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ABSTRACT 

Geostationary satellite imagers provide historical and near-real-time observations of 

cloud top patterns that are commonly associated with severe convection. Environmental 

conditions favorable for severe weather are thought to be represented well by reanalyses. 

Predicting exactly where convection and costly storm hazards like hail will occur using 

models or satellite imagery alone, however, is extremely challenging. The multivariate 

combination of satellite-observed cloud patterns with reanalysis environmental parameters, 

linked to Next Generation Weather Radar- (NEXRAD-) estimated Maximum Expected Size 

of Hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe 

hail likelihood for any observed storm cell. These estimates are made where satellites observe 

cold clouds, indicative of convection, located in favorable storm environments. We seek an 

approach that can be used to estimate climatological hailstorm frequency and risk throughout 

the historical satellite data record. 

Statistical distributions of convective parameters from satellite and reanalysis show 

separation between non-severe/severe hailstorm classes for predictors including overshooting 

cloud top temperature and area characteristics, vertical wind shear, and convective inhibition. 

These complex, multivariate predictor relationships are exploited within a DNN to produce a 

likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, 

which is exceptional among analogous hail studies. Furthermore, applications of the DNN to 

case studies demonstrate good qualitative agreement between hail likelihood and MESH. 

These hail classifications are aggregated across an 11-year GOES-12/13 image database to 

derive a hail frequency and severity climatology, which denotes the Central Plains, the 

Midwest, and northwestern Mexico as being the most hail-prone regions within the domain 

studied. 
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1. Introduction

Deep convection is ubiquitous across the globe and integral to the Earth’s climate system.

It is responsible for redistributing heat, moisture, and momentum, as well as transporting 

water vapor into the stratosphere. Deep convection produces beneficial rainfall but can also 

generate severe weather conditions that adversely impact society, such as damaging wind, 

large hail, tornadoes, lightning, flooding rainfall, and aviation icing and turbulence (Yost et 

al. 2019; Mecikalski et al. 2021). Hail damage produces approximately 60% of the average 

annualized loss of the three primary severe weather hazards in the United States – straight 

line winds, hail, and tornadoes (Gunturi and Tippett 2017). Promoting resilience against such 

hazards on local and global scales is a primary goal of the NASA Applied Sciences Disasters 

program, which seeks to encourage use of satellite observations to quantify and mitigate risk 

(NASA 2021).  

Extensive research, using rawinsonde, numerical weather prediction, and reanalysis 

profiles in environments near severe weather events, indicates that hazards produced by a 

storm as well as storm structure are a by-product of its thermodynamic and kinematic 

environments. Parameters such as convective available potential energy (CAPE), vertical 

wind shear, mid-tropospheric lapse rate, lower tropospheric mixing ratio, and statistical 

combinations of these and many other predictors have been found useful for developing 

climatologies of and forecasting severe storms (e.g., Brooks et al. 2003; Johnson and Sudgen 

2014; Púčik et al. 2015; Prein and Holland 2018; Taszarek et al. 2020). Severe storm 

environments are often complex and can change significantly in time and space, with 

variations that may not be adequately captured by observations and models (Coniglio and 

Parker 2020; Coniglio and Jewell 2022). These complexities lead to some disagreements in 

reanalyses such as the Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2; Gelaro et al. 2017) and the fifth-generation ECMWF global 

atmospheric reanalysis (ERA5; Hersbach et al. 2020), especially near topographic boundaries 

(Taszarek et al. 2021). All storm cells that form in any given favorable severe storm 

environment do not necessarily produce severe weather, nor will storms in close proximity 

produce the same weather hazards, or hazards of the same intensity. Observations of storms 

from remote sensing instruments, such as ground-based radars, satellite imagers, and 

lightning detection networks, are therefore needed to improve differentiation of severe from 

non-severe storm cells.  
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Studies have shown that severe storms exhibit a variety of signatures in satellite 

observations near in time to reported severe weather events. Cold, textured cloud tops 

embedded within a warmer, smooth cirrus anvil indicate the presence of strong updrafts that 

have penetrated through the level of neutral buoyancy, and often into the stratosphere. These 

overshooting cloud tops (OTs) can be detected and characterized in terms of their tropopause-

relative infrared (IR) brightness temperatures (BT), BT difference (BTD) between the OT 

and surrounding anvil, OT area, and height using automated methods (e.g., Marion et al. 

2019; Khlopenkov et al. 2021). The presence of an OT is statistically correlated with severe 

weather reports (Dworak et al. 2012; Bedka and Khlopenkov 2016; Bedka et al. 2018; 

Khlopenkov et al. 2021). Additionally, ice particles within intense convection and hailstorms 

scatter microwave radiation emitted by the surface before it can reach a satellite sensor, 

leading to BT depressions observed by passive microwave imagers such as the Tropical 

Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), the Global Precipitation 

Measurement Mission (GPM) Microwave Imager (GMI), and the Advanced Microwave 

Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission – Water 

(GCOM-W1) satellite. Hailstorms generate notable BT depressions in lower frequency (10-

37 GHz) passive microwave observations. These multispectral signals have been recently 

combined with human spotter hail reports to derive hail probability for convective feature 

detections (Bang and Cecil 2019; Bruick et al. 2019; Bang and Cecil 2021).  

The Geostationary Operational Environmental Satellite (GOES) series has observed IR 

BT at 4-km/pixel nadir resolution, sufficient for resolving and characterizing OTs, since the 

launch of GOES-8 in 1994. The GOES-8 to -15 series have collected imagery, typically at 

15-minute intervals over North America, useful for determining the climatology of severe

storms throughout the diurnal cycle over much of the Western Hemisphere at much higher 

spatial resolution than is possible from reanalyses. OT detection climatologies have been 

previously used to define hailstorm risk for application within the reinsurance industry (e.g., 

Punge et al. 2017, 2023). The GOES-R satellite series, beginning with GOES-16 that 

provided initial pre-operational imagery in 2017, observes IR BT at 2-km/pixel nadir 

resolution and 5-minute intervals over North America, and 10- to 15-min intervals over a 

hemispheric (i.e., “full-disk”) field of view with its Advanced Baseline Imager (ABI). This 

improved ABI image quality represents a discontinuity in the GOES climate data record 

because spatial resolution has a significant impact on cloud top appearance and apparent 
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intensity that can affect severe storm detection algorithm performance (Khlopenkov et al. 

2021; Cooney et al. 2021).   

Although severe weather can be generated by storms with OTs, many OT-producing 

storms do not generate such weather because the environment is not conducive due to 

deficient or excessive wind shear, unfavorable hodograph shape, and insufficient moisture or 

instability. Nevertheless, studies analyzing limited samples of data suggest that OTs with 

colder IR BT and larger area are more likely to be associated with heavy rainfall and severe 

weather (Dworak et al. 2012; Marion et al. 2019; Sandmael et al. 2019; Khlopenkov et al. 

2021). Knowing the extent to which these findings hold, however, requires more rigorous 

analysis, e.g., examining the influence of the regional meteorological environment. This 

suggests that a combination of storm environmental conditions and satellite observations 

could be used to better depict the climatology of severe storms (Cintineo et al. 2018; 2020). 

In addition to complexities associated with severe storm detection, knowledge of exactly 

when and where severe weather has occurred is often lacking. Deep convection can evolve 

rapidly, and uncertainties in human spotter report timing and location can confound our 

ability to develop statistical relationships between cloud properties and severe weather 

occurrence. Spotter hail reports, for example, are known to be biased toward higher 

population density, daytime hours, and regions with greater road density (Allen and Tippett 

2015; Ortega 2018; Elmore et al. 2022). Hail sizes are frequently underreported due to rapid 

melting, are mis-reported due to perceived size correlation with objects of known size (e.g., 

golf ball), and hail events coincident with tornadoes are often omitted (Allen and Tippett 

2015). The use of hail diameter as a proxy for storm intensity, which fails to sufficiently 

describe the mass or density of hailstones and is difficult to measure accurately, presents 

another fundamental uncertainty in hail reports (Doswell et al. 2005; Allen and Tippet 2015). 

To offset the limitations in observations, the Maximum Expected Size of Hail (MESH), 

derived from a vertical integration of radar reflectivity at horizontal polarization above the 

freezing level, is a commonly employed metric for estimating hail occurrence and size that 

can be used to mitigate uncertainties with reports (Witt et al. 1998; Murillo and Homeyer 

2019). MESH has been used to derive high spatial resolution hail climatologies over the 

contiguous United States (CONUS; Cintineo et al. 2012; Murillo et al. 2021; Wendt and Jirak 

2021), consistent with best-available ground report climatologies (Allen and Tippet, 2015; 

Taszarek et al. 2020).  
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Long-term GOES satellite imager and MESH climatologies over the CONUS provide a 

new opportunity to explore satellite-derived statistical properties of hailstorm cloud tops, the 

environmental characteristics supportive of hailstorms depicted by reanalyses, and the 

detectability of hailstorms using GOES satellite, reanalysis, and a combination of the two 

datasets. In this paper, we analyze an 11-year record of GOES-12/13 data, as well as a period 

during the 2017 warm season (April-August) when GOES-13 and GOES-16 provided nearly 

coincident measurements during the GOES-16 pre-operational checkout period. We focus on 

the GOES-12/13 data here to demonstrate how hailstorms could be detected using the nearly 

24-year GOES-8 to -15 data record – satellites that carried imagers with consistent spatio-

temporal resolution. The NASA MERRA-2 and ECMWF ERA5 reanalyses are analyzed 

together to determine the sensitivity of hailstorm detectability to the choice of reanalysis, as 

well as other input variations. GOES and reanalysis data are combined and aligned with 

MESH-identified convective cells within a deep neural network (DNN) to determine the 

feasibility of discriminating potentially severe hailstorms from sub- (or non-) severe 

hailstorms. The relative importance of various GOES and reanalysis parameters for severe 

hailstorm discrimination was assessed, and these form the basis of the final DNN. With 

emphasis on satellite-identified storm signatures and their properties, this approach to 

estimating likelihood for severe hail builds on similar deep learning/machine learning efforts 

that tied radar- and model-identified cell features and lightning detection to hail reports, 

MESH, severe weather warnings, or a simulated hail size reference through use of a 

regularized regression model, a convolutional neural network, or Random Forest (RF) 

classifier and RF regression models (Gagne et al 2017; Czernecki et al. 2019; Gagne et al. 

2019; Burke et al. 2020; Gensini et al. 2021; Mecikalski et al. 2021). We show that a 

likelihood for potentially severe hail can be estimated with relatively high accuracy using a 

combination of GOES and reanalysis data, exceeding the predictive skill of a DNN model 

that uses reanalysis or GOES inputs alone. Note that terms like predictive, and different 

forms of the word, are in the context a DNN output, which is commonly called a prediction, 

and should not be confused with a meteorological forecast. This work aims to develop a 

DNN model that can estimate severe hail likelihood for satellite-identified convective 

signatures as an initial step toward global application, which would especially benefit regions 

without a long-term database of weather radar observations. 
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2. Data

a. GOES convective cloud top characteristics

Automated detections of OT and anvil characteristics are derived from 10.7-µm GOES-

12/13 and 10.3-µm GOES-16 IR BTs using algorithms described by Khlopenkov et al. (2021) 

and validated/analyzed by Cooney et al. (2021). GOES IR BT observations are first 

resampled to a grid and then converted to tropopause-relative values (IR–Tropopause) by 

differencing the IR BT and a tropopause temperature derived from the MERRA-2 reanalysis. 

This measurement is referred to as a “BT-score”. Tropopause temperature is spatially 

smoothed and interpolated in time/space to the satellite image time and pixel grid. The IR–

Tropopause values up to 35 K warmer than the tropopause are further analyzed as possible 

anvils and OTs. Local BT-score maxima within anvils, referred to as embedded cold spots 

(ECSs) throughout this paper, are then identified and serve as OT candidates. Note that the 

absolute BTD between the ECS and the anvil (ECS–Anvil BTD) can be 1 K at minimum 

(ECS colder than the anvil), so hailstorms without an ECS detection have little to no IR BT 

variation within their anvils. Derivations of IR anvil rating, anvil cloud extent surrounding 

each ECS, ECS area, and the ECS OT Probability are further explained by Khlopenkov et al. 

(2021). ECS area is defined here as the cumulative area of pixels corresponding to a unique 

ECS ID after parallax correction, with the following additional condition: All ECS pixels 

must be colder than a factor of 0.75 of the ECS–Anvil BTD added to the coldest pixel's IR 

BT, which ensures that only relatively prominent portions of each ECS are considered in the 

area calculation. 

GOES-12/13 OT detections during 2007-2017 from 23-50º N and 65-115º W, a region 

that includes most of the CONUS, sub-tropical convectively active regions over northern and 

western Mexico, the Gulf of Mexico, and the Gulf Stream, are matched with convective cells 

defined using hourly NEXRAD MESH. GOES-12/13 scanned the CONUS at approximately 

15-min intervals during normal operations and at 7.5-minute intervals when operated in rapid

scan mode during high-impact weather events. As described in Section 3.b below, GOES-

12/13 data can be matched with MESH convective cells when collected within ±7.5 minutes 

from the hour. No matches were possible when full-disk scanning limited imaging frequency 

to every 30 mins, which occurred every three hours (00, 03, 06, ..., 21 UTC). GOES-16 full-

disk scans from April-August 2017, during its pre-operational period, were also analyzed at 

15-minute scan intervals to provide consistency with typical GOES-12/13 operational
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scanning. Additionally, GOES-16 1-min Mesoscale Domain Sector data were subsampled to 

emulate the CONUS 5-min resolution for case study analyses. GOES data were acquired 

from the University of Wisconsin-Madison Space Science and Engineering Center via the 

McIDAS-X software package (Lazzara et al 1999). 

b. Maximum Expected Size of Hail

The NOAA NEXRAD network collects volumetric scans of horizontal reflectivity factor

at many elevation angles, which are combined to generate the MESH product. Percentiles of 

the unfiltered MESH are derived by combining isotherm heights from the National Centers 

for Environmental Prediction Rapid Refresh model with echo top heights from the 3-D 

Gridded NEXRAD WSR-88D radar (GridRad) dataset, which are then scaled to observed 

hail size reports using an empirically derived power law fit. Specifically, observed 40+ dBZ 

echo top heights above the freezing level are integrated and scaled to derive a Severe Hail 

Index (SHI). Then, a power-law fit is empirically formulated to fit the SHI using the 75th and 

95th percentile of ground hail reports, resulting in the 75th and 95th percentile MESH 

(MESH75 and MESH95; Homeyer and Kumjian 2015; Homeyer and Bowman 2017; Murillo 

and Homeyer 2019). 

Localized MESH maxima associated with convective cells (see Section 3.a) are identified 

from hourly, 2-km GridRad MESH over the CONUS (25-49º N; 69-115º W; Bowman and 

Homeyer 2017). These cells are used as the basis for aggregating GOES and reanalysis data 

for training and validating the DNN. Case studies shown in this paper take advantage of a 

recently available 5-minute “GridRad Severe” MESH dataset (University of Oklahoma 

2021). 

c. Ground spotter storm reports

Reports of hail diameter exceeding 1 inch (25.4 mm) were obtained from the SPC Severe

Weather Database (https://www.spc.noaa.gov/wcm/) from 2007 January through 2017 

December (42,040 total reports). We examine GOES and reanalysis properties as a function 

of reported hail size, along with MESH and passive microwave hail probabilities from TMI, 

GMI, and AMSR2. As noted above, hail size reporting suffers from several inadequacies, 

compounded with uncertainty regarding the locations of sub-severe or non-hailstorms. These 

shortcomings inspire use of GridRad MESH as a hail proxy. 

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-22-0042.1.Brought to you by CENTRAL MICHIGAN UNIVERSITY | Unauthenticated | Downloaded 08/03/23 02:10 AM UTC

https://www.spc.noaa.gov/wcm/


9 

File generated with AMS Word template 2.0 

d. Passive microwave hail detections

Another proxy for hail occurrence is derived from satellite passive microwave radiometer

(MWR) data. The presence of ice particles in an atmospheric column scatters outgoing 

microwave radiation emitted by the Earth’s surface, the magnitude of which is dependent on 

the particle size, number concentration, and the wavelength band being observed (Cecil 

2009). Such scattering results in a lowering of MWR multispectral BTs. Precipitation 

features, i.e., a set of contiguous MWR pixels with low BTs thought to be caused by 

convection, are first constructed (Nesbitt et al. 2000; Cecil et al. 2005; Liu et al. 2008). The 

features are defined as contiguous areas with an 85- (TMI) or 89- (GMI and AMSR2) GHz 

BT below 200 K. A probability of severe hail algorithm was developed based on an empirical 

relationship between SPC severe hail reports and the multispectral MWR BT (Bang and Cecil 

2019; 2021). The precessing orbits of the TRMM and GPM satellites enable observations of 

deep convection at all hours, thereby mitigating observation time biases, whereas the GCOM-

W1 AMSR2 instrument flies in a sun-synchronous orbit and collects observations at only 

01:30 AM/PM local time. Microwave hail detections have been used to construct global 

climatologies using a 2ºx2º grid, normalized by sampling opportunities, which reveal 

generally good spatial agreement with climatologies derived from MESH and ground hail 

reports over CONUS (Bang and Cecil 2019; 2021). These MWR hail measurements provide 

an alternative perspective of hailstorm intensity that is useful for comparing to the 

relationships found from GOES/reanalysis and hail size metrics produced from MESH and 

the SPC. 

e. Global reanalyses

Two state-of-the-art atmospheric reanalyses are employed to explore hail likelihood

estimation sensitivity to meteorological variables derived from models with distinct 

parameterizations, means of data assimilation, and spatio-temporal resolutions. Despite the 

rather coarse resolution relative to convective-scale processes, global reanalyses have been 

used in numerous studies to identify large-scale environmental conditions favorable for 

severe weather, and to assess predictability of severe weather (Brooks et al. 2003; Brooks 

2009; Punge et al. 2014; Allen et al. 2015; Punge et al. 2017; King and Kennedy 2019; 

Taszarek et al. 2020; Gensini et al. 2021). Validation of these reanalyses against observed 

soundings suggests strong performance over the CONUS for both thermodynamic and 

kinematic parameters, particularly outside of the boundary layer (Taszarek et al. 2021). 
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Additionally, the continuous global coverage offered by reanalyses provides a framework to 

apply the model to regions beyond the CONUS. A set of environmental parameters thought 

to be useful for identifying hailstorm environments, described in Section 3.c, were derived 

from the ERA5 and MERRA-2 reanalyses using the Python package, xcape (Lepore et al. 

2021; https://github.com/xgcm/xcape). 

 ERA5: The latest global reanalysis product from the European Centre for Medium

Range Weather Forecasting (ECMWF) with horizontal grid spacing of 0.25ºx0.25º,

137 vertical levels, and a 1-hour output interval (Hersbach et al. 2020)

 MERRA-2: The latest global reanalysis product from NASA’s Global Modeling and

Assimilation Office (GMAO) with horizontal grid spacing of 0.5ºx0.625º, 72 vertical

levels, and a 3-hour output interval (Gelaro et al. 2017)

3. Methods

An 11-year record of GOES-derived cloud top properties for ECSs, spatially and

temporally aligned with MESH convective cells, model reanalysis parameters, SPC hail size 

reports, and MWR hail probability, was assembled using methods described below. We seek 

to identify cloud-top patterns and environmental parameters consistent with potentially severe 

hailstorms. A DNN allows for discovery of less intuitive, multi-dimensional input 

combinations of such parameters, which leads to enhanced predictive capability. These 

predictors and their roles in various DNN input sensitivity experiments are defined, as are the 

DNN architecture and evaluation metrics. 

a. MESH cell feature database

A database of cell object characteristics is assembled by optimizing the open-source

Python package, Tracking and Object-Based Analysis of Clouds v1.2 (tobac), to detect local 

MESH95 maxima exceeding 10 mm (Heikenfeld et al. 2019). The location and maximum 

value of MESH95 for each feature is stored. Feature maxima must be spaced by at least 

28×28 km2 (7x7 GOES-12/13 pixels) to facilitate extraction of GOES parameters around each 

MESH95 maximum. All settings used within tobac v1.2 are listed in Table 1. 
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tobac feature detection setting Value used 
Minimum distance between features 28,000 m
Gaussian smoothing None
Minimum pixels per object 1
Position threshold Extreme
Target Maximum
Erosion threshold 0
MESH95 thresholds 10, 25, 50 mm
2D watershed segmentation thresholds 10, 25, 50, 75 mm

Table 1. Feature detection and watershed thresholds used for MESH cell detection in tobac. 

The ECS matching requirement is expected to exclude less confident MESH detections 

while anchoring DNN predictions to satellite-observed storm cells. Non-severe MESH95 

cells (<1.5-inch, or 38.1-mm, diameter; see Section 3.d.2) match with an ECS about 25% of 

the time, indicating that such cells either have warm cloud tops or tops with little IR BT 

variation (Table 2). Cells with higher (1.5+ inch) MESH95 diameter, a value corresponding 

to potentially severe hail, have a 59% match rate with an ECS. The match rate increases to 

73% for 2+ inch (50.8+ mm) MESH95, indicating that cells with larger estimated hail size 

have greater BT variation in their anvils. Furthermore, despite a ~5:1 dominance of warm 

season to cold season matches, the rather consistent matching frequencies suggest that the 

relationship between MESH95 and ECS occurrence is largely independent of seasonality, 

except for a slight increase in incidents of significantly large hail in the warm season. 
MESH95 diameter ECS match frequency 

GOES-12/13 
all seasons 

GOES-12/13 
cold season 

GOES-12/13 
warm season 

Non-severe, <1.5 inches 25% 24% 25%
Potentially severe, 1.5+ inches 59% 59% 59%
Potentially significant severe, 2+ inches 72% 69% 73%

Table 2. Matching frequencies of non-severe, potentially severe, and potentially significant severe 
MESH95 signals with ECSs detected by GOES-12/13. 

b. GOES convective cloud top property database

A set of GOES-12/13 cloud top properties is produced at ECS locations from every

available scan (371,489) during 2007-2017 (Table 3). The same parameters are derived from 

GOES-16 data during the 2017 warm season (April-August). Properties, such as Mean Anvil 

Height and Area of Cold Cloud, are computed using pixels around each ECS. Pixels are 

parallax-corrected based on a cloud top height retrieval derived from matching the ECS IR 

BT with the co-located MERRA-2 temperature and geopotential height profiles. Only data 

for the most intense GOES-12/13 pixel (defined by minimum IR–Tropopause) is stored for 

cases in which parallax causes two pixels to be assigned to the same gridded satellite pixel. 

GOES ECS regions detected within ±7.5 minutes and 28×28 km2 (30×30 km2 for GOES-16) 

of each MESH95 cell maxima are compiled. Note that during periods of GOES-12/13 rapid 
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scan operation, it is possible to have more than one observation within each 7.5-min window. 

The peak intensity of the multiple matches is used to accumulate every predictor in Table 3. 

The satellite and reanalysis parameters (Section 3.c) are stored alongside MESH data and 

other positional variables. 

Predictor short name Description Units 
OT Probability Overshooting top probability (Khlopenkov et al. 2021) unitless

(0.0-1.0)
ECS–Anvil BTD Brightness temperature difference between coldest pixel and mean anvil

background
K

ECS Area Area of pixels for each ECS region km2 
IR–Tropopause GOES IR brightness temperature – MERRA-2 Tropopause temperature K
Anvil Height Average cloud top height of pixels with IR anvil rating ≥ 20 within ~30 km2 km
Area of Cold Cloud Average area of pixels with IR BT< 225 K within ~30 km2 km2 
Anvil Frequency Percentage of pixels with IR anvil rating ≥ 20 within ~30 km2 %
Cloud Top Height Derived from IR BT matched with MERRA-2 temperature profile. OT

regions are height-assigned using a constant lapse rate assumption from
Griffin et al. (2016)

km

Table 3. Satellite IR derived cloud top parameters evaluated in this study. 

A snapshot of several GOES-12/13 and MESH properties are shown in Fig. 1 for a severe 

storm outbreak on 16-17 May 2017 that produced widespread large hail, damaging winds, 

and tornadoes. At 03:55 UTC, MESH95 values exceeded 50 mm, especially within the 

regions where MESH areas surpassed 250-300 km2 along a squall line in Texas and 

Oklahoma (Figs. 1a and 1e). The coincident GOES-12/13 scan shows cloud tops 5-10 K 

colder than the tropopause (Fig. 1b) and highly probable OTs (Fig. 1d) aligned with cells 

containing MESH95 > 30-50+ mm. Several larger-area ECSs (e.g., Fig. 1e grey arrows) 

exhibit greater prominence relative to the background anvil temperature (Fig. 1c), thereby 

indicating that wider and colder updrafts were more likely to produce severe hail as observed 

by radar. Note that the northern-most indicated cell in western Oklahoma has rather weak 

MESH95 despite relatively strong temperature difference, OT Probability, and ECS area 

signatures, which suggests that satellite observations alone may not be sufficient for 

consistently quantifying active hail events, and can perhaps benefit from complementary 

knowledge of the broader storm environment.  
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Fig. 1. Snapshot of select properties from 03:55 UTC on 17 May 2017 during a severe hail, tornado, 
and wind event in the southern Great Plains. a) MESH95 and cell areas (white contour thickness is 
proportional to cell area), b) IR–Tropopause (GOES–MERRA-2) and IR Anvil rating ≥ 20 (white 
contours), c) ECS–Anvil BTD, d) OT Probability, e) ECS area, and f) DNN-predicted likelihood of severe 
hail. Grey arrows highlight particularly prominent ECSs, with strong temperature signatures, high OT 
Probability, and the largest areas. 

c. Reanalysis matching with MESH cells and predictor importance analysis

A suite of convective environmental parameters, listed in Table 4, is derived using 

MERRA-2 and ERA5. The list includes common parameters for evaluating severe weather. 

Also included are indices and covariate predictors derived in combination, such as the energy 

helicity index (EHI; Brooks et al. 1994), which combines CAPE and storm-relative helicity 

SRH into one index for identifying environments favorable for rotating updrafts, and the 

significant hail parameter (SHIP), which is derived from most unstable CAPE (MUCAPE), 

mixing ratio, mid-level lapse rate, 500-hPa temperature, and 0-6-km vertical wind shear as 

follows (NOAA 2022): 

     𝑆𝐻𝐼𝑃 =
[(𝑀𝑈𝐶𝐴𝑃𝐸

𝐽

𝑘𝑔
) × (𝑀𝑖𝑥𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑀𝑈 𝑃𝑎𝑟𝑐𝑒𝑙 

𝑔

𝑘𝑔
) × (𝑀𝐼𝐷𝐿𝐴𝑃𝑆𝐸 

°𝐶

𝑘𝑚
) × (−𝑇500 °𝐶)× (𝑆𝐻𝐸𝐴𝑅06 

𝑚

𝑠
) ]

44000000
(1) 

Several steps are performed to resample these parameters from the reanalysis resolution to 

the GOES satellite grid. To avoid impacts of contamination from parameterized convection 

and to capture the environment that is forcing the convection, the most intense absolute 

model parameter values over a ~1.5°×1.8° latitude by longitude area (3 grid boxes × 3 grid 

boxes for MERRA-2 and 6 grid boxes × 7 grid boxes for ERA5) are found for each 
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associated ECS (Brooks et al. 2003). Next, these reanalysis parameters are temporally 

interpolated to the satellite pixel scan time. Note that the Tropopause Height parameter is a 

standard output of the Khlopenkov et al. (2021) OT detection software, which always relies 

on MERRA-2. The other resampled reanalysis convective environmental parameters 

described in this section, aside from total precipitable water, are derived from either 

MERRA-2 or ERA5. Total precipitable water is always derived from MERRA-2. 

Predictor short name Description Units 
SURFCAPE Surface Convective Available Potential

Energy
J kg-1 

ML1000CAPE 1000-m Mixed-Layer CAPE J kg-1 
ML500CAPE 500-m Mixed-Layer CAPE J kg-1 
MUCAPE Most Unstable CAPE J kg-1 
SURFCIN Surface Convective Inhibition J kg-1 
ML1000CIN 1000-m Mixed-Layer CIN J kg-1 
ML500CIN 500-m Mixed-Layer CIN J kg-1 
MUCIN Most Unstable CIN J kg-1 
FZLV Freezing Level m
SHEAR01 0-1-km Vertical Wind Shear m s-1 
SHEAR06 0-6-km Vertical Wind Shear m s-1 
T500 500-hPa Temperature K
MIDLAPSE 700-500-hPa Lapse Rate ºC km-1 
SHIP Significant Hail Parameter unitless
STPLM Significant Tornado Parameter Left-mover m2 s-2 
STPRM Significant Tornado Parameter Right-mover m2 s-2 
SCPLM Supercell Composite Parameter Left-mover m2 s-2 
SCPRM Supercell Composite Parameter Right-mover m2 s-2 
EHI01LM 0-1-km Energy Helicity Index Left-mover m2 s-2 
EHI01RM 0-1-km Energy Helicity Index Right-mover m2 s-2 
EHI03LM 0-3-km Energy Helicity Index Left-mover m2 s-2 
EHI03RM 0-3-km Energy Helicity Index Right-mover m2 s-2 
SRH01LM 0-1-km Storm Relative Helicity Left-mover m2 s-2 
SRH01RM 0-1-km Storm Relative Helicity Right-mover m2 s-2 
SRH03LM 0-3-km Storm Relative Helicity Left-mover m2 s-2 
SRH03RM 0-3-km Storm Relative Helicity Right-mover m2 s-2 
LAPSE3 0-3-km Lapse Rate ºC km-1 
LAPSE24 2-4-km Lapse Rate ºC km-1 
THGZ Thickness of Hail Growth Zone m
SBLCL Surface-based Lifted Condensation Level m
LCLML500 500-m Mixed-Layer Lifted Condensation

Level
m

TPW Total Precipitable Water (from MERRA-2) mm
Tropopause Height Smoothed tropopause height from MERRA-2

(Khlopenkov et al. 2021)
km

Table 4. Reanalysis model (both ERA5 and MERRA-2 except where otherwise indicated) derived 
convective parameters evaluated for this study. 
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Predictor short name Source 
OT Probability1 Satellite
SHEAR012 Reanalysis
SHIP3 Reanalysis
MUCIN4 Reanalysis
TPW5 Reanalysis
IR–Tropopause6 Satellite/Reanalysis
Tropopause Height7 Reanalysis
Anvil Frequency8 Satellite
Cloud Top Height9 Satellite
Anvil Height10 Satellite
ECS–Anvil BTD11 Satellite 
ECS Area12 Satellite
T50013 Reanalysis 

Table 5. Predictors found to be optimal for general detection of potentially severe hail ranked by order 
of their importance as determined by recursive feature analysis. 

Because several input parameters are composites or multiple variables, it is likely that 

there would be some degree of input redundancy in a DNN that uses all or most of these 

selections. Furthermore, overuse of redundant parameters or those with rotation direction 

dependency (i.e., all STP, SCP, EHI, and SRH parameters) heighten risk of overfitting to a 

specific environment, thereby limiting general application. As such, the experiments 

introduced here leverage parameters that were selected (Table 5) based on recursive 

assessment of model performance while also minimizing use of inputs with strong regional 

dependency that would most inhibit global applicability (e.g., left-mover and right-mover 

dynamics and elevation-influenced lapse rates). The order in which predictors were 

recursively included as model features, determined by their overall contribution to the 

model’s critical success index, are shown as superscripts in Table 5. Including latitude and 

longitude as predictors may help address such unwanted regional influences, but doing so is 

undesirable for creation of a generalized model. Although the selected parameters likely 

nevertheless contain some amount of regional bias, the dominant use of satellite inputs 

hopefully works to dampen such effects. Eight experiments are considered, defined in Table 

6, with each using only the inputs listed in Table 5. 

Experiment name Description 
GOES-13 + MERRA-2 GOES-12/13 and MERRA-2 reanalysis
MERRA-2 Only Only MERRA-2 reanalysis
GOES-13 + ERA5 GOES-12/13 and ERA5 reanalysis (except Tropopause Height and TPW)
ERA5 Only Only ERA5 reanalysis (except Tropopause Height and TPW)
GOES-13 Only Only GOES-12/13
GOES-16 + MERRA-2 GOES-16 and MERRA-2 reanalysis, i.e., GOES-12/13-based training applied to

GOES-16
Warm Season GOES-12/13 and MERRA-2 reanalysis, trained on all seasons and applied only

to days-of-year 91–273
Cold Season GOES-12/13 and MERRA-2 reanalysis, trained on all seasons and applied only

to days-of-year 1–90 and 274–366.

Table 6. Summary of input and application constraints for the nine DNN experiments. 
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d. Deep neural network

Classification of potentially severe hail is accomplished through the training and

application of an artificial neural network (ANN) – specifically a DNN. Figure 2 roughly 

outlines the basic DNN structure from input data X, through hidden layers with activations A, 

to the final layer output signal Ŷ. Further explanation of the DNN setup and architecture is 

provided below. 

Fig. 2. Basic illustration of an L-layer neural network. 

1) ARCHITECTURE

The DNN output is a likelihood for potentially severe (MESH95 ≥ 1.5 inches) at each

ECS detection. As such, a sigmoid activation function is used in the output layer neuron, 

which is sensible for binary classification problems (Goodfellow et al. 2016). Sigmoid 

activation in the output layer produces a final prediction in terms of a probability ranging 

from 0.0 to 1.0. Model performance is assessed at some probability threshold p, at which 

value either a negative, i.e., Ŷ(Ŷ<p)=0, or positive, i.e., Ŷ(Ŷ≥p)=1, prediction is determined. 

The means of determining the value for p is explored below as well as in Section 4.c. Note 

that the DNN severe hail likelihoods are linearly scaled such that a pre-scaled likelihood of 

0.8 would instead equal 1, which produces clearer visual distinction between lower and 

higher likelihoods of potentially severe hail. 
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Determination of the optimal DNN hyperparameters is accomplished through a 

randomized search of the hyperparameter space. These hyperparameters and their values are 

briefly discussed here and summarized in Table 7. The DNN structure determined for this 

study is one with 8 hidden layers, having 75, 38, 17, 12, 11, 8, 7, and 4 neurons in layers 1 

through 8, respectively (determined within a random search space of 3-10 hidden layers and 

number of neurons selected randomly within 10-100 without exceeding the size of the 

previous layer). In general, it was found that models with less capacity could not learn the 

task well enough, and larger models tend to overfit to the training set. Neurons of the hidden 

layers employ the ReLU (Rectified Linear Unit) activation function, which allows for fast 

training given the relative simplicity of its derivative (Glorot et al. 2010). Adam Optimization 

is employed using 256 mini batches at a learning rate of 0.001 (Bengio 2012; LeCun et al., 

2012; Kingma and Ba 2015; Masters and Luschi 2018). Additionally, early stopping is 

employed to mitigate possible overfitting (Prechelt 1998). With early stopping and the above 

learning schedule, the DNN cycles for 10-19 epochs, depending on the fold, saving learned 

parameters for the last epoch before the skill on the validation set fails to improve over 10 

consecutive epochs. Finally, the DNN employs focal loss, which is a modified version of 

binary cross-entropy loss in which the solution is adjusted by a factor that modulates the 

contributions of correctly classified and incorrectly classified samples. Implementing focal 

loss influences the value at which p represents the optimized model. As such, focal loss 

modulating and weighting factors specified as 2.0 and 0.374, respectively, result in an 

optimized p value near 0.50 (Lin et al. 2020). 
DNN feature Value 
Hidden layers 8
Neurons in layers 1-8 75, 38, 17, 12, 11, 8, 7, and 4
Minibatches 256
Learning rate 0.001
Focal loss modulating factor 2.0
Focal loss weighting factor 0.374

Table 7. Summary of DNN architecture and hyperparameters. 

2) TRAINING AND VALIDATION SETS

The DNN is trained using a random selection of ECS and MESH95 matches within

groupings of three consecutive days across the 11 years of satellite and reanalysis data. A 

smaller, similarly random selection is used as a validation set that is monitored throughout 

the DNN tuning/training process, and an even smaller testing set is put aside for evaluation 

after learning is finalized to ensure that the model was not inadvertently overfit to the 

validation set. Only instances where the matched ECS is least two adjacent pixels in size are 
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considered in order to minimize introduction of GOES imager noise. Furthermore, following 

the method of Murillo et al. (2021), Fisher’s linear discriminant analysis (LDA, Wilks 2006) 

is performed on the training and validation sets using TPW and SHEAR06 to reduce the 

number of MESH false alarms, which tend to occur in high TPW and low SHEAR06 

environments (Murillo et al. 2021). 

Splitting the datasets at the boundaries of three consecutive days lends confidence that all 

sets are meteorologically distinct. All datasets are standardized based on the z-score of the 

training set. The training set randomly selects from 55% of the 11-year record in three-day 

groups, whereas the validation set selects from 36%, and the testing set selects from 9%. 

These values roughly correspond to the equivalent of 6 years, 4 years, and 1 year of data 

being used for the training, validation, and testing sets, respectively. We used only 6 years for 

training because we felt it was desirable to minimize training data while keeping it in the 

majority as one way to reduce perceived overfitting in the climatology assessment. To 

demonstrate that the model is insensitive to randomness, i.e., has low variance, the DNN skill 

is evaluated with k-fold cross-validation using six folds. In other words, the DNN is trained 

and assessed six separate times using six distinct random compositions for the training, 

validation, and testing sets to determine the average and standard deviation of the skill 

metrics across all folds. The dataset fold used to train the model that’s applied to the 

climatology and case studies (see Section 4 and Appendix B) was chosen because it uses 

none of the case study days in the training set.  

Cell maxima of MESH95 are used as the truth set (Y). A 1.5-inch MESH95 threshold is 

chosen to mark the boundary of binary classification categories (Y=0 or Y=1), where 

MESH95 less than 1.5 inches are considered non-severe, and MESH95 of 1.5 inches or more 

are considered potentially severe. The distribution of the categories is summarized in Table 8. 

The reason the positive class is labeled as potentially severe is because of a high bias in 

MESH data, which means that 1.5-inch (1-inch) MESH95 (MESH75) is more comparable to 

0.75-inch hail reported at the ground – falling short of the National Weather Service 

definition of severe hail (Murillo et al. 2021). Hail this size, however, is still considered part 

of the small hail category and remains of significant interest to the insurance industry 

(Murillo et al. 2021; North American Hail Workshop Panel Discussion 2022). 
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Dataset Total Warm 
Season 

Cold 
Season 

Non-severe Potentially 
Severe 

Severe/ 
Non-severe 

Training 131311
(1636)

131311
(1636)

131311
(1636)

80419
(1140)

50892
(587)

0.633

Validation 85943
(2924)

71722
(3216)

14221
(1561)

52736
(1773)

33207
(1208)

0.630

Testing 20488
(2892)

17064
(2994)

3425
(378)

12689
(1636)

7799
(1258)

0.615

Table 8. Average and variation (in parentheses) of total, Warm Season, and Cold Season sampling, as 
well as the total non-severe and potentially severe samples across the 6-fold training, validation, and 
testing sets. The last column is the ratio of potentially severe samples to non-severe samples. 

Note that for three of the experiments listed in Table 6, i.e., GOES-16 + MERRA-2, 

Warm Season, and Cold Season, the DNN training and validation conditions are not the 

same. For the GOES-16 + MERRA-2 experiment, the model is trained with GOES-13 + 

MERRA-2 data that exclude input from 2017 during the 6-fold random selections (each fold 

still representing the equivalent of 6 years of data), and the ECS Area parameter is scaled 

between 0 and 1 based on GOES-12/13 minimum and maximum values. The model is then 

applied to 6 folds of 2017 GOES-16 + MERRA-2 data (80% validation set, 20% testing set) 

with ECS Area scaled between 0 and 1 based on GOES-16 minimum and maximum values. 

The Warm (Cold) Season experiment uses the trained parameters from the GOES-13 + 

MERRA-2 experiment, but skill is evaluated only for days-of-year 91–273 (1–90 and 274–

366). 

3) SKILL METRICS

There are multiple relevant metrics with which the capability of a DNN can be evaluated.

These metrics and their relevance to meteorological warnings have been reviewed 

extensively in previous works and are summarized in this section (Doswell et al. 1990; 

Schaefer 1990; Barnston 1992; Gerapetritis 1995; Kunz 2007; Barnes et al. 2009; Hyvärinen 

2013; Johnson and Sugden 2014; Gensini and Tippet 2019). Skill metrics consider different 

combinations of true positive, false positive, false negative, and true negative classifications, 

and therefore it is important to diversify one’s evaluation criteria to be sure the model is not 

deficient in any one category. The probability of detection (POD) considers the ratio of true 

positives to the sum of observed severe events – thereby explaining the rate of correct severe 

hail predictions for all actual cases of severe hail. Next, there are two metrics for explaining 

false alarms (FA). One is the FA Ratio, which considers the ratio of false positive predictions 

to the sum of all positive predictions. The second is FA Rate, which considers the ratio of 

false positive predictions to the sum of observed non-severe events. The critical success index 

(CSI) is given by the ratio of true positive predictions to the sum of true positive, false 
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positive, and false negative predictions, and has a range from 0 (no predictive skill) to 1 

(perfect prediction). Heidke skill score (HSS) accounts for all four classification outcomes, 

and can range from -∞ to 1, where values 0 and below indicate no predictive skill and 1 

indicates a perfect prediction. The final metric is the Frequency Bias Index (FBI), often 

simply called Bias in the context of categorical forecasts, which is the ratio of total positive 

predictions to total observed severe events, where 1 is perfect and values less than (greater 

than) 1 indicate tendency toward under (over) forecasting. The exact formulations for these 

skill metrics are summarized by Wilks (2006). 

e. Climatological aggregation

To compare the frequency of the predicted hail events with various observational sources,

daily severe hail event occurrences are counted on an 80×80-km2 grid for each dataset over 

CONUS from 2007 through 2017 (Brooks et al. 2003; Doswell et al. 2005; Cintineo et al. 

2012; Allen and Tippet 2015; Murillo and Homeyer 2019). Only one detection per day 

(00:00-23:00 UTC) is required to be considered an “event day,” which thereby limits the 

impact of spatio-temporal resolution and sampling opportunity differences on the resulting 

climatologies. Following Murillo and Homeyer (2019), 1-sigma gaussian smoothing is 

applied. Whereas the training, validation, and testing datasets use data collected within ±7.5 

mins from the top of the hour, the climatology is aggregated from satellite files with scans 

beginning 15 mins after the hour (e.g., 23:15 UTC). Owing to the time resolution of the 

reanalysis data, however, around 55% of the reanalysis inputs used to train the model also 

appear in the climatology application, but never in the same exact paring with the satellite 

data and with slightly different time-interpolated values. Therefore, input combinations for 

application are distinct from training input combinations, although with 6 of 13 predictor 

values similar to what may have been used during training within a given reanalysis grid box. 

4. Results and Discussion

In this section we discuss results covering five focus areas, beginning broad before

narrowing on specific applications. We start by documenting the climatological distribution 

of MESH, hail reports, and MWR hail probability over the study domain. Second, the 

parameter space of certain satellite and reanalysis inputs are explored as a function of MESH 

hail size, and correlations of hailstorm detections with input parameters are examined. 

Outcomes of the DNN are presented next, including explanation of general predictive 
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capability, demonstration of specific performance metrics for each input sensitivity 

experiment, and discussion of caveats. Fourth, we highlight the DNN hail likelihood 

climatology and relate that to the MESH climatology discussed previously. Finally, we end 

the section with examination of hail likelihood estimates for two case studies (with a third 

presented in Appendix B). 

a. Regional hail distribution

The yearly-average severe hail event days from MESH and SPC storm reports show a

maximum frequency in the Central Plains that is shifted west of the maximum frequency for 

non-severe hail event days (Figs. 3a and 3c). Reduced frequency, however, of ground spotter 

reports (Fig. 3b), likely due to well-known biases (Allen and Tippett, 2015), is apparent. Note 

that MWR hailstorm detections are rendered as point observations rather than as a grid 

because TMI observations do not extend beyond 39° latitude and have greater sampling 

density at the northernmost extent of the orbit (Fig. 3d). This sampling discrepancy, in 

addition to time-of-day bias from the AMSR2 sun-synchronous orbit, would bias a gridded 

climatology relative to patterns depicted in the MESH climatology. Nevertheless, there is a 

concentration of high likelihood MWR hail detections in the Central Plains (red symbols), 

consistent with MESH and SPC. Higher densities of MWR hail detections also occur in 

regions outside of CONUS, including along the Sierra Madre in northwestern Mexico, 

northeastern Mexico, and the Gulf Stream. 
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Fig. 3. Yearly average severe hail event days observed on an 80×80 km2 grid (1-sigma Gaussian 
smoothing applied) during 2007-2017 matched within ±7.5 minutes and 28×28 km2 of a GOES-12/13 ECS 
detection. a) MESH95 ≥ 1.5 inches, b) SPC hail reports, c) MESH95 < 1.5 inches, and d) MWR hail 
detection probability exceeding 0.2. The satellite MWR is plotted as symbols and colored blue (red) if 
exceeding a low (high) threshold. Note that TMI observations do not extend beyond 39° latitude and have 
greater sampling density at the northernmost extent of the orbit. 

b. Parameter sensitivity to hail size and reanalysis

The satellite and reanalysis parameter distribution as a function of hail size is complex

due in part to 1) challenges in depicting the spatio-temporal evolution of severe storm 

environments by reanalysis, 2) the fact that severe hailstorms can be caused by a broad 

spectrum of environmental conditions (i.e., low CAPE and high wind shear, high CAPE and 

low wind shear; Johnson and Sugden, 2014; Gensini et al. 2021; Zhou et al. 2021), and 3) the 

imprecise process of spatio-temporally matching satellite-based cloud top properties with hail 

reports and MESH cells. Nevertheless, value distribution plots stratified by MESH hail size 

categories and correlation analyses can reveal patterns indicative of severe hailstorms. 

Box and whisker distributions of selected GOES-12/13 IR-based parameters show 

increasing satellite-derived intensity as hail size increases, with varying degrees of overlap 

among neighboring bins (Fig. 4). For example, the median OT Probability within the smallest 

MESH95 bin (0.5-1.0 inches) is ~0.33, increasing to ~0.8 for 3+ inch MESH95 (Fig. 4a). 

ECS Area is 2-3× larger (Fig. 4b) and tropopause-relative IR BT (Fig. 4d) is ~5 K colder for 

3+ inch MESH95 relative to < 1-inch MESH95, indicating that colder and wider updrafts are 

more likely to generate larger hail. Marion et al. (2019) computed OT Area using a similar 
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approach and found significant correlation between OT Area and tornado intensity. Some 

parameters like ECS–Anvil BTD have more gradual and subtle sensitivity to MESH95 size, 

for which a ~2 K median increase in BTD from the lowest to highest MESH95 bin was found 

(Fig. 4c). Sensitivity of these relationships to imager resolution is explored during the 2017 

warm season using GOES-13 and GOES-16 in Appendix A, showing that GOES-16 metrics 

are largely consistent with GOES-13, but GOES-16 records slightly colder temperatures, 

smaller ECS area, and greater sensitivity to hail size due to the higher pixel resolution. It is 

also important to note that large hail has occurred when satellite parameters are weak, which 

could be caused by factors such as 1) time differences between GOES and MESH data, 2) 

uncertainty in MESH data where, in reality, a cell may not truly be as intense as depicted by 

MESH, and 3) the ability for large hail to be produced in a cloud without notable BT 

variations at cloud top. 

Fig. 4. Box and whisker distributions (center line indicates median value, rectangles encompass the 
IQR, and whiskers extend to 1.5×IQR, outliers are not shown) of select GOES-12/13 IR cloud top 
parameters stratified by MESH95 hail size bins (matched within ±7.5 minutes and 28×28 km2) during 
2007-2017. a) OT Probability, b) ECS Area, c) ECS–Anvil BTD, and d) IR–Tropopause. 
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Some MERRA-2 convective environment parameters also increase in intensity with 

increasing MESH95 (Fig. 5). Similar such results are also found for ERA5 but are not shown. 

From the lowest to highest MESH95 bin, the median MUCIN (Fig. 5a) increases by ~40 J kg-

1 while SHEAR01 (Fig. 5c) decreases by ~5 ms-1. Furthermore, Fig. 5d shows a preference 

for ~2× larger median values of SHIP for 2+ inch compared to < 1-inch MESH95 bins. It is 

intuitive to anticipate more vigorous convective updrafts when parcels overcome large CIN in 

drier environments such as the explosive growth associated with the initiation of dryline 

thunderstorms over Oklahoma, Texas, and Kansas. The pattern may also be a reflection of 

there being reduced interaction between convective cells in large CIN environments, i.e., 

discrete storms favoring larger hail likelihood. Similarly, environments with higher SHIP 

(>1) show a tendency for producing larger MESH95. Although the negative correlation 

between MESH and SHEAR01 might seem counter intuitive, it is possibly owed to decreased 

hailstone residence times in highly sheared updrafts (Dennis and Kumjian 2017). Like the 

satellite analyses depicted above, large MESH95 does occur in many instances where 

environmental parameters are more muted than expected, such as in Fig. 5b, which presents a 

challenge to DNN learning capability. Evaluating such parameters in isolation in this way, 

however, does not capture possible multivariate contributions that the DNN may detect.  
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Fig. 5. Same as Fig. 4 except for select MERRA-2 convective parameters binned by MESH95: a) 
MUCIN, b) T500, c) SHEAR01, and d) SHIP. 

A correlation matrix quantifies the relationships between hailstorm detections and 

satellite/reanalysis parameters (Fig. 6). Specifically, MESH95 maxima, MWR hail 

probability, and ground reported hail size are correlated with one another and with the 

GOES-12/13 and MERRA-2 parameters from Tables 3 and 4. OT Probability, ECS Area, 

SHIP, and IR–Tropopause are the most strongly correlated with MESH95 with Pearson 

correlation coefficients (r) in the range 0.27-0.38. Ignoring the expectedly correlative height 

variables, and despite a few instances of exceptionally strong correlation among other 

predictors, e.g., OT Probability vs. ECS Area (r=0.75) and ECS Area vs. IR-Tropopause (r=-

0.61), most predictors are relatively independent of one another. While MWR hail probability 

correlation with the selected parameters is overall comparable to that of MESH95, with some 

notable exceptions, e.g., SHEAR01, significantly weaker relationships are found between 

reported hail size and reanalysis/satellite parameters, likely a result of uncertainty of hail size 

reports (Allen and Tippet 2015) and the inherent absence of sub-severe hail reporting. Lastly, 
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and still with acknowledgement of the same caveats for hail reporting, we see that MESH and 

MWR hail probability are more than twice as correlated as MESH and SPC hail size, which 

quantifies the relative patterns seen in Fig. 3. 

Fig. 6. Correlation matrix of select GOES-12/13 and MERRA-2 model reanalysis parameters matched 
within ±7.5 minutes and 28×28 km2 of a MESH95 cell maxima and MESH95 cell areas. Co-located MWR 
hail probability detections and ground spotter hail size reports are also included. 

Figure 6 also highlights that certain satellite parameters, i.e., OT Probability, ECS Area, 

and ECS–Anvil BTD, are largely independent of the environment, and therefore should 

uniquely contribute to hailstorm discrimination. Meanwhile, some satellite/reanalysis 

correlations pairings, such as Anvil Height with T500 and TPW, are rather strong (r=0.71 and 

r=0.64, respectively). A warmer atmosphere results in higher equilibrium heights and higher 

cloud tops given sufficient instability and moisture. 
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In summary, multiple satellite and model parameters are shown to be potentially useful 

predictors of observed hailstorm characteristics. Overall, larger hail is linked to wider and 

colder updrafts occurring in environments with weaker low-level shear and increased 

convective inhibition and SHIP. Next, we highlight the outcomes of a DNN model used to 

establish quantitative links among these parameters to skillfully detect potentially severe 

hailstorms. 

c. DNN validation

1) ASSOCIATION OF DNN PREDICTION TO TRUTH

Increasing likelihood of potentially severe hail is correlated with increasing MESH, with

a greater range of hail size covered by MESH95 compared to that by MESH75 (Fig. 7). This 

positive correlation between likelihood and MESH lends confidence to the DNN 

performance. That is, the model is assigning the highest likelihoods to storms with the 

greatest potential severity, and therefore thresholds of hail likelihood can be tailored to focus 

on storms producing the largest hail. 

Fig. 7. Validation set distributions of MESH95 and MESH75 at 5% intervals of potentially severe hail 
likelihood, where potentially severe is defined as 1.5 inches for MESH95 and 1 inch for MESH75. 
Numbers indicate validation samples per bin interval. The severe hail likelihoods have been linearly scaled 
such that a pre-scaled likelihood of 0.8 would instead equal 1. 
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2) INPUT SENSITIVITY EXPERIMENT RESULTS

The DNN accuracy is assessed using receiver operating characteristic (ROC) curves

based on models applied to the validation set (Fig. 8). A summary of the experiment skill 

scores for likelihoods determined by the p value at the inflection point of the ROC curve is 

provided in Table 9, which provides not only validation set skill metrics, but also those for 

the training and testing sets. While a ROC curve shows the relationship between POD and FA 

Rate, a performance diagram (PD) incorporates multiple validation metrics: POD, FA Ratio, 

and CSI (Gerapetritis 1995; Roebber 2009). Figure 9 shows a PD for the same ensemble of 

models shown in Fig. 8. Figure curves and table statistics represent the 6-fold-average results 

(standard deviations represented by parentheses in Table 9). 

Fig. 8. Receiver operating characteristic (ROC) 6-fold-average curves illustrating the classification 
capability of the DNN as applied to the validation set for each experiment (see Table 6). Diamonds 
designate p=0.5 and circles mark p increments of 0.1 lower and higher than 0.5. 
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Dataset Experiment POD FA Ratio FA Rate CSI HSS AUC FBI p

Training Set 

GOES-13 + 
MERRA-2 

0.728 
(0.015) 

0.354 
(0.007) 

0.253 
(0.013) 

0.520 
(0.004) 

0.416 
(0.004) 

0.819 
(0.003) 

1.128 
(0.033) 

0.51 
(0.01) 

MERRA-2
Only

0.790
(0.027)

0.466
(0.010)

0.438
(0.031)

0.467
(0.003)

0.311
(0.006)

0.746
(0.003)

1.482
(0.079)

0.49
(0.01)

GOES-13 + 
ERA5

0.722 
(0.016) 

0.355 
(0.006) 

0.248 
(0.013) 

0.517 
(0.007) 

0.417 
(0.004) 

0.817 
(0.004) 

1.118 
(0.032) 

0.52 
(0.01) 

ERA5 Only 0.790
(0.011)

0.474
(0.004)

0.445
(0.012)

0.462
(0.005)

0.305
(0.004)

0.738
(0.004)

1.502
(0.024)

0.49
(0.01)

GOES-13 
Only

0.749 
(0.010) 

0.462 
(0.005) 

0.406 
(0.010) 

0.456 
(0.003) 

0.306 
(0.002) 

0.741 
(0.002) 

1.391 
(0.029) 

0.48 
(0.01) 

GOES-16 +
MERRA2

0.720
(0.029)

0.350
(0.015)

0.250
(0.027)

0.518
(0.008)

0.414
(0.005)

0.817
(0.002)

1.110
(0.070)

0.52
(0.01)

Warm 
Season

0.728 
(0.015) 

0.354 
(0.007) 

0.253 
(0.013) 

0.520 
(0.004) 

0.416 
(0.004) 

0.819 
(0.003) 

1.128 
(0.033) 

0.51 
(0.01) 

Cold
Season

0.728
(0.015)

0.354
(0.007)

0.253
(0.013)

0.520
(0.004)

0.416
(0.004)

0.819
(0.003)

1.128
(0.033)

0.51
(0.01)

Validation Set

GOES-13 + 
MERRA-2 

0.721 
(0.013) 

0.363 
(0.009) 

0.259 
(0.012) 

0.511 
(0.003) 

0.407 
(0.002) 

0.810 
(0.001) 

1.131 
(0.037) 

0.51 
(0.01) 

MERRA-2
Only

0.787
(0.023)

0.469
(0.008)

0.439
(0.032)

0.464
(0.002)

0.308
0.009

0.741
(0.003)

1.483
(0.067)

0.49
(0.01)

GOES-13 + 
ERA5 

0.711 
(0.017) 

0.361 
(0.010) 

0.251 
(0.014) 

0.507 
(0.005) 

0.408 
(0.003) 

0.809 
(0.003) 

1.114 
(0.042) 

0.52 
(0.01) 

ERA5 Only 0.788
(0.010)

0.475
(0.007)

0.445
(0.013)

0.460
(0.006)

0.304
(0.007)

0.734
(0.006)

1.501
(0.031)

0.49
(0.01)

GOES-13 
Only 

0.747 
(0.005) 

0.466 
(0.005) 

0.410 
(0.010) 

0.452 
(0.003) 

0.302 
(0.004) 

0.736 
(0.002) 

1.397 
(0.021) 

0.48 
(0.01) 

GOES-16 +
MERRA2

0.712
(0.010)

0.369
(0.009)

0.257
(0.009)

0.503
(0.004)

0.403
(0.001)

0.800
(0.002)

1.128
(0.028)

0.52
(0.01)

Warm 
Season 

0.660 
(0.010) 

0.317 
(0.004) 

0.220 
(0.007) 

0.505 
(0.004) 

0.393 
(0.002) 

0.800 
(0.001) 

0.972 
(0.026) 

0.54 
(0.02) 

Cold
Season

0.685
(0.030)

0.513
(0.024)

0.208
(0.020)

0.397
(0.015)

0.419
(0.011)

0.823
(0.004)

1.312
(0.059)

0.54
(0.02)

Testing Set 

GOES-13 + 
MERRA-2 

0.714 
(0.018) 

0.365 
(0.012) 

0.252 
(0.024) 

0.506 
(0.006) 

0.410 
(0.013) 

0.810 
(0.007) 

1.125 
(0.046) 

0.51 
(0.01) 

MERRA-2
Only

0.780
(0.025)

0.470
(0.017)

0.425
(0.046)

0.461
(0.006)

0.315
(0.020)

0.746
(0.011)

1.474
(0.095)

0.49
(0.01)

GOES-13 + 
ERA5 

0.701 
(0.015) 

0.361 
(0.015) 

0.242 
(0.017) 

0.502 
(0.010) 

0.410 
(0.008) 

0.810 
(0.006) 

1.099 
(0.041) 

0.52 
(0.01) 

ERA5 Only 0.774
(0.012)

0.473
(0.016)

0.425
(0.026)

0.456
(0.012)

0.309
(0.017)

0.737
(0.012)

1.471
(0.054)

0.49
(0.01)

GOES-13 
Only 

0.744 
(0.007) 

0.474 
(0.005) 

0.410 
(0.011) 

0.446 
(0.005) 

0.301 
(0.007) 

0.734 
(0.004) 

1.414 
(0.019) 

0.48 
(0.01) 

GOES-16 +
MERRA2

0.707
(0.023)

0.367
(0.022)

0.260
(0.018)

0.501
(0.019)

0.396
(0.007)

0.797
(0.006)

1.118
(0.050)

0.52
(0.01)

Warm 
Season 

0.651 
(0.015) 

0.318 
(0.009) 

0.212 
(0.004) 

0.500 
(0.011) 

0.396 
(0.010) 

0.800 
(0.009) 

0.958 
(0.040) 

0.54 
(0.02) 

Cold
Season

0.700
(0.052)

0.517
(0.047)

0.219
(0.047)

0.399
(0.033)

0.419
(0.027)

0.826
(0.013)

1.354
(0.113)

0.54
(0.02)

Table 9.  Average and variation (in parentheses) of skill metrics on training, validation, and testing sets 
for the different DNN experiments, evaluated with 6-fold cross-validation. The prediction likelihoods at 
which the statistics are determined are based on the inflection points of the ROC curves for each fold, the 
average and standard deviation of which are given in the column marked p. 
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Fig. 9. Performance diagram 6-fold-averag curves illustrating the classification capability of the DNN 
as applied to the validation set for each experiment (see Table 6). Diamonds designate p=0.5 and circles 
mark p increments of 0.1 lower and higher than 0.5. 

Before discussing the specific performance details, it is notable that the various skill 

metrics are rather consistent, per each experiment, across the training, validation, and testing 

sets. For example, in the GOES-13 + MERRA-2 experiment, both CSI and HSS on the 

training set outperform CSI and HSS on the validation set by only 0.009 (by 0.014 and 0.006 

relative to the testing set, respectively). This consistency suggests that there is a low amount 

of variance in the model, meaning that it is comprehensive and not overfit to the training set. 

Furthermore, because the validation set and testing set skill scores are comparable, there is no 

concern that the model was inadvertently overfit to the validation set during the model tuning 

process. There is bias in the model (the DNN predictions are not perfect), but it is 

indiscriminate of the input dataset. Therefore, these results should help alleviate concerns that 

climatology results may not be well generalized. 
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3) INPUT SENSITIVITY EXPERIMENT DISCUSSION

Interpretation of results may be influenced by the skill metric being considered. The

GOES-13 + MERRA-2 experiment offers what one might consider “well rounded” 

performance, as it scores relatively well in terms of CSI, HSS, and AUC (Fawcett 2005) at 

0.511, 0.407, and 0.810, respectively, on the validation set, and 0.506, 0.410, and 0.810, 

respectively, on the testing set. The GOES-16 + MERRA-2 performance is comparable at 

0.501-0.503 CSI, 0.396-0.403 HSS, and 0.797-0.800 AUC on the validation and testing sets. 

Other recent studies that have sought to detect severe hail events, using MESH, storm reports, 

or insurance reports as truth, and station data, radiosondes, radar reflectivity, lightning, and/or 

reanalysis as inputs, achieved CSI values ranging from 0.17 to 0.27, HSS ranging from 0.26 

to 0.39 and AUC ranging from 0.77 to 0.78. The scope, goals, and success metrics of these 

previous studies, however, are unique and not necessarily aligned with those of our study, 

e.g., forecasting is not our intention (Kunz 2007; Gagne et al 2017; Czernecki et al. 2019;

Gensini et al. 2021). One fold of the GOES-13 + MERRA-2 model, with scores of 0.512-

0.514 CSI and 0.409-0.434 HSS on the validation and testing sets, is selected to compile the 

severe hail climatology and to demonstrate results from case studies shown below. 

The GOES-13 + ERA5 experiment skill metrics are comparable to those of GOES-13 + 

MERRA-2. Despite the small CSI advantage of the latter and its overall better 6-fold 

stability, i.e., lower variance across the 6-fold evaluation, using either reanalysis source along 

with satellite observations will lead to effectively the same outcome. One reason for why the 

MERRA-2 DNN may marginally outperform the ERA5 DNN in this study, either alone or in 

combination with satellite inputs, might be owed to the fact that the tropopause height, 

tropopause temperature, and TPW inputs are sourced from MERRA-2 in all instances of their 

use. Whether an ERA5 DNN that sources ERA5 for those inputs would demonstrate notably 

higher skill is an area for future study. 

In the case of the Cold Season analysis, the disparity in skill demonstrated by the ROC 

curve relative to the PD is notable. The Cold Season ROC curve is higher than those from the 

other satellite + reanalysis experiments, demonstrating the highest AUC out of all 

experiments at 0.823-0.826 and the highest HSS at 0.419. However, Cold Season is the 

poorest performer in terms of CSI at 0.397-0.399. This disparity in performance is owed to 

the high FA Ratio of 0.513-0.517 and relatively low FA Rate of 0.208-0.219. In the case of 

the Warm Season, CSI is closer to that for all seasons at 0.500-0.505, but with worse HSS 
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than the Cold Season at 0.393-0.396 – outcomes that are owed to relatively low POD (0.651-

0.660) but relatively favorable FA Ratio (0.317-0.318) and FA Rate (0.212-0.22). 

A pattern similar to the Cold Season HSS and CSI discrepancy was reported in a large 

hail study performed by Czernecki et al. (2019), who, with a model trained to predict reported 

severe hail based on radar reflectivity, lightning detection, and ERA5 parameters, 

demonstrated HSS performance of 0.383 and CSI of 0.245. In that study, the discrepancy was 

driven by a significant difference between FA Rate (~1%) and FA Ratio (~67%), which may 

suggest that although there was adequate recognition of non-events, the model perhaps 

attempted relatively few positive predictions, or had few opportunities to do so. Relating the 

significance of such prediction opportunities to our Cold Season results, it is important to 

keep in mind that model sampling is dominated by warm season events, and therefore the 

DNN is biased toward such environments. Figure 10 demonstrates this seasonal dependence, 

revealing diminished MUCIN (Fig. 10a) in the cold season compared to the warm season for 

increasing MESH95, supporting previous findings on the distinct seasonal characteristics 

conducive to severe hail occurrence (Púčik et al. 2015). Aside from the higher CIN, a DNN 

dominated by warm season inputs learns to associate severe hail with overall reduced 

SHEAR01 (Fig. 10b) and higher cloud top heights (Fig. 10c). These differences between the 

cold and warm season distributions, with the exception of OT Probability (Fig. 10d), do not 

lend to a cold season DNN performance as favorable as that of the warm season. Improving 

cold season skill, perhaps with specialized training and increased sampling, is an area that 

warrants further study. 
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Fig. 10. Box and whisker distributions of select MERRA2 and GOES-12/13 parameters during the 
cold season (blue) and warm season (orange) stratified by MESH95 hail size bins (matched within ±7.5 
minutes and 28×28 km2) during 2007-2017. a) MUCIN, b) SHEAR01, c) Cloud Top Height, and d) OT 
Probability. The number of matches within each bin are listed below panels a) and b). 

It is important to note that the performance of the DNNs with reanalysis-only inputs are 

biased toward better predictions because reanalysis parameters are only being extracted at 

ECS locations where convection is actively occurring. Situations not reflected in these 

statistics are cases where model parameters might have indicated a favorable severe storm 

environment, but no storms formed. Therefore, the importance of the satellite measurements 

alone in precisely identifying areas of convection within these favorable environments is 

perhaps more significant than what is apparent from these results. With this consideration in 

mind, the experiments that rely only on reanalysis input have comparable performance to that 
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of GOES-13 Only. Model superiority depends on the position along the ROC and PD curves, 

but, considering only the optimal p values, the MERRA-2 Only and ERA5 Only models score 

marginally better than the GOES-13 Only model. Performance is notably better, however, 

when GOES-12/13 inputs are combined with reanalysis. 

d. DNN severe hail climatology and case studies

The DNN model is applied to the 11-year database of merged MERRA-2 and GOES-

12/13 parameters at ECS pixels to derive severe hail climatologies. ECS or OT pixels with 

varying hail likelihoods are aggregated at the 80×80-km2 grid scale, matching the grid size of 

hail climatology truth datasets shown in Figure 3. The spatial variability and frequency of 

confident OT detections with p>50% likelihood of producing severe hail (Fig. 11b) highlights 

a region of maximum occurrence (~20-22 events year-1) across the Central Plains, patterns 

that are supported by the MESH95 climatology (see contours of 3 and 6 MESH95 hail events 

year-1 in Fig. 11). Hail-producing ECSs predicted by the DNN reveal frequent severe hail 

days (~50 events year-1, Fig. 11a) in these regions – far exceeding MESH event days but 

keeping the same general spatial pattern. The excessive ECS event days may be tied to the 

fact that ECS with low OT Probability originate from cold outflow, from a tropopause-

relative perspective, very near to true updraft regions (Cooney et al. 2021). Therefore, a true 

updraft OT may have several ECSs nearby that can trigger a moderately high hail probability, 

and the greater frequency and coverage of these ECSs inflate the counts. When we constrain 

to only the ECSs likely to be true updrafts (Fig. 11b), the event days are in much better 

agreement with that of MESH. When a higher likelihood threshold (p>75%) corresponding to 

greater MESH hail size (Fig. 7) is used to compile a climatology, event day counts show even 

closer relative agreement. 

The patterns are also consistent with observations from SPC and the findings of the 

Meteorological Phenomena Identification Near the Ground (MPING) project, which crowd-

sourced volunteers to report precipitation events (Fig. 3b; Fig. 6 in Elmore et al. 2022). Other 

DNN hail maxima occur over the Sierra Madre, northeastern Mexico, and the Gulf Stream 

(Fig. 11), which are outside the NEXRAD range but are coincident with regions of MWR 

hail detections (Fig. 3d). Although radar confirmation is not possible in these areas of 

Mexico, previous intense convection climatology studies depict local maxima in these 

regions (Edwards 2006; Zisper et al. 2006; Farfán et al. 2020). 

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-22-0042.1.Brought to you by CENTRAL MICHIGAN UNIVERSITY | Unauthenticated | Downloaded 08/03/23 02:10 AM UTC



35 

File generated with AMS Word template 2.0 

Fig. 11. Yearly average GOES-12/13 ECS (left) and OT (right) event days detected during 2007-2017. 
a) ECSs filtered by >50% likelihood of severe hail, b) OTs filtered by >50% likelihood of severe hail, c)
ECSs filtered by >75% likelihood of severe hail, and d) OTs filtered by >75% likelihood of severe hail.
Black and dotted red contours show regions of 3 and 6 hail events year-1, respectively, for MESH95 ≥ 1.5
inches.

Case studies reveal interesting relationships between satellite parameters, large-scale 

environmental conditions, DNN-predicted hail likelihood, ground spotter hail reports, and 5-

minute potentially severe hail swaths from MESH95 (1.5+ inches), which allows for 

qualitative assessment of DNN performance. The first case, 16-17 May 2017, was initially 

highlighted in Fig. 1, although without showing consideration of the broader environmental 

conditions, where it is evident that the most prominent cells (Figs. 1c-1e) are generally 

consistent with areas of ~60%+ severe hail likelihood (Fig. 1f). Grey arrows in Fig. 1f 

highlight a range of likelihood estimates for comparably strong satellite parameters. This 

likelihood range, which shows as decreasing in the south-to-north direction, is driven by 

tendencies in the environment toward decreasing SHIP and MUCIN but increasing 

SHEAR01 and TPW at the time of the image (not shown) – patterns that are anti-correlated 

with MESH95 (Fig. 6). 

In Fig. 12, compilations of select reanalysis and satellite variable maximum intensities are 

shown, summarizing the strongest convection during the event across the region and at each 

GOES gridded pixel. A large area of overshooting convection occurred on this day, 

evidenced by widespread swaths of IR–Tropopause < 0 K (Fig. 12b), OT Probabilities near 

1.0 (Fig. 12c), and tropopause-relative cloud top heights up to 2-3 km above the tropopause 
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(Fig. 12f). MERRA-2 reveals coincident high SHIP and environmental stability along a front 

(Figs. 12a and 12e). It appears that the DNN is properly combining the GOES and MERRA-2 

inputs to derive high hail likelihood (Fig. 12g) in regions where high MESH95 was observed 

and hail/tornadoes were reported (Figs. 12d and 12h), such as the Texas Panhandle and 

Minnesota/Wisconsin. Despite similarly intense cloud heights, temperatures, and 

overshooting tops elsewhere, such as in Iowa, the DNN hail likelihood was not as high 

because of weaker SHIP, thereby demonstrating the significant influence of this 3rd-most 

contributing model predictor (see Table 4). 

Fig. 12. Maximum intensity of parameters aggregated from 18 UTC 16 May 2017 through 6 UTC 17 
May 2017. a) MERRA-2 SHIP, b) GOES-13 IR–Tropopause, c) GOES-13 OT Probability, d) SPC severe 
wind, hail, and tornado reports, e) MERRA-2 MUCIN, f) GOES-13 tropopause-relative cloud top height, 
g) DNN-predicted severe hail likelihood exceeding 20%, and h) 5-minute MESH95 exceeding 1.5 inches.

Zoomed views of the areas outlined in Figs. 12g and 12h are provided in the top panels of

Fig. 13. Results from the DNN applied to scaled GOES-16 parameters (see Section 3.d.2), 

aggregated at GOES-13-like 15-min intervals, are also shown for this same case (Fig. 13b). 

GOES-16 hail likelihoods are comparable to those of Rapid Scan GOES-13 (Fig. 13a) in 

terms of spatial distribution of low and high likelihoods although with overall higher 

intensity, which may be owed to inherit imperfections in transferring parameters trained on 

scaled GOES-13 data to scaled GOES-16 data. On the other hand, the 15-min GOES-16 

results appear to better represent actual MESH data, with fewer alarms in the western Texas 

Panhandle, central to eastern Kansas, and eastern Colorado, and more precise areal alignment 

with 1.5+ inch MESH95, thereby highlighting the importance of GOES data in the DNN 
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(Fig. 13d). The amplification of hail likelihood as a result of the increased GOES-16 spatial 

and temporal resolution warrants further study (Fig. 13c). That is, rather than applying 

imperfect scaling, a DNN trained using an extensive record of GOES-16 scans at the native 

5-min-interval resolution should be developed for applications to GOES-16 measurements.

Fig. 13. Enhanced views of a-c) DNN-predicted severe hail likelihoods exceeding 20% and d) 5-
minute MESH95 exceeding 1.5 inches for areas outlined in black in Figs. 12g and 12h, and, similarly, e-g) 
DNN-predicted severe hail likelihoods and h) 5-minute MESH95 for areas outlined in black in Figs. 14g 
and 14h. Likelihoods are determined using Rapid Scan GOES-13, 15-minute GOES-16, and 5-min GOES-
16. 

Another case study on 11 July 2017 highlights a summer-time hail, wind, and tornado 

event across Minnesota, Illinois, and the Dakotas (Fig. 14). Much of the reported severe hail 

for this case occurred in northern Minnesota, eastern South Dakota, eastern Iowa, and 

northern Illinois (Fig. 14d). The 5-minute MESH95, however, shows additional regions 

(isolated cells in Kansas) of potentially severe hail (1.5+ inches, Fig. 14h). SHIP and 0-1 km 

wind shear conditions supportive of severe convection (Figs. 14a and 14e) are aligned with 

the most intense observed overshooting cloud tops (Figs. 14b, 14c, and 14f) and severe 

weather reports (Fig. 14d). The GOES-13 DNN indicates severe hail likelihoods of ~60% and 

higher along the primary swaths of MESH95 potentially severe hail, in addition to isolated 

convective cells in the Central Plains (Figs. 14g and 14h). Figures 13e-13h show zoomed 

views of the areas outlined in Figs. 14g and 14h. As with the May case, the 15-min GOES-16 

DNN application (Fig. 13 f) highlights overall higher intensity than that for the Rapid Scan 

GOES-13 case (Fig. 13e), again with better precision of the 15-min GOES-16 results in 

aligning with 1.5+ inch MESH95. That is, the GOES-16-based DNN application does well in 

showing well-aligned and enhanced likelihoods along true hail tracks, with fewer false alarms 
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in Fig. 13f than in Fig. 13e, especially in central/northeast Minnesota and northeast Nebraska. 

The 5-min GOES-16 results (Fig. 13g) are comparable to those of the 15-min GOES-16 

results in this case. DNN performance is also demonstrated for an early-season hail event (5 

April 2017) in the Southeast US in Appendix B. 

Fig. 14. Maximum intensity of parameters aggregated from 12 UTC 11 July 2017 through 8 UTC 12 
July 2017. a) MERRA-2 SHIP, b) GOES-13 IR–Tropopause, c) GOES-13 OT Probability, d) SPC severe 
wind, hail, and tornado reports, d) MERRA-2 SHEAR01, f) GOES-13 tropopause-relative cloud top 
height, g) DNN-predicted severe hail likelihood exceeding 20%, and h) 5-minute MESH95 exceeding 1.5 
inches. 

5. Conclusions

Prediction of storms that produce potentially severe hail was accomplished through the

training and application of a DNN that ties historical and present-day GOES satellite-based 

detections and intensity metrics at the satellite-detected updraft scale, together with reanalysis 

environmental characteristics, to NEXRAD maximum expected hail size (MESH) over the 

CONUS. The DNN generates severe hail likelihood at each satellite-detected embedded cold 

spot (ECS) detection, which serve as proxies for storm updraft regions. To the authors’ 

knowledge, this is a first-of-its-kind study applying deep learning to merged reanalysis and 

individual pixel-scale satellite-derived parameters to estimate hail likelihood. This study 

emphasizes hailstorm detection using historical GOES-12/13 data for the purposes of 

assessing climatological hail risk, while also highlighting statistical performance, as well as 

case studies with GOES-13 data during a period in 2017 with overlapping GOES-16 data. 

Our goal is to create a model that can produce a hail likelihood for any satellite-identified 

ECS and coincident reanalysis inputs as a first step toward global applicability. 
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A set of parameters were identified that correlate with MESH95 and exhibit a relatively 

low amount of regional dependency, and recursive feature analysis was performed to rank 

their contribution to potentially severe hailstorm detection. These parameters encapsulate 

several GOES IR BT variables that define storm-top height and updraft intensity, 0-1 km 

wind shear, SHIP (which includes most unstable CAPE, mixing ratio, mid-level lapse rate, 

500-hPa temperature, and 0-6-km wind shear), CIN, and TPW. It was found that these

parameters are much better correlated with MESH95 maxima and MWR hail likelihood than 

observed hail size, an outcome attributed to uncertainties with hail size reporting. It was also 

shown that that DNN severe hail likelihood is strongly correlated with MESH. Various 

metrics, computed using k-fold cross-validation, were used to evaluate the DNN predictive 

capability. The performance of the experiments was shown to be dependent on what skill 

metrics are evaluated. The GOES-13 + MERRA-2 model demonstrates an exceptionally 

high-level and balanced performance compared to other recent similar efforts, with CSI of 

0.511 and HSS of 0.407. The GOES-16 + MERRA-2 model performs comparably. 

Various experiments with different DNN inputs and evaluations during the warm vs. cold 

seasons were conducted to further understand model capability. The results demonstrate 

choice of either MERRA-2 or ERA5 for reanalysis training has rather minimal impact on the 

final skill, although MERRA-2 does perform marginally better. Focusing on only warm 

season application improves the DNN performance based FA Ratio and FA Rate, but at the 

cost of reduced POD. The cold season success ratio is much lower than that of the warm 

season, likely due to the more dominant sampling of warm season environments and 

observations. This discrepancy could likely be mitigated with increased sampling and training 

specific to the seasons, an area that warrants further study. 

Furthermore, it was shown that although a satellite-only DNN performs slightly worse 

than a reanalysis-only DNN at optimal p values. There is notable improvement when the 

satellite and reanalysis are used together. An important consideration here is the fact that 

models relying solely on reanalysis are biased toward better predictions because parameters 

are extracted where convection has already been detected by GOES. Therefore, the 

marginally improved performance of MERRA-2 or ERA5 Only models compared to a 

GOES-13 Only model is misleading. The DNN reproduced the general features of the 11-

year CONUS severe hail climatology defined by MESH95, SPC, and satellite MWR, with 

distinct maxima in hail frequency over the Central Plains, the Midwest, and northwestern 
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Mexico. Good agreement between GOES-13/GOES-16 hail likelihoods and 5-minute 

resolution MESH95 severe hail is also demonstrated for several case studies. Fewer false 

alarms were apparent in these cases when the DNN is applied to GOES-16 data. 

Many open questions remain regarding optimal experimental design for achieving 

maximum, generalized predictive skill, which can be better answered as sampling is 

improved. Future efforts to enhance DNN hail predictions may include: 1) using MWR hail 

probabilities to better understand how severe hail environments differ regionally and allow 

for model application/validation on a global scale, 2) incorporating additional satellite data 

like Geostationary Lightning Mapper flash characteristics/rate or visible channel parameters 

such as cloud top reflectance or spatial texture, 3) incorporating a mesoscale weather 

prediction model or reanalysis that can better resolve the environment ingested into storms,  

4) modifying spatio-temporal interpolation of reanalysis data to the satellite grid (e.g., use the

model timestep before a satellite ECS detection), and 5) training with a longer data record 

and incorporating 5-min data from GOES-16, coupled with the more recently available 5-min 

resolution GridRad Severe MESH dataset. Pursuing these advances should help further 

generalize the model and improve likelihood estimates, which is beneficial to those interested 

in better understanding hail risk across the globe. The release of the co-located GOES, 

reanalysis, and MESH95 dataset at the storm cell scale enables additional experimentation 

and improvements to a DNN model by the community. 
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APPENDIX 

Appendix A: Parameter sensitivity to imager resolution, hail report type, and season 

GOES-13 and GOES-16 parameters are stratified by MESH95 bins to assess the 

sensitivity to imager resolution (Fig. A1). Convective intensity increases with MESH95 for 

all four parameters shown, although there are differences in the GOES-13 and GOES-16 

distributions. The median IR–Tropopause ranges from ~0 (3) K in the 0.5-1.0-inch bin to -6 

(-3) K in the 2+ inch bin for GOES-16 (GOES-13), revealing a comparable relative 

sensitivity of GOES-16 IR–Tropopause to MESH95 but starting at a lower temperature, 

likely owing to the ability of a finer resolution imager to resolve colder IR pixels from intense 

convection (Khlopenkov et al. 2021; Cooney et al. 2021). ECS area is greater for GOES-13 

than GOES-16 because of the greater pixel size of the former. 
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Fig. A1. Box and whisker distributions of select GOES-13 (blue) and GOES-16 (orange) IR cloud top 
parameters stratified by MESH95 hail size bins (matched within ±7.5 minutes and 30×30 km2) during the 
2017 warm season. a) OT Probability, b) ECS area, c) ECS–Anvil BTD, and d) IR–Tropopause. Number 
of matches within each bin are displayed below panels a) and b). 

To compare the sensitivity of these GOES-12/13 parameters to other hail detection 

datasets, Fig. A2 stratifies GOES-12/13 parameters as a function of MWR hail probability. 

Although there is a significantly reduced sample size relative to MESH95 analyses (Fig. 4), 

the GOES-12/13 parameters exhibit similar increases in intensity as the MWR hail 

probability increases. The IR–Tropopause IQR in the lowest (highest) hail probability bin 

ranges roughly between -2.5 K and 2.5 K (-5.5 K and -2.5 K), revealing comparable 

sensitivity as that found with MESH95, but with greater (more negative) median intensity for 
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matches across all bins. This implies that MWR hail detections are associated with more 

intense overshooting convection than MESH cell detections. 

Fig. A2. Box and whisker distributions of select GOES-12/13 IR cloud top parameters stratified by 
MWR hail probability bins (matched within ±7.5 minutes and 28×28 km2) during 2007-2017. a) OT 
Probability, b) ECS area, c) ECS–Anvil BTD, and d) IR–Tropopause. 

GOES-12/13 parameters are stratified by SPC hail size in Fig. A3. The median GOES-

12/13 match with SPC reports for all hail size bins is colder than the tropopause (Fig. A3d) 

with greater than 0.6 median OT Probability (Fig. A3a). However, these high intensities 

come at the price of lower sensitivity to hail size and significant IQR overlap among bins. 

The median ECS Area reveals only ~20 km2 sensitivity between the lowest (1.0-1.5 inches) 

and highest (3+ inches) reported hail size bins (Fig. A3b), the median ECS–Anvil BTD 

reveals only ~0.75-K sensitivity (Fig. A3c), and the median IR–Tropopause ranges between 

~-1.5 K and -3.5 K (Fig. A3d). These results are consistent with the work of Murillo and 

Homeyer (2019) and Sandmael et al. (2019), who did not find notable correlation between 

GOES-13/14 parameters and reported hail size. 
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Fig. A3. Box and whisker distributions of select GOES-12/13 IR cloud top parameters stratified by 
ground spotter hail size report bins (matched within ±7.5 minutes and 28×28 km2) during 2013-2017. a) 
OT Probability, b) ECS area, c) ECS–Anvil BTD, and d) IR–Tropopause. 

Appendix B: Additional case study – 5 April 2017 

A case study of an early season severe hail-, tornado-, and wind-producing event across 

the Southeastern US is shown in Fig. A4. Extremely large MERRA-2 SHIP (Fig. A4a) 

aligned with environments of elevated SHEAR01 (Fig. A4d). Combined, these environmental 

forcings contributed to formation of severe hailstorms across Alabama, Georgia, and, to a 

lesser extent, across areas of the Ohio River valley (Figs. A4d and A4h). GOES-13 reveals 

local regions of cloud tops colder and higher than the tropopause (Figs. A4b and A4f) aligned 

with OT Probabilities at or near 1 (Fig. A4c), contributing to good agreement between the 

DNN hail likelihood with swaths of severe reports and potentially severe MESH95 (Figs. 

A4d, A4g, and A4h). Isolated occurrences of potentially severe MESH95 in other areas are 

also correctly predicted as likely severe by the DNN. Enhanced views of Figs. A4g and A4h 

are shown in Fig. A5, combined with data from 15-min (Fig. A5b) and 5-min (Fig. A5c) 
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GOES-16. Figure A5 provides a better view of the agreement between Rapid Scan GOES-13 

(Fig. A5a) and MESH95 swaths (Fig. A5d), the former of which is reasonably comparable to 

5-min GOES-16 (Fig. A5b) along the strongest cell tracks, although with many false alarms

elsewhere. The 15-min GOES-16 (Fig. A5c) application also shows more relative false 

alarms than we have seen from this result in the previous case studies. These minor 

shortcomings might be owed to the DNN’s over-reliance on Great Plains hail MESH events, 

and therefore the environmental conditions for strong Southeast hail events might not be as 

well understood by the model. 

Fig. A4. Maximum intensity of parameters aggregated from 13 UTC 5 April 2017 to 6 UTC 6 April 
2017. a) MERRA-2 SHIP, b) GOES-13 IR–Tropopause, c) GOES-13 OT Probability, d) SPC severe wind, 
hail, and tornado reports, e) MERRA-2 SHEAR01, f) GOES-13 tropopause-relative cloud top height, g) 
DNN-predicted severe hail likelihood exceeding 20%, and h) 5-minute MESH95 exceeding 1.5 inches. 
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Fig. A5. Enhanced views of Figs. A4g and A4h black outlined areas, starting from 17 UTC 5 April 
2017 to 6 UTC 6 April 2017, showing a-c) DNN-predicted severe hail likelihoods exceeding 20% and d) 
5-minute MESH95 exceeding 1.50 inches Likelihoods are determined using Rapid Scan GOES-13, 15-
minute GOES-16, and 5-min GOES-16.
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