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We consider the planar unit disk D as the reference
configuration and a Jordan domain Y as the deformed
configuration, and study the problem of extending a given
boundary homeomorphism ¢: 0D == 9Y as a Sobolev
homeomorphism of the complex plane. Investigating such a
Sobolev variant of the classical Jordan-Schonflies theorem
is motivated by the well-posedness of the related pure
displacement variational questions in the theory of Nonlinear
Elasticity (NE) and Geometric Function Theory (GFT).
Clearly, the necessary condition for the boundary mapping
¢ to admit a #1P-Sobolev homeomorphic extension is
that it first admits a continuous % 1P-Sobolev extension.
For an arbitrary target domain Y this, however, is not
sufficient. Indeed, first for each p < oo we construct a
Jordan domain Y and a homeomorphism ¢: 0D % 9Y
which admits a continuous # !"P-extension but does not
even admit a #!-homeomorphic extension. Second, for a
quasidisk target Y and the whole range of p, we prove that
a boundary homeomorphism ¢: 9D 2% JY admits a #;:7-
homeomorphic extension to C if and only if it admits a # 1-P-
extension to the unit disk. Quasidisks have been a subject of
intensive study in GFT. They do not allow for singularities on
the boundary such as cusps. Third, for any power-type cusp
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target there is a boundary homeomorphism from the unit
circle whose harmonic extension has finite Dirichlet energy
but does not have a homeomorphic extension in #1:2(D, C).
Surprisingly, the Dirichlet integral (p = 2) plays a unique role
for the Sobolev Jordan-Schonflies Problem in the case of cusp
targets. Even more, fourth we prove that if the target Y has
piecewise smooth boundary, p # 2 and ¢: D 2% 9Y has a
#1-P-Sobolev extension to D, then it admits a homeomorphic
extension to C in #,5P(C,C). Fifth, if in addition Y is
quasiconvex, then the one-sided Sobolev Jordan-Schonflies
problem has a solution when p = 2. Indeed, we show that the
harmonic extension of ¢: 9D = JY has a finite Dirichlet
integral if and only if ¢ admits a homeomorphic extension
h: D 2 Y with finite Dirichlet energy.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Let D be the planar unit disk and ¢: 9D — C a topological embedding. The Jordan-
Schoenflies theorem states that there is a self-homeomorphism h of the entire complex
plane onto itself which coincides with ¢ on dD. In particular, the set ¢(0D) separates the
plane into two domains, one bounded and the other unbounded. Throughout this text
Y C C is a bounded Jordan domain and ¢: 0D 2% JY a given boundary homeomor-
phism. The Sobolev Jordan-Schinflies Problem asks whether there exists a Sobolev home-
omorphism h: C % C which coincides with ¢ on dD. Obviously, for the boundary map
© to admit a Sobolev homeomorphic extension it must first admit a Sobolev extension.

The Sobolev Jordan-Schonflies Problem. For which Y C C and p € [1, 0] does every
boundary homeomorphism ¢: D 2% 9Y that admits a continuous extension to D in
the Sobolev class #17(D,C) also admit a homeomorphic extension h: C % C in
70l (C.C)7

It is worth noting that the condition of a homeomorphism ¢: 0D % JY admitting a
continuous extension to D in #1?(D,C) may be characterized analytically. Indeed, for
1 < p < oo, the boundary mapping ¢ admits a continuous # P-extension if and only if
it satisfies the so-called p-Douglas condition,

//|<p |a:— )‘ dzdy < 0, (1.1)

oD oD

for a proof we refer to [31, p. 151-152]. The condition (1.1) is known as the Douglas condi-
tion [8] when p = 2. Equivalently, ¢: 9D 2% JY satisfies the p-Douglas condition if the
p-harmonic extensions of both coordination functions Im¢: 9D — R and Rey: 0D — R
belong to the Sobolev class #17(D, R). The case p = co on the other hand follows from
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the classical Kirszbraun extension theorem [19] which says that a mapping ¢: 0D — C
has a Lipschitz extension to D if and only if  is Lipschitz regular. In the other endpoint
case p = 1, according to Gagliardo’s theorem [9] a given ¢: D == Y has a Sobolev
extension to D in #11(D, C) exactly when ¢ € .Z1(dD). Analogously, we say that a
boundary mapping ¢: D — C enjoys the 1-Douglas condition provided ¢ € .Z*(0D).
One of the reasons to study the Sobolev Jordan-Schénflies problem comes from the
variational approach to Geometric Function Theory (GFT) [4,13,29], where the general
framework of Nonlinear Elasticity (NE) [3,5,7] is extremely fruitful and significant. By

the very assumptions of hyperelasticity, we inquire into homeomorphisms h: D == Y
of smallest stored energy

E[h] = /E(:mh, Dh)dz, E:D xY x R**? (1.2)
D

where the so-called stored energy function E characterizes the mechanical and elastic
properties of the material occupying the domains. We denote the class of homeomor-
phisms h: D % Y in the Sobolev space #?(D,C) by #P(D,Y) for 1 < p < co. In
the related pure displacement variational questions one considers the class 77 (D,Y)
of Sobolev homeomorphisms h: D 2 Y equal to ¢ on the boundary such that
h € #P(D,Y). One quickly runs into serious difficulties when passing to a weak limit
of an energy-minimizing sequence of # ?-Sobolev homeomorphisms (injectivity can be
lost) [15,16]. Therefore, in search for mathematical models of hyperelasticity, we must
adopt such limits as legitimate deformations and still comply, as much as possible, with
the principle of non-interpenetration of matter. When p > 2, an axiomatic assumption in
the theories of NE and GFT, such limits are monotone mappings [17,18]. Monotonicity,
a concept by Morrey [25], simply means that for a continuous h: D — Y the preimage
h=1(y,) of a point y, € Y is a continuum in D. Non-injective energy-minimal solutions,
being monotone, may squeeze but not fold the 2D-plates or thin films. In the case of
pure displacement variational questions this naturally leads as a first step for us to in-
quire whether the class %g’(D, Y) is nonempty. It is worth noting that in the frictionless
setting we always know that 7P (D,Y) # () when p < 2 thanks to the Riemann Mapping
Theorem.

Roughly speaking, prior to this paper the Sobolev Jordan-Schénflies Problem was
understood only when p < 2 or p = co. Here we focus on the remaining important cases
2 < p < 0. Before giving a detailed description we summarize the status of the problem
in the next table.

The known answers of the Sobolev Jordan-Schonflies Problem
oY 1<p<?2 p=2 2<p< oo p =00
Arbitrary Negative Negative Example 1.2 | Positive
Lipschitz graph Positive Positive Positive Positive
Quasicircle Positive Theorem 1.3 | Theorem 1.3 | Positive
Piecewise smooth Positive Example 1.4 | Theorem 1.6 | Positive
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The proofs of the previously known results rely mostly on careful study of analytical
ways of extending the boundary map such as the harmonic extension and the Beurling-
Ahlfors extension. It is, however, not to be expected that these methods are able to
provide a complete picture of the problem. Hence we have turned to new, more direct
methods of constructing homeomorphic extensions to prove our main theorems.

1.1. Arbitrary target

The Sobolev Jordan-Schonflies Problem is completely understood when p = oo due
to a result of Kovalev [23].

Theorem 1.1. (p = o0) Let ¢: OD — C be a Lipschitz embedding. Then ¢ admits a
homeomorphic Lipschitz extension to C. The Lipschitz constant of such an extension
depends linearly on the Lipschitz constant of .

For an arbitrary Y, the problem has no solution for 1 < p < 2. Indeed, Zhang [36]
constructed a Jordan domain Y and a boundary homeomorphism which admits a contin-
uous # 12-extension to D but does not even admit a #1'-homeomorphic extension to
D. The boundary of the domain Y in question is not rectifiable but does have Hausdorff
dimension one. His construction relies on the Riemann Mapping Theorem and therefore
works only for p < 2. We show that even replacing 2 by any power p < oo does not
guarantee the existence of a homeomorphic extension in any Sobolev class.

Theorem 1.2. For 1 < p < oo there exists a Jordan domain Y and a homeomorphism
©: 0D 2% JY which satisfies the p-Douglas condition (i.e. @ admits a continuous # 1P-
Sobolev extension) but does not admit a homeomorphic extension h: C == C in the
Sobolev class #;1.H(C, C).

loc

1.2. Target with Lipschitz boundary

To begin with a classical result, notice that the theory of Radé [28], Kneser [20] and
Choquet [6] (RKC) solves the Sobolev Jordan-Schonflies Problem when the target Y is
convex and p = 2. Indeed, first the RKC-theorem asserts among other things that if
Y C C is a bounded convex domain then the harmonic extension of a homeomorphism
: OD 2% 9Y is a diffeomorphism from D onto Y. Second, since the harmonic extension
minimizes the Dirichlet energy among all continuous Sobolev mappings in #1:2(D, C)
equal to ¢ on dD the harmonic extension belongs to #1'2(D, C) if and only if the map
¢ admits a finite Dirichlet energy extension to D. If the target Y, however, is not convex
one can always construct a boundary homeomorphism ¢: 9D 2% JY whose harmonic
extension fails to be injective, see [2,20]. Thus the Sobolev Jordan-Schoénflies problem
already becomes nontrivial for a non-convex target and p = 2. For a domain Y with
Lipschitz boundary it should however be noted that there exists a global bi-Lipschitz
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change of variables ®: C = C for which ®(Y) is the unit disk. Naturally, the problem
is invariant under such a global bi-Lipschitz change of variables. The above argument
can be broadened to cover the entire range of p < co and give a positive answer to the
problem when Y has Lipschitz boundary. In fact, for 1 < p < 2, the classical RKC-
theorem applies as the harmonic extension of any boundary homeomorphism ¢: 0D 2%
OD lies in the Sobolev space #17(D,C) for p < 2, see [14,35]. For p € (2,00) we
may apply a p-harmonic variant of the RKC-theorem [2]. Here we also rely on the fact
that the variational formulation coincides with the classical formulation of the Dirichlet
problem in any Jordan domain, see [22, §2.2] for more details. Moving beyond targets
with Lipschitz boundary, there however is no easy solution to the problem.

1.3. Target with quasicircle boundary

A quasicircle is the image of the unit circle under a quasiconformal self-homeomor-
phism of C. The notion was introduced independently by Pfluger [27] and Tienari [32].
onto

Recall that a #12-homeomorphism f: C 22 C is quasiconformal if there is a constant
1 < K < oo such that

|IDf(x)]> < Kdet Df(x)  a.e.inC.

Hereafter |-| stands for the operator norm of matrices. In particular a quasicircle is a Jor-
dan curve. The interior of a quasicircle is called a quasidisk. Quasidisks have been studied
intensively for many years because of their exceptional functional theoretic properties,
relationships with Teichmiiller theory and Kleinian groups and interesting applications
in complex dynamics, see [10] for a survey. Complex dynamics (Julia sets of rational
maps, limit sets of quasi-Fuchsian groups) provide a rich source of examples of quasicir-
cles with Hausdorff dimension greater than one. The Hausdorff dimension of quasicircles
may actually take any value in the interval [1,2), see [12]. Perhaps the best known geo-
metric characterization for a quasicircle is the Ahlfors’” condition [1]. It says that a planar
Jordan curve C is a quasicircle if and only if there is a constant 1 < v < oo such that
for each pair of distinct points a,b € C we have

diamT < 7y|a — b] (1.3)
where I' is the component of C \ {a,b} with smallest diameter. Equivalently (1.3) can
be given in terms of a reverse triangle inequality for three points: there is a constant C
such that if a point ¢ € I', then

la —c|+]c—b] < Cla—Db|. (1.4)

This property is also called bounded turning condition, see [24]. We proved with
Koskela [21] that if 1 < p < 2 and JY is a quasicircle, then any homeomorphism
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Fig. 1. An inward cusp domain, Qg.

p: 0D =% JY admits a homeomorphic extension h: C 2% C in the Sobolev class
%g’cp (C,C). In particular, an arbitrary boundary homeomorphism ¢: D == JY sat-
isfies the p-Douglas condition for p < 2. The main point in our argument is a weighted
homeomorphic extension theorem of the unit disk onto itself, see [21] for details. This
approach heavily relies on the fact that p < 2 and cannot be extended to cover even the
case p = 2. Here we give a new direct way to construct Sobolev homeomorphic extensions

onto

of p: OD =% QY and cover the entire range of Sobolev exponents.

Theorem 1.3. Let 1 < p < oo and OY be a quasicircle. If a homeomorphism
p: 0D == JY satisfies the p-Douglas condition (i.e. admits a Sobolev extension to
D in #1P(D,C)), then it admits a homeomorphic extension h: C 2> C in the Sobolev
class #;.7(C,C).

Note that if p < 2, then any boundary homeomorhism onto a quasicircle satisfies the
p-Douglas condition.

1.4. Target with piecewise smooth boundary

The most standard examples of singular boundaries which fail to satisfy the Ahlfors’
condition (1.3) are cusps. Let Qg be an inward cusp domain where the cusp is formed
by the graph of the function 2 + |z|® near 0, 3 > 1, and a smooth curve, see Fig. 1. For
a homeomorphism ¢: D % 94 there exists a homeomorphic extension h: C == C
which belongs to the Sobolev class ”//lif (C,C) for every p < 2. This follows from our
solution [22] to the Sobolev Jordan-Schoénflies Problem when p < 2 and the boundary of
target domain being rectifiable. If p = 2, however, the problem fails to have a solution

for every power-type cusp target, independently of the sharpness of cusp.

Example 1.4. Let {23 be an inward cusp domain for some 3 > 1. Then there is a bound-
ary homeomorphism ¢: 0D % 9Qg which satisfies the Douglas condition (and hence
admits a continuous # 2-extension) but does not admit a homeomorphic extension
h: D 2 Qg in the Sobolev class #12(D, C).

Surprisingly, p = 2 is the only case when the problem does not have a solution. Indeed,
we have
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Theorem 1.5. Let Qs be a cusp domain with > 1. If a homeomorphism ¢: 0D ==
08 satisfies the p-Douglas condition for some p > 2, then a homeomorphic extension
h: C 2% C of ¢ lies in #;.7(C,C).

C

We obtain this as a corollary of our next result.

Theorem 1.6. Let Y be a domain with piecewise smooth boundary. Then a homeomor-
phism @: D = Y which satisfies the p-Douglas condition for some p # 2 admits a

homeomorphic extension h: C 2% C in #;.7(C,C).

Here and in what follows we say that a planar domain ) has piecewise smooth boundary
if 900 = U;”Zl I'j, where each T'; is a ¢-regular curve. As mentioned earlier, the result
of Theorem 1.6 was already obtained in [22] for targets with rectifiable boundaries when
p < 2. We do not know if Theorem 1.6 is also true for a target Y with rectifiable boundary
when p > 2.

Let us return to Example 1.4. The key to our construction is a careful analysis of the
modulus of continuity of the mappings in question. Recall that, a modulus of continuity of
amapping f: X — C is a function wy: [0,00) — [0, 00) if | f(z1) — f(z2)| < wy (|21 —22])

for all 1, x2 € X. For a homeomorhism h € Vﬂkl)f((c, C) we have

/ n®F 4y < (1.5)
0

t

In Example 1.4, we construct a boundary homeomorphism ¢: 9D % 93 which sat-
isfies the Douglas condition and fails to have the modulus of continuity estimate given
by (1.5). Therefore, clearly there is no homeomorphism h: C 2% C in #;..*(C,C) which
coincides with ¢ on 9D. The next result shows that the modulus of continuity provided
with (1.5) is not only necessary for a boundary homeomorphism ¢: 9D == 93 to have

a homeomorphic extension in %3&2 (C,C) but also sufficient.

Theorem 1.7. Let Y be a domain with piecewise smooth boundary. Then a homeomor-
phism @: 0D == OY which satisfies the Douglas condition admits a homeomorphic

onto

extension h: C == C in 7/1’2(((:, C) if and only if the boundary homeomorphism ¢ has

loc
a modulus of continuity w, which satisfies

1
/Mdt<oo. (1.6)
0

1.5. The one-sided Sobolev Jordan-Schénflies Problem

As shown in Example 1.4, there is a boundary homeomorphism ¢: 9D % 9Qg
satisfying the Douglas condition which does not admit a homeomorphic extension from
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Fig. 2. An outer cusp domain, Kg.

D onto Qg with finite Dirichlet energy. However, it is still important to investigate under
which conditions on the target such a one-sided Sobolev extension exists.

A careful examination of Example 1.4 reveals that a potential reason why there is
no such an extension lies in the fact that the internal distance in Qg of a pair of points
on the cusp is not comparable to their Euclidean distance. It is hence expected that
quasiconvexity of the target may be necessary to overcome these difficulties. A domain
K C C is quasiconverx if each pair of points can be joined by a quasiconvex path. That
is, there exists a constant ¢ > 1 such that for all points x,y € K there exists a rectifiable
path v joining = and y, and satisfying

7] < clz—yl. (1.7)

Here || stands for the length of the quasiconvex path . The notion of quasiconvex-
ity plays a prominent role in GFT, see e.g. [10,11,26,34] and the references mentioned
therein.

An example of such a domain is the complementary domain of Qg. For a precise
formulation, let s be an outer cusp domain where the cusp is formed by the graph of
the function 2 — |z|? near 0, 8 > 1, and a smooth curve, see Fig. 2.

Now, for the cusp domains the question reads as follows.

Question 1.8. Suppose that a homeomorphism ¢: 0D =% 9Kz satisfies the Douglas
condition. Does ¢ admit a homeomorphic extension h: D ®*% Kg in #12(D,C)?

An answer to this question follows as a corollary from our last theorem.
Theorem 1.9. Let Y be a quasiconvexr domain with piecewise smooth boundary. Then
a boundary homeomorphism @: 0D % Y admits a Sobolev homeomorphic extension
h: D 2% Y with finite Dirichlet integral f]D|Dh|2 < oo if and only if ¢ satisfies the
Douglas condition.

2. Extending to a target with piecewise smooth boundary

In this section we prove Theorem 1.6 and Theorem 1.7.
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Fig. 3. The domain Y, split into smaller pieces by smooth crosscuts I', and corresponding curves v C D.

Proof of Theorem 1.6. We may and do assume that p > 2 because Theorem 1.6 was
already proved in [22] when p < 2. We suppose that ¢: D — JY satisfies the p-Douglas
condition and construct the required extension of ¢ to D via several steps. The proof
will then be completed by using a reflection argument to extend ¢ to C \ D as well.

Step 1. Reducing the problem.

By definition, Y splits into a finite collection of curves that are locally the graphs of
smooth functions and their intersection points which are the endpoints of two such curves,
it is only necessary to construct the required extension in some small neighborhoods of
these intersection points. Indeed, for each such intersection point which is a common
point of two €?-smooth pieces v; and 7, of Y, we may separate this intersection point
from the rest of the boundary via a smooth crosscut I' in Y that starts from a smooth
point on 71, ends on a smooth point on s, and forms any angles of our choice with respect
to v1 and 2. By choosing these angles to be positive we can separate the domain Y into
a finite collection of such neighborhoods and one domain which is a collection of smooth
curves intersecting at positive angles, so it is bilipschitz-equivalent to the unit disk. See
Fig. 3 for an illustration.

Accordingly to this decomposition of the target domain Y, we may split the disk D
on the domain side into a corresponding number of pieces. For example, for each smooth
crosscut I' C Y as defined above, we pick a corresponding crosscut « in D with endpoints
equal to the preimages of the endpoints of I' under . If the curves v are chosen close
enough to 0D they do not intersect each other and thus separate D into a finite number
of pieces. Each of these pieces may be assumed to be bilipschitz-equivalent to the disk by
choosing nice enough curves . Thus the problem reduces to constructing the extension
in each of these pieces separately, which is what we will now do.

Hence it is enough to consider Y as the following domain. The boundary dY consists
of three smooth curves I'y, I's and I's, where I's intersects the other two curves at a
positive angle of our choice. The curves I'y and 'y can be assumed to intersect at an
angle of zero, as the other case is trivial. Let us denote their intersection point by P.
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Both of these curves can be assumed to be the graphs of €?-smooth functions in some
coordinate system. As for the boundary map ¢ : 0D — Y, we are to assume that oD
splits into three arcs I, Is and I3, each the preimage of one of the respective curves I';
under ¢. The map ¢ is given from [; — I'y and I — I's and satisfies the p-Douglas
condition on these parts, but from I3 — I's we must explain how to define the map in
order that it will admit a # "P-homeomorphic extension to Y. This is done in a later
step.

Step 2. Boundary diffusion.

We concentrate on the map @1 = |, : I1 — I'y. We abuse the notation a bit and
consider I; as the unit interval [0, 1] and choose the parametrization so that ¢(0) = P
is the intersection point of I'; and I's.

Let S = {(x,y) € C:0< 2 <1,0 <y < x} be the unit triangle in the plane. We
define a map H : S — I'y, called the boundary diffusion, with the following properties.

(1) H lies in #/17(9).

(2) For each t € [0,1], if L; denotes the line segment between (0,0) and (1,¢), the map
H takes L; homeomorphically onto I'y.

(3) Hl, = ¢

(4) H is a smooth map on L.

First, since I'; is a smooth graph we may deform it via a global diffeomorphism and for
the rest of the construction of H we may assume that I'; is the unit interval [0, 1] with
the intersection point P at 0. The boundary values of H are now easy to define. On
Ly = [0,1], we define H equal to 1. On the segment from (0,1) to (1,1) we define H
as the constant function 1, and on L; we simply take H as the projection to the z-axis.
We then define H inside of S as the p-harmonic extension of these boundary values. To
show that H lies in #/17(9), it then simply remains to verify that the boundary values
H|ss satisfy the p-Douglas condition

//H(T;:—H(y)lpdydx < oo0. (2.1)

yl”
2SS oS

We split this integral into multiple parts depending on which side of S the points x
and y lie. If x and y lie on the same side, the integral is easy to control since on two of
the sides H is either a constant or linear function and on the last one it is equal to ¢
which was already assumed to satisfy the p-Douglas condition. The only nontrivial cases
are when x € Ly and y lies on one of the other sides. Both of these cases are dealt with
in the same way so let us assume that y lies on L;. Then we estimate as follows:

s e e

[0,1] L
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1
H(x ——dy | d
/| (/xylp I
[0,1] 1

H ()[”

|p71 dx .

|z
[0,1]
It remains to show that the last integral is finite, using the fact that H satisfies the
p-Douglas condition from [0, 1] onto itself (since H = ¢1 on [0,1]). Our proof for this
claim is quite complicated. We state the claim as the following lemma. Note also that
this lemma is the only part where the assumption p > 2 is used.

Lemma 2.1. Suppose that f : [0,1] — [0,1] is homeomorphic, f(0) = 0 and f satisfies
the p-Douglas condition on [0,1] with p > 2. Then

Proof of Lemma 2.1. Let us denote by U; = [27U*1 277] the dyadic intervals for j =
0,1,2,.... We know from the p-Douglas condition that

Z / / p)‘ dydr < oo.
= ol
Ujt1Uj—1

For z € U;_y and y € Uj4; we estimate that 27771 < [z —y| < 279 and | f(z)— f(y)| =
|f(279) — £ (27U+D) |. Setting a; := f(277) we thus obtain
22@ Di(a; —ajq)P < oo.

=0

Define o = 2(P=2/2P)  from which we see that o > 1 and 2(P~2)7 = o?PJ, Furthermore,
define ¢; such that

¢j = (aj — aj1)Pa.

Hence ZJ 16 ? < 0o. Moreover, we see that a; —a;j1 = cja™21. Since a; — 0 as j — 0o,

we may sum this up to get that

oo oo
ay = E a; — ajy1 = E cja” .
Jj=k Jj=k

We now estimate via Holder’s inequality that
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P

[e%S) [e%S)
§ ap 2pk __ § E CjOé72‘7 a?pk

k=0 \j=k

p—1
o) o) o)
<SS @a ) [Sasti| o
k=0 \j=k j=k

k=0 \j=k
—o3 Yt
k=0 j=k
o) J
—03 S artd)
7=0 k=0
<oy
=0

Hence we have shown that Y r , ab2P~2F < co. Now if € Uy, then f(x) < ay,. Hence

1
/xp ldm—z |f| CZ a2 oy < 0o
0

k=07,
This finishes the proof of Lemma 2.1. O

Returning to the proof of Theorem 1.6, we have now shown all but one of the claimed
properties of the boundary diffusion H. It remains to address the second point of showing
that H takes L, homeomorphically onto I'; = [0, 1].

First of all, since H is chosen as the coordinate-wise p-harmonic extension of its
boundary values on 9S. The p-harmonic energy of H = u + iv: S — C is defined by

/(|w|p +VolP) .

S

The p-harmonic mapping H has the smallest p-energy of all extensions. Since H maps
the endpoints of L; to 0 and 1 due to the chosen boundary values, the image of L; under
H must be the whole unit interval [0,1] by continuity. From this we can infer that H
must also map L; increasingly onto [0, 1] since otherwise we could redefine H on each
L; as the smallest increasing replacement of H|z, and this would yield a map of strictly
smaller p-energy on S.
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While this does not yet show that H is injective on each L;, we will argue that after
a minor modification of H we obtain a map with all of the desired properties. First,
due to the classical regularity results for p-harmonic functions we find that H is ¢! in
the interior of the triangle S, see [33]. Letting 0, denote the directional derivative in
the radial direction, which is also the direction of the segments L;, we find that the set
St ={z€8:0.H(z) > 0} must be open. For each ¢, there must be at least one point
z¢ on L; which belongs to Sy since H maps L; to the whole unit interval. Let r; > 0
denote a radius so that the ball B(z,r:) is compactly contained in S;. We may now
choose a sequence 2y, , 2t,, %t,, - - - of points from the z; such that the union of all the balls
B(z;,74;/2) intersects every possible ray Ly, t € (0,1).

Foreach j =1,2,...,1et S; C S denote the set defined as the union of all line segments
L; which intersect the ball B(z,,r¢,/2), and Vj the set S; N B(z,,r:,;). We now choose
a smooth function ¢; : C — R supported on S; with the following two properties.

o If z € V}, then ¢j(2) < 0 and if z € S; \ V;, then v;(z) > 0.
o The integral of ; over each segment L, is zero.

Such a function is not difficult to construct so we omit the details. We then scale 1; down
so that both [¢;] and |V);| are uniformly bounded from above by 277. If necessary, we
scale 1; further down so that the inequality

O-H > —274); (2.2)

always holds in B(z,,r,) - this is possible since 9, H > ¢ > 0 on B(z,,r;) by continuity.
We then define a function ¥; by

T

,(re?) = /wj(tew)dt.

0

Hence 0,¥; = ;. Due to the bounds on 9; and V;, the sum

U=,

(oo}
j=1
converges in #1P(C).

We now note that the map ¥ + H satisfies all the properties 1, 3 and 4 we required
from H and is also injective on each L;; that is, it satisfies the property 2. To verify
this, ¥ is zero on S the boundary values are unchanged. Since V¥ is in #1?(C) the
Sobolev-regularity is preserved. We now claim that 0,(¥ + H) > 0. If we are in one of
the sets B(z,,7,), the inequality (2.2) applies. Hence we find that
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—0, 0 =3 ;<> 2790, =, H.

If a point z does not belong to any of the B(z,,r,), we have that 1;(z) > 0 for all j.
Furthermore, z must belong to one of the segments L,. Take a j so that L; intersects
B(zt,,7¢,/2), which implies that z belongs to the set S; \ V;. Since 1; is positive on this
set we find that

0,¥(2) 4+ 0,H(z) 2 ¢j(2) + 0, H(z) > 0.

This proves our claimed property 0,.(¥ + H) > 0, which implies that the map ¥ + H is
injective on L;. Thus a map with the claimed properties 1-4.

Step 3. Regularizing the boundary map.

Let us again return to the case where Y consists of three curves I'1,I's and I's as before
in Step 1. Our aim is to slightly deform I'; inside the domain Y and use the boundary
diffusion to replace our given boundary value with a smooth map. To this end, suppose
via affine transformation that I'; is the graph of a smooth function ® over the interval
[0,Tp] on the z-axis, with the intersection point P laying at the origin. We may also
suppose that locally the domain Y is below the curve I'; and the complement is above
it. Since there was some freedom in choosing I's, we may suppose that I's contains a
small vertical segment which starts from (Tp, ®(Tp)) and ends at (T, (1 — )®(Tp)).

Let us now modify the boundary diffusion H defined earlier to define a new map.
Writing the boundary diffusion H in coordinates as

H(z,y) = (A(z,y), ®(A(x,y))),

where ® denotes the smooth function whose graph T'y is. Let f : [0,1] — [0,1] be a
smooth strictly increasing function with f(0) = 0 which will be “small”, exactly how
small we will choose later. We use f to define a new map H* on the triangle S as

H (@) = (A,y), (1= 27(A@.y) e(Al,y)) ).

Let us now explain the properties of H* and also how f is chosen. First of all we wish
to verify that H* lies in the Sobolev space # 1P(S). Since A(x,y) is the real part of H,
we find that A € #17(S). As f and ® are smooth functions, the issue only lies in the
factor y/x in the definition of H* which is bounded in S but does not have a bounded
derivative.

Thus to conclude that H* € #7(S), we must show that the expression % f(A(z,y))
remains bounded in S. Since y < x in S, we only require that f(A(z,y)) < z. For
each z, we consider the quantity 7(z) = max,<, A(z,y). By the construction of H, in
particular the fact that H takes each of the segments L; homeomorphically onto I'; and
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continuity, we find that 7 is strictly increasing, continuous, and 7(0) = 0. Let 7! denote
its inverse function. Choosing now f to be smooth, strictly increasing, and so small that
f(t) < 77L(t), we find that f(A(z,y)) < f(7(z)) < z. Hence H* € #'17(9).

Now note that on each Ly, the quantity y/x is the constant ¢ and hence the map H*
takes each line segment L; homeomorphically onto the curve

Yi(s) = (s, (1= tf(s))®(s))-

These curves are the graphs of smooth functions over [0, Tp] which start at the origin.
Note that the smaller function f is, the closer these curves are to I';. Hence we may
choose f so small that all of these curves lie in Y. Let now Y, denote the region bounded
by I'1, 71, and the vertical line segment between (1, ®(1)) and (1, (1 — f(1))®(1)) which
joins the other endpoints of the former two curves. This vertical line segment may be
assumed to be a part of I's. This way H* becomes a # 1P-Sobolev homeomorphism
from S to Yy C Y. Moreover, since H is Lipschitz on L; we find that H* is a Lipschitz
map from Ly to 71 and it is also a linear map on the line segment from (1,0) to (1,1).
Moreover, it is equal to the given boundary value ¢; on Ly.

Step 4. Finishing the proof.

In essence, the construction of the map H™ has allowed us to replace the boundary value
1 by a Lipschitz boundary value «; which is part of the boundary of the slightly smaller
domain Y \ Yy. This allows us to assume from the beginning that ¢, is Lipschitz. From
a similar construction on I's we may further assume that ¢ is Lipschitz on the whole
boundary of D. But then it admits a homeomorphic Lipschitz-extension by Theorem 1.1.
Hence we have shown that ¢ : 9D — 9Y admits a homeomorphic extension h : D — Y
in WP (D).

To extend the map h into the complement C \ D is now quite simple. For example we
may use the following reflection argument. Suppose that 0 € D and 0 € Y. Let 7(2) = 1/Z
denote an inversion map, and define Y* = 7(Y) so that Y* is also a piecewise smooth
domain. Consider the boundary map 7o ¢ : 9D — dY*. Since 7 is locally bilipschitz in
C\ {0}, 7o satisfies the p-Douglas condition. It thus admits a homeomorphic extension
h* :D — Y* in WP(D). Now if z € C \ D, we define h(z) = 7(h*(7(2))). Again using
the fact that 7 is locally bilipschitz in C \ {0}, the identity on 0D and an involution, we
readily see that this defines h : C — C as a homeomorphism in Wé’f((C, C) and equal
topon dD. O

Proof of Theorem 1.7. The proof of this theorem is simply a repeat of the above proof
of Theorem 1.6. The only part where the assumption p > 2 was used in that proof was
in the proof of Lemma 2.1. However, it is clear that the assumption (1.6) implies the
statement of Lemma 2.1 in our case. Thus the proof is complete. O
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3. The general extension result

In this section we prove the following general extension result, which will be used in
the proofs of Theorem 1.3 and Theorem 1.9. This result may also be of independent
interest as we expect it could be applied to future studies as well. Before stating the
theorem, we describe the notion of a dyadic family of arcs on OD.

For a fixed ng € N, a family of closed arcs I = {I,; CID:n>ng, j=1,2,...,2"}
is called dyadic if the following conditions hold. For each fixed n there are 2" arcs I, ;
in I which are of equal length, pairwise disjoint apart from their endpoints, and cover
0D. For each arc I, ; there are two arcs in I of half the length of I,, ; and so that their
union is exactly I, ;, these intervals are called the children of I,, ; and I, ; is the parent.

Theorem 3.1. Suppose that Y is a Jordan domain and ¢ : D — IY is a boundary
homeomorphism. For ng € N suppose that there is a dyadic family I = (I, ;) of closed
arcs on 0D such that the following hold.

e For each I, ; with n > ng there exists a crosscut I'y, ; in Y connecting the two
endpoints of the boundary arc o(I,, ;) C OY and such that the estimate

- -
> 2N, P < oo (3.1)
n=ng j=1

holds.
e The crosscuts Iy, j for n = ng are all pairwise disjoint apart from their endpoints at
the boundary, where n,j are allowed to range over all their possible values.

Then ¢ admits a homeomorphic extension from D to Y in the class #?(D).

Proof. Note first that since the curves I',, ; are constructed based on the dyadic family I,
the notion of children and parents is inherited from I to these curves. The outline of the
proof is simple. We a make a dyadic type decomposition of D with sets U, ;. Accordingly
we split our target domain Y into sets V;, ; which correspond to the image of U,, ;. The
length of the boundary of V;, ; is controlled by the length of I',, ; and its children. We
then obtain the desired extension by constructing a Lipschitz homeomorphism from each
Upn,; onto V,, ;, and control the Sobolev-norm by the sum in (3.1). The proof is split into
a number of steps as follows.

Step 1. Reducing the problem to a triangle.
We first consider the highest generation of curves I'y, ;, 7 = 1,...,2"°. These curves

split the domain Y into one central domain Yy and 2"° domains Y;, j = 1,...,2",
which are bounded by the T, ; and the boundary arcs (I, ;). On D we make a similar



A. Koski, J. Onninen / Advances in Mathematics 418 (2023) 108795 17

construction, connecting the endpoints of the arcs I, ; via smooth, pairwise disjoint
curves in D so that D also splits into a central domain Dy and 2"° domains D;. We
choose these smooth curves to form positive angles with dD and each other so that all
of these domains Dj, j =0,...,2"° are piecewise smooth with no angles of size zero on
the boundary.

We wish to define the homeomorphic extension A : D — Y of ¢ so that it sends
the smooth curves bounding the D; inside D at constant speed to the curves I'y, ;. If
this is done, then it is enough to define how h maps D; to Y; for all j = 0,...,2"°.
For the central domain case j = 0, since Dy is bilipschitz-equivalent with the unit disk
we may simply use a Lipschitz homeomorphic extension from Dy onto Y, as given by
Theorem 1.1.

To finish our reduction, let T' denote the isosceles triangle in the plane with vertices
at (—1,0), (1,0) and (0, 1). Since each of the sets D, is bilipschitz-equivalent with T
we replace the sets D; with T" in our construction. Since the construction is similar for
each j, we suppose that j = 1. We may also suppose that our given boundary map, still
denoted by ¢ but now defined on 9T with some abuse in notation, maps the base of
the isosceles T on the real line to Y and the legs onto the curve Iy, ; with constant
speed. The arcs I, ; can now be supposed to lie on the real line and form a dyadic
decomposition of the base [—1,1] of T. This can be done by choosing the bilipschitz map
from D; to T to map the boundary arc I, 1 to [—1,1] at constant speed. It remains to
see how the extension h is defined from T to Y;.

Step 2. Defining the decomposition of T" and Yj.

We first define sets U,, ; C T as follows. Let (a,) denote a fixed strictly decreasing
sequence of angles so that a,, = 7/4 and a,, — 7/5 as n — co. For each interval I, ;
we define a curve 7, ; over this interval, called the legs of I,, ;, by letting 7, ; consist of
the legs of an isosceles triangle with base I, ; and base angles equal to a,. Thus the legs
of the largest dyadic interval, which is simply [—1, 1], are the legs of the original triangle
T. Now for each interval Iy, ;, the set U, ; is the set bounded by the legs 7, ; and the
legs of the two children of I,, ;. We denote the children of I,, ; by I; j and I;; j from left
to right and their legs by 7, ; and T; ; respectively. The idea is that the extension h will
map the legs 7, ; onto the curve I',, ;. See Fig. 4 for the splitting of triangle 1" into parts.

We define sets V,, ; C Y analogously to the sets U, ;. For each interval I, ;, we consider
the corresponding curve I', j and its two children, denoted by I';, ; and I‘; ;- Then the
set V,, ; is defined as the set bounded by these three curves in Y, see Fig. 5.

Step 3. Defining the map h from U, ; to V;, ;.
We would like to simply take a Lipschitz homeomorphism from U, ; to V,, ;, but since

the sets Uy, ; have angles that tend to zero as n — oo they are not uniformly bilipschitz-
equivalent to a scaled down copy of the unit disk. Therefore we must find another way to
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I n,j

Fig. 4. Splitting the triangle T' into parts.

Fig. 5. The construction of the curves inside Y.

construct h on U, ;. We do this by first splitting U,, ; into three smaller sets. Note that
the midpoint of the interval I, ; is the endpoint of two line segments on the boundary of
U, ;. We extend these segments to the opposite direction from this midpoint until they
meet the legs 7, ;. This splits the set U, ; into one central quadrilateral S, ; and two

thin triangles S, ; and S:J with one angle equal to 8, = a, — ap1. The sets Sy, 5, S,
and S:; ; are defined in Fig. 6.

We must split the set V;, ; similarly into three regions. To facilitate this, we will let d,,
denote a very small distance to be defined in a moment. For each curve I'j, ; we isolate
two parts of length d,, from this curve which start from the two endpoints I',, ;, called
Vn,; and 'y,t ; respectively and so that the £-signs match the children of I'y ;. Let us
concentrate on the endpoint of I', ; where v, ; starts from. We denote the part of I'; ;

(the child of T',, ;) which starts from this endpoint and has length d,4+1 by Vo - We
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Tn ’j

In;

Fig. 6. The sets S, ;, S,

p +
g and Sn)j defined.

connect the other endpoints of v, ; and v, by a curve of length at most 2(dy, + dn+1)
inside V), ; to separate a small “triangle” R, ; from V), ;. The existence of such a curve

is obvious as we may simply slightly deform the union of the curves Vn,; and v, 5 to
+

obtain one. We similarly define R, ;, and the remaining part of V,, ; is denoted by R, ;,
see Fig. 5.

We now construct a homeomorphism from S, jto R, as follows. The numbers d,, will
be chosen here. First of all, we must have that for each n, d,, < min; [T, j|/2 or otherwise
the construction does not make sense. Second, we will require that the sequence (d,,) is
decreasing, which means that the perimeter of R, ;s comparable to d,,. We will first
construct the map h as a homeomorphism from 95, ; to OR,, ; so that it takes each side
of the triangle .S, ; at constant speed to one of the curves v, j» Tn,j » and the third curve
that bounds R, ;. The order of which side goes to which curve is determined since we
require that h maps each 7, ; to I',, ;. We must now choose d,, so small that h extends
to a Lipschitz homeomorphism from S, jto R, with Lipschitz constant at most 47".
This can be done since we can first map .5, ; to the unit disk via a bilipschitz map, and
although the Lipschitz constant of this map blows up when n — oo we may choose d,,
small enough so that when composed with the Lipschitz homeomorphic extension from
Theorem 1.1 the Lipschitz constant of the combined map is less than 47™.

At this point we may already note that the Sobolev-norm of  over all the sets S - j

can be estimated from above by

oo 2" 0o
/ |Dh|P dzdy < Z Z S, ;477" < Z 2"4TP < oo,
n=ng j=1 n=ng

Un,; Sns

where we have simply observed that |S; j| < 1. We similarly map each S:’ ; to Rz’ ; with
an analogous estimate on these sets.

It remains to see how the central quadrilateral S, ; C Uy ; is mapped to R, ;. Again,
we first define h on 95, ;. The map h is already defined on four small parts of 9.5, ;.
Two of these are the common parts with S, ; and S; ;- The other two lie on the line
segments 7, ; and 7':7 ; which both end at the midpoint of I, ;. These latter ones get
mapped to curves of length d,, 1 which are part of the two children of I';, ;. Nevertheless,
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the Lipschitz constant on each of these four parts is less than 4" so they will not
play a role in our estimates. On the rest of the boundary, which is now made up of
three connected parts, we define h at constant speed. This defines h uniquely as we
require that h maps each 7, ; to the curve I', ;. Since the length of the set 05, ; is
comparable to 27", the Lipschitz constant of h on 9.5, ; is thus controlled by 2"|0V,, ;|,
where [0V, ;| = [ 5| + [T, ;] + |F:,j| is the perimeter of V,, ;. Note that the set S, ;
is uniformly bilipschitz-equivalent to a disk of radius 27" due to the fact that «, is
bounded from below. Hence we may scale up by 2" and again apply Theorem 1.1 to find
a homeomorphic Lipschitz extension h : S, ; — R, ; with Lipschitz constant at most
C2™|0V,, 4.
In total, this gives the estimate

cc 2"
/ IDh[Pdzdy < C (14 > > 272" (2"0V, ;)

n=ng j=1
Un,j Sn,j J

The sum on the right hand side above is finite due to our assumption (3.1). Thus h lies
in #? and defined in this way, h : D — Y is also a homeomorphism which agrees with
@ on the boundary. Thus the proof is complete. O

4. The counterexamples

In this section we prove Theorem 1.2 and provide explanation for Example 1.4.

Proof. We are to construct a Jordan domain Y and a boundary homeomorphism ¢ :
0D — 9Y which admits a Sobolev extension but not a homeomorphic one. We first give
a short outline of the construction.

The basic idea is that the boundary of Y will contain two snowflake-like arcs of infinite
length. These two arcs will get closer to each other towards their common endpoint, so
that this endpoint cannot be approached by a curve with finite length from the inside of
Y. We then define a boundary map from 0D which sends a lot of mass to the endpoint.
We will exploit the fact that both of these arcs are parts of a quasicircle to guarantee
that the boundary map has a Sobolev extension. On the other hand since a large amount
of mass is sent to a boundary point it is difficult to approach from the inside of Y. This
will show that a homeomorphic extension has infinite % !!-energy.

Let us first discuss snowflakes. The typical Koch-type snowflake curve is constructed as
follows. We choose a parameter 7 € (1/4,1/2), take the unit interval Iy = [0, 1] and
replace this interval by four line segments of length 7 as in Fig. 7 to obtain a new curve
I;. We then continue this process, replacing each segment in I,, by the configuration
in Fig. 7 appropriately scaled, translated and rotated to match the endpoints of the
segment. The limit curve of this process is called a Koch-type snowflake and it always
has infinite length.
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Fig. 7. The base curve used to construct a snowflake.

4

Fig. 8. Joining two neighboring rectangles.

For a number € > 0 and fixed n € N, we define an ¢, n-snowflake tube I, ., which
is a piecewise linear Jordan curve, as follows. We first take the curve I, from above
and remove one quarter of its segments by removing exactly those segments that were
constructed based on the rightmost segment of I;. This gives a new curve I}, and the tube
I, is defined by constructing the following curve around I},. For each line segment S in
I, we take a rectangle with the same width as S and height 2¢, placed so that the edges
of length 2e are perpendicular to S and contain the endpoints of S as their midpoints.
In all cases the parameter ¢ may be chosen as small as we wish and it will be chosen
small enough that the height of each rectangle is always less than 1/10 of the width. For
each two rectangles R; and R based on two neighboring segments, we join the two ends
of these rectangles which intersect as in Fig. 8. For a more formal description of this
conjoining process: First remove the two intersecting shorter sides from each of the two
rectangles. Then remove the shorter ends of the two longer sides that intersect. Finally
extend the two longer sides which do not intersect until they do. See also Fig. 9 for an
example of the end result. For the first and last segment of I/, going from left to right,
the rectangle constructed on that segment has two edges that did not need to be joined
with another rectangle. We call these two segments the left- and right end-edges of I, .
respectively.

We now define a way to join these types of tubes to create the boundary of a Jordan
domain Y. Given a rapidly decreasing sequence €1, ¢€a, ... of positive numbers and a
sequence of positive integers nq,ng, ... we define a curve I' as follows. We first consider
the curve I, ., . We take the curve I, ,, scale it by a factor of 1/4 to create a new curve
I’ and translate it so that the right end-edge of I,,, ., and the left end-edge of the scaled
curve I’ have the same midpoint. We then modify the curve I,

1,€1

slightly by scaling and

1,€1
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A

Fig. 9. An example of a €, n-snowflake tube.

i

Fig. 10. Joining two tubes.

rotating its right end-edge so that this edge will be equal to the left end-edge of I’. We
have essentially joined the first tube with the second one, scaled down, see Fig. 10. We
continue this process, adding each tube I,,; ., to the previous one by scaling it down to
1/4 of the previous one, translating it appropriately and modifying the right end-edge
of the previous one to align with the left end-edge of the scaled and translated copy of
Iy, ;- After scaling down each tube I, ., translating it and modifying the right end-
edge so that the next tube is able to be joined, the area surrounded by this modified tube
will be denoted by Y; and called the j:th part of Y. Continuing this process infinitely
makes this process converge to a Jordan domain Y. The boundary dY can be thought
of as being an union of three parts: the leftmost vertical line segment L; which is the
left end-edge of I,,, , and the two parts Ly and Lz which the remaining boundary splits
into when we divide it at the rightmost point of JY.

The specific choice of the sequences (¢;) and (n;) above is not important as long as
the following conditions are satisfied. We choose each n; so large and €; so small that to
traverse from the left end-edge of Yj to its right end-edge the minimal path length is at
least 47.

We now define the boundary map ¢ : 0D — 9Y. First, we split D into three arcs
Ay, As and As, say each of length 27/3. Under ¢, we map each A; to the part L; of
dY as follows. First, we map A; at constant speed to the segment L;. For j = 2,3 the
construction is the same in both cases, so we will just explain how Ay is mapped to Lo.
We divide A, into disjoint arcs as,as, ... so that |a;| = 4|a;+1| in the most natural way,
meaning that one of the endpoints of a; is also an endpoint of A; and the arcs a; and
a;j+1 always share an endpoint. See Fig. 11 for a rough illustration of the whole picture.
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O;AW,

Fig. 11. A rough illustration of how D is divided and mapped to the target domain Y.

We map each arc a; to the corresponding part £; = Y; N Ly on Ly by noting that ¢,
consists of 4™ segments of equal length except possibly for one segment at the rightmost
end which could have a slightly different length due to the fact that we had to modify it
to glue Y; to the next part Yj;;, however the length of that segment can be supposed to
be comparable to the others by a constant independent of j. Hence we split the arc a;
also into 4™ equal length smaller arcs and map these each at constant speed to segments
in ¢;. This completely defines the map ¢ from 9D to 0Y.

Note now that both curves Ly and L3 are arcs of a quasicircle since even though they
are not exactly the Koch snowflake curve, they can both be associated to a larger class of
snowflake curves as defined by Rohde in [30]. In particular, they are bilipschitz equivalent
to such a snowflake curve since there are some slight deformations from the gluing process
for example. Moreover, the boundary map ¢ from each A; to L; is quasisymmetric and
Holder-continuous, the verification of this takes some more work but it is done in [21],
proof of Theorem 1.6. The Holder-exponent of ¢ can be chosen to be arbitrarily close to
1 by making the parameter 7 smaller. It is easy then to verify that for each p > 1, there
is 7 > 1/4 so that ¢ admits a #P-Sobolev extension since the p-Douglas condition is
always satisfied by a Holder-continuous mapping with Holder-exponent close enough to
1. It remains to verify that no homeomorphic extension exists.

Suppose that ¢ would admit a #'!-homeomorphic extension h : D — Y. We split
the arc A; C OD into sub-arcs by, bs, ... in counterclockwise order so that |b;| = 4[bj41].
Suppose that the arc As is the neighbor of A; which is before A; in counterclockwise
direction, as in Fig. 11. For each j > 2, we then connect each arc b; with the arc a; C A
from before by straight line segments between each pair of points in them. The union
of these line segments will be called R;, and the sets R; have disjoint interiors. See
Fig. 12. We may abuse notation and think of each R; as a rectangle of width 1 and
height 477, since they are bilipschitz-equivalent to such a rectangle with a bilipschitz
constant independent of j.

The smaller, vertical sides of each rectangle R; are thought to be part of dD, with
one side in A; mapped to the line segment L; and one side a; C A2 mapped to ¢; C Lo.
Each of the horizontal line segments between these two vertical sides is mapped to a
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Fig. 12. The “rectangle” R..

curve in Y which starts at L; and ends at ;. By construction, such a curve has length
comparable to at least 47 by a uniform constant C. Thus

1
47

1
1 47
/|Dh|dmdy:/ |Dh|dxdy>c/4jdy:a
R; 0 0

J 0

Since the energy over the sets R; is not summable in j, this contradicts the assumption
h € #11(D) and completes the proof. O

Next, we provide explanation for Example 1.4.

Proof. Using a conformal map, the result of this example was already shown in [22] but
with some restrictions on the range of 8 (the polynomial degree of the cusp). Here we will
provide a more direct construction and use the same reasoning to provide an example
for every 8 > 1.

It is known that a homeomorphism of # !2-regularity cannot have a local modulus of
continuity worse than w(z) = log™*/?(e+1/z). Hence to find a boundary homeomorphism
which satisfies the Douglas condition but cannot be extended as a # '2-homeomorphism
to the inner cusp region {2g, it would be enough to find a boundary map with a modulus of
continuity worse than w(x) above but which can be extended as a # **2-homeomorphism
to the complement of Q. Since the domain Qg is smooth apart from the cusp of degree
B, we may restrict our considerations to a neighborhood of this cusp. Hence it would be
enough to find a boundary map from some Lipschitz domain to an region with an outer
cusp of degree 3 so that the boundary map has a modulus of continuity worse than w
and admits an extension as a # *>-homeomorphism to this outer cusp region.

Let f(z) = clog™ (), where € < 1/2 is chosen so that e > 1/2 and the constant c is
such that f(1) = 1. Let X = {(z,y) € R? : 0 < # < 1,]y| < x} be a triangular region
and Y = {(z,y) € R?: 0 < x < 1, |y| < 2°} be a cusp. We define a map h: X — Y by
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Y
h= () = (f(). f2)"2).
so that h maps vertical segments to vertical segments and its modulus of continuity is
comparable to f on the boundary. We wish to verify that h belongs to #2(X). The
relevant derivatives are

Uy = f/(m)v Uy = ﬂfl(x)f(x)ﬁil

8] |<

and v, =

Since both f(z)#~! <1 and ¥ < 1, we find that |v,| < |us| so we may omit v, from our
considerations. For the rest, we compute that

1 x

/\Dh|2dydx < c/ /dy (f’(:c)2+ f(;“225> da
X

0 — T

1
1 1
= 2002/ < + ) dx.
) x logQJr26 () = logzﬁ6 (2)

This integral is finite since both 2+2¢ > 1 and 25¢ > 1. Since h has the required modulus
of continuity on the boundary, the proof is complete. O

5. Extending to a quasidisk
In this section we prove Theorem 1.3.

Proof. We wish to simply apply Theorem 3.1 to obtain an extension of ¢ to D. After this
is done, it will be trivial to extend the map to C \ D as well, for example by reflecting it
via bilipschitz map on both the domain and the target side using the reflection property
for quasidisks - see for example Chapter I1.2 in [10]. To verify the conditions required
by Theorem 3.1, we let I = (I,, ;) denote a collection of dyadic arcs on JD. To recall
briefly what this means, for each fixed n there are 2™ arcs in I which are of equal length
and cover 0D disjointly apart from their endpoint. For each arc I,, ; there are two arcs
in I of half the length of I,, ; and so that their union is exactly I,, ;, called the children
of I, ;. We also call the offspring of such an interval the collection of its children, the
children of its children, and so forth.

We next define a collection I' = (I',, ;) such that each curve T',, ; connects the two
endpoints of the boundary arc ¢(I,, ;) C Y. In fact, I';, ; may be chosen as the hyperbolic
geodesic in Y between these two endpoints. For the readers convenience, we recall here
the definition of such curves.

Definition 5.1. Let Y be a Jordan domain and pick a conformal map g : D — Y. Given
two points a,b € Y, the hyperbolic geodesic v C Y between a and b is defined as g(v'),
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where 7/ denotes the unique geodesic between g~1(a) and ¢g~—!(b) under the Poincaré
hyperbolic metric

ds? — 4dzdz .
(1—z?)

The geodesics in this metric are circular arcs whose endpoints are orthogonal to 9D.
This definition is independent of the choice of g.

The notion of children and offspring is inherited from the collection I to the collection
T". It remains to verify that the curves in I' are pairwise disjoint and that

on

i 22 N, P < oo,

n=1 j=1

Verifying that these hyperbolic geodesics are pairwise disjoint is not too difficult. Suppose
first that two such curves I'y and I's share exactly one endpoint. Then we consider the
unique conformal map g : D — Y which, for each endpoint P of I'; or I's, maps ¢~ (P)
to P. The preimages of I'; and I's are also hyperbolic geodesics in D since g is conformal,
and since these preimages are disjoint in ID also I'; and I'y must be disjoint. An immediate
consequence of this observation is that each I'y, ; is disjoint with its two children. Since
the children of each I', ; must then belong to the region in Y bounded by I',, ; and
¢(I ;), we find by an easy induction argument that the offspring of each I',, ; must also
be pairwise disjoint and disjoint with I',, ;. We also observe that for each pair of curves
that are disjoint and neither is the offspring of the other, both of their offspring must
then also be disjoint with the others’. It hence only remains to check what happens for
small values of n.

For n = 1 there are only two intervals I;; and I; 2, and their images under ¢ share
two endpoints so I'1 1 = I'; 2. The claim is hence false in this case but this is obviously
only a technicality, as we may forget about the case n = 1 in a moment. It is worth to
note that I'; ; splits the domain Y into two domains, each of which must contain two
of the curves I's ;, 7 = 1,2,3,4. These curves are disjoint from I'; ; since each of them
shares one endpoint with it, and the two which are in the same component are also
disjoint since they have a common endpoint. Hence they are all mutually disjoint, which
proves the claim.

Let us now aim for the desired estimate on the lengths of |I',, ;|. For each dyadic interval
I, ; € I, we let I_ and I, denote its neighbors, i.e. the two arcs in I of same length as
I, ; which share an endpoint with I,, ;. Let d denote the Euclidean distance between the
endpoints of I',, ;. If « € I_ and y € I, then by the three-point property (1.4) of the
quasicircle Y we have that |z —y| < 3-27" and |p(z) — ¢(y)| = Cod, where Cj is some
uniform constant. We then recall that since Y is a quasidisk, it satisfies the hyperbolic
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segment property, see Chapter II.4 in [10], implying that |T', ;| < C1d. Hence we find
the estimate

— p
Tl < G < cnen) [ [ lP@ =W,
7 |z —y|?

Iy I-
Since the sets I_ x I are all pairwise disjoint when n and j range over all their possible
values with n > 3, we may sum this up over all such values to find that.

> & lo() — oly)I”
Z2n(p72)2|rn,j|p < C’/ LAG2 S Ac )il |x_90|py dedy < oo.
n=3 g=1 oD oD Y

This proves the claim and hence Theorem 3.1 now gives the result. O
6. Extending to a quasiconvex domain

In this section we prove Theorem 1.9.

Proof. Since we are dealing with a piecewise smooth boundary, we apply the same re-
duction as in Step 1 of the proof of Theorem 1.6. Therefore it is enough to consider
the target as a neighborhood of two smooth pieces at their intersection point. Hence we
suppose that dY consists of three curves I';,I's and I's. These are all graphs of smooth
functions in some coordinate system, with I'; and I’y intersecting at a point P and I's
intersecting these two curves at a positive angle. The curves I'y and I'; may be assumed
to intersect at an angle of zero towards the domain Y, because if they met at a full
angle this would contradict the quasiconvexity of Y and if they met at any other angle
we could apply a bilipschitz map locally to straighten the angle out (see Fig. 13 for the
construction of curves between the two graphs).

We may also suppose that the domain of definition is the triangle T with vertices
at points (—1,0), (1,0) and (0,1) in the plane. The boundary map ¢ : 9T — 9Y is
assumed to satisfy the Douglas condition and we suppose that ¢ takes the point (0,0)
to the intersection point P of I'; and I'y, and takes (1,0) and (—1,0) to the other
endpoints of these curves respectively. On the preimage of I's, which consists of the two
non-horizontal sides of T', we may suppose that ¢ is defined as a constant speed map
onto I';s.

Let us partition the lower boundary of T by defining the intervals I;” = [-277, =27771]
and I}7 = [27771,277] for j > 0. For each j, we define a domain Uj as follows. We first let
To denote the two upper sides of the triangle 7. Then with the interval I as the base,
we construct an isosceles triangle within the interior of T" and call the two legs of this
triangle 7, . Similarly we construct 7" over I, we may even choose 7 as the reflection
of 7, over the y-axis. Finally we scale the curves 79, 7, and 7 down with respect to the

origin by the factor of 277 to define curves 7;, 7; and 7';' respectively. Then the region
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Fig. 13. Constructing curves between the two graphs.

Uj is defined as the domain bounded by 7;, T T;r

the regions Uj; is bilipschitz-equivalent to a square of side length 277 with a bilipschitz

and 7;11. By construction, each of

constant independent of j.

We now define the counterpart V; of U; in Y. Let Aj = gp(I;r) be the image arc
of If on I'y and respectively A;" the image arc of I;” on I's. We now connect the four
endpoints of the arcs Af by curves inside of Y as follows. First, we recall the assumption
that T'y is the graph of a smooth function in some coordinate system. We may suppose
that it is the graph of a function ® over the interval [0, 1] with the point P being at the
origin. Now we may in fact assume that the derivative of ® at x = 0 is zero. Indeed,
because if the derivative was a different number, say ®'(0) = k, then at least in a small
neighborhood of the origin I'; could also be written as the graph of a function over the
line y = kx instead of the z-axis, due to the fact that close enough to x = 0 each pair
of points on the graph of ® must meet at a slope close to k. Note that smoothness of
the graph is preserved in this change of coordinate system due to the implicit function
theorem. Hence by possibly restricting ourselves to a smaller piece of I'y we may assume
that ®’(0) = 0. Due to the same reasoning, we may also suppose that I's is a graph of a
smooth function ¥ with ¥'(0) = 0 over the z-axis.

Hence our domain Y may be assumed to be the one bounded by the graphs of two
smooth functions ® and ¥ over the interval [0, 1], so that ®(0) = ¥(0) = 0 and ®(z) >
U(x) for & > 0. Possibly after a bilipschitz change of variables, the curve I's is assumed
to be the vertical segment from (1, ¥ (1)) to (1, ®(1)). Let us also define auxiliary curves
inside Y by letting 7; denote the graph of the function ®/j + (1 —1/5)¥ over [0, 1].

We now define curves §; inside Y as follows. If a; and a;r denote the right endpoints
of the arcs Aji7 then j; is a crosscut that connects the point a; with a;'. The exact
way how we define §; is by traversing a vertical segment from a; upwards until we
hit the curve +;, then traveling along «; until we are at the z-coordinate of the point
o,
nonintersecting we find that also the curves 5; do not intersect each other. Due to the

. . . . JF . . .
and again going up via a vertical segment to a;. Since the curves ~; are pairwise
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smoothness of ¥ and @, the length of §; is comparable to the internal distance between
aj' and a;, which is also comparable to the euclidean distance in this case.
Furtherrnore we connect each a; to the other endpoint a;,; of A via a curve o

inside Y that is close enough to AJ so that its length is comparable to the length of
Aj and it does not intersect any of the ;. Again by smoothness, the length of o} is
comparable to the internal distance between a; and a; ;. Similarly we define oz;' with
-+ in place of — in the previous construction. This way we have defined crosscuts j3;
and a;t inside Y which do not intersect each other and have lengths comparable to the
internal distances of their endpoints.

The set V; is now defined as the region bounded by oz;“, a;, B; and fB41.

In order to define a homeomorphic extension h : T — Y of ¢, we first define the map
h from U; to V;. We map each of the four curves which make up the boundary of Uj
to the corresponding part of dV; by a constant speed map. This will give a Lipschitz
boundary homeomorphism from dU; — 0Vj;, which may be extended as a Lipschitz
homeomorphism between the interiors with an increase in the Lipschitz norm by at most
a constant factor by Theorem 1.1. The Lipschitz norm of the boundary map is controlled
by 277|0V;|. This gives the inequality

/|Dh|2dx dy < CloV;|?,

Uj
which leads us to find estimates on the perimeter of V; in terms of the Douglas condition
on .

First, we estimate the length of the curve a; . We integrate over the sets I;_; and
I;.; to find that

lo(x) = oy ) //I
/ / |x7 dx dy > = dz dy = claj %

7+171 J+171

Here we have used the fact that T's is a smooth graph to obtain the estimate |¢(x) —
¢(y)| = claj| for x € I;_; and y € I, as the distance between two points on the
graph is always comparable to the difference in their z-coordinates. One may replace —
by + above to find the same estimate for |a |

For the curve §;, we let d; denote the minimal distance between the sets Aj_ and Aj.

Then
le(x) —(y)” /
dw dy >
// Iw - yl2

II*

However, by triangle inequality we also have the estimate |3;] < d; + |a | + |aj+|. All
together, this lets us estimate the quantity |0V;|? from above by a uniform constant
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times the integral of |p(x) — ¢(y)|*/|z — y|* over the sets I, x I, I I 1 and
I x I;r. These sets are disjoint in j, so by summing up we obtain that

/ IDh?dedy < CY_|OViI? < //'9” ‘x_ | da dy.
J

Uj Uj

It remains to define the extension h outside the U; and to control the # *?-energy there.
For this is enough to consider how & maps the triangle 7 C T bounded by I, and 7;°
to the region in Y bounded by ¢(I;) and «a;

But in this part we may appeal to our previous constructions and use the same method
as in the proof of Theorem 3.1 to construct and extension inside T . Let Ty denote the
triangle used as the domain of definition in Step 2 of the proof of Theorem 3.1. Then we
simply transform this triangle into T so that the sides on the real line are mapped to
each other, and repeat the same construction done in Step 2 and 3 of Theorem 3.1.

The #12-energy of h over T is controlled by the estimate

/|Dh|2dxdy C > e

DeD;

where D}~ denotes the collection of all dyadic intervals over the set /;”. Summing up, we
get that

/|Dh|2dxdy C > le(D)

_ DeD
U; T

where D denotes the union of all dyadic intervals over the interval [—1, 0] which do not
contain 0 as an endpoint (since none of the intervals in D} do). Using the fact that [—1, 0]
is mapped to the graph of a smooth function under ¢, for each such dyadic interval D

(. C//“p |x7 | d dy,

-1 D1

we have the estimate

where D_1 and D; denote the two dyadic neighbors of D. Since the sets D_; x D; are
disjoint when D ranges over all intervals in D, this estimate is summable over D € D

2
/|Dh|2dxdy C/ / | )| dz dy < oc.
T—y

U; Ty [=1,0] [-1,0]

and yields

The case with +’s instead of — is done exactly in the same way. This proves our claim. O
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