Analysis of an Explainable Student Performance
Prediction Model in an Introductory Programming Course

Muntasir Hoq
North Carolina State University
Raleigh, NC
mhog@ncsu.edu

ABSTRACT

Prediction of student performance in Introductory program-
ming courses can assist struggling students and improve
their persistence. On the other hand, it is important for
the prediction to be transparent for the instructor and stu-
dents to effectively utilize the results of this prediction. Ex-
plainable Machine Learning models can effectively help stu-
dents and instructors gain insights into students’ different
programming behaviors and problem-solving strategies that
can lead to good or poor performance. This study devel-
ops an explainable model that predicts students’ perfor-
mance based on programming assignment submission in-
formation. We extract different data-driven features from
students’ programming submissions and employ a stacked
ensemble model to predict students’ final exam grades. We
use SHAP, a game-theory-based framework, to explain the
model’s predictions to help the stakeholders understand the
impact of different programming behaviors on students’ suc-
cess. Moreover, we analyze the impact of important features
and utilize a combination of descriptive statistics and mix-
ture models to identify different profiles of students based
on their problem-solving patterns to bolster explainability.
The experimental results suggest that our model signifi-
cantly outperforms other Machine Learning models, includ-
ing KNN, SVM, XGBoost, Bagging, Boosting, and Linear
regression. Our explainable and transparent model can help
explain students’ common problem-solving patterns in re-
lationship with their level of expertise resulting in effective
intervention and adaptive support to students.

Keywords

Explainable student modeling, Student programming anal-
ysis, Student programming pattern, Student performance
prediction, Student profiling

1. INTRODUCTION

Introductory programming courses (CS1) have been observ-
ing a constant surge in interest and enrolment of students in

M. Hogq, P. Brusilovsky, and B. Akram. Analysis of an explainable
student performance prediction model in an introductory program-
ming course. In M. Feng, T. Késer, and P. Talukdar, editors, Pro-
ceedings of the 16th International Conference on Educational Data
Mining, pages 79-90, Bengaluru, India, July 2023. International Ed-
ucational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115693

Peter Brusilovsky
University of Pittsburgh
Pittsburgh, PA

peterb@pitt.edu

Bita Akram
North Carolina State University
Raleigh, NC
bakram@ncsu.edu

recent years [38]. With this growing interest in Computer
Science, the number of students struggling and dropping
out of courses is also increasing [16, 37, 49]. Automated
prediction systems can help to prevent this by predicting
student performances and enabling instructors to intervene
effectively [20, 46, 52].

Early methods to predict student performances in CS1 ex-
ploited different static approaches based on student starting
data such as age, gender, grades, etc. [1]. However, pre-
dicting student performance statically is challenging as their
behaviors are dynamic that can change with time [37, 45].
More recently, research on performance prediction focused
on data-driven approaches incorporating Machine Learning
(ML) techniques [17, 22, 40, 35]. However, most of these
approaches do not analyze students’ programming behav-
iors focusing instead on intermediate assessment data such
as quiz scores and midterm exam grades. It prevents these
methods from understanding the source of student problems
and generalizing over different CS1 courses. Moreover, many
courses may not even include any interim exams, as in the
case of the dataset used in this study. Moreover, the explain-
ability and transparency of black box ML models are be-
coming as important as high predictive power. An explain-
able model can help instructors and students understand the
predictions and gain more trust. It can enable instructors
to gain insights into students’ problem-solving strategies by
understanding the patterns of different students’ program-
ming behaviors. It can also help in effective intervention to
help struggling students in the learning process. There are
already a few studies that explore explainable performance
prediction models in the field of Education [35, 9]. However,
to the best of our knowledge, no other study has employed
explainable models to analyze student performance based on
students’ programming behaviors without considering exam
or quiz grades.

In this study, we propose an explainable student perfor-
mance prediction model that can predict students’ final exam
grades from their programming assignment submission data.
Predicting final exam grades only from programming as-
signments is a challenging task since the nature of the final
exam can differ from the assignments. We employ a data-
driven feature extraction approach to select features repre-
senting students’ programming behaviors in a CS1 course.
We develop a stacked ensemble regression model to predict
students’ final exam grades. Our stacked ensemble model
has KNN, SVM, and XGBoost as the base models and Lin-

https://doi.org/10.5281/zenodo.8115693

ear regression as the meta-model. We compare the perfor-
mance with other baseline techniques, including the indi-
vidual components of our stacked ensemble model: Linear
regression, KNN, SVM, and XGBoost, and other ensemble
techniques such as Bagging and Boosting. The experimen-
tal results suggest that our model significantly outperforms
these baseline techniques. Furthermore, we employ SHAP
[27], a game-theory-based framework, to explain our model’s
predictions based on the importance and impacts of features.
We explain students’ performance predictions to understand
how each feature contributes to the prediction process of
students’ final exam grades at an individual student level
and a global level with all the students. This enables us
to analyze students’ performance predictions based on their
underlying programming behaviors. We also analyze impor-
tant features and utilize a combination of descriptive statis-
tics and mixture modeling to understand student patterns
of behavior. This provides insights for the instructors into
different profiles of students’ learning progressions to make
informed decisions about intervening with struggling stu-
dents and provide adaptive support [4].

The main contributions of this study are as follows:

e Building an explainable stacked ensemble model to
predict the student performance in the final exam us-
ing programming assignment data of students.

e Explaining the predictions of the model at an individ-
ual and a global level of different programming infor-
mation to gain the trust of the stakeholders.

e Analyzing the results of SHAP and important features
of the explainable model to profile students based on
their behavior and gain insight into their problem-
solving strategies and connection to their learning out-
comes.

2. RELATED WORK

In this section, we explore different techniques and studies
done in the field of student performance prediction and the
use of explainable models in programming.

2.1 Student Performance Prediction

Predicting struggling students and their success has been
an important area for researchers in intelligent tutoring sys-
tems. These studies have different goals, i.e., predicting
students’ early success, detecting failing students, detecting
dropouts at an early stage, predicting student performance
in the final exam, etc.

A systematic review of previous research on student per-
formance predictions was conducted in [40]. The review
revealed that most of these studies used features such as
cumulative grade point averages (CGPA) and other assess-
ments (quizzes, midterms, etc.). In [22], an open-source
predictive platform was developed and used in the at-risk
student detection task. The data included demographic and
enrollment information and was classified using ML models
such as SVM and Linear Regression. In a recent study [17],
enrolled students were classified into passing and failing cat-
egories using Decision Tree and SVM from features such as

quizzes and midterm exam scores. Recognition of at-risk
students could be used for early intervention.

Features like weekly assignment scores, midterm exam grades,
etc., were used in [10] to predict failing students in an intro-
ductory programming course. Another study [21] followed
a similar feature set and employed different ML algorithms
to verify their effectiveness in student performance predic-
tion. On event-level analysis, such as predicting students’
success in completing programming exercises, [28] used Re-
cent Temporal Patterns and LSTM. Another study [36] pre-
dicted early dropout of students for online programming
courses. They used features from online platforms, such as
student login times, keystroke latency, correctness, etc., for
the first time. In [35], students’ early performance was pre-
dicted for an introductory programming course from their
midterm exam grade, procrastination time, correctness, the
total number of logical lines in code, copy-paste information,
etc., from an online programming system using XGBoost.

Recently, different Deep Learning frameworks have been no-
ticeably used in students’ success prediction and are increas-
ing. In a recent study [14], an abstract syntax tree (AST)-
based embedding model, SANN, showed effectiveness in cap-
turing information from student programming codes. In [51,
30], abstract syntax tree-based and control flow graph-based
embedding models were used to predict students’ final exam
grades from their programming assignment data. In another
recent study [5], CNN and LSTM networks, along with pro-
gramming code submission metadata, were used to predict
student performance on the final exam in an introductory
programming course.

However, previous studies proved effective in student per-
formance prediction tasks; we identify different challenges
associated with these studies. Static approaches fail to cap-
ture the dynamic behavior of students during their learning
process. Data-driven approaches followed in prior studies
are not generalizable in different programming courses since
they differ in the course outline, and interim exams can vary
from course to course. Moreover, some introductory pro-
gramming courses might not include any interim exam at all,
as the case with the dataset used in this study, where only
programming assignments are available. Furthermore, deep-
learning models are becoming popular with time; however, it
is challenging to achieve good performance with these mod-
els trained on such small classroom-sized datasets [29].

2.2 Explainable Artificial Intelligence (XAI)
XATI helps humans understand a black-box ML model. It
interprets a model’s outcomes and explains the reasons be-
hind decisions. XAI algorithms have been extensively used
in different areas of research as well as in medical, health
care, and clinical data analysis [33, 44, 19], industrial data
analysis [2, 39], smart city solutions [47, 12], etc.

Though XAI is becoming a popular approach to interpret-
ing and explaining ML solutions, its effectiveness is rela-
tively unexplored in CS Education and intelligent tutoring
systems. In [25], a deep learning-based knowledge tracing
model was developed. The model was interpreted using the
layer-wise relevance propagation method. A recent work [43]
incorporated explainable concepts into computational mod-

els for student modeling tasks in computing education; while
the work has been exploratory, the performance needs to be
further improved for actual deployment. Mu et al. [32]
automatically informed the individualized intervention by
detecting wheel-spinning students, where students try and
repeatedly fail at an educational task based on the num-
ber of attempts. Shapley values were used to explain the
outcomes of the ML models used, including Linear Regres-
sion and XGBoost. In another study [6], university dropout
prediction was made using a fully connected deep neural
network. The features used in this study included univer-
sity program-related data, high school performance-related
data, matura exam (an exam after secondary school) results,
average exam grades, foreign language certificate data, etc.
SHAP was used to explain the model results and explain the
importance of the features. In [34], student demographic in-
formation and clickstream data were used to predict at-risk
students with an explainable model using Lime. The ex-
plainable model ensures that the personalized intervention
should not depend on the demographic data of the students.

In [35], SHAP was used in explaining success prediction from
student data such as midterm exam grade, procrastination
time, correctness, the total number of logical lines in code,
copy-paste information, etc. They used these features to
predict whether a student passes or fails a course. Although
they used programming information, the model made its
predictions primarily based on the grade of the midterm
exam, which was the most important feature. Courses with-
out a first-exam grade cannot be properly assisted using
their approach. Moreover, they set a hard threshold for pass-
ing and failing based on the mean grade of the course, which
is not a real-world scenario as different students may follow
different distributions [38]. Similarly, in [9], LIME was used
to explain ML models to predict student performance from
their course information, student data, and features such as
clickstream and activity information (quizzes, surveys, etc.).

To the best of our knowledge, no previous study has been
done on predicting student success in their final exam from
their programming assignment submission information using
explainable models to help instructors and students under-
stand why someone is struggling or doing better. Therefore,
this study will help in intervention with more transparency
and confidence in ML model outcomes.

3. DATASET

In this study, we use a publicly available dataset * collected
from the CodeWorkout platform. CodeWorkout 2 is an
online platform that helps students practice programming
in Java and allows instructors to design learning activities
in their programming courses [11]. CodeWorkout logs stu-
dent programming code submission information associated
with different assignments. These assignments test the stu-
dent’s knowledge of basic programming concepts, such as
data types, arrays, strings, loops, conditional statements,
methods, etc.

The dataset consists of two semesters: Spring 2019 and Fall
2019. The total number of students is 772. Every semester,

"https:/ /pslcdatashop.web.cmu.edu/Files?dataset Id=3458
Zhttps://codeworkout.cs.vt.edu

there are 50 programming assignments. Each assignment
submission can get a score in the range of (0, 1). The num-
ber of passing test cases determines the score, and a correct
submission gets a score of 1. A student can submit each as-
signment multiple times. The dataset consists of code sub-
missions for each assignment and other relevant information,
some of them described in Table 1.

—— mean grade: 0.64

Student count

0.2 0.4 0.6 0.8 1.0
Final exam grade

Figure 1: Distribution of the final exam grades

The CodeWorkout dataset also includes students’ final exam
grades, scaled between 0 and 1. The final exam grade dis-
tribution is illustrated in Figure 1. It also shows the mean
final exam grade (0.64 with a standard deviation of 0.18)
with a red vertical line. In this study, we try to predict the
final exam grades of the students from their programming
assignments in a course.

4. METHODOLOGY

To predict the final exam grades of students based on their
programming submission data and explain the predictive
model’s predictions, we follow three steps: i) Feature en-
gineering and extracting data-driven features from the pro-
gramming submission data, ii) Developing and employing
regression models to predict the final exam grades, and iii)
Using SHAP to explain the model’s decisions. The overall
architecture of the model is illustrated in Figure 2.

4.1 Feature Engineering

We select several features associated with students’ pro-
gramming submissions, including total programming time
spent (TimeSpent), number of unique assignments attempted
(Valid), number of correct submissions (CorrectSub), num-
ber of incorrect submissions (IncorrectSub), number of un-
compilable submissions (CompileError), total scores in all
submissions (Scores), and total changes in codes (EditDis-
tance). These features are described in detail below. The
values of each feature are normalized to fit the range of 0-1,
and a statistical description of the features is provided in
Table 2.

e TimeSpent: It is calculated using the ServerTime of
each assignment submission. The difference between
the first submission for an assignment and the final
submission is calculated for each assignment. The total

Table 1: Description of student programming submission-related information in the dataset

Information Description
SubjectID A unique ID for every student

Toollnstances Platform used to evaluate the code: Java 8, CodeWorkout
ServerTime Time stamp for each submission instance

Assignment ID/ Problem ID | Unique IDs for all 50 assignments

EventType

Flag to understand if a program is compilable or not

Score Score for each submission

CodeStatelD ID for every code submission, maps with the code of that submission
CompileMessage Message from the compiler if there is any syntax error
Explanation
SHAP
S of the model
data

Feature

: 5 Base models
engineering

Stacked ensemble model

Qeta mode| =———

Final exam
SVM grade
prediction
Linear
Regression

Figure 2: Architecture of the explainable model

Table 2: Statistics of the selected features
Feature Mean (std)
TimeSpent 0.07 (0.09)
Valid 0.93 (0.11)
CorrectSub | 0.41 (0.08)
IncorrectSub | 0.15 (0.12)
CompileError | 0.16 (0.11)
(0.13)

(0.16)

Scores 0.80 (0.13
EditDistance | 0.32 (0.16

TimeSpent for a student is measured by adding these
time differences for all attempted assignments of that
student. This represents the amount of time a student
has spent on solving the assignments.

Valid: It counts the number of unique assignments a
student attempted out of all 50 assignments. It could
be a correct submission or an incorrect one.

CorrectSub: It is the number of correct compilable
submissions out of all the assignments. These submis-
sions pass all the test cases and obtain a score of 1 out
of 1.

IncorrectSub: It is the count of incorrect submissions
submitted by a student. These are compilable codes
with scores less than 1 and fail some of the test cases.

CompileError: It is the total number of uncompilable
codes a student submits. These codes usually contain

one or more syntax errors, and test cases cannot be
tested on them. These submissions do not have any
scores.

e Scores: Each assignment can have multiple incorrect
and correct submissions and, thus, multiple scores.
These scores are summed and normalized to have a
single score for each assignment. This feature is the
summation of the normalized scores of all assignments
for a student.

e EditDistance: It is the measure of how much a student
has changed the code in subsequent submissions for as-
signments. It is calculated using the Levenshtein algo-
rithm. Edit distances for all assignments are summed
to get an idea of a student’s code change throughout
the semester.

4.2 Predictor Model for Prediction

In this study, we develop a stacked ensemble regression model
[50] to combine the predictive capabilities of multiple ML
models. It uses a meta-learning approach to harness the
powers of different models and make a final prediction. This
way, the ensemble model can have better predictive power
than any single predictor model individually [48]. As there
are multiple predictor models, stacking uses another model
that learns when to use or trust among the ensemble models.

Stacked ensemble models are different from other ensemble
models, such as bagging or boosting models. Bagging is an

ensemble model that combines the decision of many decision
trees. Unlike bagging, stacked models are typically different
in stacking (not all decision trees). In boosting, each ensem-
ble model tries to correct the prediction of the prior models.
Unlike boosting, stacking uses another ML model that learns
to combine the predictions of the contributing models. In
this study, bagging and boosting are used as baseline mod-
els.

Therefore, the architecture of a stacked model can be divided
into two model categories:

e Base models (Level 0): Models that are stacked and
fit on the dataset and whose predictions are combined
later.

e Meta model (Level 1): Model that learns how to com-
bine and trust the predictions of the base models.

This study uses KNN, SVM, and XGBoost [15] as the base
models and linear regression as a metamodel to combine the
predictions of the base models. While choosing the base
models, diverse ML models are employed that make dif-
ferent assumptions regarding the prediction task. On the
other hand, the meta-model is typically simpler to provide
a smooth interpretation of the predictions made by the base
models.

The meta-model is trained on the predictions made by the
base models on hold-out data. Hold-out data is a portion of
the dataset held out from the base models during training.
Afterward, these hold-out data are fed to the base models
to get predictions on them. These predictions from the base
models on the hold-out data and the expected outputs pro-
vide the input and output pairs to train the meta-model. To
train the stacked ensemble model properly, we use repeated
K-fold cross-validation with 10 folds and 10 repeats.

4.3 Baseline Models

No-skill: We select the mean final exam grade as our no-skill
baseline model. This naive model predicts the mean of all
the student’s final exam grades with no knowledge of how
to make the prediction.

ML models: We also use different models to compare the
performance of our stacked ensemble model. We choose the
individual baseline models to see the difference in perfor-
mance between our stacked ensemble model and the base-
line models individually. We also use bagging and boosting
to see the difference with other ensemble models. We tune
the parameters of the models individually using a repeated
10-fold cross-validation approach.

e Linear regression
Linear regression is a simple model which assumes a
linear relationship between the inputs and outputs.

o K-Nearest Neighbors
KNN stores all the available data points from the train-
ing data and predicts from k neighbors’ target values
based on a distance function. We select £k = 20 and
use Manhattan distance to find the neighborhood for
the best result using repeated 10-fold cross-validation.

e Support Vector Machine
SVM can acknowledge the presence of non-linearity in
data when used in regression tasks. We set the kernel
to rbf and the regularization parameter C' to 1 for the
best results.

e Extreme Gradient Boosting
XGBoost is an efficient gradient-boosting-based en-
semble algorithm. It outperforms other ensemble al-
gorithms with its high efficiency and faster nature due
to the parallelization of trees. We set the parameters
max_depth = 6, n_estimator = 20, and gamma = 1
for the best result.

e Bagging
Bagging is an ensemble model that combines the out-
put of many decision trees. We set n_estimator = 10,
and max_features = 1 for the best result.

e Boosting
We use a Gradient Boosting regressor to represent boost-
ing. In Boosting, each model tries to minimize the
error of the prior predictor models. We set loss to
squared_error, learning_rate = 0.1, and n_estimators
= 100 for the best result.

4.4 Explainable Artificial Intelligence (XAI) Us-
ing SHAP

ML models are black boxes in nature. Many applications
of ML require explanations of the decisions made by the
models depending on the stakeholders. Explanations of the
decisions are vital parts of working with populations like
students and learners. Such interpretable and explainable
models can provide insights into the effectiveness of stu-
dents’ problem-solving strategies and enable instructors and
advanced learning technologies to provide students with ef-
fective formative feedback. These can also help in gaining
the trust of students and instructors by understanding their
reasonings behind such decisions.

SHapley Additive exPlanation (SHAP) [27] is an adaptive
algorithm based on the Game theory [41]. In this frame-
work, the variability of predictions is split into the features
used in the prediction model. Therefore, the contribution
and importance of each feature behind the predictive model
(global) and individual predictions (local) can be measured
in a model-agnostic way [18].

SHAP calculates Shapley values for each feature for each
instance. These values determine the presence of each co-
variate in the model predictions as a linear combination of
each predictor variable. To calculate the positive or nega-
tive effect of each feature on the predictions, the algorithm
examines the change in each prediction when a feature i € F'
is withheld, where F' is the set of all features [27]. Thus, the
feature importance of a feature ¢ for a model f is calculated
by the evaluation of the marginal contribution ®; € R for
all the subsets S C F. According to [26], to satisfy local ac-
curacy, consistency, and missingness properties, ®; (Shapley
values) defined as:

o; = Z |S|!(|F|\J_7||!S‘ = [fsugiy(@sugy) — fs(@s)]

SCF\{i}

Where, ®; is the marginal contribution of feature ¢ on the
model’s output fsugiy (Tsugiy)-

By the additive property, SHAP approximates each predic-
tion f(x) of the model with the help of f'(y’) which is a
linear combination of all binary variables v € {0,1} (N
is the maximum size for the simplified feature vectors) and
the marginal contributions of each feature ®; in such a way
that the sum of all the feature contributions should match
the output of f for a simplified input y’:

N
Fla) =) = B0+ 3o i

Where, & is the expected prediction without any prior in-
formation, in our case, the average final exam grades of stu-
dents. In a nutshell, Shapley values approximate a model’s
predictions locally for a given variable z (local accuracy).
It tries to ensure that the contribution of a variable is zero
when the variable is zero (missingness). If the contribution
of a variable is higher in the model’s prediction, then the
Shapley value for that variable should also be higher (con-
sistency).

S. RESULTS

In this section, we evaluate the performance of our proposed
stacked ensemble model in students’ final exam grade predic-
tion. Later, we interpret the black-box model by analyzing
the importance and impact direction of each of the features
using SHAP. We further analyze the influence of the most
important features on the final exam grades to categorize
students into different profiles based on their performances.

5.1 Evaluation

We compare our results with the base models, the meta-
model, and other ensemble models individually. Therefore,
we experiment with Linear regression, KNN, SVM, XG-
Boost, Bagging, and Boosting in the same task. We also
use a no-skill model, which predicts the mean final exam
grade. This acts as a naive baseline model without prior
knowledge of the features. All the models are evaluated us-
ing a 10-fold cross-validation approach with ten repeats to
get a stable result.

To compare the performances of these models, we measure
the root-mean-square error (RMSE) of the predicted final
exam grades with respect to the actual final exam grades.
Since RMSE follows the same range (0-1) as our final exam
grades, it can provide insights into how far the predicted
values are from the actual ones. Moreover, it penalizes large
errors. This makes it a suitable metric to evaluate the model
performances since models with a consistent and stable ac-
curacy level are more useful than models with more errors,
and RMSE gives relatively high weight to large errors [51].
We also use R? along with RMSE as the evaluation metric.
The coefficient of determination (R?) shows how much of
the variation in the dependent variable is accounted for by
the independent variables in a regression model.

Table 3 depicts the performances of the regression mod-
els based on RMSE values and R? scores. These values

Table 3: Performance comparison of different models

Model RMSE R?
no-skill 0.247 (0.020) | -0.01 (0.018)
Linear 0.185 (0.004) | 0.38 (0.08)
KNN 0.173 (0.004) | 0.37 (0.10)
SVM 0.159 (0.003) | 0.51 (0.10)
XGBoost 0.170 (0.005) | 0.39 (0.09)
Bagging 0.166 (0.004) | 0.44 (0.09)
Boosting 0.161 (0.003) | 0.47 (0.08)
Stacked ensemble | 0.151 (0.003) | 0.55 (0.07)

are calculated by taking the average of the repeated cross-
validation results. The standard deviation of each model
is also calculated and shown in parentheses with the av-
erage RMSE and R?. We can see that all the regression
models outperform the naive baseline model with no skill.
Our stacked ensemble regression model outperforms all other
models with an RMSE of 0.151 and an R? score of 0.55.
We further investigate the performance of our model sta-
tistically to see if the model’s performance is significantly
different from other models. We use the Wilcoxon-signed
rank test with a significance level of 0.05. The null hypoth-
esis is that the performance of our model is the same as
any other model. The null hypothesis is rejected for all the
baseline models (p-value<0.05). Additionally, we test our
model’s performance using half of the assignments (first 25
out of 50, ordered with assignment ID). The RMSE value is
0.18 (0.005), and the R? score is 0.41 for our model, which
is also higher than other models while using only half of
the assignments of the course. These results prove that our
model shows statistically significant improvement over the
performances of other models.

5.2 Unfolding the Blackbox Model

To better understand the underlying mechanism behind the
stacked ensemble model’s predictions, we calculate the Shap-
ley values, values that determine the importance and impact
direction of each feature, using the SHAP algorithm. Using
SHAP, we can get the interpretation at an individual level
for a student as well as a global level for all students. It
enables us to understand the model predictions in a trans-
parent way.

5.2.1 Individual Level Explanation

At first, we look at an individual student’s final exam grade
prediction made by the model. Figure 3 shows a force plot
for an individual student whose actual final exam grade is
0.61. f(z) is the model’s prediction which is 0.59. The base
value is 0.64, which is the mean final exam grade. This is the
prediction of the no-skill model if there is no prior knowledge
about the features. The plot also shows the most impor-
tant feature names and their corresponding values for this
prediction. The red-colored features pushed the predicted
final grade higher, and the blue-colored features pushed the
grade lower. The longer the arrow is, the larger the impact
of that feature on the decision. Low EditDistance, Com-
pilerError, and high Valid helped the predicted grade to
be higher, whereas high Scores and TimeSpent pushed the
grade to be lower. We plot the relative importance of fea-
tures in Figure 4 using SHAP to understand the force plot

-

higher 2 lower

0.59
0500 0525 0550 0575 0.600

base value

0625 0650 0675 0700 0725

EditDistance = 0.45 CompileError = 0.112 Valid = 1.0

Scores = 0.902

TimeSpent = 0.166

Figure 3: Force plot for an individual student

Scores
CompileError
Valid
IncorrectSub
TimeSpent
EditDistance

CorrectSub

0.00 0.01 0.02 0.03

0.04 0.05 0.06 0.07

mean(|SHAP value|) (average impact on model output magnitude)

Figure 4: Relative importance of features

more clearly and to comprehend the relative importance of
features. The X-axis represents the relative importance of
the features on the model’s predictions. We can see that
Scores is the most important feature, whereas CorrectSub
has the least importance.

5.2.2 Global Level Explanation

We plot the summary of all the features at a global level
for all students to understand the relationship between fea-
ture values and predicted values in Figure 5. In the sum-
mary plot, the features are ranked by importance. KEach
point represents the Shapley value for each feature regard-
ing prediction for a single data point. Overlapping points
are jittered around the Y-axis to get an idea of the distribu-
tion of the Shapley values. Red represents a high value for
that feature, and blue represents a low value. The summary
plot shows that students with high CompileError, low Valid,
high TimeSpent, low EditDistance, and low CorrectSub have
negative Shapley values, which correspond to a higher prob-
ability of performing poorly in the final exam. Therefore,
students with a relatively high number of compiler errors,
low number of attempted assignments, high amount of time
spent on submitting the assignments, low changes or edits
in subsequent submissions, and low number of correct as-
signments have negative Shapley values, which correspond
to a lower final exam grade.

On the other hand, the feature impact of Scores and Incor-
rectSub on students’ final grades are demonstrated as coun-
terintuitive results based on the summary plot. We can see
that some students with lower scores tend to have higher
grades in the final exam, while some students with higher
scores do not do well in the exam. Similarly, some students
with a higher number of incorrect submissions do well in
the final exam, while some students with a lower number of
incorrect submissions achieve poor grades in the exam. We
hypothesize that this observation can be explained by look-
ing more closely at students’ programming behavior, includ-
ing their average edit distance in each submission. Other
prior works have used the edit distance to group students
based on their problem-solving behavior and identify effec-
tive problem-solving patterns based on each group’s perfor-
mance [4, 3]. Thus, we hypothesize that the interaction
between scores, incorrect submissions, and edit distance can
be deterministic of students’ learning. To investigate our hy-
pothesis, we discretized the values for scores and the number
of incorrect submissions features into low and high values us-
ing Gaussian Mixture Modeling (GMM) [38]. GMM can be
used for clustering where probabilistically, each data point
is assumed to be generated from a mixture of a finite num-
ber of Gaussian distributions where the parameters are un-
known. It uses Expectation-Maximization (EM) algorithm
to determine these parameters. Each Gaussian distribution
is specified by its mean and covariance.

‘ High
Scores P Jup gt Y TY R " S
CompileError . o o & ssnlurpbonpned '*.
Valid wo w0 o campon sow -..’ g
©
IncorrectSub ey Y . g
TimeSpent o wtde E
EditDistance sl e o
CorrectSub . o o
' ' ‘ ' - Low
-0.2 -0.1 0.0 0.1 0.2

SHAP value (impact on model output)

Figure 5: Summary plot showing feature importance with their impacts

We use Gaussian Mixture Modeling to divide each feature
distribution into two components: “component low” and
“component high”. Students belonging to “component low”
has a relatively lower value, and “component high” has rel-
atively higher values for that individual feature. Figure 6
shows the components of the feature Scores where “compo-
nent low” has a mean Scores value of 0.71 and “component
high” has a mean Scores value of 0.87. Similarly, figure 7
shows the components of the feature IncorrectSub, where
“component low” has a mean IncorrectSub value of 0.08, and
“component high” has a mean IncorrectSub value of 0.26.
From the components of each feature obtained from Gaus-
sian Mixture Modeling, we get the students of “component
low” for each feature whose probability of being assigned
to “component low” is higher than that of being assigned
to “component high”. Similarly, we get the students who
belong to “component high” for each feature. After investi-
gating the interactions between these two features, students’
final exam grades, and also taking the impact of edit distance
into account, we identified three main student profiles and
named them with the help of expert CS educators, based
on possible values for the number of incorrect submissions
and their average programming assignment scores [7, 24, 23].
These profiles are demonstrated in Table 4, along with each
profile’s average final grades.

5.3 Student Profiling

As discussed previously, we further analyze the explanations
of the model’s predictions to profile students based on their
learning outcomes and strategies.

5.3.1 Expert or Cheating Students

Students who have a high score and a low number of incor-
rect submissions on average have a mean final exam grade of
0.58. This grade is 0.06 lower than the overall mean grade

3.54 === high

pdf(Scores)
(o N N w
wn o 5 o

=
o
1

ot
wn
)

°
=}

0.0 0.2 0.4 0.6 0.8 1.0
Scores

Figure 6: Components of feature: Scores

(0.64). We hypothesize that students who submit a low
number of incorrect submissions with a high score on av-
erage are either experts or cheaters cheating from expert
students and not learning enough, and thus, we expect to
see a noticeable difference between the average final grade
for these two sets of students.

To test this hypothesis, we divide these students into ex-
pert and cheating profiles based on their final exam grades
and check the mean grades of these two profiles to deter-
mine whether there is a significant difference between them.
The cheating group has a mean final exam grade of 0.48,
and the expert group has a mean final exam grade of 0.80.

Table 4: Student profiles based on Scores and IncorrectSub values

Scores | IncorrectSub | Student Profile | Final exam mean (std)
low high Learning 0.72 (0.14)
low low Struggling 0.60 (0.18)
high low Expert 0.80 (0.08)
Cheating 0.48 (0.10)
high high Outlier 0.68 (0.19)
5 4 -=-- high === Cheating
...... low 3.0 -+ Expert
4 A 2.5
§ 2.0 //-\‘
LL) | Q b V3 \
S 3 g / E
i) / \
S ¥ 1.5 / W
S - / \
5 21 / %
/
2 1.0 1 / ¥
/ ¥
/ SN
14 0.5 A SN
/ S N
/, Y
P . Ny
0.0 1— == o . == .
04— : . . ; : , . 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 grades

IncorrectSub

Figure 7: Components of feature: IncorrectSub

Moreover, the grades of these two profiles are statistically
different with a p-value of less than 0.05. We further verify
our hypothesis using Gaussian Mixture Modeling and divid-
ing the final exam grade distribution of this profile into two
components [38] as illustrated in Figure 8. The component
with a high mean grade (0.79) represents the expert group,
and the component with a low mean grade (0.49) represents
the cheating group. This is a clear indication that there is
a significant difference in the competency of both groups.

5.3.2 Learning Students

The second profile of students we investigate are students
with a high number of incorrect submissions and a low score
on average. This group has a mean final exam grade of
0.72, which is 0.08 higher than the total average mean grade.
About 84% of these students have high edit distance on aver-
age. This suggests that students without a solid background
knowledge learn through trial and error by attempting dif-
ferent solutions multiple times.

5.3.3 Struggling Students

Students who have a low number of incorrect submissions
and lower scores on average are identified as struggling stu-
dents. This group has a mean final exam grade of 0.6, which
is 0.04 points lower than the mean grade of all students.
About 89% of these students have low edit distance on av-
erage. The mean EditDistance for this group is 0.2 which
is 0.12 points lower than the average edit distance for all
students. They also have 0.3 points mean for the number

Figure 8: Components of cheating and expert students

of correct submissions which is 0.11 points lower than the
average number of correct submissions.

5.3.4 Outlier

The last group of students is students who have a high num-
ber of incorrect submissions with a high score on average.
This group of students constitutes as low as 10% of the to-
tal dataset and, thus, is not investigated further and is not
included in any particular profiles.

These results suggest that while expert students can get the
desired outcome through a few high-quality attempts, stu-
dents with moderate levels of knowledge and expertise aim
for the desired results through multiple incorrect submis-
sions, attempting new solutions for each submission. On the
lower end of the spectrum, struggling students would not put
any effort into engaging with the activities as demonstrated
through a low number of submissions with a low score on av-
erage. These analytical results explain why features Scores
and IncorrectSub have an atypical effect on the model’s pre-
dictions.

On the whole, our stacked ensemble model can effectively
predict students’ final exam grades using their programming
assignment information. The results from incorporating the
SHAP model can shed light on students’ problem-solving
strategies and the connection between those strategies and
students’ learning outcomes. Utilizing an explainable model
to perform prediction of students’ performance can help in-
structors and advanced learning technologies make informed

decisions about effective interventions based on students’
progress and problem-solving patterns in a timely manner.

6. DISCUSSION

Introductory programming classes are growing rapidly while
being one of the most challenging subjects for students.
Thus, it is important to build automated approaches that
enable instructors and educators to provide students with
timely pedagogical support. We need to design generaliz-
able and interpretable prediction models that can predict
students’ performance while analyzing their problem-solving
behavior. However, predicting student performance in an in-
troductory programming course, such as predicting the final
exam grades solely based on programming data is a chal-
lenging task, given that the nature of the final exam differs
from hands-on programming assignments. Prior research
has used conventional classroom data such as tests, exams,
and multiple choice grades to predict students’ final exam
grades. On the other hand, including programming features
have been shown to improve the prediction results in com-
puter science courses [35]. While the exam grades can cer-
tainly improve the results, it is not always accessible to the
CSEDM models due to limitations in data collection, such
as data privacy. Furthermore, different introductory pro-
gramming classes might have different outlines and grading
mechanisms, while almost all of them include programming
assignments. Thus, our model can be generalized to any
introductory programming course regardless of its outline
since it merely relies on programming assignment data.

Integrating our approach in a classroom can offer valuable
benefits to both students and instructors. First, the ex-
plainable stacked ensemble model developed in this study
can help identify struggling students by predicting their fi-
nal exam grades based on their programming assignment
data. By identifying struggling students, instructors can
offer targeted interventions and support to help them im-
prove their learning outcomes. Second, the explanations of
the model’s predictions using the SHAP algorithm can help
students and instructors understand the model’s decision-
making process. This understanding can help build trust
in the model’s predictions. Additionally, the study’s inter-
pretation of the SHAP results as profiles that group stu-
dents based on their problem-solving strategy patterns can
provide valuable insights into students’ problem-solving be-
havior and learning outcomes [13, 23]. This information
can help instructors develop personalized teaching strate-
gies that cater to each group’s unique needs, thus enabling
more effective interventions and support [8, 31, 42].

There are a few limitations in this work. First, our dataset
did not allow for early prediction of students’ performance
since students could have attempted the assignments in an
arbitrary order at any point in time. However, we trained
our model with a subset of assignments to test the gener-
alizability of the model in courses where fewer assignments
are available. Our model outperformed other baselines sig-
nificantly with fewer numbers of assignments. Additionally,
the dataset used in this study has potential plagiarism is-
sues. Plagiarism affects the performance of our model be-
cause programming submission information and problem-
solving pattern do not convey the actual information about
the cheating students’ learning. Moreover, the dataset lacks

sufficient contextual information related to the course and
the CodeWorkout implementation. In particular, there is
no information on dropped-out students and students who
missed the final exam. The final exam grades of these stu-
dents are stated as zero (less than 1% of the dataset), which
might affect the performance of a predictive model.

7. CONCLUSION

In this study, we extracted important data-driven features
from students’ programming submissions that can be repre-
sentative of students’ problem-solving behavior and utilized
them to predict students’ performance. Furthermore, we
developed an explainable stacked ensemble model that can
predict students’ final exam grades from their programming
assignment information. Our model could significantly out-
perform baseline models, including Linear regression, KNN,
SVM, XGBoost, Bagging, and Boosting. The predictions
made by our model were explained using the SHAP algo-
rithm that shows the importance and direction of impacts
for each feature with regard to the predictions. We have
provided explanations of the decisions made by the model
at two levels: explanations of the decision for a student at
an individual level and explanations of the overall predic-
tions at a global level. This explanation can help students
and instructors to understand the model’s predictions and
make it trustworthy. We used a combination of descrip-
tive statistical analysis and mixture models to interpret the
SHAP results as profiles that group students based on their
problem-solving strategy patterns. This enables us to gain
insights into students’ problem-solving behavior and connec-
tion to their learning outcomes.

In the future, we intend to utilize our model for early pre-
diction by training it on a dataset where students’ attempts
at assignments follow a specified order. This will also fa-
cilitate analyzing student profiles, programming-solving be-
haviors, and patterns at different stages of the course time.
Moreover, investigating students’ problem-solving strategies
for individual assignments with different difficulties might
help us to understand students’ struggles associated with
different concepts represented by each assignment. In this
study, student profiling was used by discretizing the stu-
dents into two components (low and high) based on each
feature value to analyze the SHAP values where feature im-
pact on the predictions was not straightforward and coun-
terintuitive. Nonetheless, if we consider more than two com-
ponents for each feature for a more complex student body,
more student profiles might emerge in the interpretation pro-
cess based on the feature interactions. We intend to explore
more complex situations and analyze explanations obtained
from SHAP with more granular student profiles in the fu-
ture. Furthermore, we intend to conduct in-depth studies
to detect plagiarism and cheating in students’ programming
codes. This includes strategies for similarity analysis and
anomaly detection. For instance, we can assess the simi-
larity between two codes through program embedding ap-
proaches where the structural information of each program
is captured through vectors. Moreover, we can analyze stu-
dents’ normalized submission rate distributions to identify
odd patterns for a particular assignment to gain insights
into the likelihood of students committing plagiarism over
the course of time.

8.
1]

[10]

REFERENCES

A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.
Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings
of the 11th Annual International Conference on
International Computing Education Research, pages
121-130, 2015.

I. Ahmed, G. Jeon, and F. Piccialli. From artificial
intelligence to explainable artificial intelligence in
industry 4.0: a survey on what, how, and where. IEEE
Transactions on Industrial Informatics,
18(8):5031-5042, 2022.

B. Akram, W. Min, E. Wiebe, B. Mott, K. E. Boyer,
and J. Lester. Improving stealth assessment in
game-based learning with lstm-based analytics. In
Proceedings of the International Conference on
Educational Data Mining, pages 208-218, 2018.

B. Akram, W. Min, E. Wiebe, B. Mott, K. E. Boyer,
and J. Lester. Assessing middle school students’
computational thinking through programming
trajectory analysis. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education,
pages 1269-1269, 2019.

N. Alam, H. Acosta, K. Gao, and B. Mostafavi. Early
prediction of student performance in a programming
class using prior code submissions and metadata. In
Proceedings of the 6th Educational Data Mining in
Computer Science Education (CSEDM) Workshop,
pages —, 2022.

M. Baranyi, M. Nagy, and R. Molontay. Interpretable
deep learning for university dropout prediction. In
Proceedings of the 21st Annual Conference on
Information Technology Education, pages 13—19, 2020.
M. S. Boroujeni and P. Dillenbourg. Discovery and
temporal analysis of latent study patterns in mooc
interaction sequences. In Proceedings of the 8th
International Conference on Learning Analytics and
Knowledge, pages 206-215, 2018.

A. Boubekki, S. Jain, and U. Brefeld. Mining user
trajectories in electronic text books. In the 11th
International Conference on Educational Data Mining
(EDM), pages 147-156, 2018.

H.-C. Chen, E. Prasetyo, S.-S. Tseng, K. T. Putra,

S. S. Kusumawardani, and C.-E. Weng. Week-wise
student performance early prediction in virtual
learning environment using a deep explainable
artificial intelligence. Applied Sciences, 12(4):1885,
2022.

E. B. Costa, B. Fonseca, M. A. Santana, F. F.

de Araijo, and J. Rego. Evaluating the effectiveness of
educational data mining techniques for early
prediction of students’ academic failure in
introductory programming courses. Computers in
Human Behavior, 73:247-256, 2017.

S. H. Edwards and K. P. Murali. Codeworkout: short
programming exercises with built-in data collection. In
Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science
FEducation, pages 188-193, 2017.

O. Embarak. Explainable artificial intelligence for
services exchange in smart cities. Ezplainable Artificial
Intelligence for Smart Cities, pages 13-30, 2021.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

N. Gitinabard, S. Heckman, T. Barnes, and C. F.
Lynch. What will you do next? a sequence analysis on
the student transitions between online platforms in
blended courses. In the 12th International Conference
on Educational Data Mining (EDM), pages 59-68,
2019.

M. Hoq, P. Brusilovsky, and B. Akram. SANN: A
subtree-based attention neural network model for
student success prediction through source code
analysis. In 6th Educational Data Mining in Computer
Science Education (CSEDM) Workshop, pages —, 2022.
M. Hoq, M. N. Uddin, and S.-B. Park. Vocal feature
extraction-based artificial intelligent model for
parkinson’s disease detection. Diagnostics, 11(6):1076,
2021.

P. Thantola, A. Vihavainen, A. Ahadi, M. Butler,

J. Borstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, et al. Educational data mining
and learning analytics in programming: Literature
review and case studies. In 2015 ITiCSE on Working
Group Reports, pages 41-63, 2015.

M. Jamjoom, E. Alabdulkreem, M. Hadjouni,

F. Karim, and M. Qarh. Early prediction for at-risk
students in an introductory programming course based
on student self-efficacy. Informatica, 45(6), 2021.

A. Joseph. Shapley regressions: A framework for
statistical inference on machine learning models. arXiv
preprint arXiv:1903.04209, 2019.

M. S. Kamal, A. Northcote, L. Chowdhury, N. Dey,
R. G. Crespo, and E. Herrera-Viedma. Alzheimer’s
patient analysis using image and gene expression data
and explainable-ai to present associated genes. I[EEE
Transactions on Instrumentation and Measurement,
70:1-7, 2021.

H. Karimi, T. Derr, J. Huang, and J. Tang. Online
academic course performance prediction using
relational graph convolutional neural network. In
Proceedings of the 13th International Conference on
Educational Data Mining (EDM), pages 444-450,
2020.

I. Khan, A. Al Sadiri, A. R. Ahmad, and N. Jabeur.
Tracking student performance in introductory
programming by means of machine learning. In 2019
4th MEC International Conference on Big Data and
Smart City (ICBDSC), pages 1-6. IEEE, 2019.

E. J. Laurfa, J. D. Baron, M. Devireddy,

V. Sundararaju, and S. M. Jayaprakash. Mining
academic data to improve college student retention:
An open source perspective. In Proceedings of the 2nd
International Conference on Learning Analytics and
Knowledge, pages 139-142, 2012.

E. Loginova and D. F. Benoit. Embedding navigation
patterns for student performance prediction. In 14th
International Conference on Educational Data Mining
(EDM), pages 391-399, 2021.

S. Lorenzen, N. Hjuler, and S. Alstrup. Tracking
behavioral patterns among students in an online
educational system. In Proceedings of the 11th
International Conference on Educational Data Mining
(EDM), pages 280-285, 2018.

Y. Lu, D. Wang, Q. Meng, and P. Chen. Towards
interpretable deep learning models for knowledge

[26]

[27]

[32]

[33]

[37]

[38]

tracing. In Proceedings of the 21st International
Conference on Artificial Intelligence in Education
(AIED), pages 185-190. Springer, 2020.

S. M. Lundberg, G. G. Erion, and S.-I. Lee.
Consistent individualized feature attribution for tree
ensembles. arXiv preprint arXiv:1802.03888, 2018.

S. M. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. In Proceedings of the
81st international Conference on Neural Information
Processing Systems, volume 30, pages 4768-4777, 2017.
Y. Mao. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In Proceedings of the 12th
International Conference on Educational Data Mining
(EDM), pages 119-128, 2019.

Y. Mao, F. Khoshnevisan, T. Price, T. Barnes, and
M. Chi. Cross-lingual adversarial domain adaptation
for novice programming. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
7682-7690, 2022.

J. Marsden, S. Yoder, and B. Akram. Predicting
Student Performance with Control-flow Graph
Embeddings. In 6th Educational Data Mining in
Computer Science Education (CSEDM) Workshop,
pages —, 2022.

K. Mouri, A. Shimada, C. Yin, and K. Kaneko.
Discovering hidden browsing patterns using
non-negative matrix factorization. In the 11th
International Conference on Educational Data Mining
(EDM), pages 568-571, 2018.

T. Mu, A. Jetten, and E. Brunskill. Towards
suggesting actionable interventions for wheel-spinning
students. In Proceedings of The 18th International
Conference on Educational Data Mining (EDM 2020),
pages 183-193, 2020.

S. M. Muddamsetty, M. N. Jahromi, and T. B.
Moeslund. Expert level evaluations for explainable ai
(xai) methods in the medical domain. In International
Conference on Pattern Recognition, pages 35—46.
Springer, 2021.

B. Pei and W. Xing. An interpretable pipeline for
identifying at-risk students. Journal of Educational
Computing Research, 60(2):380-405, 2022.

F. D. Pereira, S. C. Fonseca, E. H. Oliveira, A. 1.
Cristea, H. Bellhduser, L. Rodrigues, D. B. Oliveira,
S. Isotani, and L. S. Carvalho. Explaining individual
and collective programming students’ behavior by
interpreting a black-box predictive model. IEEE
Access, 9:117097-117119, 2021.

F. D. Pereira, E. Oliveira, A. Cristea, D. Fernandes,
L. Silva, G. Aguiar, A. Alamri, and M. Alshehri. Early
dropout prediction for programming courses
supported by online judges. In International
Conference on Artificial Intelligence in Education,
pages 67-72. Springer, 2019.

K. Quille and S. Bergin. Csl: how will they do? how
can we help? a decade of research and practice.
Computer Science Education, 29(2-3):254-282, 2019.
M. Sahami and C. Piech. As cs enrollments grow, are
we attracting weaker students? In Proceedings of the
47th ACM Technical Symposium on Computing
Science Education, pages 54-59, 2016.

(39]

(40]

[41]

42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

O. Serradilla, E. Zugasti, C. Cernuda, A. Aranburu,
J. R. de Okariz, and U. Zurutuza. Interpreting
remaining useful life estimations combining
explainable artificial intelligence and domain
knowledge in industrial machinery. In 2020 IEEE
International Conference on Fuzzy Systems
(FUZZ-IEEE), pages 1-8. IEEE, 2020.

A. M. Shahiri, W. Husain, et al. A review on
predicting student’s performance using data mining
techniques. Procedia Computer Science, 72:414—422,
2015.

L. S. Shapley. Quota solutions of n-person games.
Technical report, RAND CORP SANTA MONICA
CA, 1952.

A. Sheshadri, N. Gitinabard, C. F. Lynch, T. Barnes,
and S. Heckman. Predicting student performance
based on online study habits: A study of blended
courses. In the 11th International Conference on
Educational Data Mining (EDM), pages 87-96, 2018.
Y. Shi, R. Schmucker, M. Chi, T. Barnes, and

T. Price. KC-Finder: Automated knowledge
component discovery for programming problems. In
Proceedings of the 16th International Conference on
Educational Data Mining (EDM), pages —, 2023.

A. Singh, S. Sengupta, M. A. Rasheed, V. Jayakumar,
and V. Lakshminarayanan. Uncertainty aware and
explainable diagnosis of retinal disease. In Medical
Imaging 2021: Imaging Informatics for Healthcare,
Research, and Applications, volume 11601, pages
116-125. SPIE, 2021.

Q. Sun, J. Wu, and K. Liu. Toward understanding
students’ learning performance in an object-oriented
programming course: The perspective of program
quality. IEEE Access, 8:37505-37517, 2020.

M. Sweeney, J. Lester, H. Rangwala, A. Johri, et al.
Next-term student performance prediction: A
recommender systems approach. Journal of
Educational Data Mining, 8(1):22-51, 2016.

D. Thakker, B. K. Mishra, A. Abdullatif,

S. Mazumdar, and S. Simpson. Explainable artificial
intelligence for developing smart cities solutions.
Smart Cities, 3(4):1353-1382, 2020.

K. M. Ting and 1. H. Witten. Stacked generalization:
when does it work? In Poceedings of the 15th Joint
International Conference on Artificial Intelligence,
pages 866—871, 1997.

C. Watson and F. W. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014
conference on Innovation & technology in computer
science education, pages 39-44, 2014.

D. H. Wolpert. Stacked generalization. Neural
Networks, 5(2):241-259, 1992.

S. Yoder, M. Hoq, P. Brusilovsky, and B. Akram.
Exploring sequential code embeddings for predicting
student success in an introductory programming
course. In 6th Educational Data Mining in Computer
Science Education (CSEDM) Workshop, pages —, 2022.
M. Yudelson, R. Hosseini, A. Vihavainen, and

P. Brusilovsky. Investigating automated student
modeling in a java MOOC. In Proceedings of the 7th
International Conference on Educational Data Mining
(EDM), pages 261-264, 2014.

