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SUMMARY

Quantitatively linking the composition and function of microbial communities is a major aspiration of microbial
ecology. Microbial community functions emerge from a complex web of molecular interactions between cells,
which give rise to population-level interactions among strains and species. Incorporating this complexity into
predictive models is highly challenging. Inspired by a similar problem in genetics of predicting quantitative
phenotypes from genotypes, an ecological community-function (or structure-function) landscape could be
defined that maps community composition and function. In this piece, we present an overview of our current
understanding of these community landscapes, their uses, limitations, and open questions. We argue that ex-
ploiting the parallels between both landscapes could bring powerful predictive methodologies from evolution

and genetics into ecology, providing a boost to our ability to engineer and optimize microbial consortia.

INTRODUCTION

Microorganisms have colonized every habitat on earth, forming
complex and diverse ecosystems that play critical roles
throughout the biosphere. Besides their many environmental
roles, microbial communities have also been harnessed for
biotechnological applications at least since the dawn of the
neolithic revolution. The biotechnological applications of micro-
bial consortia are growing from their traditional roles in food and
drink'~ to contemporary uses in biofuel production,®® the valo-
rization of discarded plant materials,” " bioremediation, '
crop fertilization, '>"'® and many more.""2°

Relative to monocultures, microbial communities offer multiple
advantages in biotechnology. Among these, they permit special-
ization and division of labor'”?" avoiding physiological and
cellular tradeoffs and other constraints that limit the efficiency
of many biochemical processes. Communities may also contain
much more genetic diversity than one would find in a single or-
ganism due to genome size limitations (e.g., Mizrahi et al.??).
This diversity can enable communities to remain resilient to per-
turbations that single strains might not survive.?® Finally, microbi-
al consortia form spontaneously through evolutionary and
ecological processes that are very difficult to avoid, even when
a monoculture is started from a single isogenic population and
propagated under otherwise sterile laboratory conditions.”*°
Even in environments supplied with a single limiting resource, di-
versity and coexistence always seem to find a way, suggesting
that a community is the natural endpoint of microbial systems
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both in natural and synthetic conditions.?’' Learning how to
manipulate and engineer microbial consortia is therefore critical
to realizing the biotechnological potential of microorganisms.
Despite growing interest, our ability to engineer microbial
consortia lags behind bioengineering efforts in other biological
systems at or below the organismal level, such as proteins®?-®
or metabolic and genetic networks.***> One major reason is
the nested hierarchical complexity present in a consortium.
Specifically, the collective properties and services provided
by microbial consortia (i.e., their “functions”) emerge from the
contributions of individual community members and their inter-
actions with one another and their environment. The physiolog-
ical traits of individual taxa dictate interactions, and these traits
depend on genomic diversity, regulatory variation, and life his-
tory. Community functions then emerge from the collective
action of these interactions, which are often non-linear and his-
torically contingent. This means that parsing the mapping from
structure to function from a detailed accounting of each pro-
cess in the community is an immense task even for relatively
simple consortia. Amidst this complexity, how are we to
approach the problem of community design and control?

MAPPING COMMUNITY COMPOSITION TO FUNCTION
CAN DRAW INSPIRATION FROM PROTEIN
ENGINEERING

The field of molecular engineering has very similar goals and
has encountered similar challenges. For instance, protein
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engineers seek to design enzymes with desirable catalytic ac-
tivities.**"*® The catalytic rate of an enzyme is encoded in its
sequence of amino acids, and it is also a collective property
of the enzyme that arises from a large number of local and
long-range biophysical interactions between its amino acids.
These interactions give rise to the folded structure of the
enzyme and govern its stability and intermolecular dynamics.
Engineering every possible amino acid interaction to produce
a desired enzymatic function is obviously daunting, but even
the simpler task of predictively connecting sequence with
function has been a major open challenge in biophysics.
However, this has not precluded our ability to engineer and
optimize enzymatic function.*®,°®*® |n the process of under-
standing the connection between amino acid sequence and
function, protein engineering has benefited greatly from
insights provided by the theory of fitness landscapes.®®™'
Perhaps, the most successful example is the development
of directed evolution, which has enabled the top-down engi-
neering of different kinds of proteins.*® Directed evolution in-
volves an assisted exploration of the genotype-phenotype
map in search for genotypes of desired or optimized function-
ality (this map is often referred to as the fitness landscape in
the context of directed evolution where an objective func-
tion—i.e., “fitness” can be externally imposed). This assisted
search is implemented through a process that mimics that of
evolution by the iterative application of sequence randomiza-
tion followed by selection on expressed phenotypes.*®

In addition to the algorithmic explorations of fitness land-
scapes, a complementary approach has been to infer the
principles of protein design by examining the statistics of
sequence variation in naturally occurring proteins —effectively
learning the landscape from extant variation. This approach
has enabled the synthetic design of functional enzymes,*?
inferring folds*® and insights into evolvability** and allostery.*®
One key insight from this body of work is that within the astro-
nomically large space of possible protein sequences, natural
functional proteins inhabit a much lower-dimensional sub-
space.’® In proteins, this low dimensionality manifests as
groups of co-evolving amino acids that are derived from prin-
cipal components of a covariance matrix describing coevolu-
tion between sites in a multiple sequence alignment. In this
case, low dimensionality arises because there are only a few
independent groups of amino acids that co-evolve. Hence,
although a protein has a huge number of degrees of freedom,
there are emergent collective modes or “sectors” that faith-
fully describe protein function.*? This result means that engi-
neering proteins may not require an exhaustive search of
sequence space (an impossible task) but instead a con-
strained search within a low-dimensional subspace. In com-
munities, we speculate that similar emergent low-dimensional
features might exist. In the community case, these features
might emerge as groups of species or genotypes whose abun-
dances covary across replicate communities or environments.
For example, studies with synthetic communities®’,*® and hu-
man microbiota®® have shown that variation in species abun-
dances can be described by a few collective modes. Note
again that a community has many degrees of freedom (spe-
cies abundances, traits), but the low dimensionality might be
an emergent property of the collective. The role of these col-
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lective modes in community function is yet to be elucidated,
but exploring this emergent low dimensionality might dramat-
ically reduce the size of the compositional space that must be
explored to design functional consortia.

Can we extend the theory of fitness landscapes to study and
engineer microbial community function? An important challenge
is that, unlike molecular systems, microbial communities are
made up of multiple self-replicating individual genotypes, each
possessing its own fitness landscapes. It is therefore not imme-
diately obvious how the idea of fithess landscapes may be
extended to entire communities. In particular, any notion of
fitness at the community level is not clearly defined, given the in-
dependent replication of genotypes rather than communities as
a whole. Although this is true, community-level selection can be
applied under artificial conditions, where an arbitrary fitness
function can be applied.”®°? More broadly, for a landscape to
exist, it is not necessary that the scalar property that is being
mapped to the composition of the community be defined in
terms of fitness; it can instead be any collective function of the
community.>*~5°

In recent years, a small but growing body of work has started
to extend the theory of fitness landscapes to communities and
suggested ways in which it may help us guide the design of mi-
crobial consortia.®>**~°° Examples range from fruit-fly microbial
consortia whose function is the host’s lifespan and other life-
history traits®® to sugarcane biorefinery consortia whose func-
tion is the amount of ethanol produced during a single-batch
fermentation.® These and other studies®®>%,°"°" have formally
defined the structure-function (or composition-function or com-
munity-function) landscape as the empirical map between
community composition and function in a given habitat and
set of conditions. The structure of a microbial consortium is
given by the list of all its genotypes g = {g1,92,....gn} and their
respective abundances xg = {Xq1,X2,....Xn}. If a molecular
fitness landscape is a map between a genotype g (where g rep-
resents the DNA sequence of the molecule) and a quantitative
phenotype P (i.e., P(g)), a community structure-function
landscape can be conceptualized as the map between the
abundance vector x4 and a collective function F of the con-
sortium F(xg).

To make this concept useful and productive, it is critical that
we identify and understand the similarities and differences
between structure-function landscapes and molecular fitness
landscapes. The goal of this study is to synthesize our current
understanding of the community structure-function landscape,
highlighting promising directions and open questions. We start
by drawing parallels between genetic interactions (epistasis) in
simple genetic landscapes, and their ecological analogs in sim-
ple structure-function landscapes. We then discuss how various
concepts from fithess landscape theory may be generalized to
communities. Finally, we discuss under what conditions an
ecological structure-function landscape is defined so that a col-
lective property of interest can be said to depend uniquely on
species composition. Our focus is eminently practical, and we
focus on those ideas and methods from fitness landscape theory
that, in addition to providing ecological insights, may help us
guide our efforts to engineer and manage community services
and functions. We also highlight how “landscape thinking”®®
may provide a helpful theoretical framework to help us
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Figure 1. Species interactions create non-additive effects on community function

(A) In population genetics, two mutations A and B are said to interact when their phenotypic effects do not combine additively (or multiplicative, depending on the
scale). This interaction is quantified by the deviation from additivity (referred to as the epistasis, ).

(B-G) (B) Empirical measurements have found that the function of pairwise microbial co-cultures is often described by the sum of the functions in monoculture, as
exemplified here by the amylolytic activities (in hr~') of monocultures and pairwise co-culture of B. mojavensis and B. thuringiensis (data from Sanchez-
Gorostiaga et al.*®). Other pairs, however, exhibit marked deviations. For instance, the pair formed by B. thuringiensis and P. polymyxa (C) has an amylolytic
rate that far exceeds the expected value if both species acted independently. Three different types of interactions may cause this deviation from the situation
where species functional contributions are additive (D). For instance, the enzymes and other molecules secreted by each species may interact with one another
either enhancing or limiting their amylolytic activity (biochemical interactions, E). Alternatively, a species may promote (or suppress) the growth of its partner,
limiting the size of its population and thus, potentially, its net expression of amylases (F). Finally, a population of one species may impact the per-capita expression

of amylases by another, similarly impacting the net production of this function (G).

conceptualize the challenges associated with engineering mi-
crobial consortia.

A SIMPLE EXAMPLE OF LANDSCAPE THINKING IN
COMMUNITY FUNCTION: AN ECOLOGICAL PARALLEL
TO EPISTASIS

To develop our intuition of how fitness landscape theory may be
extended to microbial communities, it is useful to start from the
simplest scenario. The simplest genotype-phenotype map con-
sists of two mutations, a — A and b — B, which define four
possible genotypes: the “wild-type” (ab), the two single-mu-
tants: (Ab and aB), and the double mutant (AB) (Figure 1A).
One then needs a null model that describes how both mutations
combine their effects when they act independently on the pheno-
type. Typically, the null model assumes that mutations act addi-
tively on the phenotype (or multiplicatively, depending on the
scale). The deviation between the phenotype of the double
mutant AB and its expected value under the null, interaction-
free model, is known as the pairwise “epistasis” between those
mutations (Figure 1A). Thus defined, epistasis gives us a metric
of interactions between mutations.
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Interactions can similarly be defined in other combinatorial
systems that are not genetic, and in fact, the term epistasis
has been used to describe systems as diverse as drug interac-
tions®®"° or combinations of stressors,”’ among others.”? In
recent years, we (and others) have extended it to ecological sys-
tems as well,#°67°8:61.7374 gnd the underlying idea was already
present in earlier efforts to model the emergence of community
function.”>"®

In ecology, the simplest type of consortium is one contain-
ing just two different genotypes, g4 and g.. We could inoculate
identical habitats with either cell from just one of those
genotypes (g4), the other (g»), or both (g4 and g,), and mea-
sure a function of interest of each habitat after some
defined incubation time. We could then establish a null
model that would describe the function of the pairwise con-
sortium if both species did not interact with one another
in any way.°® By analogy with the epistasis concept in ge-
netics, the deviation between the function of the pairwise
consortium and the expected value under the null model,
which assumes no interactions, is defined as the functional
interaction between both genotypes, an ecological equivalent
of epistasis.
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Figure 2. High-order functional interactions in microbial consortia
We show an example of a third-order interaction that shapes the function of
microbial consortia, in this case leading to diminishing returns in the rate of
starch degradation by the set of enzymes released by the cells in the com-
munity. The data was re-plotted from Sanchez-Gorostiaga et al.”® Adding
either B. subtilis (S) or B. mojavensis (M) to a monoculture of P. polymyxa
(P) dramatically enhances its function through a pairwise functional interaction.
However, when we add either B. subtilis or B. mojavensis to the co-culture of
P. polymyxa with the other partner, their impact on function is either neutral or
negative. This shows that the functional effect of adding a species to a con-
sortium may be different when a second species is present, indicating the
existence of a high-order functional interaction (HOFI).

To illustrate this idea, in Figures 1B and 1C, we present a
recent empirical example of a simple structure-function land-
scape. In this example, drawn from Sanchez-Gorostiaga
et al.,’® the function of interest is the rate of starch degradation
by extracellularly amylase enzymes secreted by different strains
of the phylum Bacillota. Biochemical modeling tells us that these
enzymes should combine additively, a point that was confirmed
empirically.®® Therefore, in the absence of any interactions, the
amylolytic rate function of any consortium should be the sum
of the functions of each genotype in monoculture. Indeed,
many genotype pairs were very well described by this interac-
tion-free model (e.g., as shown in Figure 1B, the one formed
by B. mojavensis and B. thuringiensis). The (surprising) effective-
ness of simple additive models has been reported in other sys-
tems, as a recent study showed similar success with an additive
regression model for predicting fluxes of nitrate and nitrite
through synthetic denitrifying communities.””  Interestingly
although, other genotype pairs in the starch degrading commu-
nities, deviated markedly from the additive model (Figure 1C),
indicating the existence of strong, pairwise functional interac-
tions between them. These interactions indicate the presence
of epistasis-like interactions in these simple community-function
landscapes.”®

What is the mechanistic basis of these pairwise interac-
tions? In general, functional interactions may arise from three
different mechanisms (Figures 1D-1F).°® First, the functional
contributions of each community member may interact with
each other. For instance, going back to the secreted enzyme
example that is serving as an illustration, enzymes secreted by
two species may act independently on the substrate, in which
case their catalytic rates will be additive. However, some en-
zymes act synergistically on their substrate, as is the case of
endo- and exo-cellulases: the former create new substrates
for the latter, reaching an activity together that is higher than
the sum of each of them separately.”® The enzymes secreted
by each species may also act antagonistically, for instance by
aggregating (and therefore inhibiting) one another. These de-
viations from additivity may be called “abiotic” interactions,
as they would occur even if no cells were present. The second
type of interaction involves changes in the amount contributed
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by a given genotype to the community function. For instance,
a genotype may either promote or inhibit the per-capita
functional contribution by another genotype, altering its
behavior. These “behavioral” interactions may include chem-
ical signaling from one species that modifies the behavior of
another.”® Alternatively, a genotype may affect the growth
(and therefore the total number of cells in the population) of
another genotype. These “population” interactions can also
alter the collective function of the ecosystem in a context-
dependent manner. The three types of interactions summa-
rized in Figures 1D-1F can be separated empirically.*®

HIGH-ORDER FUNCTIONAL INTERACTIONS

In communities with more than two species, functional interac-
tions may be more complex than pairwise.®,°%,”*,”® Consider,
for instance, the example provided in Figure 2, where the struc-
ture-function landscape comprising every combinatorial consor-
tia of three amylolytic bacteria is given.*® This landscape shows
that co-culturing P. polymyxa with B. mojavensis or B. subtilis in-
creases function beyond what we might expect from the additive
model, indicating the presence of strong pairwise interactions.
However, the beneficial effect of adding both B. mojavensis or
B. subtilis to P. polymyxa is negligible, as there is no additional
benefit of adding those strains. This “diminishing returns” effect
indicates that the same genotype (e.g., B. subtilis) that is func-
tionally “beneficial” when added to with P. polymyxa alone is
functionally neutral when added to a consortium formed by
P. polymyxa and B. mojavensis. The functional effect of adding
a species to a consortium is thus different when two species,
as opposed to one, are present. This would be the canonical
definition of high-order epistasis if, instead of species and their
functional effect, we were talking about mutations and their
fitness effect.”°

Besides the example discussed above, high-order functional
interactions (HOFIs) have been observed in the production of
ethanol by sugarcane biorefinery consortia,® the extension of a
host lifespan by Drosophila gut microbiome consortia,”’ the
metabolic activity of synthetic consortia,”* and, more recently,
gene expression in simple defined communities.?’ Just as they
do in fitness landscapes, HOFls could have profound implica-
tions for the topography of structure-function landscapes. For
instance, in sugarcane biorefinery consortia, HOFls have been
found to tone down the predominantly negative effects of pair-
wise interactions between bacteria on the net ethanol yield.?
Based on pairwise interactions alone, we would have expected
that as bacterial biodiversity increases in our bioreactors the
ethanol yield would have collapsed. However, the opposite
was true and although most pairs of bacteria had negative ef-
fects on the ethanol yield, this detrimental effect vanished as
communities increased in richness, reaching average levels
that were comparable with those of pure yeast monocultures.®
Despite this and other recent attempts to characterize
HOFIs,®°7:%" our understanding of the effect and implications
of HOFIs is still very incomplete. When do they complicate and
when do they simplify the navigability of structure-function
landscapes? How do they affect the number and stability of
functionally stable equilibria? These are still open questions,
representing an open frontier in functional microbial ecology.
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Figure 3. An analog to global epistasis explains the functional effect of adding new species to microbial consortia

(A) Research in quantitative genetics has shown that the fitness effect of a mutation is often well predicted by a simple linear regression on the fitness of the
genetic background where it arises. Epistasis can thus be partitioned as the sum of a global component captured by such a linear fit (red), and an idiosyncratic
component, not predictable from the fitness of the genetic background alone, represented by the residuals of that fit (green). Data from Khan et al.®® Note that the

success of a linear regression does not necessarily reflect that an underlying
fraction of the variance (see e.g., Reddy and Desai®?).
(B) An ecological parallel to global epistasis can be formulated: the effect on

linear relationship exists, but rather that a linear model can explain a substantial

ecosystem function resulting from the addition of a species to a community (an

ecological background) can be well predicted via a linear regression by the function of the ecological background itself. Species can have less beneficial (or more
deleterious) functional effects in backgrounds with higher functions (red lines), or vice versa (blue lines). These regressions that capture the functional effect of

adding a species to a gamut of different consortia have been termed functional

effect equations (FEEs).>* In some cases, the functional effect of a species may be

dominated by an idiosyncratic component rather than a global one (black lines). Data correspond to butyrate production by synthetic gut microbial commu-
nities,”® biomass in plankton communities,®* above-ground biomass in multi-species plant communities,® xylose oxidation by soil bacterial communities,®” and

amylase secretion in bacterial consortia.*®

AN ECOLOGICAL PARALLEL TO GLOBAL EPISTASIS
AND THE EMERGENCE OF SIMPLE FUNCTIONAL
EFFECT EQUATIONS

Building predictive models of the structure-function landscape
from the bottom up (by combining additive, pairwise, third-order
interactions, etc.) is generally challenging. There is no guarantee
that the complexity of interactions ends at the second or third or-
der;°® hence, the number of interactions that one would need to
measure in order to build a predictive model of the landscape
can blow up. An alternative is provided by defining global func-
tional interactions in a way that is inspired by recent develop-
ments in quantitative genetics. Genetic interactions can be
partitioned as the sum of a “global epistasis” effect, where the
fitness effect of a mutation is predicted by the fitness of the
genetic background and an “idiosyncratic epistasis” effect,
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which captures the part of the fitness effect of a mutation that de-
pends on the genetic background while being independent of the
background fitness®? (Figure 3A).

Can we extend this way of partitioning interactions to microbial
consortia? In recent work, we have found that the functional ef-
fects of adding a species to a consortium are indeed well pre-
dicted by linear regression on the function of the background con-
sortium, similar to what has been observed in genetic systems.®*
The existence of these global functional interaction patterns ap-
pears to be rather general in ecosystems as we also found them
in plant and algal communities.®* Importantly, different species
within a consortium tend to exhibit different quantitative relation-
ships between their “functional effect” (i.e., the change in commu-
nity function when they are present relative to when they are not)
and the function of the background community to which we add
them. We call these relationships the “functional effect equations”
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Figure 4. Global epistasis—like patterns in ecology—may help us infer the quantitative relationship between community composition and

function

(A) It is possible to predict the function of any combinatorial consortia assembled from a set of species, as long as we know their functional effect equations
(FEEs). For instance, a simple procedure consists of stitching together their respective FEEs, by iteratively applying them as depicted.®

(B) For instance, we have recently shown that this approach is capable of accurately predicting the amount of pyoverdine produced by newly assembled
consortia if we had previously characterized the FEEs associated with this function for all of its constituent members.

(C) This is just a particular example of a broader research agenda, depicted here in cartoon fashion: bringing to ecology methods that have been developed in
evolutionary genetics, and which have proven to be successful at predicting quantitative phenotypes from a smaller subset of measured genotypes.””

of a species.®® Examples include diminishing returns, as well
as increasing costs, accelerated returns, and other patterns
(Figure 3B). How the particular global functional patterns exhibited
by a species depend onits traits, as well as the traits of the species
it interacts with, is still not well understood. In addition, it will be
important to understand how this simple “global” epistasis
emerges from the pairwise and potentially higher-order interac-
tions in the consortia, extending and complementing the work
that is currently being done to understand the origins of global
epistasis in genetic fitness landscapes.®>8¢-°

THE USEFULNESS OF THE STRUCTURE-FUNCTION
LANDSCAPE CONCEPT

An important consequence of the existence of these predictive
functional effect equations is that they make it possible to predict
with reasonable accuracy how adding a given species to a
consortium will change its function. This illustrates what may
be one of the most important benefits of bringing the concept
of a structure-function landscape from genetics to ecological
research: we could apply the arsenal of analytical and statistical
tools that have been developed in genetics to infer and navigate
these landscapes. For instance, several machine learning meth-

odologies have been developed in recent years to infer a full ge-
notype-phenotype landscape from a small subset of measured
genotype-phenotype relationships. These methods have found
impressive success in predicting biological function from DNA
sequence under constant environmental conditions.®'°* Adapt-
ing and applying these methodologies to microbial consortia is
an exciting prospect,”® and its feasibility is encouraged by the
success of simpler inference approaches. For instance, we
have recently tested the predictive power of a simple model con-
sisting of “stitching together” the functional effect equations of all
community members.®* This very simple approach, summarized
in Figure 4, does an excellent job at predicting various community
functions for the full set of all possible consortia one may form
with a defined set of taxa. Importantly, the ability to predict the
full structure-function landscape makes it possible to identify
the community compositions that will maximize and minimize
these functions, paving the way to engineering community func-
tions from the bottom up. The application of machine learning and
neural networks to reconstruct community-function landscapes
from a limited set of observations is still in its infancy. However,
promising results are being published,”® and the success of
earlier regression-based approaches to predict the landscape
of small consortia’® is also an encouraging sign.
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The landscape perspective allows one to approach the prob-
lem of community design from a statistical point of view. We pro-
pose that from this perspective, the complex hierarchy of pro-
cesses discussed above that influence the structure-function
landscape might yield simple descriptions. Indeed, our recent
work suggests that taking this perspective can uncover simple
rules for mapping genomes to phenotypes’’ and community
composition to emergent function.®* Despite these advances,
we do not yet have a clear picture of the topography of these
structure-function landscapes and this will be important if what
we wish is to optimize communities using evolutionary engineer-
ing approaches.

THE TOPOGRAPHY AND NAVIGABILITY OF AN
ECOLOGICAL STRUCTURE-FUNCTION LANDSCAPE

The topography of a fitness landscape gives us a measure of its
navigability by either evolution or other assisted search pro-
cesses. Smooth single-peak landscapes are navigated more
easily than rugged ones since there are a larger number of adap-
tive paths connecting a given genotype to the global fitness
peak.’*°> Smoothness is high when different mutations act inde-
pendently, whereas ruggedness increases in the presence of in-
teractions between mutations (epistasis). In particular, strongly
positive interactions between deleterious mutations (reciprocal
sign epistasis) play a key role in determining landscape naviga-
bility as they are necessary for the presence of multiple fitness
peaks.”® In multi-peaked fitness landscapes, evolutionary algo-
rithms can become trapped on local optima and fail to find the
global fitness peak.

The simplest evolutionary algorithms used to navigate fitness
landscapes involve an iterative two-step process consisting of a
selection of the mutants of the highest fitness, followed by
sequence randomization. These belong to the class of “hill-
climbing” search algorithms, which work particularly well for
smooth landscapes. Rugged fitness landscapes with many
distinct peaks, on the other hand, are more challenging to search
through a hill-climbing approach®°” because local information
is not informative globally. By the same logic, the ruggedness
of the ecological community-function landscape will also deter-
mine its navigability using analogous hill-climbing search algo-
rithms, such as the directed evolution approaches reviewed in
Sanchez et al.>® For example, consider one configuration of a
community that gives rise to a function that is locally a maximum,
meaning that any small change in composition reduces function.
In a rugged landscape, there will be many such optima, and un-
derstanding the structure (community composition) to function
map at one peak will not in general be informative as to the struc-
ture-function map at another peak. This means that those geno-
types whose changing relative abundances have the greatest
impact on function can and will be distinct from one local opti-
mum to another. In principle, any directed evolution algorithm
may thus get stuck on a sub-optimal community and fail to find
the optimal configuration of genotypes.

LEARNING THE LANDSCAPE

A complementary approach to directed evolution for exploring the
structure-function landscape is to attempt to learn the landscape
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via either regression or more sophisticated machine learning
methods. In this approach, one collects data on a large number
of communities comprised of diverse genotypes and measures
the function of interest. Learning the landscape then amounts to
performing a regression with the following form: y' = F(xgi) where
Fis a proposed functional form stipulated by the regression being
used (e.g., linear model, random forest) and y' is the measured
function (degradation rate, pathogen inhibition, etc.) for the com-
munity with composition xgi. Such an approach differs from
a directed evolution approach because it posits a specific func-
tional form for the structure-function landscape. This statistical
approach faces the challenges of any inference problem,
including overfitting and model misspecification.

Just as with the directed evolution approach, in a situation
where the landscape is exceedingly rugged, the regression
approach will face challenges because the contributions of
each genotype to the function may depend strongly on the com-
munity composition. In this scenario, any local optimum may be
well approximated by a model, but this model may dramatically
fail to predict function®® in the neighborhood of a different local
optimum where the impact of adding or removing a given geno-
type may be very different and where the model has not been
trained. Consider as an example —a set of species with a modest
number of 50 genotypes. The full space of all possible commu-
nities comprising these genotypes is 2°° or 10'® possible com-
munities. If a space of this size is truly rugged and contains
many local optima, learning the structure-function map would
require enumerating each optimum and the genotypes that
impact function around it, one by one. Even for 50 genotypes,
this is a daunting task that may be feasible in theory, but in prac-
tice, it is prohibitive, even computationally. It is therefore crucial
to ask what controls the ruggedness of these landscapes and
what is known about how rugged they might be.

THE NAVIGABILITY OF STRUCTURE-FUNCTION
LANDSCAPES MAY BE CONNECTED WITH GLOBAL
FUNCTIONAL EFFECTS

In simple models of landscapes, such as the well-known Kauf-
mann NK-mode,?®'® the frequency of random epistatic (non-ad-
ditive) interactions determines the ruggedness, with increasing
epistasis driving more rugged landscapes. Critically, epistasis in
the NK model is random, with any site in a genotype equally likely
to have an epistatic interaction with any other site. In the commu-
nity structure-function context, high levels of epistasis would
be analogous to many random, strong interactions between
genotypes that impact function non-additively. Given the small
handful of cases where a structure-function landscape has been
enumerated, we simply cannot say yet if this type of epistasis is
prevalent in community structure-function landscapes. This re-
mains an important open question that should be addressed in
future work.

However, recent studies on landscapes in proteins have re-
vealed that ruggedness is not a necessary outcome of many
strong epistatic interactions. Instead, some proteins have strong
epistasis and smooth landscapes. How can this be? In proteins,
this occurs when a single “soft mode” dominates the physical
dynamics of the system.?® To understand what this means
consider the normal modes of a protein, i.e., the coherent
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motions of all atoms in the protein in response to a perturbation.
These modes, or oscillations, have different stiffness that dic-
tates how they respond when the system is perturbed. We can
think of a soft mode as a specific set of coherent motions of all
atoms in a protein that are soft—in this case, any perturbation
to the protein causes the system to excite that mode.

Experimental studies of proteins with soft mechanical modes
have shown that mutations cause physical deformations along
that soft mode.?®'°" In essence, the protein can respond to
any perturbation, be it physical or mutational, in only one
way—along the soft mode. In the limit of small perturbations,
any two perturbations simply add up to nudge the system along
the soft mode. Thus, mutations are roughly additive in their
impact on the physical locations of atoms in the protein. Epis-
tasis is defined not in terms of the physical deformation of the
protein, but instead as the impact of pairs of mutations on a func-
tion such as the catalytic activity or thermal stability. Both of
these are complex functions of the physical locations of all
atoms, so although the impact of each mutation on physical lo-
cations is roughly additive, their impacts on thermal stability or
catalysis are epistatic.®® However—and this is crucial—when a
system possesses a soft mode, this strongly constrains the
epistatic interactions between mutations in the system because
the impacts of mutations are highly correlated.®® Remarkably,
the very same logic applies to gene regulatory networks. In this
case, a network with a soft mode responds to diverse perturba-
tions with a common change in the pattern of gene expression. In
essence, the response of the regulatory network is constrained
to be low-dimensional. Low-dimensional landscapes present in
systems with soft modes are less rugged and facilitate more
rapid evolution that does not get trapped in local optima.

Returning to community-function landscapes in microbial
communities, if the functional interactions between genotypes
are random, then we expect that the landscape will be hard to
navigate and directed evolution or landscape learning methods
will face challenges. However, what if the community structure-
function landscape possesses a soft mode as described
above? In the community context, what would this entail?
One analogy to the protein example above could be to consider
the abundance of genotypes as analogs to the physical loca-
tions of atoms in the protein. In this case, a soft mode would
manifest as a coherent variation in abundance along, for
example, a single dominant principle component. Perturba-
tions to the community would then be constrained to drive
abundance dynamics primarily along that mode. We note that
such modes of variation have been observed in simple commu-
nities of a few species*”**® and more recently also in host asso-
ciate microbiomes.”® In analogy to protein function, community
function can and often is a non-linear function of abundances.
In this case, the pattern of epistatic interactions between geno-
types will be non-random and constrained. In this situation, we
could expect a structure-function landscape that is not rugged
but instead smooth, potentially learnable via regression and
navigable by directed evolution.

We stress that the above sketch of how the theory of fitness
landscapes in proteins or gene regulatory networks might
map to communities is at present speculative. Our goal here
is to propose plausible scenarios for what might control the
ruggedness of these landscapes given the many insights pro-
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vided by fitness landscape theory applied to proteins, gene
circuits, and other biological systems defined at lower levels
of biological organization. Finally, we wish to emphasize that
the validity of the community landscape concept does not
require that a community is a unit of selection, just as a pro-
tein genotype-phenotype map does not require that either.
This is important because communities are not, in general,
units of selection; hence, the idea that they may possess a
fitness value may be confusing. Although this is true in most
natural settings, there is mounting evidence that communities
can respond to artificial community-level selection (e.g.,
Swenson et al.,°° Blouin et al.,°" and Sanchez et al.*?), where
any community-level function may be assigned as a fitness
value at the community level. The limits of community-level
selection are being investigated at the moment, but there is
solid theoretical and empirical evidence that communities
can be considered units of selection at least in the context
of directed evolution or artificial selection.®?

DOES COMMUNITY COMPOSITION UNIQUELY
DETERMINE COMMUNITY FUNCTION?

Before we end, we would like to address what may appear to
be the proverbial elephant in the room. Although we hope that
we have convinced the reader that learning the map between
community composition and function may have a transforma-
tive impact on our ability to understand and engineer microbial
consortia, it may not be immediately obvious that such a map
will necessarily always exist. To what extent does ecological
function measured at a given time depend on the composition
of a community at that same time? This question is more
nuanced than it might appear at first sight. For instance, an
important function of microbial consortia is the production
of extracellular molecules from metabolites to secreted en-
zymes. The change in concentration of these secreted mole-
cules depends on the rate at which they are produced, which
indeed depends on the abundances of different members
of the consortium as well as on their respective per-capita
production rates (Figure 1). However, the concentration of
secreted molecules also depends on the rates of molecular
degradation, biochemical inactivation, diffusion out of the vol-
ume or area of interest, and other degradative processes that
eliminate the target molecule and that do not necessarily
depend on the current state of the community. This creates
conditions for which the current state of the function of a com-
munity depends not just on its current composition but rather
on the history of assembly. This idea is perhaps best illus-
trated through a simple mathematical model.

We can formally model the rate of accumulation of an extracel-
lular molecule (say, an enzyme E) in a volume of interest as:

dE/dt = h(z,x5) — A(z,E)

Where h(.) represents the rate of enzyme secretion as a func-
tion of the collection of environmental parameters z and the pre-
sent species abundance vector x4, and A(.) represents the net
rate of enzyme loss through all possible pathways. The latter
should depend on the enzyme concentration E as well as on
the environmental parameters captured in z (which may include
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the concentration of proteases, enzyme inhibitors, or other envi-
ronmental parameters affecting the stability of the enzyme such
as the pH). Of course, the environment and genotypes obey their
own equations, which are an extension to higher dimensions of
those introduced by Lewontin:

dxg /dt = r(z,xg)

dz/dt = k(z,x,)

Where r(.) and k(.) denote the dynamical equations governing
the temporal evolution of x4 and z, respectively. In general, there
is no reason to expect that if we integrate those equations, we
should find that E is an explicit or even implicit mathematical func-
tion of x4 alone or even a function of x4 and z. This reflects the fact,
which should be true for many community-level traits, that the
function of the consortium at a given time is not, in general,
uniquely defined by its composition at that time. Rather, it should
be a result of the particular dynamical process of community as-
sembly (i.e., the assembly history) that has led the community to
its current compositional state and, similarly, of the dynamical his-
tory of the environmental parameters captured in z.

Does that mean that a function that uniquely maps community
structure to function does, in general, not exist? It seems to
follow from the above argument that, in general, it does not.
However, there exist many important limits and cases of prac-
tical utility for which the function of a community at a given point
in time can indeed be uniquely defined by its composition at that
time. To illustrate these important scenarios, let us go back to the
example given above, where the function of interest is the con-
centration of a target extracellular enzyme. For a structure-func-
tion landscape to be well-defined in this case, there should exist
a function E(x,) that provides a 1:1 map between the concentra-
tion of secreted enzyme at a given time and the community
composition at that time. One limit where this function exists oc-
curs when the dynamics of E and z are very fast compared with
the (population) dynamics of xg. In this limit, x4 is approximately
constant in the timescale required for E and z to equilibrate, and
therefore, E (and 2) will find a local equilibrium for every value of
X4 before this changes significantly. Without loss of generality, let
us consider the simple case where (E,z) = A(2)E. In the separation
of timescales limit, we find that the form of the structure-function
landscape is E(xg) = h(z*,Xg)/Mz*), where the relevant environ-
mental variables captured in z also equilibrate rapidly, generally
(though not necessarily) reaching a unique value (z*) for each xg.
In this case, and save for special circumstances such as when
there exist memory effects or hysteresis in the per-cell contribu-
tion to function, causing non-linearities in k(xq,z*), every xg may
be associated with a unique value of E.

Although the separation of timescales is a rather stringent limit
that applies only to a narrow range of real-life scenarios, it brings
up a larger point that although the structure-function landscape
is not defined in general, it may exist when communities are in a
steady state. For many biotechnological applications, commu-
nities may be maintained in (or close to) a steady state by either
placing them in a continuous culture device or through serial
passaging (Figure 5). In chemostats, both species composition
and all environmental parameters should reach a steady state.
Going back to the example discussed above, the concentration
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of our target enzyme E should be independent of assembly his-
tory and uniquely linked to the equilibrium concentration of xg4
(save for the hysteretic situation discussed in the previous para-
graph). In the case of serially passaged consortia, empirical
communities have been generally found to converge to a state
of “generational stability,”®”,'°? at least when the passaging is
done under constant conditions.?’-?%:52103.104
Another situation of interest in biotechnology is single-batch
synthetic communities. These can be formed by co-inoculating
multiple community members at defined initial abundances in a
bioreactor. This consortium is then incubated for a given time
period, at the end of which the function of interest is measured.
Here, the requirement for having a well-defined structure-func-
tion landscape is that the population dynamics of the consortium
within the batch are highly reproducible and converge determin-
istically to the same final community state at the time of harvest.
In this case, the entire within-batch dynamics including both
environmental and species abundance variables are uniquely
determined by the starting abundances of the members of the
consortium. Thus, each initial community state xg will be charac-
terized by a single value of the function (i.e., E) at the time of har-
vest, which defines a 1:1 map between both (Figure 5). Beyond
any specific assumptions regarding the model above, there is
also empirical evidence for this last scenario. The primary evi-
dence for this is the remarkable reproducibility and determinism
of community structure and dynamics during community assem-
bly. For example, a reproducible succession of three functional
guilds reliably occurs on polysaccharide particles in marine
communities.'® This suggests that given a specific niche to
colonize and a sufficiently diverse regional species pool, the
structure of the assembled community is reproducible. This
empirical observation suggests, but does not prove, that there
are convergent ecological solutions to well-defined functional
problems—degrading polysaccharides in this case. Similar re-
sults are observed in glucose and other small molecule enrich-
ments®’,?® and detailed more broadly in surveys of the functional
classes of bacteria in the marine microbiome.'%%'%" Likewise,
host-associated communities also exhibit highly conserved
metagenomic structure from host to host,'%®'%" suggesting
that the functional landscape is a well-defined object with the
structure being tightly and reliably linked to function. What re-
mains is to learn this mapping quantitatively and leverage that
knowledge to design and predict community behavior.

Conclusion

We have presented an overview of a concept that is gaining mo-
mentum in the systems biology of microbial communities: the
community-function landscape as an ecological extension of ge-
notype-phenotype maps and the fithess landscape concept in
genetics. To fully exploit the landscape concept at the level of
communities, we must be careful to consider the important
differences that exist between communities of self-replicating or-
ganisms and biological systems like an enzyme, whose building
blocks are non-replicating molecules. For instance, the amino
acid sequence of an enzyme is (generally) stable once a mutation
is introduced. By contrast, introducing a new species in an
ecosystem will (also in general) lead to alterations in the popula-
tion size of all other species that interact with it, either directly or
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Figure 5. Conditions for the existence of an ecological structure-function map

For illustrative purposes, we use as an example a hypothetical case where we stabilize a community from a diverse initial pool of species through periodic
transfers in the laboratory, and we measure an enzymatic function akin to the amylolytic activity discussed as an example in the main text (see also Figure 1). The
barplot shows the composition of the community at each transfer. The structure-function map will exist in three scenarios: (1) if we map the initial composition to
function, assuming that the ecological dynamics are reproducible; (2) if we map the final composition to function in a dynamically stable community, e.g., transfers
6-10; and (3) if we map the final composition to function in an unstable community, but only if the functional dynamics (enzyme concentration E and environmental
parameters affecting its activity z, see main text) are fast compared with population dynamics.

indirectly. In other words: community composition is a dynamical
process and we cannot easily freeze it in one particular state. Add-
ing a community member is therefore not the same as adding a
mutation to an enzyme, and care must be exercised to avoid over-
extending and overinterpreting the analogy. By the same token, it
is important to be mindful of the fact that many community func-
tions are not directly determined by their community composition.
Rather, community functions may have their own dynamics, and
their value at a given time can be a product of the history of the
assembly of that community as well as past events. Therefore, a
community function is not necessarily encoded by the particular
composition of the community at the time when it was measured.
Finally, one must be careful to recognize that, just as fitness
landscapes map genotype to fitness under a fixed set of environ-
mental conditions, any relationship between community compo-
sition and function will also be sensitive to environmental
changes. How exactly changing the environment will alter com-
munity functions is a subject that remains poorly understood
and that requires further investigation. Despite these caveats,
there are often-realized limits when the association between com-
munity composition and function is indeed strong. Indeed, recent
efforts to quantitatively predict the latter from the former have
been successful, making us optimistic about the usefulness of
the community landscape concept.

It should be obvious to the reader that we are merely scratching
the surface of a very rich and we believe potentially rather fruitful
line of inquiry. Parallelisms between the exploration of fitness
landscapes in evolutionary engineering and the exploration of
structure-function landscapes may provide important insights
into our understanding of the mapping between community

composition and function, and our ability to engineer microbial
consortia. The field of quantitative genetics has built powerful
methodologies to reconstruct and navigate genotype-phenotype
maps, and it also has developed a strong conceptual and theoret-
ical framework to understand the origins of these genetic land-
scapes. Extending these methods and ideas from quantitative
genetics and computer science into microbial ecology could radi-
cally improve our ability to understand and engineer the function
of microbial communities. We shall be most satisfied if this review
contributes to stimulating some of these efforts.
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