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We consider the planar unit disk D as the reference
configuration and a Jordan domain Y as the deformed 
configuration, and study the problem of extending a given 
boundary homeomorphism ϕ : ∂D onto−−→ ∂Y as a Sobolev 
homeomorphism of the complex plane. Investigating such a 
Sobolev variant of the classical Jordan-Schönflies theorem 
is motivated by the well-posedness of the related pure 
displacement variational questions in the theory of Nonlinear 
Elasticity (NE) and Geometric Function Theory (GFT). 
Clearly, the necessary condition for the boundary mapping 
ϕ to admit a W 1,p-Sobolev homeomorphic extension is 
that it first admits a continuous W 1,p-Sobolev extension. 
For an arbitrary target domain Y this, however, is not 
sufficient. Indeed, first for each p < ∞ we construct a 
Jordan domain Y and a homeomorphism ϕ : ∂D onto−−→ ∂Y
which admits a continuous W 1,p-extension but does not 
even admit a W 1,1-homeomorphic extension. Second, for a 
quasidisk target Y and the whole range of p, we prove that 
a boundary homeomorphism ϕ : ∂D onto−−→ ∂Y admits a W 1,p

loc -
homeomorphic extension to C if and only if it admits a W 1,p-
extension to the unit disk. Quasidisks have been a subject of 
intensive study in GFT. They do not allow for singularities on 
the boundary such as cusps. Third, for any power-type cusp 
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target there is a boundary homeomorphism from the unit 
circle whose harmonic extension has finite Dirichlet energy 
but does not have a homeomorphic extension in W 1,2(D, C). 
Surprisingly, the Dirichlet integral (p = 2) plays a unique role 
for the Sobolev Jordan-Schönflies Problem in the case of cusp 
targets. Even more, fourth we prove that if the target Y has 
piecewise smooth boundary, p �= 2 and ϕ : ∂D onto−−→ ∂Y has a 
W 1,p-Sobolev extension to D, then it admits a homeomorphic 
extension to C in W 1,p

loc (C, C). Fifth, if in addition Y is 
quasiconvex, then the one-sided Sobolev Jordan-Schönflies 
problem has a solution when p = 2. Indeed, we show that the 
harmonic extension of ϕ : ∂D onto−−→ ∂Y has a finite Dirichlet 
integral if and only if ϕ admits a homeomorphic extension 
h : D onto−−→ Y with finite Dirichlet energy.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Let D be the planar unit disk and ϕ : ∂D → C a topological embedding. The Jordan-
Schöenflies theorem states that there is a self-homeomorphism h of the entire complex 
plane onto itself which coincides with ϕ on ∂D. In particular, the set ϕ(∂D) separates the 
plane into two domains, one bounded and the other unbounded. Throughout this text 
Y ⊂ C is a bounded Jordan domain and ϕ : ∂D onto−−→ ∂Y a given boundary homeomor-
phism. The Sobolev Jordan-Schönflies Problem asks whether there exists a Sobolev home-
omorphism h : C onto−−→ C which coincides with ϕ on ∂D. Obviously, for the boundary map 
ϕ to admit a Sobolev homeomorphic extension it must first admit a Sobolev extension.

The Sobolev Jordan-Schönflies Problem. For which Y ⊂ C and p ∈ [1, ∞] does every 
boundary homeomorphism ϕ : ∂D onto−−→ ∂Y that admits a continuous extension to D in 
the Sobolev class W 1,p(D, C) also admit a homeomorphic extension h : C onto−−→ C in 
W 1,p

loc (C, C)?

It is worth noting that the condition of a homeomorphism ϕ : ∂D onto−−→ ∂Y admitting a 
continuous extension to D in W 1,p(D, C) may be characterized analytically. Indeed, for 
1 < p < ∞, the boundary mapping ϕ admits a continuous W 1,p-extension if and only if 
it satisfies the so-called p-Douglas condition,

∫
∂D

∫
∂D

|ϕ(x) − ϕ(y)|p
|x − y|p dx dy < ∞ , (1.1)

for a proof we refer to [31, p. 151-152]. The condition (1.1) is known as the Douglas condi-
tion [8] when p = 2. Equivalently, ϕ : ∂D onto−−→ ∂Y satisfies the p-Douglas condition if the 
p-harmonic extensions of both coordination functions Im ϕ : ∂D → R and Re ϕ : ∂D → R

belong to the Sobolev class W 1,p(D, R). The case p = ∞ on the other hand follows from 
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the classical Kirszbraun extension theorem [19] which says that a mapping ϕ : ∂D → C

has a Lipschitz extension to D if and only if ϕ is Lipschitz regular. In the other endpoint 
case p = 1, according to Gagliardo’s theorem [9] a given ϕ : ∂D onto−−→ ∂Y has a Sobolev 
extension to D in W 1,1(D, C) exactly when ϕ ∈ L 1(∂D). Analogously, we say that a 
boundary mapping ϕ : ∂D → C enjoys the 1-Douglas condition provided ϕ ∈ L 1(∂D).

One of the reasons to study the Sobolev Jordan-Schönflies problem comes from the 
variational approach to Geometric Function Theory (GFT) [4,13,29], where the general 
framework of Nonlinear Elasticity (NE) [3,5,7] is extremely fruitful and significant. By 
the very assumptions of hyperelasticity, we inquire into homeomorphisms h : D onto−−→ Y

of smallest stored energy

E[h] =
∫
D

E(x, h, Dh) dx , E : D × Y × R2×2 (1.2)

where the so-called stored energy function E characterizes the mechanical and elastic 
properties of the material occupying the domains. We denote the class of homeomor-
phisms h : D onto−−→ Y in the Sobolev space W 1,p(D, C) by H p(D, Y ) for 1 � p � ∞. In 
the related pure displacement variational questions one considers the class H p

ϕ (D, Y )
of Sobolev homeomorphisms h : D onto−−→ Y equal to ϕ on the boundary such that 
h ∈ H p(D, Y ). One quickly runs into serious difficulties when passing to a weak limit 
of an energy-minimizing sequence of W 1,p-Sobolev homeomorphisms (injectivity can be 
lost) [15,16]. Therefore, in search for mathematical models of hyperelasticity, we must 
adopt such limits as legitimate deformations and still comply, as much as possible, with 
the principle of non-interpenetration of matter. When p � 2, an axiomatic assumption in 
the theories of NE and GFT, such limits are monotone mappings [17,18]. Monotonicity, 
a concept by Morrey [25], simply means that for a continuous h : D → Y the preimage 
h−1(y◦) of a point y◦ ∈ Y is a continuum in D. Non-injective energy-minimal solutions, 
being monotone, may squeeze but not fold the 2D-plates or thin films. In the case of 
pure displacement variational questions this naturally leads as a first step for us to in-
quire whether the class H p

ϕ (D, Y ) is nonempty. It is worth noting that in the frictionless 
setting we always know that H p(D, Y ) �= ∅ when p � 2 thanks to the Riemann Mapping 
Theorem.

Roughly speaking, prior to this paper the Sobolev Jordan-Schönflies Problem was 
understood only when p < 2 or p = ∞. Here we focus on the remaining important cases 
2 � p < ∞. Before giving a detailed description we summarize the status of the problem 
in the next table.

The known answers of the Sobolev Jordan-Schönflies Problem
∂Y 1 � p < 2 p = 2 2 < p < ∞ p = ∞
Arbitrary Negative Negative Example 1.2 Positive
Lipschitz graph Positive Positive Positive Positive
Quasicircle Positive Theorem 1.3 Theorem 1.3 Positive
Piecewise smooth Positive Example 1.4 Theorem 1.6 Positive
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The proofs of the previously known results rely mostly on careful study of analytical 
ways of extending the boundary map such as the harmonic extension and the Beurling-
Ahlfors extension. It is, however, not to be expected that these methods are able to 
provide a complete picture of the problem. Hence we have turned to new, more direct 
methods of constructing homeomorphic extensions to prove our main theorems.

1.1. Arbitrary target

The Sobolev Jordan-Schönflies Problem is completely understood when p = ∞ due 
to a result of Kovalev [23].

Theorem 1.1. (p = ∞) Let ϕ : ∂D → C be a Lipschitz embedding. Then ϕ admits a 
homeomorphic Lipschitz extension to C. The Lipschitz constant of such an extension 
depends linearly on the Lipschitz constant of ϕ.

For an arbitrary Y , the problem has no solution for 1 � p � 2. Indeed, Zhang [36]
constructed a Jordan domain Y and a boundary homeomorphism which admits a contin-
uous W 1,2-extension to D but does not even admit a W 1,1-homeomorphic extension to 
D. The boundary of the domain Y in question is not rectifiable but does have Hausdorff 
dimension one. His construction relies on the Riemann Mapping Theorem and therefore 
works only for p � 2. We show that even replacing 2 by any power p < ∞ does not 
guarantee the existence of a homeomorphic extension in any Sobolev class.

Theorem 1.2. For 1 � p < ∞ there exists a Jordan domain Y and a homeomorphism 
ϕ : ∂D onto−−→ ∂Y which satisfies the p-Douglas condition (i.e. ϕ admits a continuous W 1,p-
Sobolev extension) but does not admit a homeomorphic extension h : C onto−−→ C in the 
Sobolev class W 1,1

loc (C, C).

1.2. Target with Lipschitz boundary

To begin with a classical result, notice that the theory of Radó [28], Kneser [20] and 
Choquet [6] (RKC) solves the Sobolev Jordan-Schönflies Problem when the target Y is 
convex and p = 2. Indeed, first the RKC-theorem asserts among other things that if 
Y ⊂ C is a bounded convex domain then the harmonic extension of a homeomorphism 
ϕ : ∂D onto−−→ ∂Y is a diffeomorphism from D onto Y . Second, since the harmonic extension 
minimizes the Dirichlet energy among all continuous Sobolev mappings in W 1,2(D, C)
equal to ϕ on ∂D the harmonic extension belongs to W 1,2(D, C) if and only if the map 
ϕ admits a finite Dirichlet energy extension to D. If the target Y , however, is not convex 
one can always construct a boundary homeomorphism ϕ : ∂D onto−−→ ∂Y whose harmonic 
extension fails to be injective, see [2,20]. Thus the Sobolev Jordan-Schönflies problem 
already becomes nontrivial for a non-convex target and p = 2. For a domain Y with 
Lipschitz boundary it should however be noted that there exists a global bi-Lipschitz 
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change of variables Φ: C onto−−→ C for which Φ(Y ) is the unit disk. Naturally, the problem 
is invariant under such a global bi-Lipschitz change of variables. The above argument 
can be broadened to cover the entire range of p < ∞ and give a positive answer to the 
problem when Y has Lipschitz boundary. In fact, for 1 � p < 2, the classical RKC-
theorem applies as the harmonic extension of any boundary homeomorphism ϕ : ∂D onto−−→
∂D lies in the Sobolev space W 1,p(D, C) for p < 2, see [14,35]. For p ∈ (2, ∞) we 
may apply a p-harmonic variant of the RKC-theorem [2]. Here we also rely on the fact 
that the variational formulation coincides with the classical formulation of the Dirichlet 
problem in any Jordan domain, see [22, §2.2] for more details. Moving beyond targets 
with Lipschitz boundary, there however is no easy solution to the problem.

1.3. Target with quasicircle boundary

A quasicircle is the image of the unit circle under a quasiconformal self-homeomor-
phism of C. The notion was introduced independently by Pfluger [27] and Tienari [32]. 
Recall that a W 1,2-homeomorphism f : C onto−−→ C is quasiconformal if there is a constant 
1 � K < ∞ such that

|Df(x)|2 � K det Df(x) a.e. in C .

Hereafter |·| stands for the operator norm of matrices. In particular a quasicircle is a Jor-
dan curve. The interior of a quasicircle is called a quasidisk. Quasidisks have been studied 
intensively for many years because of their exceptional functional theoretic properties, 
relationships with Teichmüller theory and Kleinian groups and interesting applications 
in complex dynamics, see [10] for a survey. Complex dynamics (Julia sets of rational 
maps, limit sets of quasi-Fuchsian groups) provide a rich source of examples of quasicir-
cles with Hausdorff dimension greater than one. The Hausdorff dimension of quasicircles 
may actually take any value in the interval [1, 2), see [12]. Perhaps the best known geo-
metric characterization for a quasicircle is the Ahlfors’ condition [1]. It says that a planar 
Jordan curve C is a quasicircle if and only if there is a constant 1 � γ < ∞ such that 
for each pair of distinct points a, b ∈ C we have

diam Γ � γ|a − b| (1.3)

where Γ is the component of C \ {a, b} with smallest diameter. Equivalently (1.3) can 
be given in terms of a reverse triangle inequality for three points: there is a constant C
such that if a point c ∈ Γ, then

|a − c| + |c − b| � C |a − b| . (1.4)

This property is also called bounded turning condition, see [24]. We proved with 
Koskela [21] that if 1 � p < 2 and ∂Y is a quasicircle, then any homeomorphism 
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Fig. 1. An inward cusp domain, Ωβ .

ϕ : ∂D onto−−→ ∂Y admits a homeomorphic extension h : C onto−−→ C in the Sobolev class 
W 1,p

loc (C, C). In particular, an arbitrary boundary homeomorphism ϕ : ∂D onto−−→ ∂Y sat-
isfies the p-Douglas condition for p < 2. The main point in our argument is a weighted 
homeomorphic extension theorem of the unit disk onto itself, see [21] for details. This 
approach heavily relies on the fact that p < 2 and cannot be extended to cover even the 
case p = 2. Here we give a new direct way to construct Sobolev homeomorphic extensions 
of ϕ : ∂D onto−−→ ∂Y and cover the entire range of Sobolev exponents.

Theorem 1.3. Let 1 � p < ∞ and ∂Y be a quasicircle. If a homeomorphism 
ϕ : ∂D onto−−→ ∂Y satisfies the p-Douglas condition (i.e. admits a Sobolev extension to 
D in W 1,p(D, C)), then it admits a homeomorphic extension h : C onto−−→ C in the Sobolev 
class W 1,p

loc (C, C).

Note that if p < 2, then any boundary homeomorhism onto a quasicircle satisfies the 
p-Douglas condition.

1.4. Target with piecewise smooth boundary

The most standard examples of singular boundaries which fail to satisfy the Ahlfors’ 
condition (1.3) are cusps. Let Ωβ be an inward cusp domain where the cusp is formed 
by the graph of the function x �→ |x|β near 0, β > 1, and a smooth curve, see Fig. 1. For 
a homeomorphism ϕ : ∂D onto−−→ ∂Ωβ there exists a homeomorphic extension h : C onto−−→ C

which belongs to the Sobolev class W 1,p
loc (C, C) for every p < 2. This follows from our 

solution [22] to the Sobolev Jordan-Schönflies Problem when p < 2 and the boundary of 
target domain being rectifiable. If p = 2, however, the problem fails to have a solution 
for every power-type cusp target, independently of the sharpness of cusp.

Example 1.4. Let Ωβ be an inward cusp domain for some β > 1. Then there is a bound-
ary homeomorphism ϕ : ∂D onto−−→ ∂Ωβ which satisfies the Douglas condition (and hence 
admits a continuous W 1,2–extension) but does not admit a homeomorphic extension 
h : D onto−−→ Ωβ in the Sobolev class W 1,2(D, C).

Surprisingly, p = 2 is the only case when the problem does not have a solution. Indeed, 
we have



A. Koski, J. Onninen / Advances in Mathematics 413 (2023) 108795 7
Theorem 1.5. Let Ωβ be a cusp domain with β > 1. If a homeomorphism ϕ : ∂D onto−−→
∂Ωβ satisfies the p-Douglas condition for some p > 2, then a homeomorphic extension 
h : C onto−−→ C of ϕ lies in W 1,p

loc (C, C).

We obtain this as a corollary of our next result.

Theorem 1.6. Let Y be a domain with piecewise smooth boundary. Then a homeomor-
phism ϕ : ∂D onto−−→ ∂Y which satisfies the p-Douglas condition for some p �= 2 admits a 
homeomorphic extension h : C onto−−→ C in W 1,p

loc (C, C).

Here and in what follows we say that a planar domain Ω has piecewise smooth boundary
if ∂Ω =

⋃m
j=1 Γj , where each Γj is a C 2-regular curve. As mentioned earlier, the result 

of Theorem 1.6 was already obtained in [22] for targets with rectifiable boundaries when 
p < 2. We do not know if Theorem 1.6 is also true for a target Y with rectifiable boundary 
when p > 2.

Let us return to Example 1.4. The key to our construction is a careful analysis of the 
modulus of continuity of the mappings in question. Recall that, a modulus of continuity of 
a mapping f : X → C is a function ωf : [0, ∞) → [0, ∞) if |f(x1) −f(x2)| � ωf

(
|x1 −x2|

)
for all x1, x2 ∈ X. For a homeomorhism h ∈ W 1,2

loc (C, C) we have

1∫
0

[ωh(t)]2

t
dt < ∞ . (1.5)

In Example 1.4, we construct a boundary homeomorphism ϕ : ∂D onto−−→ ∂Ωβ which sat-
isfies the Douglas condition and fails to have the modulus of continuity estimate given 
by (1.5). Therefore, clearly there is no homeomorphism h : C onto−−→ C in W 1,2

loc (C, C) which 
coincides with ϕ on ∂D. The next result shows that the modulus of continuity provided 
with (1.5) is not only necessary for a boundary homeomorphism ϕ : ∂D onto−−→ ∂Ωβ to have 
a homeomorphic extension in W 1,2

loc (C, C) but also sufficient.

Theorem 1.7. Let Y be a domain with piecewise smooth boundary. Then a homeomor-
phism ϕ : ∂D onto−−→ ∂Y which satisfies the Douglas condition admits a homeomorphic 
extension h : C onto−−→ C in W 1,2

loc (C, C) if and only if the boundary homeomorphism ϕ has 
a modulus of continuity ωϕ which satisfies

1∫
0

[ωϕ(t)]2

t
dt < ∞ . (1.6)

1.5. The one-sided Sobolev Jordan-Schönflies Problem

As shown in Example 1.4, there is a boundary homeomorphism ϕ : ∂D onto−−→ ∂Ωβ

satisfying the Douglas condition which does not admit a homeomorphic extension from 
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Fig. 2. An outer cusp domain, Kβ .

D onto Ωβ with finite Dirichlet energy. However, it is still important to investigate under 
which conditions on the target such a one-sided Sobolev extension exists.

A careful examination of Example 1.4 reveals that a potential reason why there is 
no such an extension lies in the fact that the internal distance in Ωβ of a pair of points 
on the cusp is not comparable to their Euclidean distance. It is hence expected that 
quasiconvexity of the target may be necessary to overcome these difficulties. A domain 
K ⊂ C is quasiconvex if each pair of points can be joined by a quasiconvex path. That 
is, there exists a constant c � 1 such that for all points x, y ∈ K there exists a rectifiable 
path γ joining x and y, and satisfying

|γ| � c|x − y| . (1.7)

Here |γ| stands for the length of the quasiconvex path γ. The notion of quasiconvex-
ity plays a prominent role in GFT, see e.g. [10,11,26,34] and the references mentioned 
therein.

An example of such a domain is the complementary domain of Ωβ . For a precise 
formulation, let Kβ be an outer cusp domain where the cusp is formed by the graph of 
the function x �→ |x|β near 0, β > 1, and a smooth curve, see Fig. 2.

Now, for the cusp domains the question reads as follows.

Question 1.8. Suppose that a homeomorphism ϕ : ∂D onto−−→ ∂Kβ satisfies the Douglas 
condition. Does ϕ admit a homeomorphic extension h : D onto−−→ Kβ in W 1,2(D, C)?

An answer to this question follows as a corollary from our last theorem.

Theorem 1.9. Let Y be a quasiconvex domain with piecewise smooth boundary. Then 
a boundary homeomorphism ϕ : ∂D onto−−→ ∂Y admits a Sobolev homeomorphic extension 
h : D onto−−→ Y with finite Dirichlet integral 

∫
D|Dh|2 < ∞ if and only if ϕ satisfies the 

Douglas condition.

2. Extending to a target with piecewise smooth boundary

In this section we prove Theorem 1.6 and Theorem 1.7.
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Fig. 3. The domain Y , split into smaller pieces by smooth crosscuts Γ, and corresponding curves γ ⊂ D.

Proof of Theorem 1.6. We may and do assume that p > 2 because Theorem 1.6 was 
already proved in [22] when p < 2. We suppose that ϕ : ∂D → ∂Y satisfies the p-Douglas 
condition and construct the required extension of ϕ to D via several steps. The proof 
will then be completed by using a reflection argument to extend ϕ to C \ D as well.

Step 1. Reducing the problem.

By definition, ∂Y splits into a finite collection of curves that are locally the graphs of 
smooth functions and their intersection points which are the endpoints of two such curves, 
it is only necessary to construct the required extension in some small neighborhoods of 
these intersection points. Indeed, for each such intersection point which is a common 
point of two C 2-smooth pieces γ1 and γ2 of ∂Y , we may separate this intersection point 
from the rest of the boundary via a smooth crosscut Γ in Y that starts from a smooth 
point on γ1, ends on a smooth point on γ2, and forms any angles of our choice with respect 
to γ1 and γ2. By choosing these angles to be positive we can separate the domain Y into 
a finite collection of such neighborhoods and one domain which is a collection of smooth 
curves intersecting at positive angles, so it is bilipschitz-equivalent to the unit disk. See 
Fig. 3 for an illustration.

Accordingly to this decomposition of the target domain Y , we may split the disk D
on the domain side into a corresponding number of pieces. For example, for each smooth 
crosscut Γ ⊂ Y as defined above, we pick a corresponding crosscut γ in D with endpoints 
equal to the preimages of the endpoints of Γ under ϕ. If the curves γ are chosen close 
enough to ∂D they do not intersect each other and thus separate D into a finite number 
of pieces. Each of these pieces may be assumed to be bilipschitz-equivalent to the disk by 
choosing nice enough curves γ. Thus the problem reduces to constructing the extension 
in each of these pieces separately, which is what we will now do.

Hence it is enough to consider Y as the following domain. The boundary ∂Y consists 
of three smooth curves Γ1, Γ2 and Γ3, where Γ3 intersects the other two curves at a 
positive angle of our choice. The curves Γ1 and Γ2 can be assumed to intersect at an 
angle of zero, as the other case is trivial. Let us denote their intersection point by P . 
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Both of these curves can be assumed to be the graphs of C 2-smooth functions in some 
coordinate system. As for the boundary map ϕ : ∂D → ∂Y , we are to assume that ∂D
splits into three arcs I1, I2 and I3, each the preimage of one of the respective curves Γi

under ϕ. The map ϕ is given from I1 → Γ1 and I2 → Γ2 and satisfies the p-Douglas 
condition on these parts, but from I3 → Γ3 we must explain how to define the map in 
order that it will admit a W 1,p-homeomorphic extension to Y . This is done in a later 
step.

Step 2. Boundary diffusion.

We concentrate on the map ϕ1 = ϕ|I1 : I1 → Γ1. We abuse the notation a bit and 
consider I1 as the unit interval [0, 1] and choose the parametrization so that ϕ(0) = P

is the intersection point of Γ1 and Γ2.
Let S = {(x, y) ∈ C : 0 � x � 1, 0 � y � x} be the unit triangle in the plane. We 

define a map H : S → Γ1, called the boundary diffusion, with the following properties.

(1) H lies in W 1,p(S).
(2) For each t ∈ [0, 1], if Lt denotes the line segment between (0, 0) and (1, t), the map 

H takes Lt homeomorphically onto Γ1.
(3) H|L0 = ϕ1.
(4) H is a smooth map on L1.

First, since Γ1 is a smooth graph we may deform it via a global diffeomorphism and for 
the rest of the construction of H we may assume that Γ1 is the unit interval [0, 1] with 
the intersection point P at 0. The boundary values of H are now easy to define. On 
L0 = [0, 1], we define H equal to ϕ1. On the segment from (0, 1) to (1, 1) we define H
as the constant function 1, and on L1 we simply take H as the projection to the x-axis. 
We then define H inside of S as the p-harmonic extension of these boundary values. To 
show that H lies in W 1,p(S), it then simply remains to verify that the boundary values 
H|∂S satisfy the p-Douglas condition

∫
∂S

∫
∂S

|H(x) − H(y)|p

|x − y|p dy dx < ∞. (2.1)

We split this integral into multiple parts depending on which side of ∂S the points x
and y lie. If x and y lie on the same side, the integral is easy to control since on two of 
the sides H is either a constant or linear function and on the last one it is equal to ϕ1
which was already assumed to satisfy the p-Douglas condition. The only nontrivial cases 
are when x ∈ L0 and y lies on one of the other sides. Both of these cases are dealt with 
in the same way so let us assume that y lies on L1. Then we estimate as follows:

∫ ∫ |H(x) − H(y)|p

|x − y|p dy dx �
∫ ∫ |H(x) − H(0)|p

|x − y|p dx dy
[0,1] L1 [0,1] L1
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=
∫

[0,1]

|H(x)|p
⎛
⎝∫

L1

1
|x − y|p dy

⎞
⎠ dx

� C

∫
[0,1]

|H(x)|p

|x|p−1 dx .

It remains to show that the last integral is finite, using the fact that H satisfies the 
p-Douglas condition from [0, 1] onto itself (since H = ϕ1 on [0, 1]). Our proof for this 
claim is quite complicated. We state the claim as the following lemma. Note also that 
this lemma is the only part where the assumption p > 2 is used.

Lemma 2.1. Suppose that f : [0, 1] → [0, 1] is homeomorphic, f(0) = 0 and f satisfies 
the p-Douglas condition on [0, 1] with p > 2. Then

1∫
0

|f(x)|p

|x|p−1 dx < ∞.

Proof of Lemma 2.1. Let us denote by Uj = [2−(j+1), 2−j ] the dyadic intervals for j =
0, 1, 2, . . .. We know from the p-Douglas condition that

∞∑
j=1

∫
Uj+1

∫
Uj−1

|f(x) − f(y)|p

|x − y|p dy dx < ∞.

For x ∈ Uj−1 and y ∈ Uj+1 we estimate that 2−j−1 � |x −y| � 2−j+1 and |f(x) −f(y)| �
|f

(
2−j

)
− f

(
2−(j+1)) |. Setting aj := f(2−j) we thus obtain

∞∑
j=0

2(p−2)j(aj − aj+1)p < ∞.

Define α = 2(p−2)/(2p), from which we see that α > 1 and 2(p−2)j = α2pj . Furthermore, 
define cj such that

cp
j = (aj − aj+1)pα2pj .

Hence 
∑∞

j=1 cp
j < ∞. Moreover, we see that aj −aj+1 = cjα−2j . Since aj → 0 as j → ∞, 

we may sum this up to get that

ak =
∞∑

j=k

aj − aj+1 =
∞∑

j=k

cjα−2j .

We now estimate via Hölder’s inequality that
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∞∑
k=0

ap
kα2pk =

∞∑
k=0

⎛
⎝ ∞∑

j=k

cjα−2j

⎞
⎠

p

α2pk

�
∞∑

k=0

⎛
⎝ ∞∑

j=k

cp
j α−pj

⎞
⎠

⎛
⎝ ∞∑

j=k

α− p
p−1 j

⎞
⎠

p−1

α2pk

= C
∞∑

k=0

⎛
⎝ ∞∑

j=k

cp
j α−pj

⎞
⎠ (

α− p
p−1 k

)p−1
α2pk

= C

∞∑
k=0

∞∑
j=k

cp
j αp(k−j)

= C2

∞∑
j=0

cp
j

j∑
k=0

αp(k−j)

� C2

∞∑
j=0

cp
j

< ∞.

Hence we have shown that 
∑∞

k=0 ap
k2(p−2)k < ∞. Now if x ∈ Uk, then f(x) � ak. Hence

1∫
0

|f(x)|p

|x|p−1 dx =
∞∑

k=0

∫
Uk

|f(x)|p

|x|p−1 dx � C

∞∑
k=0

ap
k2−k 1

2−k(p−1) < ∞.

This finishes the proof of Lemma 2.1. �
Returning to the proof of Theorem 1.6, we have now shown all but one of the claimed 

properties of the boundary diffusion H. It remains to address the second point of showing 
that H takes Lt homeomorphically onto Γ1 = [0, 1].

First of all, since H is chosen as the coordinate-wise p-harmonic extension of its 
boundary values on ∂S. The p-harmonic energy of H = u + iv : S → C is defined by

∫
S

(|∇u|p + |∇v|p) .

The p-harmonic mapping H has the smallest p-energy of all extensions. Since H maps 
the endpoints of Lt to 0 and 1 due to the chosen boundary values, the image of Lt under 
H must be the whole unit interval [0, 1] by continuity. From this we can infer that H
must also map Lt increasingly onto [0, 1] since otherwise we could redefine H on each 
Lt as the smallest increasing replacement of H|Lt

and this would yield a map of strictly 
smaller p-energy on S.



A. Koski, J. Onninen / Advances in Mathematics 413 (2023) 108795 13
While this does not yet show that H is injective on each Lt, we will argue that after 
a minor modification of H we obtain a map with all of the desired properties. First, 
due to the classical regularity results for p-harmonic functions we find that H is C 1 in 
the interior of the triangle S, see [33]. Letting ∂r denote the directional derivative in 
the radial direction, which is also the direction of the segments Lt, we find that the set 
S+ = {z ∈ S : ∂rH(z) > 0} must be open. For each t, there must be at least one point 
zt on Lt which belongs to S+ since H maps Lt to the whole unit interval. Let rt > 0
denote a radius so that the ball B(zt, rt) is compactly contained in S+. We may now 
choose a sequence zt1 , zt2 , zt3 , . . . of points from the zt such that the union of all the balls 
B(ztj

, rtj
/2) intersects every possible ray Lt, t ∈ (0, 1).

For each j = 1, 2, . . ., let Sj ⊂ S denote the set defined as the union of all line segments 
Lt which intersect the ball B(ztj

, rtj
/2), and Vj the set Sj ∩ B(ztj

, rtj
). We now choose 

a smooth function ψj : C → R supported on Sj with the following two properties.

• If z ∈ Vj , then ψj(z) < 0 and if z ∈ Sj \ Vj , then ψj(z) > 0.
• The integral of ψj over each segment Lt is zero.

Such a function is not difficult to construct so we omit the details. We then scale ψj down 
so that both |ψj | and |∇ψj | are uniformly bounded from above by 2−j. If necessary, we 
scale ψj further down so that the inequality

∂rH > −2jψj (2.2)

always holds in B(ztj
, rtj

) - this is possible since ∂rH � c > 0 on B(ztj
, rtj

) by continuity. 
We then define a function Ψj by

Ψj(reiθ) =
r∫

0

ψj(teiθ)dt.

Hence ∂rΨj = ψj . Due to the bounds on ψj and ∇ψj , the sum

Ψ :=
∞∑

j=1
Ψj

converges in W 1,p(C).
We now note that the map Ψ + H satisfies all the properties 1, 3 and 4 we required 

from H and is also injective on each Lt; that is, it satisfies the property 2. To verify 
this, Ψ is zero on ∂S the boundary values are unchanged. Since Ψ is in W 1,p(C) the 
Sobolev-regularity is preserved. We now claim that ∂r(Ψ + H) > 0. If we are in one of 
the sets B(ztj

, rtj
), the inequality (2.2) applies. Hence we find that
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−∂rΨ =
∞∑

j=1
−ψj <

∞∑
j=1

2−j∂rH = ∂rH.

If a point z does not belong to any of the B(ztj
, rtj

), we have that ψj(z) � 0 for all j. 
Furthermore, z must belong to one of the segments Lt. Take a j so that Lt intersects 
B(ztj

, rtj
/2), which implies that z belongs to the set Sj \ Vj . Since ψj is positive on this 

set we find that

∂rΨ(z) + ∂rH(z) � ψj(z) + ∂rH(z) > 0.

This proves our claimed property ∂r(Ψ + H) > 0, which implies that the map Ψ + H is 
injective on Lt. Thus a map with the claimed properties 1-4.

Step 3. Regularizing the boundary map.

Let us again return to the case where Y consists of three curves Γ1, Γ2 and Γ3 as before 
in Step 1. Our aim is to slightly deform Γ1 inside the domain Y and use the boundary 
diffusion to replace our given boundary value with a smooth map. To this end, suppose 
via affine transformation that Γ1 is the graph of a smooth function Φ over the interval 
[0, T0] on the x-axis, with the intersection point P laying at the origin. We may also 
suppose that locally the domain Y is below the curve Γ1 and the complement is above 
it. Since there was some freedom in choosing Γ3, we may suppose that Γ3 contains a 
small vertical segment which starts from (T0, Φ(T0)) and ends at (T0, (1 − ε)Φ(T0)).

Let us now modify the boundary diffusion H defined earlier to define a new map. 
Writing the boundary diffusion H in coordinates as

H(x, y) = ( A(x, y) , Φ(A(x, y)) ),

where Φ denotes the smooth function whose graph Γ1 is. Let f : [0, 1] → [0, 1] be a 
smooth strictly increasing function with f(0) = 0 which will be “small”, exactly how 
small we will choose later. We use f to define a new map H∗ on the triangle S as

H∗(x, y) :=
(

A(x, y) ,
(

1 − y

x
f(A(x, y))

)
Φ(A(x, y))

)
.

Let us now explain the properties of H∗ and also how f is chosen. First of all we wish 
to verify that H∗ lies in the Sobolev space W 1,p(S). Since A(x, y) is the real part of H, 
we find that A ∈ W 1,p(S). As f and Φ are smooth functions, the issue only lies in the 
factor y/x in the definition of H∗ which is bounded in S but does not have a bounded 
derivative.

Thus to conclude that H∗ ∈ W 1,p(S), we must show that the expression y
x2 f(A(x, y))

remains bounded in S. Since y � x in S, we only require that f(A(x, y)) � x. For 
each x, we consider the quantity τ(x) = maxy�x A(x, y). By the construction of H, in 
particular the fact that H takes each of the segments Lt homeomorphically onto Γ1 and 
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continuity, we find that τ is strictly increasing, continuous, and τ(0) = 0. Let τ−1 denote 
its inverse function. Choosing now f to be smooth, strictly increasing, and so small that 
f(t) � τ−1(t), we find that f(A(x, y)) � f(τ(x)) � x. Hence H∗ ∈ W 1,p(S).

Now note that on each Lt, the quantity y/x is the constant t and hence the map H∗

takes each line segment Lt homeomorphically onto the curve

γt(s) := ( s , (1 − tf(s))Φ(s) ).

These curves are the graphs of smooth functions over [0, T0] which start at the origin. 
Note that the smaller function f is, the closer these curves are to Γ1. Hence we may 
choose f so small that all of these curves lie in Y . Let now Y0 denote the region bounded 
by Γ1, γ1, and the vertical line segment between (1, Φ(1)) and (1, (1 − f(1))Φ(1)) which 
joins the other endpoints of the former two curves. This vertical line segment may be 
assumed to be a part of Γ3. This way H∗ becomes a W 1,p-Sobolev homeomorphism 
from S to Y0 ⊂ Y . Moreover, since H is Lipschitz on L1 we find that H∗ is a Lipschitz 
map from L1 to γ1 and it is also a linear map on the line segment from (1, 0) to (1, 1). 
Moreover, it is equal to the given boundary value ϕ1 on L0.

Step 4. Finishing the proof.

In essence, the construction of the map H∗ has allowed us to replace the boundary value 
ϕ1 by a Lipschitz boundary value γ1 which is part of the boundary of the slightly smaller 
domain Y \ Y0. This allows us to assume from the beginning that ϕ1 is Lipschitz. From 
a similar construction on Γ2 we may further assume that ϕ is Lipschitz on the whole 
boundary of D. But then it admits a homeomorphic Lipschitz-extension by Theorem 1.1. 
Hence we have shown that ϕ : ∂D → ∂Y admits a homeomorphic extension h : D → Y

in W 1,p(D).
To extend the map h into the complement C \D is now quite simple. For example we 

may use the following reflection argument. Suppose that 0 ∈ D and 0 ∈ Y . Let τ(z) = 1/z

denote an inversion map, and define Y∗ = τ(Y ) so that Y∗ is also a piecewise smooth 
domain. Consider the boundary map τ ◦ ϕ : ∂D → ∂Y∗. Since τ is locally bilipschitz in 
C \{0}, τ ◦ϕ satisfies the p-Douglas condition. It thus admits a homeomorphic extension 
h∗ : D → Y∗ in W 1,p(D). Now if z ∈ C \ D, we define h(z) = τ(h∗(τ(z))). Again using 
the fact that τ is locally bilipschitz in C \ {0}, the identity on ∂D and an involution, we 
readily see that this defines h : C → C as a homeomorphism in W 1,p

loc (C, C) and equal 
to ϕ on ∂D. �
Proof of Theorem 1.7. The proof of this theorem is simply a repeat of the above proof 
of Theorem 1.6. The only part where the assumption p > 2 was used in that proof was 
in the proof of Lemma 2.1. However, it is clear that the assumption (1.6) implies the 
statement of Lemma 2.1 in our case. Thus the proof is complete. �
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3. The general extension result

In this section we prove the following general extension result, which will be used in 
the proofs of Theorem 1.3 and Theorem 1.9. This result may also be of independent 
interest as we expect it could be applied to future studies as well. Before stating the 
theorem, we describe the notion of a dyadic family of arcs on ∂D.

For a fixed n0 ∈ N, a family of closed arcs I = {In,j ⊂ ∂D : n � n0, j = 1, 2, . . . , 2n}
is called dyadic if the following conditions hold. For each fixed n there are 2n arcs In,j

in I which are of equal length, pairwise disjoint apart from their endpoints, and cover 
∂D. For each arc In,j there are two arcs in I of half the length of In,j and so that their 
union is exactly In,j , these intervals are called the children of In,j and In,j is the parent.

Theorem 3.1. Suppose that Y is a Jordan domain and ϕ : ∂D → ∂Y is a boundary 
homeomorphism. For n0 ∈ N suppose that there is a dyadic family I = (In,j) of closed 
arcs on ∂D such that the following hold.

• For each In,j with n � n0 there exists a crosscut Γn,j in Y connecting the two 
endpoints of the boundary arc ϕ(In,j) ⊂ ∂Y and such that the estimate

∞∑
n=n0

2(p−2)n
2n∑

j=1
|Γn,j |p < ∞ (3.1)

holds.
• The crosscuts Γn,j for n � n0 are all pairwise disjoint apart from their endpoints at 

the boundary, where n, j are allowed to range over all their possible values.

Then ϕ admits a homeomorphic extension from D to Y in the class W 1,p(D).

Proof. Note first that since the curves Γn,j are constructed based on the dyadic family I, 
the notion of children and parents is inherited from I to these curves. The outline of the 
proof is simple. We a make a dyadic type decomposition of D with sets Un,j . Accordingly 
we split our target domain Y into sets Vn,j which correspond to the image of Un,j. The 
length of the boundary of Vn,j is controlled by the length of Γn,j and its children. We 
then obtain the desired extension by constructing a Lipschitz homeomorphism from each 
Un,j onto Vn,j , and control the Sobolev-norm by the sum in (3.1). The proof is split into 
a number of steps as follows.

Step 1. Reducing the problem to a triangle.

We first consider the highest generation of curves Γn0,j , j = 1, . . . , 2n0 . These curves 
split the domain Y into one central domain Y0 and 2n0 domains Yj , j = 1, . . . , 2n0 , 
which are bounded by the Γn0,j and the boundary arcs ϕ(In,j). On D we make a similar 
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construction, connecting the endpoints of the arcs In,j via smooth, pairwise disjoint 
curves in D so that D also splits into a central domain D0 and 2n0 domains Dj . We 
choose these smooth curves to form positive angles with ∂D and each other so that all 
of these domains Dj , j = 0, . . . , 2n0 are piecewise smooth with no angles of size zero on 
the boundary.

We wish to define the homeomorphic extension h : D → Y of ϕ so that it sends 
the smooth curves bounding the Dj inside D at constant speed to the curves Γn0,j . If 
this is done, then it is enough to define how h maps Dj to Yj for all j = 0, . . . , 2n0 . 
For the central domain case j = 0, since D0 is bilipschitz-equivalent with the unit disk 
we may simply use a Lipschitz homeomorphic extension from D0 onto Y0 as given by 
Theorem 1.1.

To finish our reduction, let T denote the isosceles triangle in the plane with vertices 
at (−1, 0), (1, 0) and (0, 1). Since each of the sets Dj is bilipschitz-equivalent with T , 
we replace the sets Dj with T in our construction. Since the construction is similar for 
each j, we suppose that j = 1. We may also suppose that our given boundary map, still 
denoted by ϕ but now defined on ∂T with some abuse in notation, maps the base of 
the isosceles ∂T on the real line to ∂Y and the legs onto the curve Γn0,1 with constant 
speed. The arcs In,j can now be supposed to lie on the real line and form a dyadic 
decomposition of the base [−1, 1] of T . This can be done by choosing the bilipschitz map 
from D1 to T to map the boundary arc In0,1 to [−1, 1] at constant speed. It remains to 
see how the extension h is defined from T to Y1.

Step 2. Defining the decomposition of T and Y1.

We first define sets Un,j ⊂ T as follows. Let (αn) denote a fixed strictly decreasing 
sequence of angles so that αn0 = π/4 and αn → π/5 as n → ∞. For each interval In,j

we define a curve τn,j over this interval, called the legs of In,j , by letting τn,j consist of 
the legs of an isosceles triangle with base In,j and base angles equal to αn. Thus the legs 
of the largest dyadic interval, which is simply [−1, 1], are the legs of the original triangle 
T . Now for each interval In,j , the set Un,j is the set bounded by the legs τn,j and the 
legs of the two children of In,j . We denote the children of In,j by I−

n,j and I+
n,j from left 

to right and their legs by τ−
n,j and τ+

n,j respectively. The idea is that the extension h will 
map the legs τn,j onto the curve Γn,j . See Fig. 4 for the splitting of triangle T into parts.

We define sets Vn,j ⊂ Y analogously to the sets Un,j . For each interval In,j, we consider 
the corresponding curve Γn,j and its two children, denoted by Γ−

n,j and Γ+
n,j . Then the 

set Vn,j is defined as the set bounded by these three curves in Y , see Fig. 5.

Step 3. Defining the map h from Un,j to Vn,j .

We would like to simply take a Lipschitz homeomorphism from Un,j to Vn,j , but since 
the sets Un,j have angles that tend to zero as n → ∞ they are not uniformly bilipschitz-
equivalent to a scaled down copy of the unit disk. Therefore we must find another way to 
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Fig. 4. Splitting the triangle T into parts.

Fig. 5. The construction of the curves inside Y .

construct h on Un,j . We do this by first splitting Un,j into three smaller sets. Note that 
the midpoint of the interval In,j is the endpoint of two line segments on the boundary of 
Un,j . We extend these segments to the opposite direction from this midpoint until they 
meet the legs τn,j . This splits the set Un,j into one central quadrilateral Sn,j and two 
thin triangles S−

n,j and S+
n,j with one angle equal to βn = αn − αn+1. The sets Sn,j , S−

n,j

and S+
n,j are defined in Fig. 6.

We must split the set Vn,j similarly into three regions. To facilitate this, we will let dn

denote a very small distance to be defined in a moment. For each curve Γn,j we isolate 
two parts of length dn from this curve which start from the two endpoints Γn,j, called 
γ−

n,j and γ+
n,j respectively and so that the ±-signs match the children of Γn,j. Let us 

concentrate on the endpoint of Γn,j where γ−
n,j starts from. We denote the part of Γ−

n,j

(the child of Γn,j) which starts from this endpoint and has length dn+1 by γ−−
n,j . We 
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Fig. 6. The sets Sn,j , S−
n,j and S+

n,j defined.

connect the other endpoints of γ−
n,j and γ−−

n,j by a curve of length at most 2(dn + dn+1)
inside Vn,j to separate a small “triangle” R−

n,j from Vn,j . The existence of such a curve 
is obvious as we may simply slightly deform the union of the curves γ−

n,j and γ−−
n,j to 

obtain one. We similarly define R+
n,j , and the remaining part of Vn,j is denoted by Rn,j , 

see Fig. 5.
We now construct a homeomorphism from S−

n,j to R−
n,j as follows. The numbers dn will 

be chosen here. First of all, we must have that for each n, dn < minj |Γn,j |/2 or otherwise 
the construction does not make sense. Second, we will require that the sequence (dn) is 
decreasing, which means that the perimeter of R−

n,j is comparable to dn. We will first 
construct the map h as a homeomorphism from ∂S−

n,j to ∂R−
n,j so that it takes each side 

of the triangle S−
n,j at constant speed to one of the curves γ−

n,j, γ−−
n,j , and the third curve 

that bounds R−
n,j . The order of which side goes to which curve is determined since we 

require that h maps each τn,j to Γn,j . We must now choose dn so small that h extends 
to a Lipschitz homeomorphism from S−

n,j to R−
n,j with Lipschitz constant at most 4−n. 

This can be done since we can first map S−
n,j to the unit disk via a bilipschitz map, and 

although the Lipschitz constant of this map blows up when n → ∞ we may choose dn

small enough so that when composed with the Lipschitz homeomorphic extension from 
Theorem 1.1 the Lipschitz constant of the combined map is less than 4−n.

At this point we may already note that the Sobolev-norm of h over all the sets S−
n,j

can be estimated from above by

∫
⋃

n,j S−
n,j

|Dh|p dx dy �
∞∑

n=n0

2n∑
j=1

|S−
n,j |4−pn �

∞∑
n=n0

2n4−pn < ∞,

where we have simply observed that |S−
n,j| � 1. We similarly map each S+

n,j to R+
n,j with 

an analogous estimate on these sets.
It remains to see how the central quadrilateral Sn,j ⊂ Un,j is mapped to Rn,j . Again, 

we first define h on ∂Sn,j . The map h is already defined on four small parts of ∂Sn,j. 
Two of these are the common parts with S−

n,j and S+
n,j . The other two lie on the line 

segments τ−
n,j and τ+

n,j which both end at the midpoint of In,j . These latter ones get 
mapped to curves of length dn+1 which are part of the two children of Γn,j. Nevertheless, 
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the Lipschitz constant on each of these four parts is less than 4−n so they will not 
play a role in our estimates. On the rest of the boundary, which is now made up of 
three connected parts, we define h at constant speed. This defines h uniquely as we 
require that h maps each τn,j to the curve Γn,j . Since the length of the set ∂Sn,j is 
comparable to 2−n, the Lipschitz constant of h on ∂Sn,j is thus controlled by 2n|∂Vn,j |, 
where |∂Vn,j | = |Γn,j | + |Γ−

n,j | + |Γ+
n,j | is the perimeter of Vn,j . Note that the set Sn,j

is uniformly bilipschitz-equivalent to a disk of radius 2−n due to the fact that αn is 
bounded from below. Hence we may scale up by 2n and again apply Theorem 1.1 to find 
a homeomorphic Lipschitz extension h : Sn,j → Rn,j with Lipschitz constant at most 
C2n|∂Vn,j |.

In total, this gives the estimate

∫
⋃

n,j Sn,j

|Dh|p dx dy � C

⎛
⎝1 +

∞∑
n=n0

2n∑
j=1

2−2n (2n|∂Vn,j |)p

⎞
⎠ .

The sum on the right hand side above is finite due to our assumption (3.1). Thus h lies 
in W 1,p and defined in this way, h : D → Y is also a homeomorphism which agrees with 
ϕ on the boundary. Thus the proof is complete. �
4. The counterexamples

In this section we prove Theorem 1.2 and provide explanation for Example 1.4.

Proof. We are to construct a Jordan domain Y and a boundary homeomorphism ϕ :
∂D → ∂Y which admits a Sobolev extension but not a homeomorphic one. We first give 
a short outline of the construction.

The basic idea is that the boundary of Y will contain two snowflake-like arcs of infinite 
length. These two arcs will get closer to each other towards their common endpoint, so 
that this endpoint cannot be approached by a curve with finite length from the inside of 
Y . We then define a boundary map from ∂D which sends a lot of mass to the endpoint. 
We will exploit the fact that both of these arcs are parts of a quasicircle to guarantee 
that the boundary map has a Sobolev extension. On the other hand since a large amount 
of mass is sent to a boundary point it is difficult to approach from the inside of Y . This 
will show that a homeomorphic extension has infinite W 1,1-energy.

Let us first discuss snowflakes. The typical Koch-type snowflake curve is constructed as 
follows. We choose a parameter τ ∈ (1/4, 1/2), take the unit interval I0 = [0, 1] and 
replace this interval by four line segments of length τ as in Fig. 7 to obtain a new curve 
I1. We then continue this process, replacing each segment in In by the configuration 
in Fig. 7 appropriately scaled, translated and rotated to match the endpoints of the 
segment. The limit curve of this process is called a Koch-type snowflake and it always 
has infinite length.
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Fig. 7. The base curve used to construct a snowflake.

Fig. 8. Joining two neighboring rectangles.

For a number ε > 0 and fixed n ∈ N, we define an ε, n-snowflake tube In,ε, which 
is a piecewise linear Jordan curve, as follows. We first take the curve In from above 
and remove one quarter of its segments by removing exactly those segments that were 
constructed based on the rightmost segment of I1. This gives a new curve I ′

n and the tube 
In,ε is defined by constructing the following curve around I ′

n. For each line segment S in 
I ′

n, we take a rectangle with the same width as S and height 2ε, placed so that the edges 
of length 2ε are perpendicular to S and contain the endpoints of S as their midpoints. 
In all cases the parameter ε may be chosen as small as we wish and it will be chosen 
small enough that the height of each rectangle is always less than 1/10 of the width. For 
each two rectangles R1 and R2 based on two neighboring segments, we join the two ends 
of these rectangles which intersect as in Fig. 8. For a more formal description of this 
conjoining process: First remove the two intersecting shorter sides from each of the two 
rectangles. Then remove the shorter ends of the two longer sides that intersect. Finally 
extend the two longer sides which do not intersect until they do. See also Fig. 9 for an 
example of the end result. For the first and last segment of I ′

n, going from left to right, 
the rectangle constructed on that segment has two edges that did not need to be joined 
with another rectangle. We call these two segments the left- and right end-edges of In,ε

respectively.
We now define a way to join these types of tubes to create the boundary of a Jordan 

domain Y . Given a rapidly decreasing sequence ε1, ε2, . . . of positive numbers and a 
sequence of positive integers n1, n2, . . . we define a curve Γ as follows. We first consider 
the curve In1,ε1 . We take the curve In2,ε2 , scale it by a factor of 1/4 to create a new curve 
I ′ and translate it so that the right end-edge of In1,ε1 and the left end-edge of the scaled 
curve I ′ have the same midpoint. We then modify the curve In1,ε1 slightly by scaling and 
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Fig. 9. An example of a ε, n-snowflake tube.

Fig. 10. Joining two tubes.

rotating its right end-edge so that this edge will be equal to the left end-edge of I ′. We 
have essentially joined the first tube with the second one, scaled down, see Fig. 10. We 
continue this process, adding each tube Inj,εj

to the previous one by scaling it down to 
1/4 of the previous one, translating it appropriately and modifying the right end-edge 
of the previous one to align with the left end-edge of the scaled and translated copy of 
Inj ,εj

. After scaling down each tube Inj ,εj
, translating it and modifying the right end-

edge so that the next tube is able to be joined, the area surrounded by this modified tube 
will be denoted by Yj and called the j:th part of Y . Continuing this process infinitely 
makes this process converge to a Jordan domain Y . The boundary ∂Y can be thought 
of as being an union of three parts: the leftmost vertical line segment L1 which is the 
left end-edge of In1,ε1 and the two parts L2 and L3 which the remaining boundary splits 
into when we divide it at the rightmost point of ∂Y .

The specific choice of the sequences (εj) and (nj) above is not important as long as 
the following conditions are satisfied. We choose each nj so large and εj so small that to 
traverse from the left end-edge of Yj to its right end-edge the minimal path length is at 
least 4j .

We now define the boundary map ϕ : ∂D → ∂Y . First, we split ∂D into three arcs 
A1, A2 and A3, say each of length 2π/3. Under ϕ, we map each Aj to the part Lj of 
∂Y as follows. First, we map A1 at constant speed to the segment L1. For j = 2, 3 the 
construction is the same in both cases, so we will just explain how A2 is mapped to L2. 
We divide A2 into disjoint arcs a1, a2, . . . so that |aj | = 4|aj+1| in the most natural way, 
meaning that one of the endpoints of a1 is also an endpoint of A1 and the arcs aj and 
aj+1 always share an endpoint. See Fig. 11 for a rough illustration of the whole picture.
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Fig. 11. A rough illustration of how ∂D is divided and mapped to the target domain Y .

We map each arc aj to the corresponding part 
j = Yj ∩ L2 on L2 by noting that 
j

consists of 4nj segments of equal length except possibly for one segment at the rightmost 
end which could have a slightly different length due to the fact that we had to modify it 
to glue Yj to the next part Yj+1, however the length of that segment can be supposed to 
be comparable to the others by a constant independent of j. Hence we split the arc aj

also into 4nj equal length smaller arcs and map these each at constant speed to segments 
in 
j . This completely defines the map ϕ from ∂D to ∂Y .

Note now that both curves L2 and L3 are arcs of a quasicircle since even though they 
are not exactly the Koch snowflake curve, they can both be associated to a larger class of 
snowflake curves as defined by Rohde in [30]. In particular, they are bilipschitz equivalent 
to such a snowflake curve since there are some slight deformations from the gluing process 
for example. Moreover, the boundary map ϕ from each Aj to Lj is quasisymmetric and 
Hölder-continuous, the verification of this takes some more work but it is done in [21], 
proof of Theorem 1.6. The Hölder-exponent of ϕ can be chosen to be arbitrarily close to 
1 by making the parameter τ smaller. It is easy then to verify that for each p > 1, there 
is τ > 1/4 so that ϕ admits a W 1,p-Sobolev extension since the p-Douglas condition is 
always satisfied by a Hölder-continuous mapping with Hölder-exponent close enough to 
1. It remains to verify that no homeomorphic extension exists.

Suppose that ϕ would admit a W 1,1-homeomorphic extension h : D → Y . We split 
the arc A1 ⊂ ∂D into sub-arcs b1, b2, . . . in counterclockwise order so that |bj| = 4|bj+1|. 
Suppose that the arc A2 is the neighbor of A1 which is before A1 in counterclockwise 
direction, as in Fig. 11. For each j � 2, we then connect each arc bj with the arc aj ⊂ A2

from before by straight line segments between each pair of points in them. The union 
of these line segments will be called Rj , and the sets Rj have disjoint interiors. See 
Fig. 12. We may abuse notation and think of each Rj as a rectangle of width 1 and 
height 4−j , since they are bilipschitz-equivalent to such a rectangle with a bilipschitz 
constant independent of j.

The smaller, vertical sides of each rectangle Rj are thought to be part of ∂D, with 
one side in A1 mapped to the line segment L1 and one side aj ⊂ A2 mapped to 
j ⊂ L2. 
Each of the horizontal line segments between these two vertical sides is mapped to a 
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Fig. 12. The “rectangle” R2.

curve in Y which starts at L1 and ends at 
j . By construction, such a curve has length 
comparable to at least 4j by a uniform constant C. Thus

∫
Rj

|Dh| dx dy =

1
4j∫

0

1∫
0

|Dh| dx dy � C

1
4j∫

0

4j dy = C.

Since the energy over the sets Rj is not summable in j, this contradicts the assumption 
h ∈ W 1,1(D) and completes the proof. �

Next, we provide explanation for Example 1.4.

Proof. Using a conformal map, the result of this example was already shown in [22] but 
with some restrictions on the range of β (the polynomial degree of the cusp). Here we will 
provide a more direct construction and use the same reasoning to provide an example 
for every β > 1.

It is known that a homeomorphism of W 1,2-regularity cannot have a local modulus of 
continuity worse than ω(x) = log−1/2(e +1/x). Hence to find a boundary homeomorphism 
which satisfies the Douglas condition but cannot be extended as a W 1,2-homeomorphism 
to the inner cusp region Ωβ, it would be enough to find a boundary map with a modulus of 
continuity worse than ω(x) above but which can be extended as a W 1,2-homeomorphism 
to the complement of Ωβ. Since the domain Ωβ is smooth apart from the cusp of degree 
β, we may restrict our considerations to a neighborhood of this cusp. Hence it would be 
enough to find a boundary map from some Lipschitz domain to an region with an outer 
cusp of degree β so that the boundary map has a modulus of continuity worse than ω
and admits an extension as a W 1,2-homeomorphism to this outer cusp region.

Let f(x) = c log−ε(x), where ε < 1/2 is chosen so that βε > 1/2 and the constant c is 
such that f(1) = 1. Let X = {(x, y) ∈ R2 : 0 � x � 1, |y| � x} be a triangular region 
and Y = {(x, y) ∈ R2 : 0 � x � 1, |y| � xβ} be a cusp. We define a map h : X → Y by
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h = (u, v) =
(

f(x), f(x)β y

x

)
,

so that h maps vertical segments to vertical segments and its modulus of continuity is 
comparable to f on the boundary. We wish to verify that h belongs to W 1,2(X). The 
relevant derivatives are

ux = f ′(x), vx = βf ′(x)f(x)β−1 y

x
and vy = f(x)β

x
.

Since both f(x)β−1 � 1 and y
x � 1, we find that |vx| � |ux| so we may omit vx from our 

considerations. For the rest, we compute that

∫
X

|Dh|2 dy dx � C

1∫
0

⎛
⎝

x∫
−x

dy

⎞
⎠ (

f ′(x)2 + f(x)2β

x2

)
dx

= 2Cc2
1∫

0

(
1

x log2+2ε(x)
+ 1

x log2βε(x)

)
dx.

This integral is finite since both 2 +2ε > 1 and 2βε > 1. Since h has the required modulus 
of continuity on the boundary, the proof is complete. �
5. Extending to a quasidisk

In this section we prove Theorem 1.3.

Proof. We wish to simply apply Theorem 3.1 to obtain an extension of ϕ to D. After this 
is done, it will be trivial to extend the map to C \D as well, for example by reflecting it 
via bilipschitz map on both the domain and the target side using the reflection property 
for quasidisks - see for example Chapter II.2 in [10]. To verify the conditions required 
by Theorem 3.1, we let I = (In,j) denote a collection of dyadic arcs on ∂D. To recall 
briefly what this means, for each fixed n there are 2n arcs in I which are of equal length 
and cover ∂D disjointly apart from their endpoint. For each arc In,j there are two arcs 
in I of half the length of In,j and so that their union is exactly In,j , called the children
of In,j . We also call the offspring of such an interval the collection of its children, the 
children of its children, and so forth.

We next define a collection Γ = (Γn,j) such that each curve Γn,j connects the two 
endpoints of the boundary arc ϕ(In,j) ⊂ ∂Y . In fact, Γn,j may be chosen as the hyperbolic 
geodesic in Y between these two endpoints. For the readers convenience, we recall here 
the definition of such curves.

Definition 5.1. Let Y be a Jordan domain and pick a conformal map g : D → Y . Given 
two points a, b ∈ Y , the hyperbolic geodesic γ ⊂ Y between a and b is defined as g(γ′), 
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where γ′ denotes the unique geodesic between g−1(a) and g−1(b) under the Poincaré 
hyperbolic metric

ds2 = 4dzdz

(1 − |z|2)2 .

The geodesics in this metric are circular arcs whose endpoints are orthogonal to ∂D. 
This definition is independent of the choice of g.

The notion of children and offspring is inherited from the collection I to the collection 
Γ. It remains to verify that the curves in Γ are pairwise disjoint and that

∞∑
n=1

2(p−2)n
2n∑

j=1
|Γn,j |p < ∞.

Verifying that these hyperbolic geodesics are pairwise disjoint is not too difficult. Suppose 
first that two such curves Γ1 and Γ2 share exactly one endpoint. Then we consider the 
unique conformal map g : D → Y which, for each endpoint P of Γ1 or Γ2, maps ϕ−1(P )
to P . The preimages of Γ1 and Γ2 are also hyperbolic geodesics in D since g is conformal, 
and since these preimages are disjoint in D also Γ1 and Γ2 must be disjoint. An immediate 
consequence of this observation is that each Γn,j is disjoint with its two children. Since 
the children of each Γn,j must then belong to the region in Y bounded by Γn,j and 
ϕ(In,j), we find by an easy induction argument that the offspring of each Γn,j must also 
be pairwise disjoint and disjoint with Γn,j . We also observe that for each pair of curves 
that are disjoint and neither is the offspring of the other, both of their offspring must 
then also be disjoint with the others’. It hence only remains to check what happens for 
small values of n.

For n = 1 there are only two intervals I1,1 and I1,2, and their images under ϕ share 
two endpoints so Γ1,1 = Γ1,2. The claim is hence false in this case but this is obviously 
only a technicality, as we may forget about the case n = 1 in a moment. It is worth to 
note that Γ1,1 splits the domain Y into two domains, each of which must contain two 
of the curves Γ2,j , j = 1, 2, 3, 4. These curves are disjoint from Γ1,1 since each of them 
shares one endpoint with it, and the two which are in the same component are also 
disjoint since they have a common endpoint. Hence they are all mutually disjoint, which 
proves the claim.

Let us now aim for the desired estimate on the lengths of |Γn,j|. For each dyadic interval 
In,j ∈ I, we let I− and I+ denote its neighbors, i.e. the two arcs in I of same length as 
In,j which share an endpoint with In,j. Let d denote the Euclidean distance between the 
endpoints of Γn,j . If x ∈ I− and y ∈ I+, then by the three-point property (1.4) of the 
quasicircle ∂Y we have that |x − y| � 3 · 2−n and |ϕ(x) − ϕ(y)| � C0d, where C0 is some 
uniform constant. We then recall that since Y is a quasidisk, it satisfies the hyperbolic 
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segment property, see Chapter II.4 in [10], implying that |Γn,j | � C1d. Hence we find 
the estimate

|Γn,j |p � C1dp � C2n(2−p)
∫
I+

∫
I−

|ϕ(x) − ϕ(y)|p
|x − y|p dx dy.

Since the sets I− × I+ are all pairwise disjoint when n and j range over all their possible 
values with n � 3, we may sum this up over all such values to find that.

∞∑
n=3

2n(p−2)
2n∑

j=1
|Γn,j |p � C

∫
∂D

∫
∂D

|ϕ(x) − ϕ(y)|p
|x − y|p dx dy < ∞.

This proves the claim and hence Theorem 3.1 now gives the result. �
6. Extending to a quasiconvex domain

In this section we prove Theorem 1.9.

Proof. Since we are dealing with a piecewise smooth boundary, we apply the same re-
duction as in Step 1 of the proof of Theorem 1.6. Therefore it is enough to consider 
the target as a neighborhood of two smooth pieces at their intersection point. Hence we 
suppose that ∂Y consists of three curves Γ1, Γ2 and Γ3. These are all graphs of smooth 
functions in some coordinate system, with Γ1 and Γ2 intersecting at a point P and Γ3
intersecting these two curves at a positive angle. The curves Γ1 and Γ2 may be assumed 
to intersect at an angle of zero towards the domain Y , because if they met at a full 
angle this would contradict the quasiconvexity of Y and if they met at any other angle 
we could apply a bilipschitz map locally to straighten the angle out (see Fig. 13 for the 
construction of curves between the two graphs).

We may also suppose that the domain of definition is the triangle T with vertices 
at points (−1, 0), (1, 0) and (0, 1) in the plane. The boundary map ϕ : ∂T → ∂Y is 
assumed to satisfy the Douglas condition and we suppose that ϕ takes the point (0, 0)
to the intersection point P of Γ1 and Γ2, and takes (1, 0) and (−1, 0) to the other 
endpoints of these curves respectively. On the preimage of Γ3, which consists of the two 
non-horizontal sides of T , we may suppose that ϕ is defined as a constant speed map 
onto Γ3.

Let us partition the lower boundary of T by defining the intervals I−
j = [−2−j , −2−j−1]

and I+
j = [2−j−1, 2−j ] for j � 0. For each j, we define a domain Uj as follows. We first let 

τ0 denote the two upper sides of the triangle T . Then with the interval I−
0 as the base, 

we construct an isosceles triangle within the interior of T and call the two legs of this 
triangle τ−

0 . Similarly we construct τ+
0 over I+

0 , we may even choose τ+
0 as the reflection 

of τ−
0 over the y-axis. Finally we scale the curves τ0, τ−

0 and τ+
0 down with respect to the 

origin by the factor of 2−j to define curves τj , τ−
j and τ+

j respectively. Then the region 
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Fig. 13. Constructing curves between the two graphs.

Uj is defined as the domain bounded by τj, τ−
j , τ+

j and τj+1. By construction, each of 
the regions Uj is bilipschitz-equivalent to a square of side length 2−j with a bilipschitz 
constant independent of j.

We now define the counterpart Vj of Uj in Y . Let A+
j := ϕ(I+

j ) be the image arc 
of I+

j on Γ1 and respectively A−
j the image arc of I−

j on Γ2. We now connect the four 
endpoints of the arcs A±

j by curves inside of Y as follows. First, we recall the assumption 
that Γ1 is the graph of a smooth function in some coordinate system. We may suppose 
that it is the graph of a function Φ over the interval [0, 1] with the point P being at the 
origin. Now we may in fact assume that the derivative of Φ at x = 0 is zero. Indeed, 
because if the derivative was a different number, say Φ′(0) = k, then at least in a small 
neighborhood of the origin Γ1 could also be written as the graph of a function over the 
line y = kx instead of the x-axis, due to the fact that close enough to x = 0 each pair 
of points on the graph of Φ must meet at a slope close to k. Note that smoothness of 
the graph is preserved in this change of coordinate system due to the implicit function 
theorem. Hence by possibly restricting ourselves to a smaller piece of Γ1 we may assume 
that Φ′(0) = 0. Due to the same reasoning, we may also suppose that Γ2 is a graph of a 
smooth function Ψ with Ψ′(0) = 0 over the x-axis.

Hence our domain Y may be assumed to be the one bounded by the graphs of two 
smooth functions Φ and Ψ over the interval [0, 1], so that Φ(0) = Ψ(0) = 0 and Φ(x) >
Ψ(x) for x > 0. Possibly after a bilipschitz change of variables, the curve Γ3 is assumed 
to be the vertical segment from (1, Ψ(1)) to (1, Φ(1)). Let us also define auxiliary curves 
inside Y by letting γj denote the graph of the function Φ/j + (1 − 1/j)Ψ over [0, 1].

We now define curves βj inside Y as follows. If a−
j and a+

j denote the right endpoints 
of the arcs A±

j , then βj is a crosscut that connects the point a−
j with a+

j . The exact 
way how we define βj is by traversing a vertical segment from a−

j upwards until we 
hit the curve γj , then traveling along γj until we are at the x-coordinate of the point 
a+

j , and again going up via a vertical segment to a+
j . Since the curves γj are pairwise 

nonintersecting we find that also the curves βj do not intersect each other. Due to the 
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smoothness of Ψ and Φ, the length of βj is comparable to the internal distance between 
a+

j and a−
j , which is also comparable to the euclidean distance in this case.

Furthermore, we connect each a−
j to the other endpoint a−

j+1 of A−
j via a curve α−

j

inside Y that is close enough to A−
j so that its length is comparable to the length of 

A−
j and it does not intersect any of the βj. Again by smoothness, the length of α−

j is 
comparable to the internal distance between a−

j and a−
j+1. Similarly we define α+

j with 
+ in place of − in the previous construction. This way we have defined crosscuts βj

and α±
j inside Y which do not intersect each other and have lengths comparable to the 

internal distances of their endpoints.
The set Vj is now defined as the region bounded by α+

j , α−
j , βj and βj+1.

In order to define a homeomorphic extension h : T → Y of ϕ, we first define the map 
h from Uj to Vj . We map each of the four curves which make up the boundary of Uj

to the corresponding part of ∂Vj by a constant speed map. This will give a Lipschitz 
boundary homeomorphism from ∂Uj → ∂Vj , which may be extended as a Lipschitz 
homeomorphism between the interiors with an increase in the Lipschitz norm by at most 
a constant factor by Theorem 1.1. The Lipschitz norm of the boundary map is controlled 
by 2−j |∂Vj |. This gives the inequality

∫
Uj

|Dh|2 dx dy � C|∂Vj |2,

which leads us to find estimates on the perimeter of Vj in terms of the Douglas condition 
on ϕ.

First, we estimate the length of the curve α−
j . We integrate over the sets I−

j−1 and 
I−

j+1 to find that

∫

I−
j+1

∫

I−
j−1

|ϕ(x) − ϕ(y)|2
|x − y|2 dx dy � c

∫

I−
j+1

∫

I−
j−1

|α−
j |2

2−2j
dx dy = c|α−

j |2.

Here we have used the fact that Γ2 is a smooth graph to obtain the estimate |ϕ(x) −
ϕ(y)| � c|α−

j | for x ∈ I−
j−1 and y ∈ I−

j+1, as the distance between two points on the 
graph is always comparable to the difference in their x-coordinates. One may replace −
by + above to find the same estimate for |α+

j |.
For the curve βj , we let dj denote the minimal distance between the sets A−

j and A+
j . 

Then
∫

I−
j

∫

I+
j

|ϕ(x) − ϕ(y)|2
|x − y|2 dx dy � c

∫

I−
j

∫

I+
j

d2
j

2−2j
dx dy = c d2

j .

However, by triangle inequality we also have the estimate |βj| � dj + |α−
j | + |α+

j |. All 
together, this lets us estimate the quantity |∂Vj |2 from above by a uniform constant 
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times the integral of |ϕ(x) − ϕ(y)|2/|x − y|2 over the sets I−
j−1 × I−

j+1, I+
j−1 × I+

j+1 and 
I−

j × I+
j . These sets are disjoint in j, so by summing up we obtain that

∫
⋃

j Uj

|Dh|2 dx dy � C
∑

j

|∂Vj |2 � C

∫
∂T

∫
∂T

|ϕ(x) − ϕ(y)|2
|x − y|2 dx dy.

It remains to define the extension h outside the Uj and to control the W 1,2-energy there. 
For this is enough to consider how h maps the triangle T −

j ⊂ T bounded by I−
j and τ−

j

to the region in Y bounded by ϕ(I−
j ) and α−

j .
But in this part we may appeal to our previous constructions and use the same method 

as in the proof of Theorem 3.1 to construct and extension inside T −
j . Let T0 denote the 

triangle used as the domain of definition in Step 2 of the proof of Theorem 3.1. Then we 
simply transform this triangle into T −

j so that the sides on the real line are mapped to 
each other, and repeat the same construction done in Step 2 and 3 of Theorem 3.1.

The W 1,2-energy of h over T −
j is controlled by the estimate

∫

T −
j

|Dh|2 dx dy � C
∑

D∈D−
j

|ϕ(D)|2,

where D−
j denotes the collection of all dyadic intervals over the set I−

j . Summing up, we 
get that

∫
⋃

j T −
j

|Dh|2 dx dy � C
∑

D∈D
|ϕ(D)|2,

where D denotes the union of all dyadic intervals over the interval [−1, 0] which do not 
contain 0 as an endpoint (since none of the intervals in D−

j do). Using the fact that [−1, 0]
is mapped to the graph of a smooth function under ϕ, for each such dyadic interval D
we have the estimate

|ϕ(D)|2 � C

∫
D−1

∫
D1

|ϕ(x) − ϕ(y)|2
|x − y|2 dx dy,

where D−1 and D1 denote the two dyadic neighbors of D. Since the sets D−1 × D1 are 
disjoint when D ranges over all intervals in D, this estimate is summable over D ∈ D
and yields

∫
⋃

j T −
j

|Dh|2 dx dy � C

∫
[−1,0]

∫
[−1,0]

|ϕ(x) − ϕ(y)|2
|x − y|2 dx dy < ∞.

The case with +’s instead of − is done exactly in the same way. This proves our claim. �
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