of the Fokker-Planck operator in the loss
function allowed comparable training to be done with a far sparser set of collocation points, indicating that it should also
be possible to use a sparse set of collocation points with respect to the time domain to “anchor” the scale of the solution.
However, we found that it is sufficient to concentrate these points at as few as one time step. To update Algorithm 1 for
use with the anchor sampling method with one set of anchoring points, we simply let t; =T for i > IY (6t = T) and set IY
close to NY when sampling collocation points in 9. The rest is identical to what is described in Algorithm 1.

3.2. Monte Carlo simulation

In order to run the neural network Fokker-Planck solver, an estimate of the probability density at the collocation points
(tj.y;) is essential. Generally speaking the number of collocation points does not need to be very large. They only provide
the role of “anchoring” the solution at the right place, while L'lOSS drives the neural network approximation to the solution
of the Fokker-Planck equation.

The first step is to sample the initial distribution ug(x), which is done here using a rejection-based method. More pre-
cisely, a random variable y € R? is sampled uniformly from the numerical domain D. Next, an auxiliary random variable p
is uniformly sampled from (0, sup,p to(x)). The sample y is accepted if and only if p < ug(y). The process is repeated until
an initial value y is accepted. We note that if the initial distribution is highly concentrated, other methods such as an MCMC
sampler can also be used.

Next, we use Monte Carlo simulation to approximate the probability densities at the collocation points away from the
initial distribution. Trajectories of Eq. (1) are approximated by the Euler-Maruyama scheme. The time interval [0, T] is di-
vided into L steps with §t =T/L. Let t; = jét for j€O,...,L and X; =Xq;. The initial value X, is given by y sampled from

4

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Algorithm 1 Training and collocation point sampling.

Input: « < [0, 1], §t, N or NY and I'.
Output: X or 9.

1: if X then

2: M:NX,tO:O,h:]

3: else

4 M=Ntyg=6ti;=0I"+1

5: Sample I points from initial distribution for V; through Vy.
6: end if

7. fori=i; toi=M do

8: Uniformly sample ¢; € [0, 1]

9: if ¢; < o then

10: Uniformly sample (t;, r;) € [0, T] x D with r; = (r1,...,14)
11: if X then

12: Set V; = (¢, 1;)

13: else

14: Set t; to closest lower multiple of §t with t; = Lg—‘tJSt.
15: Set r; to the center of the h-box it belongs to with r; = L%Jh +a;+ %
16: Set V; = (¢, 1;)

17: end if

18: else

19: Uniformly sample t; € [to, T + §t]

20: Set t; to closest lower multiple of §t with t; = L%Jcﬁt.

21: Run a numerical trajectory of the SDE to time ¢;.

22: Let r,»:Xti:(ﬁ,...,rd)

23: if x then

24: Set Vl = (l’i, l',‘)

25: else

26: Set r; to the center of the h-box it belongs to with r; = Lrj;ujjh +a;+ 1
27: Set V; = (t;, ;)

28: end if

29: end if
30: end for

31: Return V

the initial distribution. Then we have
X; =Xj_1 + f(X;_1)8t + 0 (Xj_1)v/StN™(0, 1), (11)

where N™(0, 1) is a vector in R™ with each entry an i.i.d. standard normal random variable.

The approximate probability density function can be obtained from repeatedly computing and recording numerical tra-
jectories. As mentioned previously, all ¢; of the collocation points (t;,y;) are integer multiples of the time step &t i.e,
t; = jot. After simulating one numerical trajectory of the Euler-Maruyama scheme, we check whether the trajectory hits the
h-box centering at each collocation point y; at time t;, or whether [|X; — ¥l < h/2. This process is repeated M times. If
we assume that the h-box centering at collocation point y; is hit by realizations of X; a total of M; times at time t;, the
probability density u(t;,y;) is approximated by v(t;,y;) :Mjh‘dM‘1. If the dimension of D is high (4 or larger), one can
use kernel density estimation to improve the Monte Carlo estimation of u(t;, y;). But in general M does not have to be very
large, as the neural network solver can tolerate large spatially uncorrelated noise [3]. In practice M = 10° to 108 is sufficient
for most 2D and 3D problems.

The pseudocode for the Monte Carlo simulation algorithm can be seen below in Algorithm 2. The Monte Carlo probability
density approximation at can be found at G[| & |][[X5 JI[[¥25%2]]...[[¥4%¢]] for t > 8t, since this algorithm does not
approximate the probability density at the initial distribution where it is already explicitly known. If the dimension of D is
too high to use a grid G, the grid-free sampling method described in Zhai et al. [3] can also be used.

3.3. Neural network training

The last and the most important step is to train the artificial neural network to minimize the loss function L(#) given
in (10). Throughout this paper, we use an artificial neural network with 6 feed forward hidden layers. The neural network
architecture for the neural network has node counts given by (d + 1) — 16 — 256 — 256 — 256 — 16 — 4 — 1, where d is

5

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Algorithm 2 Monte Carlo probability density estimation.
Input: uy(y), 8t, M, S = SUpx.p Ug(X).
Output: Grid of Monte Carlo estimations G.

1: fork=1to k=M do

2: Uniformly sample y e D and p € (0, s)

3: while u(y) > p do

4 Regenerate y € D and p € (0, s)

5: end while

6: Let Xo =y

7: fori=1toi=Ldo

8: X =Xi_1 + f(X;_1)8t + 0 (X;_1)VSEA™(0, 1)
9: Denote X; = (x1,...,Xg)

10: Compute grid position of point with %; = ij;ajj
11: if X; € D then
12: Glil[%1[%;]. .. [Rq] +=M~1h~d
13: end if

14: end for

15: end for

16: Return G

the dimension of the phase space. Each layer uses a sigmoid activation function, and the Adam Optimizer is used for the
optimization.
The loss function (10) is a combination of two loss functions

Ll]oss(o) — [\}7 Z{V; (,C*ﬂ(tj,xi, 0) - at(tjvxi’ 0))2
L12055(0) — % Z?’ll (fl(t',y]‘, 0) — v(tj’yJ))z

Depending on the accuracy of Monte Carlo sampler, the loss values for these two loss functions may have very different
scales. Generally speaking LllOSS is large in the beginning of the training because a randomly given neural network usually has
large second order derivatives. However, leOSS could be larger than L11°SS at the end of training if the Monte Carlo approxima-
tion v is not very accurate. This property of the loss functions needs to be carefully addressed. If one simply runs the Adam
optimizer for the sum LllOSS +L'2°SS, or the weighted sum L'{’SS -|—¢9L'2"SS for some 6, then one loss function can dominate the
other and yield unsatisfactory results. To resolve these issues, training algorithms needed to be developed to evenly balance
the two loss functions. This is one of the main focuses of this paper, and will be addressed in detail in the next section.

(12)

4. Training algorithms

This section provides an overview of a number of training algorithms introduced or applied in this paper, as well as the
motivation for their use. Hyper-parameter selection and performance sensitivity to those values will be discussed in the
Appendix.

4.1. Alternating adam

The first training algorithm we will consider is Alternating Adam, the training algorithm used for the stationary case in
Zhai et al. [3]. It will later serve as a performance benchmark.

The idea behind this algorithm is that the Adam optimizer is scaling free. Therefore, to account for the difference in scale
between the loss functions, they can be separated and alternatively trained on their own mini-batches until both of their
loss values are low enough. Doing so avoids the need to find a way to balance the two loss functions given that they are
being trained in isolation. Alternating Adam is a relatively simple algorithm to implement and served well for the stationary
case where the loss function dynamics were less extreme. The pseudocode for Alternating Adam can be seen below in
Algorithm 3.

Algorithm 3 Alternating adam.

1: Initialize a neural network representation i(t, x, @) with undetermined parameters 6.
: Pick a mini-batch in X, calculate the mean gradient of Lll"SS, and use the mean gradient to update 6.
: Pick a mini-batch in ®, calculate the mean gradient of LIZOSS, and use the mean gradient to update 6.
: repeat steps 2 and 3 until LllOSS and L12°SS are both small enough.
: Return @ and ii(t, x, @) for epoch with minimum L°ss

u A W N

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185
4.2. Fixed weight

The next training algorithm is the Fixed Weight algorithm, which is a widely used simple algorithm. It uses a fixed
weighted sum of L'{’SS and L12OSS as the overall loss function, which is given by, for 6 € [0, 1],

L'o5(0) = (1 — 0)L15(0) + 0L (9) (13)

Using a fixed weight works well if the ratio of the gradients of the two loss functions remains approximately the same,
since 6 can be adjusted so that the loss functions are equally influential on the overall loss. Additionally, combining the
two loss functions resolves a drawback of Alternating Adam, which is that moving along the negative gradient of one loss
function can potentially result in the increase of the other loss function. However, as will be seen later, the optimal 6 value
is a problem specific hyper-parameter that can be difficult to choose.

4.3. Trainable weight

Due to the difficulty of selecting an optimal & for the Fixed Weight algorithm, the remaining algorithms explore ways to
adjust € during training based on the performance from prior epochs. If we assume that the ratio of the two loss functions
remains approximately fixed, we would like our algorithms to make 6 converge to the optimal 6. However, given that this
assumption is rarely satisfied, we instead wish to update 0 after each epoch so that it will do a better job of balancing the
two loss functions for the next epoch.

Our first attempt to do this used the loss function (13), and adjusted 6 in the direction of the positive gradient agz)ss
after each epoch. However, this approach did not look stable, as & would simply converge to either 0 or 1, since this would
allow the neural network to solely minimize one loss function at the cost of the other. In particular, since (t;,x;,0) =0
satisfies the Fokker-Planck equation, the neural network had a tendency to move to 6 = 0 and produce a zero solution.

An alternative idea developed in McClenny and Braga-Neto [10] is to move 6 following the negative gradient BLalgss for
the loss function L1°5(0) = L155() + 6L1°55(6). Since 6 can only increase this approach works like a constraint optimization
problem: L11°55(0) is optimized under the constraint that L12°55(0) is already near its optimal value. Theoretically 6 should
converge to a certain saddle point. We refer to Liu and Wang [9] for the mathematical details.

4.4. Loss-based momentum weight

If LllOSS and le"ss remain roughly proportional over all epochs, then the optimal 6 for the Fixed Weight algorithm would

be the loss ratio
Lloss
5% 1 [(14)
1 2

However, in practice LllOSS and le"SS have significant fluctuations, at the very least because of the randomly sampled mini-
batches. As a result, simply updating 6 to (14) after each mini-batch or each epoch would seriously interrupt the training.
In particular, we observed that LllOSS drops rapidly in the beginning of training because an artificial neural network with
random weights usually has very large second order derivatives. If 6 is immediately updated according to the loss ratio, a
rapid increase of the weight of L'1OSS may cause the training process to completely focus on optimizing L'{’SS. This negative
feedback loop will eventually reach the trivial solution u(t,x) = 0 of the Fokker-Planck equation. Instead, we must employ
some method to slow the updates of 0 far enough that this feedback loop is avoided. To do this we applied the idea of
“momentum” to stabilize the change of 6 during each update.

The Loss-Based Momentum Weight algorithm can be implemented in a few different ways. An initial training period
of T epochs of Fixed Weight training are used to stabilize the results, as well as determine a better value of 6 than what
was used for those T epochs. After that, 6 is set equal to a weighted average of itself and some function of the loss ratios
from the previous epochs. At the (T + 1)th epoch, the initial value r could be chosen as either the average of the loss ratios
from the first T epochs, or the loss ratio at the Tth epoch. The weight « is a hyper-parameter that must be determined
before training. See the Appendix for the discussion of suitable values of «. Algorithm 4 shows the pseudo code for the
implementation in more detail. In practice we mainly use the Tth epoch loss ratio as the initial value of r because it has
less training failures. Without further specification, Algorithm 4 takes approach (1) in line 8.

Alternatively, one can further stabilize the fluctuation of € by taking a historic average of (14) throughout all training
epochs, and update 6 based on this average weight ratio. Since each additional loss ratio will have a progressively smaller
impact on the average loss ratio, this will make the 6 updates smaller over time and further prevent the negative feedback
loop. The training may take longer but the value of 6 is more likely to converge. We call this the “alternative implementa-
tion” of the loss-based momentum weight method when comparing algorithms. The pseudo code for this can be seen below
in Algorithm 5.

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Algorithm 4 Loss-based momentum weight method.

: Initialize a neural network representation #(t, x, @) with undetermined parameters 6.
Set 6 =6,
Setr=0
: for epochs =0 to epochs =T -1 do
Train using L' = (1 —)15 + GLloss
Record LI and Liss
: end for
loss loss

L L
: Set r = (1) the most recent L?)SSITZOSS or (2) the average of W over epochs 0 to T — 1

9: for epochs =T to epochs =N -1 do
10: Set 0 =ab + (1 —a)r
1: Train using LI = (1 — 0)LI05 4 LIS

® N2 DA WN =

loss

. — 1
12: Setr= P

13: end for
14: Return @ and ii(t, x, @) for epoch with minimum L!oss

Algorithm 5 Alternative implementation of the loss-based momentum weight.
1: Initialize a neural network representation i(t, x, #) with undetermined parameters 6.

2: Set 0 =6,

3: Setr=0

4: for epochs =0 to epochs =T —1 do

50 Train using L' = (1 —)L + OLIss
Ll]oss

6: Setr=r+ fE

7: end for
8: for epochs =T to epochs =N -1 do
: Set =af+(1-0a)L

epochs
. : 7 loss _ loss loss
10: Train using L'%% = (1 — 0)L7* + 0L
Ll]oss
11: Setr=r+ fr
12: end for

13: Return @ and ii(t, x, @) for epoch with minimum L!oss

4.5. Gradient-based momentum weight

The Gradient-Based Momentum Weight algorithm is motivated by the Loss-Based Momentum Weight implementations,
but does not use loss ratios for the 8 updates. Instead, it uses ||6F]1;SS | |2 and ||$ | |2 in place of LllOSS and L12OSS for the Loss-
Based Momentum Weight method. This completely circumvents the feedback problem with Loss-Based Momentum Weight
training, as the norms of the loss gradients do not behave the same way as the loss values themselves. In addition, since
the Monte Carlo data v(t;,y;) has some error, the value of L12OSS with respect to the theoretical solution is nonzero. Hence a
Loss-Based Momentum Weight algorithm may cause the optimization to focus too much on L‘Z"SS in the late phase of training
and cause over fitting. This problem is also avoided by updating the weight according to the gradient.

Because it is very computationally expensive to compute the norms of the gradients for each mini batch, at the end
of each epoch an additional batch with 500 randomly selected collocation points is run, and the gradients are computed
based off of this batch. We find that averaging the ratio over the first five Fixed Weight training epochs does not make a
meaningful difference. Hence throughout this paper, the initial value is chosen to be the ratio of gradients after the 5th
epoch. The pseudo code for the Gradient-Based Momentum Weight algorithm can be seen below in Algorithm 6.

5. Numerical example with performance analysis
5.1. 1D Example

The first numerical example studies the solution to the simple stochastic differential equation

dXe = (=X2 + Xp)dt + dW; (15)

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Algorithm 6 Gradient-based momentum weight.

1: Initialize a neural network representation i(t, x, #) with undetermined parameters 6.
2: Set 8 =06,

3: Seta,b,r=0

4: for epochs =0 to epochs =T — 1 do

5 Train using L'°%% = (1 — 6)L1ss + GLloss

gL loss grloss
;10 pand b= H 6929 Hz

6: Compute a = H based on an additional batch with 500 collocation points, and set r = -%-
7: end for
8: for epochs =T to epochs =N -1 do
9: Set 0 =ab + (1 —a)r

10: Train using ['°% = (1 — 6)L15s 4+ GLloss

glloss alloss .)) .
11: Compute a = ||=}||, and b=||=-||, based on an additional batch with 500 collocation points, and set r = ;%

12: end for
13: Return @ and ii(t, x, @) for epoch with minimum L5

0.40
Normal 035 Multimodal 07
0.30 0 06
0.25 0.1 05
0.20 02 0.4
0.15 0.3 03
: 010 04 02
25 15 05 0.5 15 25 25 -15 : : : :
0.05 01
0.00 0.0

Fig. 1. 1D median neural network solutions from 31 samples for the normal and multimodal initial distribution using the Gradient-Based Momentum
Weight method.

on the numerical domain [0, 0.4] x [—-2.5, 2.5], which is discretized into a 200 by 500 grid. Two different initial distributions
are considered. The first is the standard normal distribution with probability density function

1 71)(2
Ug(x) = me , (16)

and the second one is a multimodal distribution given by

Up(x) = %(1 + cos(5x))e ¥ (17)

where Z = (1 + exp (—25/2))~/2m is the normalizer that makes ug a probability density function. Generally speaking, it is
more difficult to train a neural network to accurately fit a multimodal distribution.

The details of algorithm implementation and parameter selection of Eq. (15) are discussed in the Appendix. In summary,
the size of collocation points X and training points 2 are 1500 and 20,000 respectively. The hyper-parameters selected
were 6 = 0.975 for Fixed Weight, 6, = 0 for Trainable Weight, 6, = 0.99 for Loss-Based Momentum Weight with o = 0.4
for the regular implementation and « = 0.6 for the alternative implementation, and 6y = 0.99 with o = 0.4 for Gradient-
Based Momentum Weight, all with T = 5. Each of these training algorithm configurations were trained 31 times for both
initial distributions, the normal distribution and the multimodal distribution, so as to demonstrate the average performance
and the variation in performance for simple and complex initial distributions. The training time is around 10-11 min. The
neural network solutions from the Gradient-Based Momentum Weight method are shown in Fig. 1. On the left is the median
solution for the normal initial distribution, and on the right is the median solution for the multimodal initial distribution.
Due to the relatively low L2 error in comparison to the 2D SDE discussed later, the solutions look very similar across training
methods, so only these solutions are provided as an example.

5.1.1. Analysis of 1D performance results

In Fig. 2, we demonstrate the distribution of error from all six training algorithms. Here the ground truth solution comes
from the Crank-Nicolson PDE solver on a mesh that is further refined by 4 times. It is well known that the Crank-Nicolson
scheme is a second order scheme [11]. Its theoretical magnitude of error on the refined mesh is around 10->.

Y. Li and C. Meredith

Fig. 2. 1D SDE median L? error heat maps for each training algorithm from 31 samples. Left column: normal initial distribution. Right column: multimodal

initial distribution.

Normal

Alternating Adam

L? error: 0.01404065

Fixed Weight

Trainable Weight

0

0.1
02

03

04
-25

15

05 05 15

L? error: 0.01809364

Loss-Based Momentum
0

02

03

04
25

-15 -05 05 15 25

L? error: 0.00483018

Loss-Based Alt

0

0.1
02

03

04
25

-15

-05 05 15 25

L? error: 0.00503189

Gradient-Based Momentum

0 -—
0.1
02
03
0.4
25 =15 -05 05 15 25

L? error: 0.00451446

0.004
0.002
0
0.1 0.000
0.2 -0.002
¢
03 -0.004
04
25 15 05 05 15 25 B _0.006
L? error: 0.00521727 _0.008

25

-0.01

-0.02

-0.03

0.006

0.004

0.002

0.006

0.004

0.002

0.000

-0.002

-0.004

-0.006

0.008

0.006

0.004

0.002

-0.002

-0.004

Applied Mathematics and Computation 457 (2023) 128185

Multimodal

Alternating Adam

0.1

0.2

03 6

04 —

25 15 05 05 15

L? error: 0.01821812
Fixed Weight

0 4
0.1
02
03
04

-25 -15 -05 05 15 25

L2 error: 0.00744043

Trainable Weight

15 25

L? error: 0.00834266

Loss-Based Momentum

-
15

05

=15 05

L? error: 0.00925145

Loss-Based Alt
0 ,
‘S
02

03

0.4
25

-15 -05 05 15 25

L? error: 0.00733757

Gradient-Based Momentum
0
02

03

0.4
25

-15 -0.5 05 15 25

L2 error: 0.00895999

25

-0.02

0.020
0.015
0.010
0.005
0.000
-0.005
-0.010

0.010
0.005
0.000
-0.005
-0.010

-0.015

0.01
0.00
-0.01
-0.02
-0.03
0.020
0.015
0010
0.005
0.000
-0.005
-0.010
-0.015
003
0.02
0.01
0.00
-0.01
-0.02

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Normal Initial Distribution Multimodal Initial Distribution
B Mean M Median STDEV M Min M Mean M Median STDEV M Min

0.025 0025
0.020 0020

0015 0015

LA2 Error
L2 Error

0010 0010

0.005 0005

0.000 0000
Alternating Adam Fixed Weight ‘Trainable Weight Loss-Based Loss-Based Gradient-Based Alternating Adam Fixed Weight Trainable Weight Loss-Based Loss-Based Gradient-Based
Momentum Weight Momentum Weight Momentum Weight Momentum Weight Momentum Weight Momentum Weight
Alternative Alterative

Fig. 3. [? error for the normal and multimodal initial distributions. Because of the 6 failed trainings for Loss-Based Momentum Weight, the mean and
standard deviation of their results extend above the graph to 0.04531 and 0.08335 respectively.

Normal and Multimodal Initial Distributions without Outliers and Failures

M Mean [Median STDEV M Min
0.0100
0.0075
5 0.0050
i
o
5
0.0025
0.0000
Normal Fixed Weight ~ Normal Loss-Based Normal Loss-Based Normal Gradient-Based i Fixed Weight i Trainable i Loss-Based i Loss-Based dient-Based
Momentum Weight Momentum Weight Momentum Weight Weight Momentum Weight Momentum Weight Momentum Weight
Alternative Alternative

Fig. 4. 1 error results for both initial distributions without outliers or training failures.

The L2 error of the six neural network train algorithms with the two initial distributions is demonstrated in Fig. 3. It
is easy to see that the performance for the simpler N'(0, 1) initial distribution is better than for the multimodal initial
distribution in Eq. (17). This is expected because training a neural network to fit a multimodal function is more difficult.
Additionally, this confirms our expectation that hyper-parameters selected for a more complicated multimodal initial distri-
bution can be used directly on simpler initial distributions. As seen in Fig. 2, the error for the multimodal initial distribution
is mostly concentrated at the initial distribution, most notably near x = —2.34 and x = 2.34 where the smallest peaks are
typically only about half the height they should be. While there is also error concentration there for Loss-Based Momentum
Weight method for the normal initial distribution, this is far less of a problem given that the distribution should be close to
zero there, and the error itself is much lower. The more noticeable problem for the Loss-based Momentum Weight method
is the maximum possible errors for the multimodal initial distribution. This is because a portion of trainings (6 out of 31)
made 0 converge towards zero. Given how visually apparent these errors are, it is worth considering the performance for
these methods once we discard those training results, as will be shown in Fig. 4.

Alternating Adam is a clear outlier for both initial distributions as was to be expected based on previous results. The
Trainable Weight algorithm does not work well either. Interestingly, it gives higher error for the standard normal initial
distribution. This likely means that the optimal Fixed Weight 6 value is actually lower for the normal initial distribution
because the L; error is proportionately smaller, so revisiting Fixed Weight for the normal distribution could possibly produce
better results.

For better comparison, in Fig. 4 we only demonstrate the error statistics of training algorithms with good results. This
means that Alternative Adam for both initial distribution and Trainable Weight for the standard normal distribution are
removed, as well as the 6 failed training results in the Loss-Based Trainable Weight method.

When taking both sets of results into account, combine with the hyper-parameter selection and implementation details
discussed in the Appendix, we can see that the Alternating Adam method is the easiest to implement but has much higher
error than for the stationary Fokker-Planck equation reported in Zhai et al. [3]. The Fixed Weight method works the best
but to the best of our knowledge the weight has to be manually selected for each problem, because it is very difficult to
estimate the scales of L‘lOSS and L‘2°SS without training the neural network. This makes the Fixed Weight method less practical.
The Trainable Weight method is supported by some literature theoretically but has no performance advantage in our testing,
especially considering the relatively high error for the case of the normal initial distribution. The momentum algorithms are
very comparable to, or better than, the Fixed Weight method. The Loss-Based Momentum method converges quickly but
has some stability issues, meaning one must manually check whether 6 converges to either 0 or 1. The alternative imple-
mentation has better stability, but the hyper-parameter selection process shows that it could have a slower convergence
to the optimal 6. (See Fig. 18 in Appendix.) The Gradient-Based Momentum Weight is a better balance of stability, easier
implementation, and performance.

1

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Alternating Adam Fixed Weight Trainable Weight Loss-Based Loss-Based Alt Gradient-Based

2 2 2 s 2 2

0 2

020

020 1

[0

1

2 2

2 2 1 0 1 2

2

2 Bl [1 2 2 1 0 1 2 2 1 0 1 2 2 Rl 0 1 2 - 0 1 2

Error Heat Map Error Heat Map Error Heat Map Error Heat Map Error Heat Map

2 o010 2 o 2 2
o010

o015

o020
o010

0015 1
-

0005 0015

0005

1 - \ o015 1 0005 1
0000 :
o~ a0
0 oos 0 000 ° °
* 0005
0000
\ 0010
4 0 1

1 - s 1 o001

005, S

0015
2 2 0015 2
2 A 0 1 2 2 A o 1 2 2

2
2 2 1 0 1 2 2 A 0 1 2

0.03562863 0.02055943 0.02638705 0.02129105 0.0223651 0.02171417

Fig. 5. 2D SDE median L2 error results at t = 0.2 for each training algorithm from 55 samples across training point counts. First row: neural network
output at t = 0.2. Second row: error heat maps, with respective L? error listed below.

5.2. 2D example

5.2.1. 2D SDE overview and performance results
Next, we apply our training methods to the same “ring example” studied in Zhai et al. [3]. The SDE is given by

{dxf = (—4X: (X2 + Y2 = 1) + Yo)dt + dW¥

18
dY: = (—4Y:(X? + Y2 — 1) — Xp)dt + dW} 18)

where WY and WSV are independent one dimensional Wiener processes. It is easy to check that Eq. (18) admits an explicit
stationary distribution exp(—2(x2 +y% — 1)2)/K with K== /7] exp (—2t2)dt, which concentrates at the unit circle. For this
example the initial distribution used is the multivariate normal distribution exp (—=0.5(x2 + y%))/(27). Because the vector
field symmetrically pushes the density to the unit circle, the solution converges to the stationary distribution quickly. We
selected this equation as a numerical example because if a neural network can accurately approximate a fast-changing ring-
shaped solution, we expect it can also approximate Fokker-Planck solutions in simpler shapes.

The numerical domain used was [0, 0.2] x [-2, 2] x [-2, 2] discretized into a 200 by 200 by 200 grid. The same neural
network architecture as the 1D example was used, although the Fixed Weight training algorithm was slightly modified to
have 6 = 0.984, which was selected based on the loss ratios from some preliminary trainings. The training data used here is
also the same as the 1D case, however the average run time is around 17-18 min instead of the 10-11 min from before. Each
training algorithm configuration was trained 11 times at 5 different collocation point counts, namely 1083, 1875, 3468, 7500,
and 13,467, to see whether more points would be required for this higher dimensional SDE. The same ratios between NX, NY,
and I¥ were maintained. Additionally, 2) was again 20,000 points sampled uniformly. The training results are demonstrated
in Fig. 5. The first row shows the training result at t = 0.2 for the six different neural network training algorithms. The
second row is the difference between neural network solution and the solution from Crank-Nicolson scheme. For each
algorithm, the solution demonstrated in Fig. 5 is the solution with median error among the 55 training results combined
across the different training point counts, as the performance difference between them is negligible.

Comparisons here are for the slice of the distribution when t = 0.2, since by then the distribution is close to stationary
and can be compared to the results from Zhai et al. [3]. Additionally, performance at t = 0.2 is a decent indicator of overall
performance, and slices at multiple times will be addressed in the next subsection.

5.2.2. Analysis of 2D performance results

Fig. 6 shows the median (top left) and mean (top right) L2 error for each algorithm and training point count. It is easy
to see that Trainable Weight is a clear outlier here and therefore should not be used. The Loss-Based Momentum Weight
method also has 4 failed trainings (out of 55). After removing the Trainable Weight method and the failed training results
from the Loss-based Momentum Weight method, a more refined result is demonstrated at the bottom of Fig. 6. It is easy to
see that Alternating Adam has clearly higher error, while the rest of the algorithms have rather similar performance.

Fig. 6 also demonstrates that there is no apparent difference between training with more than 1083 points, which is
close to the maximum of 1024 training points used for this 2D ring example in Zhai et al. [3]. Because of this, the results
are combined across training point counts in Fig. 7 to increase the sample size. On the left we have the L2 error values,
and on the right we have those values normalized by the benchmark Alternating Adam method. Similarly to the 1D case,
Fixed Weight has the lowest mean, median and standard deviation, but requires manual selection of 6. The Gradient-Based
Momentum Weight is better than all implementations of the Loss-Based Momentum Weight method in almost all categories.
Considering all factors across the 1D and 2D cases, the Gradient-Based Momentum Weight has the best performance and
will be used in our future studies, including the next section.

12

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

2D Median L*2 Error Per Training Point Count 2D Mean L"2 Error Per Training Point Count
W 1083 W 1875 3468 W 7500 W 13467 W 1083 W 1875 3468 W 7500 [13467
05 0.25
04 0.20
03 0.15
B g
& &
o 0.2 o 0.10
0.1 0.05
0.0 0.00
Alternating Adam Fixed Weight Trainable Weight Loss-Based Loss-Based Gradient-Based Alternating Adam Fixed Weight Trainable Weight Loss-Based Loss-Based Gradient-Based
Momentum Weight ~ Momentum Weight ~ Momentum Weight Momentum Weight Momentum Weight ~ Momentum Weight
Alternative Alternative
2D Median L"2 Error Per Training Point Count Without Trainable Weight or Failures 2D Mean L”2 Error Per Training Point Count Without Trainable Weight or Failures
W 1083 W 1875 3468 WM 7500 WM 13467 W 1083 W 1875 3468 W 7500 [13467
0.04 0.06

L2 Error
L%2 Error

Alternating Adam Fixed Weight Loss-Based lomerum _ Lose-ased Womentum Gradient-Based Alternating Adam Fixed Weight Loss-Based Momerium Lose-Based Momentum Gradient-Based
Weight Weight Alternative Momentum Weight Weight Weight Alternative Momentum Weight

Fig. 6. Median and Mean L? error for 2D example for all training algorithms using 1083, 1875, 3468, 7500 and 13,467 training points. Top: including
Trainable Weight method and the Loss-Based Momentum Weight training failures. Bottom: not including them.

2D Combined Results Across Training Point Counts without Trainable Weight or Failures 2D Combined Results Across Training Point Counts without Trainable Weight or Failures

M Mean W Median W STOEV M Min Normalized by Alternating Adam

B Mean M Median STDEV M Min

R

Alternating Adam Fixed Weight Loss-Based Mumenlum Loss-Based Momentum Gradient-Based Fixed Weight Loss-Based Momentum Weigh _ Loss-Based Momentum Weight Gradent Eased Momentum
Weight Alternative Momentum Weight

L"2 Error

Portion of Corresponding Alternating Adam
°
5

Fig. 7. Median, Mean, Standard Deviation and Minimum L2 error for 2D example for all training algorithms except Trainable Weight, using combined
training point counts without Loss-Based Momentum Weight training failures. Left: pure values. Right: normalized by Alternating Adam.

6. Comparison with anchor sampling method

The idea behind Anchor Sampling is that theoretically the solution to the Fokker-Planck equation is uniquely determined
by the initial distribution, if it is given. Therefore, we should not treat the time variable simply as “yet another dimension”.
Instead, we find that it is beneficial to concentrate collocation points at the initial time and the terminal time. To see this,
in the 2D ring example, we let 2 consist of just 40,000 points from the initial distribution and X the standard set of points
uniformly sampled throughout the entire numerical domain. The result is shown in Fig. 8, in which the error heat maps
show the Crank-Nicolson solution minus the neural network solution. We can see that although the L2 error increases with
the time, the general shape of the distribution is largely preserved. Fig. 9 shows equivalent results for the 1D SDE using
3000 points from the initial distribution as our 9 for both the multimodal and normal initial distributions. Like for the
2D case, the general shape is preserved, but the scale of the solution drifts upward as time progresses. However, this drift
is much slower for the normal initial distribution, which is easier for the neural network to represent and produces much
faster convergence to the stationary distribution. These results indicate that producing an accurate solution only requires
correcting the scales away from the initial distribution, who’s rate of drift depends on the initial distribution. This motivates
us to add a relatively small amount of collocation point at t = 0.2 that serves as an “anchor” for the scale.

6.1. 2D ring SDE anchor sampling numerical results
In the next numerical result, the set of collocation points) is 40,000 collocation points from the initial distribution
and 1156 points at t = 0.2 (see Fig. 20 in the Appendix.) We tested two different ways of sampling collocation points at

t =0.2: one uses the standard sampling method described in Algorithm 1, the other selects points from a sparser grid

13

Y. Li and C. Meredith

t=0

Crank-Nicolson

2
| 014
-1 012
010
0 008
006
1 004
002

2

2 4 0 1 2

Initial Only NN

Iou

-2

00010

00005

00000

-0.0005

-0.0010

0.00202686

2

2

t = 0.02

Crank-Nicolson

A1 0 1 2

Initial Only NN

2 -1 0 1 2

Heat Map

00050

00025

00000

00025

00050

00075

00100

00125

0.01306822

t = 0.04

Crank-Nicolson
2

2 = 0 1 2

Initial Only NN

2

2 -1 0 1 2

Error Heat Map
2
0.000
o005

-0.010

-0015

-0.020

- 0 1

0.03338162

Applied Mathematics and Computation 457 (2023) 128185

t = 0.06

Crank-Nicolson
2

2 -1 0 1 2

Initial Only NN

2

016
014

2 -1 0 1 2

Error Heat Map
2 0000

-0.005

-0.010

-0.015

-0.020

-0025

-0.030

2 -1 0 1 2

0.04959678

2

-2

2

t=0.2
Crank-Nicolson
025
I 020
o1s

010

005

000

2

Initial Only NN

I 030
025

020

A 0 1 2

015

010

005

2 A 0 1 2

Error Heat Map

-0.02
-004
-0.06

-008

-1 [1 2

0.13966058

Fig. 8. Crank-Nicolson solution, neural network solution and error heat maps at t =0, 0.02, 0.04, 0.06, and 0.2 after training the neural network with
40,000 points from the initial distribution as 9). L? error is listed below the respective heat map.

t=0 t=0.2 t=04

035

0.40 4

035 030

0301 0.25

0.25 4 020

0.20 4
0.15

0.15
0.10

0.10 4
0.05

0.05

0.00 1 0.00

-3 -2 -1) § 2 3 -3 -2 -1) b § 3 -3 -2 -1 o 1 2 3
t=0

0.8 0.40
035

0.7 0354
0.30

0.6 0.30 4
0.25

05 0.25 4

0.4 00 0.20 9

03 015 015

02 0.10 0104

01 0.05 0.05

00 = - 0.00 0.00

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 3 -3 -2 -1 0 1 2 3

Fig. 9. Crank-Nicolson solution (blue) and neural network solution (orange) at t =0, t = 0.2 and t = 0.4 for the 1D SDE with normal initial distribution
(top) and multimodal initial distribution (bottom) after training the neural network with 3000 points from the initial distribution as 2. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Standard Method vs Anchor Sampling (Grid Selection and Uniform + Density)

0.05 == Standard Method 120 Epoch Median
== Standard Method 120 Epoch Mean
0.04 Grid Selection 120 Epoch Median

== Grid Selection 120 Epoch Mean

0.03 == Uniform + Density 240 Epoch Median
Uniform + Density 240 Epoch Mean

LA2 Error

0.02
—_—
0.01 /’
0.00
0.00 0.05 0.10 0.15 0.20

t

Fig. 10. Median and Mean L? error comparison between Standard method for 120 epochs, Anchor sampling with Grid Selection for 120 epochs, and Anchor
sampling with 0.5 Uniform Sampling 0.5 Proportional to Density Sampling for 240 epochs. 11 sample trainings used for each configuration.

laid over the grid at t = 0.2, in this case 33 by 33 squares. The numerical result, error heat maps, and median [? er-
ror at t =0,0.02,0.04,0.06,0.2 are demonstrated in Fig. 11, and the median and mean L? error across all time slices is
shown in Fig. 10. In Fig. 11, the two aforementioned sampling methods are called “U+D” and “Grid” respectively, because
Algorithm 1 samples, in this case, half the collocation points uniformly and the other half from the probability density.
The Standard Method and Grid based Anchor Sampling method were trained for 120 epochs, whereas the U+D based An-
chor Sampling method was trained for 240 epochs. This is because when the Grid based and U+D based Anchor Sampling
methods were both trained at 120 and 240 epochs, one slightly outperformed the other both times. We can see that there
are diminished returns from doubling the training epochs, and that even at 120 epochs the Anchor Sampling method re-
duced the median L2 error by about one half away from the initial distribution and the terminal time. Due to the high
concentration of points at the initial distribution for the Anchor Sampling method, the L2 error there is considerably lower.
Additionally, Fig. 10 shows that while the median L? error for the Standard Method approaches that of the Anchor Sampling
method near t = 0.2, the mean L2 error does not. This confirms the advantage of the Anchor Sampling method. It is benefi-
cial to use most collocation points to approximate the initial distribution, and a relative small number collocation points at
the terminal time to “anchor” the solution.

6.2. 1D multimodal SDE anchor sampling numerical results

For the 1D SDE studied previously, only the multimodal initial distribution was tested with Anchor Sampling, as the
solution from the normal initial distribution is already satisfactory. In our computation, we sampled 2500 points from the
initial distribution and 500 points at the terminal time (t = 0.4). Since there were only 500 grid points at the terminal
time, all of them were used and therefore no true sampling was required. The neural network was trained for 240 epochs.
The result is demonstrated in Fig. 12. The ground truth is still obtained from Crank-Nicolson scheme with a refined mesh.
However, inspecting the range of error values, one can see that the Anchor sampling is clearly outperforming the Standard
method, especially when it comes to the initial distribution. The peak of the local maximums of the initial probability
density function near —2.34 and 2.34 is about 0.0432. Even in the best case scenario, the Standard method is missing about
half the density there, and often misses it entirely, leaving the density at zero. In comparison, Anchor sampling is able to
almost entirely eliminate that error.

6.3. Longer time frames

So far we have only considered Anchor Sampling for relatively short time frames, 0.2 and 0.4 for the 2D and 1D SDEs
respectively. To extend this technique to longer time frames, multiple slices, or Anchors, are required. This is because there
is a short effective range of influence before and after each Anchor where the scale of the distributions are correct. Addi-
tionally, the shape of the distribution starts to deform in addition to the scale drifting for sufficiently large distances from
any training points. Because of this, if just the initial distribution and terminal Anchor are used for a long time frame, error
will be low near the start and end but rise considerably in between, away from the influence of either set of points.

To demonstrate the use of multiple Anchors, the 2D ring example was trained using Anchors at t=
0.2,0.4,0.6,0.8, and 1.0, along with the entire initial distribution. The L? error results from this can be seen below in Fig. 13.
We can see that during the time interval [0, 0.2], having multiple “anchors” does not change the result very much. In addi-
tion, when multiple anchors are used, the L2 error is largely consistent throughout the entire time domain.

One additional question is that how the positions of “anchors” should be selected. We believe this should be related to
the spectral gap of the infinitesimal generator of Eq. (1). Larger spectral gap means faster convergence to the steady-state.

15

Y. Li and C. Meredith

Standard

2

°

»

o~

t=0

Method
016
014

012

010

0010
0005
0000
-0.005
-0.010

0015

-1 0 1

»

0.02987089
Grid Anchor

0002
I
0000
-0.001
-0.002

.

-0.003

-0.004
-1 0 1

0.00532461
U+D Anchor

~

2
4 012
010
0 008
006
1 004
002
2
2 A 0
T
0002
- ’ 0001
0 0000
-0001
1
-0.002
2
2 4 0 1 2
0.00401482

t = 0.02
Standard Method

2

o
o
~

0025
0015

0010

0005
0000
-0.005

-0010

-0.015

.
-1 0 1

0.04523541
Grid Anchor

o
»

Iolz

010

008

» - o & [

o
o
~

00125

00100

00075
00050
00025
00000
-00025

-0.0050

- 0 1

~

0.01593788
U+D Anchor

Imz

010

008

» - =Y ne o

o
o
~

00125

00100

00075

00050

00025

00000

-0.0025

~ - - N &
—]

&

A 0 1

~

0.01310877

t =0.04
Standard Method

2
014
012

o

~

.
o o

5 001
1 -001
—
s A 0 1 2 "
0.04697234

Grid Anchor

2
0015
-1 0010
0005
[
0000
1 0005
h -0010
2

0.0201385
U+D Anchor

I 012
010
008

006

00125
00100
00075
00050
00025
00000

00025

-0.0050

» — 00075
0

0.01567074

Applied Mathematics and Computation 457 (2023) 128185

t = 0.06
Standard Method

& 0175
0150
0125
0100
0075
0050
0025

0000

-0.01

-002

o

- 0 1

S

0.04295211
Grid Anchor

E 016
I 014
E 012
010
0 008
006
1 004
002
2 000

2 Bl 0 1 2

E o | 0 1 2

o

I 0020

0015
0010
0005

0000

-0.005

0.01914975
U+D Anchor

0015

0010

0005

0000

-0.005

-0.010

0.01659321

t=0.2
Standard Method

2 025

~

0020

0015

0010

0005

0000

-0.005

2 -1 0 1

»

0.0184636
Grid Anchor

2 1 0 ¥ 2
2
oos
, -
: ’ r 0010
.] 000
0000
TN / o
3 0010
2 -1 0 1 2
0.01644685

U+D Anchor

0015

0010

0005

0000

-0.005

2 A 0 1

N

0.01375384

Fig. 11. Neural network solutions and error heat maps of median results from 11 sample trainings per configuration at t = 0, 0.02, 0.04, 0.06, 0.2 for the
Standard method, Grid Selection Anchor sampling for 120 epochs (Grid Anchor), and Uniform + Density Anchor Sampling for 240 epochs (U+D Anchor). L2
error is listed below the respective heat map.

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Standard Method 0020 Standard Method @03 Standard Method
0.02
0.015
o 0 0.02 0
“ 74 0010 01 T ' 0.01
01 6 i
5 0.005 02 02 0.00
03 o000 03 0.00 03 -0.01
04| : I L -0.005 04 04
25 15 05 05 15 25 000 25 -5 05 05 15 25 @00 25 -5 05 05 15 25 [F-002
2 -0.015 2 -0.02 2 -0.03
L~“ error: 0.00596326 L~“ error: 0.00895999 L~“ error: 0.01449147
Anchor Sampling —_— Anchor Sampling oo Anchor Sampling ooz
B 0.008 0.015

0.006

0.004 0.010

01 0.004

02
0000 03 0.000

0002 0.005
0.002

0.000

-0.005

04} , . - " " 0002
3 2 el 0 1 2 3

-0.002 -0.010

—0.004

~0.006 -0.015

L? error: 0.00823619

L? error: 0.00173452 B0 L? error: 0.00407848

Fig. 12. Minimum, Median and Maximum L? error results from 31 trainings of the 1D Multimodal SDE using the Standard Method and Anchor Sampling
for 240 epochs.

Multiple vs Single Anchors 0<=t<=0.2 Multiple vs Single Anchors 0<=t<=1.0
== Multiple Anchors Median == Multiple Anchors Mean Single Anchor Median == Single Anchor Mean == Multiple Anchors Median == Multiple Anchors Mean Single Anchor Median == Single Anchor Mean
0.025 0.025
0.020 0.020
_ 0015 _ 0015
5 / = g f
i &
o o
g o010 g o010
0.005 0.005
0.000 0.000
0.00 0.05 0.10 0.15 0.20 0.00 0.25 0.50 0.75 1.00

t t

Fig. 13. Comparison of mean and median L? error after 240 epochs of single vs. multiple Anchors for the 2D ring SDE.

The operator in the first part of the loss is also further away from a singular operator. This corresponds to less “drift” de-
scribed at the beginning of this section. Hence the neural network solver can tolerate longer gaps between “anchors”, i.e.,
times at which collocation points in) concentrate. However, a practical relation between the spectral gap of the infinitesi-
mal generator and the gap between “anchors” requires deeper studies. We will address this issue in our future work.

7. Conclusion

In this paper, we examined the neural network training for the neural network Fokker-Planck solver in full detail. The
main challenge here is the presence of multiple loss functions at different scales. We believe this challenge can also appear
when using PINN to solve equations with noisy experimental data. One very interesting finding is that the optimization
method for training the neural network seems to be problem-dependent. The idea of “Alternating Adam” that worked very
well for the stationary Fokker-Planck equation does not have satisfactory performance for the time-dependent Fokker-
Planck equation. Instead, we tested a few different ways to balance multiple loss functions. Our analysis shows that the
most robust approach is to let the relative weight of a loss function depend on the norm of the gradient of this loss func-
tion because each update is based on the gradient rather than the value of each loss function. In addition, one needs a
“momentum” term to gradually change the weight of the loss functions to avoid stability issues.

Our study motivates a challenging question: what does the loss landscape look like? There are some known studies
about the loss landscape of a few commonly used loss functions [12]. But to the best of our knowledge, the loss landscape
of a loss function that involves the norm of a differential operator of the neural network has not been investigated. If the
neural network can well approximate PDE solutions in H! norm as suggested by Chen et al. [13], Weinan and Wojtowytsch
[14], the “bottom” of a loss function given by the norm of a differential operator should be like a very high-dimensional
valley because any boundary condition (resp. initial and boundary condition) can uniquely decide the solution of an elliptic
(resp. parabolic) PDE. The neural network training process aims to find a local minimum in this “valley” that also matches
the initial distribution, the boundary condition, or the Monte Carlo approximation in our paper. However, the gradient of

17

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

the loss function orthogonal to those “valleys” may have qualitative differences between a loss function given by an elliptic
operator and a loss function given by a parabolic operator. This is because the second-order derivative of the neural network
approximation is likely much more sensitive to a random change of connection weights than the first-order derivatives. The
lack of second-order derivatives in some directions makes the “valley” less steep. We believe this could be the root cause
that makes the Alternating Adam method less effective for time-dependent Fokker-Planck equations. We also find that the
Alternating Adam method fails frequently when a stationary Fokker-Planck equation has a degenerate elliptic term. This
further supports our conjecture.

Currently, it appears that the best training method for a PINN-like problem is very problem-specific. Alternating Adam
works best for the stationary Fokker-Planck equation. The Gradient-Based Momentum Weight method works well for the
time-dependent Fokker-Planck equation. Many PINNs are trained by second-order methods such as BFGS [15]. The Trainable
Weight method works well for some applications of PINN [8,10]. However, there is no theory that supports the selection
of training methods. After writing this paper, we believe the choice of a suitable training method should be dependent on
properties of the loss surface. We will address this in our future work.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

Yao Li: Conceptualization, Methodology, Writing - review & editing. Caleb Meredith: Data curation, Formal analysis,
Visualization, Writing - original draft, Writing - review & editing.

Acknowledgments

YL is supported by NSF grants DMS-1813246 and DMS-2108628. CM is supported by the REU part of NSF DMS-1813246.
We thank Prof. George Karniadakis and Dr. Shengze Cai for helpful discussions about neural network training, particularly
the use of trainable weight.

Appendix A. Algorithm implementation, hyper-parameter and training point selection, and performance optimization

The majority of this Appendix covers the implementation details, hyper-parameter selection, and training data sampling
based on the 1D SDE given by Eq. (15) with the multimodal initial distribution. For each training, the error is calculated
in the L2 sense in comparison to the ground truth, which is a numerical solution obtained using a Crank-Nicholson solver.
The Standard Method is used for selecting training points. This Appendix also covers training point count selection for the
Anchor Sampling method and investigates the effects of changing the numerical domain, using additional compute, and
adding an additional anchor.

In this example we used 1500 collocation points with a breakdown of NX = 500, NY = 1000, I* = 500. Additionally, 2) is
composed of 20,000 points uniformly sampled from the entire domain. The Monte Carlo sampling part runs 107 samples to
approximate the probability density at non-initial collocation points.

Al. Alternating adam

While Alternating Adam doesn’t have any hyper-parameters to select, a slight modification must be made based on the
performance for this SDE. Unlike for the stationary case, the loss of a given epoch is not a good indicator of performance.
The lowest loss is usually seen in the first few epochs. Because of this, the last epoch of training rather that the one with
the minimum loss value is selected as the solution of the neural network solver.

A2. Fixed weight

The only hyper-parameter that must be selected here is the weight term 6, which serves as a benchmark when com-
paring the results of non Fixed Weight training methods. Generally LllOSS is much larger than L12°55, so 6 must be close to 1.
In the first numerical example we tested the performance of the neural network solver for 10 different values of 6 in the
interval [0.95, 0.995]. This interval was selected after a few preliminary tests, which showed that the training result outside
of this interval is less satisfactory in general. After training with each 6 value in this interval 5 times, the optimal choice
was found to be 6 = 0.975. s

This weight is further confirmed by evaluating 45 weight ratios LIOSL;W using # = 0.975. One can see that the L2 error

is the lowest when the final weight ratio is between 0.96 and 0.97, and from the results from Fig. 14 we observed that the
final loss ratio averaged around 0.012 less than the 6 value used (Fig. 15).

18

Y. Li and C. Meredith

Applied Mathematics and Computation 457 (2023) 128185

Theta vs L2 Error for Fixed Weight Training

0.020
0.015
g
&G 0.010
~N
!
0.005
0.000
0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995
Theta
Fig. 14. [? error for different § values using Fixed Weight training.
L1/(L1+L2) vs L2 Error for Fixed Weight Training
@® L2 Error 2.02 +-4.18x + 2.17x"2
0.015
°
°
° °
0.010 te o °
°
g ° ° °s o 0 o o o
] @ L]] ®
° ° ° L 4
I [])
) Y 1] o)
0.005 8 > oo
0.000
0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
L1/(L1+L2)
Fig. 15. Comparison of final me'ﬁ and [? error for all 45 Fixed Weight training results using 6 = 0.975.
1 2

Epoch vs Theta

125
100

75

Theta

50

25

Fixed Weight Equivalent Theta Value

50 100 150 200 250

Epoch

Fig. 16. Left: Theta per Epoch for Trainable Weight using 6, = 0.

A3. Trainable weight

Epoch vs Fixed Weight Equivalent Theta Value

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40

0

50 100 150 200 250

Epoch

Right: Equivalent Theta for Fixed Weight per Epoch.

The Trainable Weight algorithm only requires selecting an initial value for 6. The simplest choice is 6y = 0. The training
results from this initial value can be seen below in Fig. 16. The left panel shows the value of 6 versus the epoch, and the
right panel shows the equivalent 0 values if translated to the Fixed Weight algorithm. As 6 increases roughly linearly, the
Fixed Weight equivalent 6 asymptotically approaches 1. Recall that previously we found that the optimal Fixed Weight 6 is
0.975. This means that the Trainable Weight algorithm quickly moves 6 into the neighborhood of this optimal value then

passes this optimal value. Although theoretically the minimax we

19

ighting seeks to find a saddle point in the weight space

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Theta 0<=Alpha<=0.2 Theta 0.2<=Alpha<=0.8
= alpha=0 = alpha=0.1 alpha=0.1125 == alpha=0.11875 == alpha=0.125 alpha=0.15 alpha=0.2 == alpha=0.2 == alpha=0.3 alpha=0.4 == alpha=0.5 == alpha=0.6 alpha=0.7 alpha=0.8

1.0

R T R A WWW e ain

1.00

Theta
Theta

0.6

04
75 100 0 25 50 75 100

Epoch Epoch

Fig. 17. Loss-based Momentum Weight 6 value per epoch for different o values using Loss-Based Momentum Weight. Left: 0 <« < 0.2. Right: 0.2 <« <
0.8.

Epoch vs Theta Epoch vs Theta
== alpha=0.5 == alpha=0.6 alpha=0.7 == alpha=0.8 == alpha=0.9 == alpha=0.5 == alpha=0.6 alpha=0.7 == alpha=0.8 == alpha=0.9
alpha = 0.95 alpha = 0.95
0.99 0.95
0.90
0.98 : 0.85
@ o]
< % 080
£ £
0.97 0.75
0.70
0.96 0.65
0 25 50 75 100 0 25 50 75 100
Epoch Epoch

Fig. 18. Loss-based Momentum Weight Alternative implementation 6 per epoch for different 6, and « values.

[9], throughout our study, we have not seen the stabilization of 6 as theoretically predicted. As discussed in Gu et al. [8],
the stabilization may be related to the use of a suitable “mask function”.

A4. Loss-based momentum weight

The Loss-Based Momentum Weight algorithm requires us to choose the initial value 8, the weight «, and T, which was
chosen to be 5 for based on a few trainings. Since L11OSS is usually a large quantity in the early phase of training, we chose
a 0y that is above the expected range of optimal 6 values. Based on some preliminary testing, 6y = 0.99 was selected. The
weight « also significantly determines the training dynamics. In our numerical tests the initial loss ratio comes from the
5th epoch (instead of the average of the first 5 epochs). Fig. 17 shows how 6 changes over the epochs depending on the
different o values. This is split into two graphs, since there are two different phenomena present at the low and high range
of the « values.

The left panel of Fig. 17 shows that small values of @ make 6 converge towards zero quickly. This is expected because
the value of 6 is not properly stabilized, hence the problem of the negative feedback loop is not prevented. The transition
starts when o reaches approximately 0.125, at which point the dynamics of 8 stabilize. On the right panel of Fig. 17, we see
a very different behavior going on for larger values of . When « is greater than 0.5, it becomes harder to revert the initial
decreasing trend of 6 because the updates on 0 are too small. As seen in the figure, 0 takes large dips that are followed by
increases back towards the stable area near = 0.95. Larger values of « make the stabilization even slower. In summary, we
conclude that the optimal range of o values appears to be roughly between 0.2 and 0.4. As larger values make convergence
of 0 to 0 less likely, o = 0.4 was selected.

As mentioned previously, the alternative implementation of Loss-Based Momentum Weight method uses the average of
all historical loss ratios, hence both 8y and o needed to be selected again. Fig. 18 demonstrates the evolution of 6 across
the epochs when starting from 6y = 0.99 (left panel) and 6y = 0.95 (right panel). As seen in Fig. 18, the dynamics of 6
are relatively stable for a wide range of values of «, although 6 moves too slowly when « is close to 1. Here we believe
B = 0.99 remains a good choice of the initial value, and the L2 error results indicate that o = 0.6 is optimal.

A4.1. Gradient-based momentum weight
Finally, Gradient-Based Momentum Weight also requires selecting 6, and «. Our numerical experiment shows that the
performance is not very sensitive against the choice of these hyper-parameters, possibly because the dynamics of 6 have

20

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

Gradient-Based Momentum Weight O<=alpha<=0.8 Gradient-Based Momentum Weight alpha = 0, 0.4, 0.8
== alpha=0.0 == alpha=0.1 alpha=0.2 == alpha=0.3 == alpha=0.4 == alpha=0.5 == alpha=0.0 == alpha=0.4 alpha=0.8
== alpha=0.6 == alpha=0.7 alpha=0.8 1.00
1.0
ol AL
0.95 w
0.9 v
© £ o090
K] S
£
08
0.85
07 0.80
0 0 25 50 75 100
Epoch Epoch
Fig. 19. Gradient-Based Momentum Weight 6 value per epoch for Gradient-Based Momentum Weight using different o values.
Median L"2 Error Mean L"2 Error
== 289 Median == 625 Median 1156 Median == 2500 Median == 4489 Mean == 289 Mean == 625 Mean 1156 Mean == 2500 Mean == 4489 Mean
0.035 0.035
0.030 0.030
0.025 0.025
0.020 0.020
0.015 0.015
0.010 0.010
0.005 0.005
0.000 0.000
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

t t

Fig. 20. Median and Mean L? error from 11 trainings using Anchor Sampling with Grid Selection for 120 epochs. Sample counts of 289, 625, 1156, 2500,
and 4489 are used at t = 0.2.

Epoch vs Geometric Mean of Loss Epoch vs Geometric Mean of Loss

== 0.001 == 0.002 0.004 == 0.001 == Adaptive Rate

0.01 k 0.01
" w\\ﬁ\f\v N

0.0001 J\ 0.0001

0.00001 0.00001

Geometric Mean of Loss
Geometric Mean of Loss

0.000001 0.000001
0 25 50 75 100 0 25 50 75 100

Epoch Epoch

Fig. 21. Left: Geometric mean of loss per epoch for learning rates of 0.001, 0.002 and 0.004 using 5 trainings each. Right: Geometric mean of loss per
epoch for learning rate of 0.001 and adaptive learning rate using 5 trainings each.

significant fluctuation anyway. For consistency 6y = 0.99 was selected. Fig. 19 shows 0 per epoch for different o values.
Increasing o« decreases the variance and vice versa, but no other behavior is introduced by changing «, and performance
remains similar across all o values. Further tests showed that L2 error is lowest at a = 0.4, so this was selected.
A5. Anchor sampling implementation

The median and mean L% error over the time domain for five training point counts at t = 0.2 can be seen below in
Fig. 20. Grid selection and 120 epochs of training were used here. 1156 and 2500 points produced similar results, while the
rest produced worse results. Because of this 1156 was selected.

A6. Adaptive learning rate

The performance of neural network training can be further improved by using an adaptive learning rate. This is demon-
strated on the left in Fig. 21, which shows the geometric mean of the loss for five trainings at different learning rates. Larger

21

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

t=0 t = 0.02 t = 0.04 t = 0.06 t=0.2
Adaptive Anchor Adaptive Anchor Adaptive Anchor Adaptive Anchor Adaptive Anchor

2 2 016 2 025
012
o1z 014
020
010 1 019 - 012 .
008 o0 oo 015
0 008 o
008 006
006 010
004 004
1 004 1
005
002 L 002
2 2 2
2 a 0 1 2 2 -t o 1 2 - 2 - 0 1 2
: ooz 2 2
o010
o010 Ll 0000
0008
) 0008 A 0006 Bl
0008 0001
o 0004
0004
0004 o 0002 0 0002
0002
0002 900, 0003
0000
1 -0002 1
0000
~0002 0004
0004
0002 oot
2 2
2 R 0 1 2 2 4 0 1 2 2 - 0 1 2

0.00154412 0.0091503 0.0109493 0.00989377 0.00505378

2 2

2

000100

000075

000050

000025

000000

000025

000050

000075

000100

Fig. 22. Neural network solutions and error heat maps of median results from 11 sample trainings per configuration at t = 0, 0.02, 0.04, 0.06, 0.2 for Anchor
Sampling using the adaptive learning rate for 120 epochs. L? error is listed below the respective heat map.

Time vs Total Density
== Adaptive Anchor == CR

1.02

1.00

0.98

0.96

Total Density

0.94

0.92

0.90
0.00 0.05 0.10 0.15 0.20

Time

Fig. 23. Total density at each time for Adaptive Anchor and Crank-Nicolson for the 2D SDE on domain [-2, 2] x [-2, 2].

All Training Configurations Median L2 Error Adaptive Anchor and Later Configurations Median L*2 Error

== Standard Method == Anchor Sampling Adaptive Anchor == Extended Domain Adaptive Anchor == Extended Domain == Extra Compute == Additional Anchor
== Extra Compute == Additional Anchor 0.01250
0.050 0.01125
0.045 0.01000
0.040 0.00875
0.035 0.00750
5 00% 0.00625

5 0025
g 0020 0.00500
0.015 0.00375
0.010 0.00250
0.005 / 0.00125
0.000 0.00000
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Time Time

Fig. 24. Left: [? error for all training configurations. Right: L? error for adaptive anchor and later training configurations.

learning rates give faster initial convergence but higher final loss. Starting with a learning rate of 0.004, after the first 20
epochs we check every 10 epochs if the loss in the past 10 epochs is at least half of the loss from the 10 epochs before
those, and if not we halve the learning rate. This training technique enables much faster training as well as lower final loss
after 120 epochs.

A7. Numerical domain

In addition to hyper-parameters studied above, the numerical domain plays a role in the performance of the Fokker-
Planck solver. Fig. 22 shows the median solutions and corresponding error heat maps from 11 training outputs using the

22

Y. Li and C. Meredith

=0

Extended Domain

t = 0.02

Extended Domain

t = 0.04

Extended Domain

Applied Mathematics and Computation 457 (2023) 128185

t = 0.06

Extended Domain

t= 0.2

Extended Domain

2 2 2 2 o016 2 025
o m2 o 014
-1 012 -1 010 Lo 012 bt
L 008 bl 00 015
0 008 o 0.08
- o0s
a06 006 oo
aos
1 004 1 008
aos
. ooz -
: 2 0.00
> A o 2 i o : 2 2 i o 1 2
2 2 2
- 0.006 0004 e 0.004
oo
0.004 pyon .
— 4 1 0002 1 4 - .
0.002 002
000000 0000 0,000 -
o on o .
o2 <o oo oo
L "N B 4 0004 ! -
oaers -
'y oo
o0
oanioe
. R ome
2 1 0 1 2 2 -1 0 1 ¥ 2 1 o 1 2 -2 -1 o 1 2
Extra Compute Extra Compute Extra Compute Extra Compute Extra Compute
2 2 2 2 016 2 025
o
014 o1z 014
1 012 -1 010 -1 Lo - 012 1
oo - acs o0 as
o 008 0 0 0 0.08 o
aos
. ate
-
) w9 ! . w4
o ooe
2 2 2 0.00 2 0.00 2 0.00
b i o 4 2 2 i o 2 A o) > i 2 : o i 2
P 2 2 o003
oooos ooo / ~ a0z , oo
- ’ N ’ - oonz
3 4 3
0.0002 o 0 — 0 0.000
0.000 ~0.002 ™
4 ’ / s ’ ™
o o
. ! 1
oo
oomz oot oo -
- ~0.005
aoms s 3 s, 5
> 5 o 1 2 IR T LR A

0.00096394
Additional Anchor

2

0.00321124
Additional Anchor

0.00502934
Additional Anchor

-2

0.00477389
Additional Anchor

-2

0.00311192
Additional Anchor

-2

2 016 025
01 o1 = 014
o020
1 o2 4 010 1 o1 o i
010
008 008 010 .
9 008 0 0 0
005 008 008
006 005 e
004 008
1 008 1 1 s '
005
- 002 o0z .
2 2 2 000 000 2 000
2] o 2 1 o 1 2
00006 2 2 2
- o002
aooos - / - \ . - aooos
00004 4 4 o A El - \ 00000
oot A
00003 . o000
00005
0000 h
o000z
.) .) U
aoo0 . o001 ~00010
a0 p- A W
00000 ‘ -0.0015
z 1
00002 \- o - -
0004 " 00025
2 B 0003)
2 K o i 2 1 o 1 2 2 iy o H 2

0.00068328

0.00297608

0.00343127

0.00297049

0.00191888

Fig. 25. Neural network solutions and error heat maps of median results from 11 sample trainings per configuration at t = 0, 0.02, 0.04, 0.06, 0.2 for Anchor
Sampling using the adaptive learning rate for 120 epochs. Extended Domain extends the domain to [-2.5,2.5] x [-2.5, 2.5], Extra Compute increases the
mini-batch size to 128 and mini-batch count to 1250 on top of the extended domain, and Additional Anchor adds an extra anchor at t = 0.05 on top of
the extended domain and extra compute. L? error is listed below the respective heat map.

23

Y. Li and C. Meredith Applied Mathematics and Computation 457 (2023) 128185

adaptive learning rate with anchor sampling for 120 epochs. While the adaptive learning rate is able to reduce the L2 error,
if we compare the results to those in Fig. 11 we can see the structured nature of the error is even more apparent. Given
that the error is being computed using a Crank-Nicolson solution on a larger domain with a very fine mesh as the ground
truth, it appears that this boundary error is a product of the neural network training in some way.

A potential problem with the current numerical domain is that it does not include 8.893 percent of the density from
the initial distribution, most of which is excluded at the center of the four sides due to the circular distribution. The error
heat maps in Fig. 22 show that much of the error is from an underestimate of the density near these four edges, which
propagates inward as the density concentrates at the unit circle. Although theoretically in our algorithm the boundary in-
formation is replaced by the Monte Carlo data, this example shows that the boundary effect still affects the accuracy of the
solution. Despite this, the total density at each time remains relatively close to the true density within that domain, as can
be seen below in Fig. 23.

If we extend the numerical domain to [-2.5,2.5] x [-2.5, 2.5] we only exclude 2.468 percent of the density from the
initial distribution. To maintain the density and ratio of training points we update X to 62,500 uniformly sampled points
and 9 to 62,500 points from the initial distribution and 1800 from the anchor at t = 0.2. Additionally, we increase the batch
sizes to 64 from 32. The results from this can be seen in the first two rows of Fig. 25.

A8. Additional compute

Finally, we demonstrate the effect of even longer training by increasing the mini-batch sizes to 128 and doubling the
number of batches, while keeping the training data the same. This means that each batch covers the training data multiple
times, but we find that increasing the size of the training sets in addition to the longer training does not make a meaningful
difference. It takes slightly under one hour to train the neural network. Fig. 25 shows that this reduces both the L? error
and much of the structure of the error. Then we add another anchor of 1800 points at t = 0.05 in addition to the extended
domain and additional compute. This has a less notable impact than increasing the mini-batch size and count, but still
produces the best results. The L2 error for all training configurations can be seen in Fig. 24 for comparison. Estimating
the theoretical error of neural network PDE solvers is a very challenging problem. However, this experiment shows that in
practice it is difficult to make L? error much lower than 10~3 with reasonable training cost.

References

[1] M. Dobson, Y. Li, J. Zhai, An efficient data-driven solver for Fokker-Planck equations: algorithm and analysis, Commun. Math. Sci. 20 (3) (2022)
803-827.

[2] Y. Li, A data-driven method for the steady state of randomly perturbed dynamics, Commun. Math. Sci. 17 (4) (2019) 1045-1059.

[3] J. Zhai, M. Dobson, Y. Li, A deep learning method for solving Fokker-Planck equations, in: J. Bruna, J. Hesthaven, L. Zdeborova (Eds.), Proceedings of
the 2nd Mathematical and Scientific Machine Learning Conference, 16-19 Aug, Proceedings of Machine Learning Research, PMLR, 2022, pp. 568-597.

[4] X. Chen, L. Yang, J. Duan, G.E. Karniadakis, Solving inverse stochastic problems from discrete particle observations using the Fokker-Planck equa-

tion and physics-informed neural networks, SIAM J. Sci. Comput. 43 (3) (2021) B811-B830.

[5] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707.

[6] D.P. Kingma, J.B. Adam, A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).

[7] H. Eivazi, R. Vinuesa, Physics-informed deep-learning applications to experimental fluid mechanics, arXiv preprint arXiv:2203.15402 (2022).

[8] Y. Gu, H. Yang, C. Zhou, SelectNet: self-paced learning for high-dimensional partial differential equations, J. Comput. Phys. 441 (2021) 110444.

[9] D. Liu, Y. Wang, A dual-dimer method for training physics-constrained neural networks with minimax architecture, Neural Netw. 136 (2021) 112-125.
[10] L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism, arXiv preprint arXiv:2009.04544 (2020).
[11] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, vol. 22, Springer Science & Business Media, 2013.

[12] D.D. Lee, P. Pham, Y. Largman, A. Ng, Advances in neural information processing systems 22, Technical report, Tech. Rep., Tech. Rep, 2009.

[13] Z. Chen,]. Ly, Y. Lu, On the representation of solutions to elliptic PDEs in barron spaces, in: M. Ranzato, A. Beygelzimer, Y.N. Dauphin, P. Liang,
J.W. Vaughan (Eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, Virtual, 2021, pp. 6454-6465.

[14] E. Weinan, S. Wojtowytsch, Some observations on high-dimensional partial differential equations with barron data, Math. Sci. Mach. Learn. (2022)
253-269.

[15] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1) (1989) 503-528.

24

	Artificial neural network solver for time-dependent Fokker-Planck equations
	1 Introduction
	2 Preliminary
	2.1 Stochastic differential equations and the Fokker-Planck equation
	2.2 Data-driven stationary Fokker-Planck equation solver

	3 Neural network solver for time-dependent Fokker-Planck equations
	3.1 Sampling collocation points
	3.2 Monte Carlo simulation
	3.3 Neural network training

	4 Training algorithms
	4.1 Alternating adam
	4.2 Fixed weight
	4.3 Trainable weight
	4.4 Loss-based momentum weight
	4.5 Gradient-based momentum weight

	5 Numerical example with performance analysis
	5.1 1D Example
	5.1.1 Analysis of 1D performance results

	5.2 2D example
	5.2.1 2D SDE overview and performance results
	5.2.2 Analysis of 2D performance results

	6 Comparison with anchor sampling method
	6.1 2D ring SDE anchor sampling numerical results
	6.2 1D multimodal SDE anchor sampling numerical results
	6.3 Longer time frames

	7 Conclusion
	Data availability statement
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Algorithm implementation, hyper-parameter and training point selection, and performance optimization
	A1 Alternating adam
	A2 Fixed weight
	A3 Trainable weight
	A4 Loss-based momentum weight
	A4.1 Gradient-based momentum weight

	A5 Anchor sampling implementation
	A6 Adaptive learning rate
	A7 Numerical domain
	A8 Additional compute

	References

