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Abstract
We describe a conjectural formula via intersection numbers for the Masur–Veech
volumes of strata of quadratic differentials with prescribed zero orders, and we prove
the formula for the case when the zero orders are odd. For the principal strata of
quadratic differentials with simple zeros, the formula reduces to computing the top
Segre class of the quadratic Hodge bundle, which can be further simplified to certain
linear Hodge integrals. An appendix proves that the intersection of this class with
 -classes can be computed by Eynard–Orantin topological recursion.

As applications, we analyze numerical properties of Masur–Veech volumes, area
Siegel–Veech constants, and sums of Lyapunov exponents of the principal strata for
fixed genus and varying number of zeros, which settles the corresponding conjectures
due to Grivaux and Hubert, Fougeron, and elaborated in Andersen et al. We also
describe conjectural formulas for area Siegel–Veech constants and sums of Lyapunov
exponents for arbitrary affine invariant submanifolds, and verify them for the princi-
pal strata.

1. Introduction
Computing volumes of moduli spaces via intersection theory has significance in
many aspects. For example, the Weil–Petersson volumes of the moduli spaces
of marked Riemann surfaces can be calculated by intersection numbers on the
Deligne–Mumford compactification Mg;n, which motivated Mirzakhani [37] to give
a proof of Witten’s conjecture by hyperbolic geometry. A more recent instance is
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the intersection-theoretic formula for the Masur–Veech volumes of moduli spaces of
Abelian differentials with prescribed orders of zeros, which can be used to determine
the large genus asymptotics of the Masur–Veech volumes (see [10]).

The moduli spaces of Abelian differentials carry a natural GLC2 .R/-action
induced by varying the translation surface representations of Abelian differentials.
The orbit closures of this action are called affine invariant submanifolds, since they
have locally linear structures (see [19], [20]). Besides the ambient moduli spaces,
affine invariant submanifolds can provide interesting (and more challenging) play-
grounds for us to detect relevant geometric invariants, such as volumes and intersec-
tion numbers. A prominent type of affine invariant submanifolds arises from moduli
spaces of (primitive) quadratic differentials (also called half-translation surfaces),
which can be lifted into the corresponding moduli spaces of Abelian differentials via
the canonical double cover. In this article, we focus on the moduli spaces of quadratic
differentials.

Masur–Veech volumes
Let .�; �/ be an integer partition of 4g � 4, where �D .2mi /riD1 are the even parts
and � D .2nj � 1/sjD1 are the odd parts, with mi ; nj � 0. Consider the moduli space
(also called the stratum) Qg;rCs.�; �/ parameterizing quadratic differentials q on
Riemann surfaces of genus g such that q has r even-order zeros of type � and s odd-
order zeros of type �. Note that q is allowed to have simple poles, that is, when some
nj D 0, which are regarded as “zeros of order �1” because in this case the surface
still has finite area under the metric of q. Similarly, q is allowed to have ordinary
marked points, that is, when some mi D 0, which are regarded as “zeros of order 0.”
Moreover, in our setting all zeros are labeled (as in [10], but contrary to [14] where
only the simple poles are labeled).

Let PQg;rCs.�; �/DQg;rCs.�; �/=C
� be the projectivized stratum parameter-

izing quadratic differentials of type .�; �/ up to scaling. Denote by PQg;rCs.�; �/

its closure in the incidence variety compactification (IVC) of the strata of quadratic
differentials (see [5]). Let � be the first Chern class of the universal line bundle O.1/

on PQg;rCs.�; �/. Denote by  i the cotangent line bundle class on Mg;n associated
with the i th marked point as well as its pullbacks to the strata PQg;rCs.�; �/. We
first describe a conjectural formula to compute the Masur–Veech volumes of all strata
Qg;rCs.�; �/ via intersection theory (see Section 2.1 for our convention on volume
normalization).

CONJECTURE 1.1
The Masur–Veech volumes of strata of quadratic differentials can be obtained as the
intersection numbers
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vol
�
Qg;rCs.�; �/

�
D
2r�sC3.2� i/2g�2Cs

.2g � 3C r C s/Š

Z
PQg;rCs.�;�/

�2gCs�3 1 � � � r ; (1)

where  1; : : : ; r are associated with the r even-order zeros.

Note that for the strata of quadratic differentials, the number r of even-order zeros
is equal to the dimension of the relative period foliation. Hence from the viewpoint of
period coordinates, when there is no relative period, that is, when r D 0, the volume
formula of the strata of quadratic differentials behaves similarly to that of the minimal
strata H .2g � 2/ of Abelian differentials (see [41]). We can thus prove the above
conjectural formula for this special case using a metric on the tautological line bundle
O.�1/ whose (wedge powers of the) curvature form can represent the (powers of the)
first Chern class of O.�1/ (see [13]).

THEOREM 1.2
For the strata of quadratic differentials with odd zeros only, we have

vol
�
Qg;s.�/

�
D
23�s.2� i/2g�2Cs

.2g � 3C s/Š

Z
PQg;s.�/

�2gCs�3: (2)

We remark that we have also verified the conjectural formula for a number of low
genus strata that have relative periods, that is, when r ¤ 0, by ad hoc calculations.
However, to prove the formula in full generality, one either needs a good metric on
the  -bundles or a volume recursion out of merging zeros, which we plan to study in
future work.

Theorem 1.2 is particularly useful for the principal strata of quadratic differentials
with only simple zeros (and simple poles). Let Qg;n be the quadratic Hodge bundle
over Mg;n whose fiber over a stable pointed curve .X;p1; : : : ; pn/ is H 0.!˝2X .p1C

� � �Cpn//ŠC3g�3Cn, where !X is the dualizing line bundle ofX . The interior space
Qg;n over Mg;n parameterizes quadratic differentials with at worst simple poles at the
marked points. Hence Qg;n provides an alternative compactification (smaller than the
IVC in [5]) for the principal stratum Qg;n.1

4g�4Cn;�1n/ (here the 4g�4Cn simple
zeros are not labeled as they can merge to form higher order zeros in the quadratic
Hodge bundle). In this case, the top self-intersection of the �-class corresponds to the
top Segre class s.Qg;n/ of the quadratic Hodge bundle Qg;n. Characteristic classes
of the (Abelian) Hodge bundle and its variants including the kth Hodge bundle were
computed in [12] and [39] by the Grothendieck–Riemann–Roch formula. Combining
their results with intersection calculations on Mg;n, formula (2) can then be evaluated
more explicitly in terms of linear Hodge integrals as follows.
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THEOREM 1.3
The Masur–Veech volumes of the principal strata of quadratic differentials can be
obtained as the intersection numbers

vol
�
Qg;4g�4C2n.1

4g�4Cn;�1n/
�

D
22gC1�6g�6C2n

.6g � 7C 2n/Š

gX
iD0

.4g � 4C n/Š

.2g � 3C nC i/Š

�

Z
Mg;2g�3C2nCi

 2nC1 � � � 
2
2g�3C2nCi�g�i

D
22gC1�6g�6C2n

.6g � 7C 2n/Š

gX
iD0

.4g � 4C n/Š.4g � 7C 2nC i/ŠŠ

.2g � 3C i/Š.4g � 7C i/ŠŠ

�

Z
Mg;2g�3Ci

 21 � � � 
2
2g�3Ci�g�i ; (3)

where �i is the i th Chern class of the (Abelian) Hodge bundle on Mg;k .

In addition, the appendix shows that the intersection of this Segre class with  -
classes Z

Mg;n

s.Qg;n/

nY
iD1

 
ki
i .ki � 0/ (4)

can be computed by the Eynard–Orantin topological recursion for the spectral curve´
x.z/D�z � ln z;

y.z/D z2;
!0;2.z1; z2/D

dz1 dz2
.z1 � z2/2

: (5)

In particular, the volumes of the principal strata can be recovered from the ki D 0
term. In [2], another set of numbers Fg;n.k1; : : : ; kn/ was constructed and computed
by the topological recursion, which can also be expressed via intersection theory on
Mg;n such that the ki D 0 case recovers the volumes of the principal strata. Rather
surprisingly though, in [2] the spectral curve is very different from (5) and these Fg;n
are not a priori related to (4) except for ki D 0, where it gives a different expression
of vol.Qg;4g�4C2n.1

4g�4Cn;�1n// as the top intersection of a class on Mg;n.
Theorem 1.3 can be used to analyze numerical properties of the Masur–Veech

volumes of the principal strata with fixed genus and varying number of zeros.

THEOREM 1.4 ([2, Conjecture 5.4, (5.12)])
For all g � 1 and for n� 0 (except for gD 1 and n� 1 where the strata are empty),
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there exist two rational polynomials pg.n/ and qg.n/ of degree b.g � 1/=2c and
bg=2c, respectively, such that

vol.Qg;4g�4C2n.1
4g�4Cn;�1n//

�6g�6C2n

D 2n
.2g � 3C n/Š.4g � 4C n/Š

.6g � 7C 2n/Š

�
pg.n/C �2g�3Cnqg.n/

�
; (6)

where �k D
1

4k

�
2k
k

�
.

Moreover, for fixed g and n!1, we have the asymptotic growth rates

vol
�
Qg;4g�4C2n.1

4g�4Cn;�1n/
�
� 2�n�6g�6C2nC�.g/=2mgn

g=2; (7)

where �.g/D 0 or 1 is the parity of g and where 26g�7mg is the top coefficient of qg
if g is even or the top coefficient of pg if g is odd.

For the case of tori, the above results can be described more explicitly as follows.

COROLLARY 1.5
For gD 1 and n� 2, we have

vol
�
Q1;2n.1

n;�1n/
�
D �2n

nŠ

3.2n� 1/Š

�
.2n� 3/ŠŠC .2n� 2/ŠŠ

�
: (8)

We remark that the coefficient mg in Theorem 1.4 is a rescaling of the intersec-
tion number

R
Mg;3g�3

 21 : : : 
2
3g�3 and can be computed efficiently (see the end of

Section 3.3 for references on this topic). In addition to the large n asymptotic, in [14]
the large g asymptotic of vol.Qg;n/ was described conjecturally, and the conjecture
was further extended and refined in [45].

Lyapunov exponents and Siegel–Veech constants
We now switch gears to discuss applications of our results in surface dynamics. Con-
sider the straight line flow on a torus with a half-translation structure induced by a
quadratic differential with ` simple zeros and ` simple poles. Closing up a random
trajectory as it comes within the .1=n/-ball of its starting point defines a collection
of cycles ¹�nºn2N. The logarithm of the size of �n in any norm on the cohomology
of the torus tends to �1 times the logarithm of the flat length of �n, where �1 is a
quantity that does not depend on the starting point and the direction of the trajectory,
as long as they are generic. This is a consequence of Oseledets’s theorem and �1 is
the (first) Lyapunov exponent of the straight line flow (see, e.g., [46], [47] for more
details about Lyapunov exponents).
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Near each of the simple poles, the trajectory makes a U -turn. Pulling the tra-
jectory tight as a cohomology class should cause drastic shortcuts, and hence the
growth rate of the cohomology classes �n is expected to decrease with the number of
poles `. This conjecture was first announced by Grivaux and Hubert. In the case of
half-translation surfaces in the stratum Q.`;�1`/ with a zero of order ` and ` simple
poles, Fougeron [26] found an upper bound for �1 in the order of 1=`. His method
works in any sequence of strata where the largest order of zeros is unbounded. In the
case of simple zeros, Fougeron conjectured a decay in the order of 1=

p
`. A refined

version of these conjectures for the principal strata of quadratic differentials appeared
in [2] in terms of area Siegel–Veech constants carea, which can determine the sums of
(involution-invariant) Lyapunov exponents LC, and vice versa by [18, Theorem 2].
These conjectures were stated as conditional corollaries in [2] assuming the numer-
ical results in our Theorem 1.4. Here we prove them unconditionally based on the
following formulas that express carea and LC as intersection numbers.

THEOREM 1.6
For the principal strata of quadratic differentials, we have

carea.1
4g�4Cn;�1n/D�

1

2�2

R
PQg;n

�6g�8C2nıR
PQg;n

�6g�7C2n
; (9)

where ı is the total boundary divisor class, and

LC.14g�4Cn;�1n/D�2

R
PQg;n

�6g�8C2n�1R
PQg;n

�6g�7C2n
: (10)

COROLLARY 1.7 ([2, Corollary 5.5, (5.12)])
For all g � 1 and n � 0 (except for g D 1 and n � 1 where the strata are empty),
there exist two rational polynomials p�g.n/ and q�g.n/ of degree b.g C 3/=2c and
1C bg=2c, respectively, such that

carea.1
4g�4Cn;�1n/D

1

�2

p�g.n/

2g�3Cn
C �2g�3Cnq

�
g.n/

pg.n/C �2g�3Cnqg.n/
; (11)

where pg and qg are the polynomials in Theorem 1.4.
Moreover, there exist two rational polynomials rg.n/ and sg.n/ of degree bg=2c

and b.gC 1/=2c, respectively, such that

LC.14g�4Cn;�1n/D
1

2g � 3C n

rg.n/C �2g�3Cnsg.n/

pg.n/C �2g�3Cnqg.n/

�
�1=2��.g/ng=mg

p
n

(12)
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as n!1, where mg is defined in Theorem 1.4 and 26g�7ng is the top coefficient of
rg if g is even or the top coefficient of sg if g is odd.

Again for the case of tori, the above results can be described more explicitly.

COROLLARY 1.8
For gD 1 and n� 2, we have

carea.1
n;�1n/D

1

�2

�n
6
C

6

1C .2n�2/ŠŠ
.2n�3/ŠŠ

�
(13)

and

LC.1n;�1n/D
2

1C .2n�2/ŠŠ
.2n�3/ŠŠ

: (14)

Motivated by Conjecture 1.1 and Theorem 1.6, we come up with an analogous
conjecture for carea and LC for all strata of quadratic differentials.

CONJECTURE 1.9
The Siegel–Veech constants and Lyapunov exponents for the strata Qg.�; �/ with
�D .2mi /

r
iD1 and � D .2nj � 1/sjD1 are given by

carea.�; �/D�
1

2�2

R
PQg.�;�/

�2gCs�4 1 � � � rıR
PQg.�;�/

�2gCs�3 1 � � � r
;

LC.�; �/D�2

R
PQg.�;�/

�2gCs�4 1 � � � r�1R
PQg.�;�/

�2gCs�3 1 � � � r
;

where  1; : : : ; r are associated with the r even-order zeros.

We remark that Kontsevich [32, Section 7] speculated an implicit intersection
formula to compute sums of Lyapunov exponents for strata of Abelian differentials,
and such a formula was justified explicitly in our previous work [10].

Motivated by the above results, at the end of the paper we make a general con-
jecture to compute area Siegel–Veech constants and sums of Lyapunov exponents
as intersection numbers for an arbitrary affine invariant submanifold (see Conjec-
ture 4.3), and we summarize known cases as evidence of the conjecture.

Related works
We briefly review several related works about the Masur–Veech volumes of strata of
quadratic differentials. A standard method to compute volumes is to determine the
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quasimodular forms that arise from pillowcase covers and compute their large degree
asymptotics (which follows from the initial idea of counting torus covers for Abelian
differentials in [21]). This was used in [28] to obtain explicit values of volumes for
a number of low-dimensional strata of quadratic differentials. Another approach is to
decompose half-translation surfaces into ribbon graphs and sum up the corresponding
local contributions. This was first carried out for all strata in genus 0 in [4] and then
extended to the principal strata for all genus in [14]. These local contributions of
ribbon graphs are indeed intersection numbers of  -classes on Mg;n that come from
Kontsevich’s proof of Witten’s conjecture in [31]. Moreover, in [2] the same sum of
local contributions was shown to arise as constant terms of a family of polynomials
that are determined by topological recursion, whose approach relies on statistics of
hyperbolic curves. More recently, large genus asymptotics of Masur–Veech volumes
for the principal strata of quadratic differentials were analyzed in [1] which confirms
related predictions in [14] (see also [30] for a related discussion). Our method is
different from all of these works, as we use a good metric on the compactified strata
and simplify the intersection calculation for the principal strata by the Grothendieck–
Riemann–Roch formula and linear Hodge integrals.

Organization of the paper
In Section 2, we show that when there is no relative period, the Hermitian metric
induced by the area form gives the Masur–Veech volume form up to an explicit scal-
ing factor, thus proving Theorem 1.2. In Section 3, we reduce the volume formula for
the principal strata to certain linear Hodge integrals and analyze its numerical proper-
ties for fixed genus and varying number of zeros, proving Theorem 1.3, Theorem 1.4,
and Corollary 1.5. In Section 4 we apply our results to area Siegel–Veech constants
and sums of Lyapunov exponents of the principal strata, proving Theorem 1.6, Corol-
lary 1.7 and Corollary 1.8. The appendix establishes a topological recursion for (4)
and shows how to compute the volumes of the principal strata from it.

2. Masur–Veech volumes as intersection numbers
In this section, we prove the expression of Masur–Veech volumes as intersection num-
bers in Theorem 1.2 for the strata of quadratic differentials with no even-order zeros.
The argument is largely parallel to the proof of [41, Proposition 1.3]. This section
also serves the purpose of introducing period coordinates and explaining the volume
normalization convention we use.

We first set up some general notation. We write N D r C s for the total number
of marked zeros. Half-translation surfaces parameterized in Qg;N .�; �/ are usually
denoted by .X; q/. For a surface .X; q/ 2Qg;N .�; �/, let � W bX ! X be the canon-
ical double cover such that ��q D !2 is the square of an Abelian differential (see,
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e.g., [18, Section 2.2]). We simply denote by bH the space of lifts of Qg;N .�; �/ via
the double cover, with all preimages of the singularities of q being labeled. This locus
is an affine invariant submanifold of the stratum 	Mbg;bN .b�/ of Abelian differentials,

where bg D 2g � 1C s=2, bN D 2r C s, and b�D ..mi ;mi /riD1; .nj /sjD1/. Note that

the squaring map bH ! Qg;N .�; �/ is finite of degree 2rC1, which is due to label-
ing the r pairs of preimages of the even-order zeros as well as choosing the sign of
!. Therefore, the induced map P bH ! PQg;N .�; �/ on the projectivized spaces has
degree 2r , since ˙! correspond to the same point in the projectivization. In particu-
lar, P bH ! PQg;N .�; �/ is an isomorphism for the case r D 0 (though P bH carries an
order-2 stacky structure due to the involution of the double cover).

2.1. The Masur–Veech volume form
The Masur–Veech volume form is defined on Qg;N .�; �/ using period coordinates
and gives a finite measure on the hyperboloid Q1

g;N .�; �/ of half-translation surfaces

of area 1=2; that is, the double cover surface .bX;!/ has area 1. This volume form is
obtained by disintegration of the Lebesgue measure with respect to the area coordi-
nate. The volume of Q1

g;N .�; �/ can be computed by integration of a volume form on
PQg;N .�; �/ as we describe below.

We start with the flat area form on the double cover

h.!/ WDArea bX .!/D i

2

Z
bX ! ^ N! D

i

2

bgX
iD1

.zAi NzBi � zBi NzAi /;

where .Ai ;Bi /
bg
iD1 form a symplectic basis of H1.bX;Z/ and .zAi ; zBi /

bg
iD1 are the

!-periods of this basis. Let 
 be the involution on bX whose quotient map is � .
Let bZ � bX be the set of preimages of singularities of q. Both bH and Qg;N .�; �/

can be locally modeled on the 
 -anti-invariant relative cohomology H 1
�.
bX; bZ;C/.

Any choice of scale of the Lebesgue measure that is invariant under the symplectic
group results in an (infinite) measuree�MV on Qg;N .�; �/. For our choice of normal-
ization, we define

H 1
˙.
bX; bZ;Z/DH 1.bX; bZ;Z/\H 1

˙.
bX; bZ;R/: (15)

Consequently, H 1
�.
bX; bZ;Z˚ iZ/ is a lattice in H 1

�.
bX; bZ;C/ and we normalizee�MV

so that this lattice has covolume 1. We remark that when q has no zero of even order,
the 
 -anti-invariant relative cohomology H 1

�.
bX; bZ;	/ can be identified with the 
 -

anti-invariant absolute cohomology H 1
�.
bX;	/, which is the case we will consider in

the next subsection.
With the help of the area normalization and ofe�MV, we define

�MV.U /De�MV.CU /;
�
U 
Q1

g;N .�; �/
�
; (16)
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where CU D ¹�.X;q/ W .X; q/ 2 U;� 2 Œ0; 1�º is the cone under U . This measure is
finite by [35] and [43]. Abusing notation, we also denote by �MV the pushforward
of this measure on PQg;N .�; �/. By the squaring map, we can view �MV also as a
measure on P bH . We write

vol
�
Qg;N .�; �/

�
D dimR. bH / � �MV

�
PQg;N .�; �/

�
for the Masur–Veech volume of the total space.

2.2. The metric on O
PcH .�1/ and comparison of volume forms

In this section, we consider the special case when all zero orders are odd. The area
form h induces a Hermitian metric (still denoted by h) on O

PcH .�1/. For a section �
of O

PcH .�1/, we consider the associated curvature .1; 1/-form

!h D
1

2� i
@N@ logh.�/ and �h D !

2g�3Cs
h

the corresponding volume form on P bH .

LEMMA 2.1
For r D 0, that is, when there is no zero of even order, the two volume forms are
proportional as follows:

�h D�
.2g � 3C s/Š

22gC1.2� i/2g�2Cs
dimR. bH /�MV:

Proof
Fix a point .bX;!/ 2 bH . An open neighborhood of this point can be written under the
period coordinates as bX C v for v 2 H 1

�.
bX;C/ small enough. After shrinking, we

may assume that this neighborhood is contained in the positive cone

C D
® bX C v 2H 1.bX;C/ W h.bX C v/ > 0¯:

It thus suffices to prove the volume form relation on PC . The proof follows the idea
of [41, Lemma 2.1], with an extra twist coming from the fact that the sum of the two
subspaces H 1

˙.
bX;Z/ spans a proper subgroup of finite index in H 1.bX;Z/.

First note that since r D 0, s is positive and even, and hence the rank of the anti-
invariant part is greater than or equal to 2g. By [6, Corollary 12.1.5], the symplectic
form restricted to HC1 .bX;Z/ is of type .2; : : : ; 2/ and the restriction to H�1 .bX;Z/ is
of type .2; : : : ; 2; 1; : : : 1/ with g entries of 2.

By the Riemann–Hurwitz formula, the genus bg of bX is given by bg D 2g � 1C
s=2. We also set eg D g � 1 C s=2 D bg � g to simplify formulas later. We define
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C˙i D A2i�1 ˙ A2i and D˙i D B2i�1 ˙ B2i for i D 1; : : : ; g. For an appropriate
order of the elements in the symplectic basis, we have

H�1 .
bX;Z/D hC�1 ;D�1 ; : : : ;C�g ;D�g ;A2gC1;B2gC1; : : : ;Abg ;BbgiZ (17)

(see also [28, Section 2.1] for a realization of these cycles). We define C�gCi DA2gCi
and D�gCi D B2gCi for 1 � i �eg � g, define 
j D 1=2 for 1 � j � g and 
j D 1
for g < j �eg, and denote by zC�

j
and zD�

j
the corresponding !-periods of C�j and

D�j . Since ! pairs trivially with the invariant eigenspace HC1 .bX;Z/, for 1 � j � g
we have

zC�
j
D 2zA2j�1 D�2zA2j ; zD�

j
D 2zB2j�1 D�2zB2j ;

and hence

1

2
.zC�

j
NzD�
j
�zD�

j
NzC�
j
/D .zA2j�1 NzB2j�1�zB2j�1 NzA2j�1/C.zA2j NzB2j �zB2j NzA2j /:

It follows that

h.!/D
i

2

egX
jD1


j .zC�
j
NzD�
j
� zD�

j
NzC�
j
/: (18)

Passing to the coordinate system

zcj D
1

2
.zC�

j
� izD�

j
/; zdj D

1

2
.zC�

j
C izD�

j
/

of H 1
�.
bX;C/, the Hermitian metric h (of signature .eg;eg/) can be written as

h
�
¹zcj ; zdj º

eg
jD1

�
D

egX
jD1


j .zcj Nzcj � zdj Nzdj /: (19)

As in the proof of [41, Lemma 2.1], we now proceed by comparing !h and �MV to
the forms !0

h
and �0MV obtained from the (positive definite) metric h0 with a plus sign

(instead of minus) in (19). Since the ratios are invariant under the group U.eg;eg/ \
U.2eg/, it suffices to compare �h and �MV on a fundamental domain for this group
inside the cone, that is, the set .zc1 ; zd1 ; 0; : : : ; 0/ in the projectivized cone PC . By
symmetry consideration, it suffices to focus on the chart Uc1 D ¹zc1 D 1º and use the
section �.zd1 ; zc2 ; : : :/D .1; zd1 ; zc2 ; : : :/ of O

PcH .�1/.
In this chart, we claim that the Masur–Veech volume form is

�MV D
2.2�/i2eg�1

dimR. bH /h.�/2eg
�
dzd1 ^ d Nzd1 ^

egY
jD2

.dzcj ^ d Nzcj ^ dzdj ^ d Nzdj /
�
: (20)
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To see this, first note that the factor 2� comes from integrating the argument of the
(complex) coordinate zc1 with fixed norm. Next, the volume of a cone over a base

parameterizing surfaces of area h is hdimC.cH/ times the volume of the correspond-
ing cone over the base parameterizing surfaces of area 1, thus explaining the factor
h.�/2eg . Moreover, one checks that

dzcj ^ d Nzcj ^ dzdj ^ d Nzdj D�dxC�j ^ dyC
�
j
^ dxD�

j
^ dyD�

j
;

where x and y denote the real and imaginary parts, thus giving a factor .�1/bg�1 D
i2bg�2 for j D 2; : : : ;bg. An extra factor of i similarly comes from the conversion of
dzd1 ^ d Nzd1 when setting zc1 D 1. Finally, the extra factor 2 is due to the fact that
the hyperplane defined by zc1 D 1 has distance

p
2 to the origin while the hyperplane

defined by zC�
1
D 1 has distance 1 to the origin, hence the cone over the former

has volume equal to 2 times that of the latter, because the circle perimeter of radius
jzc1 j D 1 is also multiplied by

p
2 compared to that of radius jzC�

1
j D 1.

On the other hand, at the point � D .1; zd1 ; 0; : : : ; 0/ we have

!h D
1

2� i

�Peg
jD2 
j .dzcj ^ d Nzcj � dzdj ^ d Nzdj /

h.�/
�

21dzd1 ^ d Nzd1

h.�/2

�
;

and hence

�h D
.�1/eg.2eg � 1/Š
.2� i/2eg�1h.�/2eg

�

21dzd1 ^ d Nzd1 ^

egY
jD2

.
2jdzcj ^ d Nzcj ^ dzdj ^ d Nzdj /
�

D
.�1/eg.2eg � 1/Š

22g.2� i/2eg�1h.�/2eg
�
dzd1 ^ d Nzd1 ^

egY
jD2

.dzcj ^ d Nzcj ^ dzdj ^ d Nzdj /
�
;

where we used the definition of 
j in the last step. Comparing the above expressions
of �MV and �h thus implies the desired identity.

Proof of Theorem 1.2
We recall from [13] some properties of the metric h on O

PcH .�1/. This metric is
not quite good in the sense of Mumford [38], but almost, in the following sense. By
[13, Propositions 4.4, 4.5], the curvature form !h and its wedge powers are L1loc and
thus define currents that represent the powers of the first Chern class of O

PcH .�1/.
Moreover, note that � D 2� D c1.OPcH .2//, which follows from the relation q D !2

on the double cover. Finally, taking into account the order-2 stacky structure of P bH
by the involution of the double cover, we conclude that
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PQg;s.�/

�2g�3Cs D 22g�2Cs
Z
PcH �

2g�3Cs

D 22g�2Cs.�1/2g�3Cs�h.P bH /

D
.2g � 3C s/Š

23�s.2� i/2g�2Cs
vol
�
Qg;s.�/

�
;

where we used Lemma 2.1 and the fact that s is even in the last step. This thus implies
the desired formula.

3. Masur–Veech volumes of the principal strata
In this section, we evaluate the expression given in Theorem 1.2 for the principal
strata, and prove Theorems 1.3 and 1.4 and Corollary 1.5 accordingly. For simplicity,
we abbreviate the (fully labeled) principal stratum of quadratic differentials with 4g�
4C n simple zeros and n simple poles as Qg;N DQg;N .1

4g�4Cn;�1n/, where N D
4g�4C2n. Note the difference between Qg;N and Qg;n, as the latter is the quadratic
Hodge bundle over Mg;n with only the n simple poles labeled. In particular, their
volumes differ by a factor .4g � 4C n/Š due to the labeling of the 4g � 4C n simple
zeros.

3.1. The Segre class of Qg;n

Recall that for a projective bundle p W PE !M associated to a vector bundle E of
rank r , the p-pushforwards of c1.OPE.1//

k are the Segre classes sk�rC1 of E .
Here we consider the quadratic Hodge bundle Qg;n (extended over the Deligne–

Mumford compactification) given by Qg;n D f�.!
˝2
f
.
Pn
iD1 �i //, where f W X !

Mg;n is the universal curve, !f is the relative dualizing line bundle, and �1; : : : ; �n
are the sections of the nmarked points. We denote by PQg;n the associated projective
bundle. Since the rank of Qg;n is 3g � 3C n which equals dim Mg;n, the top self-
intersection number of the O.1/-class � in equation (2) in this case thus corresponds
to the degree of the top Segre class s3g�3Cn.Qg;n/; hence we can use it to compute
the volumes of the principal strata.

PROPOSITION 3.1
For the principal strata, we have

vol.Qg;N /D
22gC1.� i/6g�6C2n.4g � 4C n/Š

.6g � 7C 2n/Š

Z
Mg;n

s3g�3Cn.Qg;n/:

Proof
The claim follows from Theorem 1.2 for the special case � D .14g�4Cn;�1n/ and
s DN D 4g� 4C 2n, with an additional factor .4g� 4Cn/Š multiplied to the right-
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hand side, because in (2) all zeros are labeled, while for the quadratic Hodge bundle
Qg;n over Mg;n we do not label the 4g � 4C n simple zeros.

In order to evaluate the degree of s3g�3Cn.Qg;n/, we first compute the total Segre
class of Qg;n. The beginning step is a standard calculation originally due to [39]
for the (Abelian) Hodge bundle and extended more generally in [12], which we will
further simplify.

Recall the definition of the Bernoulli polynomials Bn.x/ by the expansion

tetx

et � 1
D
X
n�0

Bn.x/

nŠ
tn:

They satisfy the properties that Bn.x/D .�1/nBn.1� x/ and that

Bn.xC y/D

nX
mD0

 
n

m

!
Bm.x/y

n�m:

We also denote by �d D f�.c1.!f .
Pn
iD1 �i //

dC1/ the �-classes on Mg;n.

LEMMA 3.2 ([12, Theorem 1.1.1] for the case s D 2, r D 1, and mi D 1)
The Chern character of the quadratic Hodge bundle Qg;n is given by

ch.Qg;n/D 3g � 3C nC
X
d�1

�BdC1.2/
.d C 1/Š

�d �

nX
iD1

BdC1.1/

.d C 1/Š
 di

C
1

2

BdC1.1/

.d C 1/Š

X
iCjDd�1

iirr�.� 1/
i 

j
2

C
1

2

BdC1.1/

.d C 1/Š

gX
hD0

X
S�ŒŒ1;n��

X
iCjDd�1

ih;S�.� 1/
i 

j
2

�
;

where the sum is constrained to jS j � 2 if h D 0 and to jS j � n � 2 if h D g. In
particular, iirr W Mg�1;nC2!�irr has degree 2, ih;S W Mh;S �Mg�h;Sc !�h;S has
degree 2 if g D 2h and nD 0, and in the other cases ih;S are repeated twice in the
sum (hence explaining the factor 1=2).

Recall that for a vector bundle E , the total Segre class is given in terms of the
coefficients of the Chern character by

s.EI t /D c.EI t /�1 D exp
�X
s�1

.�1/s.s � 1/Š chs.E/t
s
�
; (21)
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where t is the grading parameter. Hence in principle one can plug Lemma 3.2 in the
above to compute the Segre classes of Qg;n. In order to further simplify the expression
obtained this way, we introduce the notation �.d/ D ��. 2nC1 � � � 

2
nCd

/, where � is

the map Mg;nCd !Mg;n induced by forgetting the last d marked points.

LEMMA 3.3
The total Segre class of Qg;n can be expressed as

s.Qg;n/D
�
1� �1C � � � C .�1/

g�g
��
1�

�.1/

1Š
C
�.2/

2Š
�
�.3/

3Š
C � � �

�
:

In particular, the top Segre class of Qg;n is equal to

s3g�3Cn.Qg;n/D .�1/
3g�3Cn

gX
iD0

�.2g�3CnCi/�g�i

.2g � 3C nC i/Š
:

Proof
Denote by Eg;n the (Abelian) Hodge bundle over Mg;n. Comparing the expression
of ch.Qg;n/ in Lemma 3.2 with that of ch.Eg;n/ in [12, (1)], we conclude that

ch.Qg;n/D ch.Eg;n/� 1C
X
d�0

�BdC1.2/�BdC1.1/
.d C 1/Š

�d

�
D ch.Eg;n/� 1C

X
d�0

1

dŠ
�d : (22)

To further simplify this expression, we recall some �-class computation from
[40, Section 2]. For any permutation � 2 Sm with cycle decomposition � D �1 � � ��`
and integers ˛1; : : : ; ˛m, we define �˛� D

Q
j �j�j j, where j�j j D

P
i2�j

˛i is the sum
of ˛i corresponding to the cycle. Then there is the pushforward formula (see [40,
Section 2.3])

��. 
˛1C1
nC1 � � � 

˛mC1
nCm /D

‚ …„ ƒ
�˛1 � � ��˛m WD

X
�2Sm

�˛� :

In particular, in this notation �.j / D
‚ …„ ƒ
�1 � � ��1 with j factors. On the other hand, we

define the linear map °X
i

ci t
i
±
�
D
X
i

ci�i t
i

on power series. Then [40, Lemma 2.3] shows that

exp
�
�
®
log.1�X/

¯
�

�
D
‚ …„ ƒ
exp

�
¹Xº�

�
(23)
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for any X 2QŒt �. Combining (21) with (22) thus implies that

s.Qg;n/D s.Eg;n/ exp
�X
d�1

.�1/d

d
�d

�
D c.E

�

g;n/ exp
�
��1C

�2

2
�
�3

3
C � � �

�
D
�
1� �1C �2 � � � � C .�1/

g�g
��
1�

�.1/

1Š
C
�.2/

2Š
�
�.3/

3Š
C � � �

�
;

where we used (23) for X.t/D�t and the fact that s.Eg;n/D c.Eg;n/�1 D c.E
�

g;n/

(see [39, (5.4)]).
The expression of s3g�3Cn.Qg;n/ follows from taking the terms of codimension

3g � 3C n in the expansion of the above product.

3.2. Linear Hodge integrals
In this section, we use the previous results to prove Theorem 1.3. To simplify notation,
for n� 0 and 0� i � g we define the linear Hodge integrals

κ.g; i/n WD

Z
Mg;n

�.2g�3CnCi/�g�i

D

Z
Mg;2g�3C2nCi

 2nC1 � � � 
2
2g�3C2nCi�g�i ; (24)

where the second equality follows from the definition of �.d/ and the projection for-
mula. For nD 0, we also denote κ.g; i/0 D κ.g; i/, that is,

κ.g; i/ WD

Z
Mg;2g�3Ci

 21 � � � 
2
2g�3Ci�g�i : (25)

We show that κ.g; i/n can be expressed in terms of κ.g; i/.

LEMMA 3.4
For all g, i , and n, we have

κ.g; i/n D κ.g; i/
.2g � 3C nC i/Š

.2g � 3C i/Š

.4g � 7C 2nC i/ŠŠ

.4g � 7C i/ŠŠ
:

Proof
The proof relies on the string and dilation equations in [44, (2.41), (2.45)]. We choose
a triple .g; i; n/ such that n > 0 and denote d D 2g � 3C nC i . Then we have
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κ.g; i/n D

Z
Mg;nCd

 2nC1 � � � 
2
nCd�g�i

D

dX
jD1

Z
Mg;n�1Cd

 2n � � � n�1Cj � � � 
2
nCd�1�g�i

D d

Z
Mg;n�1Cd

 2n � � � 
2
nCd�2 nCd�1�g�i

D d.2g � 4C d C n/

Z
Mg;n�2Cd

 2n � � � 
2
nCd�2�g�i

D d.2d � i � 1/κ.g; i/n�1; (26)

where from the first line to the second we used the string equation applied to the first
marked point and from the third line to the fourth we used the dilation equation for
the last marked point. The claim thus follows by induction on n.

Proof of Theorem 1.3
Proposition 3.1 and Lemma 3.3 imply that

vol.Qg;N /D
22gC1.� i/6g�6C2n.4g � 4C n/Š

.6g � 7C 2n/Š

� .�1/3g�3Cn
gX
iD0

κ.g; i/n

.2g � 3C nC i/Š
;

which after simplification gives the first equality in (3). The second equality in (3)
thus follows from Lemma 3.4.

3.3. Volumes of the principal strata for fixed g and varying n
In this section, we consider numerical properties of vol.Qg;N / when g is fixed and n
varies (i.e., N D 4g � 4C 2n varies), especially as n tends to infinity.

Proof of Theorem 1.4, (6)
We renormalize the volume to be

v.g;n/D
vol.Qg;N /

2n�6g�6C2n
.6g � 7C 2n/Š

.2g � 3C n/Š.4g � 4C n/Š
: (27)

Then Theorem 1.3 implies that

22�4gv.g;n/D
1

.4g � 6C 2n/ŠŠ

gX
iD0

κ.g; i/

.2g � 3C i/Š

.4g � 7C 2nC i/ŠŠ

.4g � 7C i/ŠŠ
:
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Denote

κ.g; i/0 D
κ.g; i/

.2g � 3C i/Š.4g � 7C i/ŠŠ
;

which is independent of n. Setting ag;n D 4g � 6C 2n below, we conclude that

22�4gv.g;n/D

gX
iD0

κ.g; i/0
.ag;nC i � 1/ŠŠ

ag;nŠŠ

D

b.g�1/=2cX
iD0

κ.g; 2i C 1/0
.ag;nC 2i/ŠŠ

ag;nŠŠ

C

bg=2cX
iD0

κ.g; 2i/0
.ag;n � 1C 2i/ŠŠ

ag;nŠŠ

D

b.g�1/=2cX
iD0

κ.g; 2i C 1/0
.ag;nC 2i/ŠŠ

ag;nŠŠ

C �2g�3Cn

bg=2cX
iD0

κ.g; 2i/0
.ag;n � 1C 2i/ŠŠ

.ag;n � 1/ŠŠ
;

where in the last step we used �k D
1

4k

�
2k
k

�
. Therefore, we obtain that

pg.n/D 2
4g�2

b.g�1/=2cX
iD0

κ.g; 2i C 1/0
.4g � 6C 2nC 2i/ŠŠ

.4g � 6C 2n/ŠŠ

and

qg.n/D 2
4g�2

bg=2cX
iD0

κ.g; 2i/0
.4g � 7C 2nC 2i/ŠŠ

.4g � 7C 2n/ŠŠ

are the polynomials whose existence we claimed above.
Note that the leading coefficients of pg and qg are proportional, respectively,

to
R
Mg;3g�3

 21 � � � 
2
3g�3 and

R
Mg;3g�4

 21 � � � 
2
3g�4�1. It is known that the divisor

classes �1 and  i are nef (see [3, Chapter XIV, Proposition (5.11), Corollary (5.14)]).
Moreover, 12�1 D �1 C ı is ample plus effective on Mg (see [3, Chapter XIII, The-
orem (7.6) and Chapter XIV, Theorem (5.1)]). Hence �1 is a nonzero effective divi-
sor class on Mg which is also effective on Mg;n via pullback. Since the top self-
intersection of i on Mg;n is positive (see [25, (28)]), it follows that i is big (see [33,
Theorem 2.2.16]). Then the nonvanishing of the lead terms of pg and qg follows from
Lemma 3.5 below.
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LEMMA 3.5
Suppose that D1; : : : ;Dn are nonzero divisor classes in an n-dimensional projective
variety X such that D1 is nef and effective and such that D2; : : : ;Dn are big and nef.
Then the intersection number

R
X D1 � � �Dn is positive.

Proof
Since Dn is big, we can write Dn D An C En (as divisor classes with coefficients
in Q), where An is ample and En is effective. Then

R
X D1 � � �Dn�1En � 0, because

a nef divisor class is a limit of ample divisor classes. Hence it suffices to show thatR
X
D1 � � �Dn�1An > 0. Repeating the argument inductively, it eventually reduces to

showing that
R
X
D1A2 � � �An > 0, where the Ai are all ample, and this holds since

D1 is effective.

We can extract the leading term of the volume from the above expression. Recall
that 26g�7mg is the top coefficient of qg if g is even or the top coefficient of pg if g
is odd, and that �.g/D 0 or 1 determined by the parity of g.

Proof of Theorem 1.4, (7)
Below we will use Stirling’s approximation for estimating asymptotics of binomial
coefficients:

kŠ�
p
2�k.k=e/k

for large k. It follows that �k � .�k/�1=2 as k!1. Then as n!1, the dominant
term of the two in the sum v.g;n/D pg.n/C�2g�3Cnqg.n/ is �2g�3Cnqg.n/when g
is even and is pg.n/ when g is odd. Hence the leading term of v.g;n/ (as a function
of n) is ��1=2n.g�1/=226g�7mg when g is even and is n.g�1/=226g�7mg when g is
odd. Altogether it implies that for large n,

v.g;n/� 26g�7�.�.g/�1/=2mgn
.g�1/=2: (28)

For the leading term of
�
6g�7C2n
2g�3Cn

�
, Stirling’s approximation implies that for large n, 

6g � 7C 2n

2g � 3C n

!
� 22nC6g�7

1
p
�n

:

The claim on vol.Qg;N / thus follows from (28) and the conversion of vol.Qg;N / to
v.g;n/ in (27).

From the above proof, we see that the coefficientmg is an explicit rescaling of the
intersection number

R
Mg;3g�3

 21 � � � 
2
3g�3. The generating series of such intersection
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numbers satisfies the Painlevé equation I, and hence they can be computed efficiently.
(We refer to [29, Section 6], [48, Section 4.2], [34, Section 4], [16], and [45] for
related discussions on this topic.)

3.4. Volumes of the principal strata in genus 1
In this section, we prove Corollary 1.5. By Lemma 3.3, we haveZ

M1;n

sn.Q1;n/D .�1/
n

Z
M1;n

��.n/
nŠ
C
�1�.n�1/

.n� 1/Š

�
:

By the �g -theorem (see [25]), we can evaluate the Hodge integralZ
M1;n

�1�.n�1/ D

Z
M1;2n�1

 2nC1 � � � 
2
2n�1�1

D

 
2n� 2

0; : : : ; 0; 2; : : : ; 2

!
1

24
D
.n� 1/Š.2n� 3/ŠŠ

24
: (29)

Moreover, using the string and dilation equations we haveZ
M1;n

�.n/ D

Z
M1;2n

 2nC1 � � � 
2
2n

D n

Z
M1;2n�1

 2n � � � 
2
2n�2 2n�1

D n.2n� 2/

Z
M1;2n�2

 2n � � � 
2
2n�2 D � � � D

1

24
nŠ.2n� 2/ŠŠ:

It follows that Z
M1;n

sn.Q1;n/D .�1/
n 1

24

�
.2n� 3/ŠŠC .2n� 2/ŠŠ

�
: (30)

By Proposition 3.1, we thus conclude that

vol
�
Q1;2n.1

n;�1n/
�
D
23.� i/2nnŠ

.2n� 1/Š
sn.Q1;n/

D �2n
nŠ

3.2n� 1/Š

�
.2n� 3/ŠŠC .2n� 2/ŠŠ

�
;

which proves (8). In particular, it confirms [2, Conjecture 5.4] for the case gD 1 with
p1.n/D q1.n/D 1=6.
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4. Siegel–Veech constants and Lyapunov exponents
In this section, we study area Siegel–Veech constants carea and sums of (involution-
invariant) Lyapunov exponents LC for the principal strata of quadratic differentials.
In particular, we will prove Theorem 1.6, Corollary 1.7, and Corollary 1.8. In addi-
tion, we will give conjectural formulas to compute area Siegel–Veech constants and
sums of Lyapunov exponents as intersection numbers for arbitrary affine invariant
submanifolds.

4.1. carea and LC as intersection numbers
Recall that Qg;n is the quadratic Hodge bundle over Mg;n with only nmarked points,
and ı is the divisor class of the total boundary of PQg;n. We first prove the formula
for carea.

Proof of Theorem 1.6, (9)
For simplicity, we denote by sg;n the degree of the top Segre class of Qg;n. Note that
the denominator of the right-hand side of (9) corresponds to sg;n. By [27, Section 4.2,
Corollary 1] (see also [2, Theorem 4.1]) and Proposition 3.1, the desired formula is
equivalent to the following equality of top Segre classes:Z

PQg;n

�6g�8C2nıD
1

2
sg�1;nC2C

1

2

X
g1Cg2Dn

n1Cn2Dn

nŠ

n1Šn2Š
sg1;n1C1sg2;n2C1; (31)

where the sum ranges over admissible pairs .gi ; ni / as constrained in Lemma 3.2.
Since the total boundary of Mg;n is the union of irreducible boundary divisors whose
types correspond to the summands on the right-hand side of (31), the equality follows
from the structure of Qg;n restricted to each of the boundary divisors.

More precisely, consider the morphism iirr W Mg�1;nC2! �irr induced by nor-
malizing a nonseparating node r of a pointed stable curve .X;p1; : : : ; pn/. Let X 0

be the normalization of X at r , and denote by r1, r2 the (labeled) preimages of r
in X 0. The fiber of Qg;n over .X;p1; : : : ; pn/ parameterizes quadratic differentials
q 2H 0.!˝2X 0 .p1 C � � � C pnC 2r1 C 2r2// such that the 2-residues of q at r1 and r2
are equal (see [5, Section 3.1] for k-residues in general). From this viewpoint we can
regard Qg�1;nC2 as a subbundle of i�irrQg;n whose fiber over .X 0; p1; : : : ; pn; r1; r2/
is H 0.!˝2X 0 .p1 C � � � C pn C r1 C r2//, containing quadratic differentials with zero
2-residues at r1 and r2. We then have the exact sequence

0!Qg�1;nC2! i�irrQg;n!C! 0;

where the last map to the trivial line bundle is induced by taking the value of the
2-residue at r1. It implies that
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sg�1;nC2 D

Z
Mg�1;nC2

s3g�4Cn.i
�
irrQg;n/D 2

Z
PQg;n

�6g�8C2nıirr;

where the factor 2 is due to the labeling of r1 and r2, that is, due to deg iirr D 2. This
explains the term 1

2
sg�1;nC2 on the right-hand side of (31).

Similarly, consider the morphism ig1;S1 W Mg1;n1 �Mg2;n2 ! �g1;S1 induced
by normalizing a separating node r of a pointed stable curve .X;p1; : : : ; pn/, where
X consists of two components X1 and X2 separated by q, g1Cg2 D g, n1Cn2 D n,
and Xi contains the ni marked points in the subset Si 
 ¹p1; : : : ; pnº for i D 1; 2.
Using the same argument as in the previous case, we obtain the exact sequence

0!Qg1;n1C1˚Qg2;n2C1! i�g1;S1Qg;n!C! 0:

It implies thatZ
PQg;n

�6g�8C2nıg1;S1 D

Z
Mg1;n1

�Mg2;n2

s3g�4Cn.i
�
g1;S1

Qg;n/

D sg1;n1C1sg2;n2C1:

This explains the remaining summation on the right-hand side of (31), where the
factors 1

2
and nŠ

n1Šn2Š
are due to the ordering of n1, n2 and choosing n1 marked points

out of the total n marked points, respectively.

Next we prove the formula for LC.

Proof of Theorem 1.6, (10)
Denote �g;n D 1

18
.5g�5�n/. Then by [18, Theorem 2, (2.3)], we have the following

relation:

LC.14g�4Cn;�1n/D �g;nC
�2

3
carea.1

4g�4Cn;�1n/: (32)

For a family of nodal curves f W X!B , there is a relation of divisor classes 12�1 �
ıD f�.c1.!f /

2/ (see [39, p. 306]). Combining with (9), the desired formula is equiv-
alent to the equalityZ

PQg;n

�6g�8C2nf�
�
c1.!f /

2
�
D�6�g;n

Z
PQg;n

�6g�7C2n; (33)

where f W X! PQg;n is the universal curve.
Let PQg;n.2/ be the closure of the locus in PQg;n parameterizing quadratic

differentials with a double zero. A general differential parameterized in PQg;n.2/

has zero type .2; 14g�6Cn;�1n/. Let PQg;n.0/ be the closure of the locus in PQg;n
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parameterizing quadratic differentials that are holomorphic at some marked point pi .
A general differential parameterized in PQg;n.0/ has zero type .14g�5Cn;�1n�1; 0/,
where the entry 0 indicates that pi becomes an ordinary point instead of a simple
pole (still labeled). Denote by B the complement of PQg;n.2/ and PQg;n.0/. Then
differentials parameterized by B have zero type exactly .14g�4Cn;�1n/.

Denote byZi and Pj the i th zero section and the j th pole section in the universal
curve X over B , respectively, which are pairwise disjoint. Then as in [18, Section 3.4]
we have the relation of divisor classes

f �.��/D 2c1.!f /�

4g�4CnX
iD1

Zi C

nX
jD1

Pj :

Intersecting the relation with Zi and Pj , respectively, and pushing forward by f , we
conclude that f�.Z2i /D �=3 and f�.P 2j /D � for all i and j . Intersecting the relation
with c1.!f / and pushing forward by f , we obtain that f�.c1.!f /2/D �6�g;n� in
B , which implies that the same relation holds in PQg;n modulo a divisor class sup-
ported on the union of PQg;n.2/ and PQg;n.0/. Therefore, it suffices to prove thatR
PQg;n.2/

�6g�8C2n D 0 and
R
PQg;n.0/

�6g�8C2n D 0.

Note that PQg;n.2/ is the closure of PQ.2; 14g�6Cn;�1n/ whose period coor-
dinates are not all given by absolute periods due to the double zero. Recall in Sec-
tion 2 that �� corresponds to the curvature form !h of the good metric on the tau-
tological bundle O.�1/. Then !6g�8C2n

h
D 0 on this stratum, since the exponent is

one bigger than the rank of the subspace of absolute periods (after projectivization).
It follows that

R
PQg;n.2/

�6g�8C2n D 0. Similarly, PQg;n.0/ consists of closures of

PQ.14g�5Cn;�1n�1; 0/ whose period coordinates are not all given by absolute peri-
ods due to the labeled ordinary point (as a zero of order 0). Then the same argument
implies that

R
PQg;n.0/

�6g�8C2n D 0.

4.2. carea and LC for fixed g and varying n
In this section, we consider numerical properties of carea and LC for the principal
strata when g is fixed and n varies, especially as n tends to infinity. Since carea and
LC determine each other by the relation (32), it suffices to evaluate LC.

The denominator in the formula (10) for LC corresponds to the top Segre class
of Qg;n, which has been computed via linear Hodge integrals of type (24) and (25).
To evaluate the numerator, we define similarly

#.g; i/n WD

Z
Mg;n

�.2g�4CnCi/�g�i�1

D

Z
Mg;2g�4C2nCi

 2nC1 � � � 
2
2g�4C2nCi�g�i�1: (34)
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For nD 0, we also denote #.g; i/0 D #.g; i/, that is,

#.g; i/ WD

Z
Mg;2g�4Ci

 21 � � � 
2
2g�4Ci�g�i�1: (35)

We show that #.g; i/n can be expressed in terms of #.g; i/.

LEMMA 4.1
For all g, i , and n, we have

#.g; i/n D #.g; i/
.2g � 4C nC i/Š

.2g � 4C i/Š

.4g � 8C 2nC i/ŠŠ

.4g � 8C i/ŠŠ
:

Proof
Let d D 2g�4CnC i . For any n > 0, the same method as in the proof of Lemma 3.4
implies that

#.g; i/n D

Z
Mg;nCd

 2nC1 � � � 
2
nCd�g�i�1

D d.2d � i/#.g; i/n�1:

Then the claim follows by induction on n.

LEMMA 4.2
The numerator of (10) is equal toZ

Mg;n

s3g�4Cn.Qg;n/�1 D .�1/
3g�4Cn

gX
iD0

#.g; i/n

.2g � 4C nC i/Š
:

Proof
This follows from the expression of the total Segre class s.Qg;n/ in Lemma 3.3 and
the definition of #.g; i/n in (34).

Now we can verify the desired numerical properties of LC and carea for fixed g
and varying n.

Proof of Corollary 1.7
We renormalize the numerator of (10) to be

u.g;n/D
.�1/3g�4Cn24g�2

.4g � 8C 2n/ŠŠ

Z
Mg;n

s3g�4Cn.Qg;n/�1: (36)
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Then Lemmas 4.1 and 4.2 imply that

22�4gu.g;n/D
1

.4g � 8C 2n/ŠŠ

gX
iD0

#.g; i/n

.2g � 4C nC i/Š

D
1

.4g � 8C 2n/ŠŠ

gX
iD0

#.g; i/

.2g � 4C i/Š

.4g � 8C 2nC i/ŠŠ

.4g � 8C i/ŠŠ
:

Denote

#.g; i/0 D
#.g; i/

.2g � 4C i/Š.4g � 8C i/ŠŠ
;

which is independent of n. Setting bg;n D 4g � 8C 2n below, we conclude that

22�4gu.g;n/D

gX
iD0

#.g; i/0
.bg;nC i/ŠŠ

bg;nŠŠ

D

b.g�1/=2cX
iD0

#.g; 2i C 1/0
.bg;nC 2i C 1/ŠŠ

bg;nŠŠ

C

bg=2cX
iD0

#.g; 2i/0
.bg;nC 2i/ŠŠ

bg;nŠŠ

D .4g � 6C 2n/�2g�3Cn

b.g�1/=2cX
iD0

#.g; 2i C 1/0
.bg;nC 2i C 1/ŠŠ

.bg;nC 1/ŠŠ

C

bg=2cX
iD0

#.g; 2i/0
.bg;nC 2i/ŠŠ

bg;nŠŠ
:

Therefore, we obtain that

rg.n/D 2
4g�2

bg=2cX
iD0

#.g; 2i/0
.4g � 8C 2nC 2i/ŠŠ

.4g � 8C 2n/ŠŠ

and

sg.n/D 2
4g�2.4g � 6C 2n/

b.g�1/=2cX
iD0

#.g; 2i C 1/0
.4g � 7C 2nC 2i/ŠŠ

.4g � 7C 2n/ŠŠ

as the polynomials whose existence we claimed above. The nonvanishing of their
leading coefficients follows from a similar argument using Lemma 3.5.
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Recall v.g;n/ defined in (27) in the proof of Theorem 1.4. In summary, we have

v.g;n/D
.�1/3g�3Cn24g�2

.4g � 6C 2n/ŠŠ

Z
Mg;n

s3g�3Cn.Qg;n/D pg.n/C �2g�3Cnqg.n/;

u.g;n/D
.�1/3g�4Cn24g�2

.4g � 8C 2n/ŠŠ

Z
Mg;n

s3g�4Cn.Qg;n/�1 D rg.n/C �2g�3Cnsg.n/:

The rational function expression of LC in (12) thus follows from (10).
For the large n asymptotic of LC, recall that 26g�7ng is the leading coefficient

of rg.n/ and sg.n/ when g is even and odd, respectively. We claim that

u.g;n/� 26g�7���.g/=2ngn
g=2 (37)

for fixed g and n!1. To see this, the dominant term of the two in the sum u.g;n/D

rg.n/C �2g�3Cnsg.n/ is rg.n/ when g is even and �2g�3Cnsg.n/ when g is odd.
Moreover, recall that �k � .�k/�1=2 as k!1 by Stirling’s approximation. Hence
the leading term of u.g;n/ (as a function of n) is ng=226g�7ng when g is even and
��1=2ng=226g�7ng when g is odd. We then obtain the asymptotic expression of LC

in (12) by the asymptotic expressions of v.g;n/ and u.g;n/ in (28) and (37).
Finally, for carea, by (32) we have

�2

3
carea D

nC 5� 5g

18
CLC

D
nC 5� 5g

18
C

1

2g � 3C n

rg.n/C �2g�3Cnsg.n/

pg.n/C �2g�3Cnqg.n/
:

We thus define the polynomials

p�g.n/D
.nC 5� 5g/.2g � 3C n/pg.n/

6
C 3rg.n/

and

q�g.n/D
.nC 5� 5g/qg.n/

6
C

3sg.n/

2g � 3C n
;

where sg.n/ is divisible by 2g � 3C n by definition. The above expression for carea

can then be rewritten as

carea D
1

�2

p�g.n/

2g�3Cn
C �2g�3Cnq

�
g.n/

pg.n/C �2g�3Cnqg.n/
;

in accordance with (11). The claim about the degrees of p�g.n/ and q�g.n/ follows
from the degrees of pg.n/ and qg.n/.
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4.3. carea and LC in genus 1
In this section, we prove Corollary 1.8. We have

LC.1n;�1n/D�2

R
M1;n

sn�1.Q1;n/�1R
M1;n

sn.Q1;n/
:

The denominator was computed previously in (30). For the numerator, we haveZ
M1;n

sn�1.Q1;n/�1 D .�1/
n�1

Z
M1;n

��.n�1/�1
.n� 1/Š

C
�.n�2/�

2
1

.n� 2/Š

�
D .�1/n�1

.2n� 3/ŠŠ

24
;

where �.n�1/�1 was computed previously in (29), and �21 D 0 as �1 is a pullback
from M1;1. It follows that

LC.1n;�1n/D
2

1C .2n�2/ŠŠ
.2n�3/ŠŠ

;

thus proving (14). Recall that .2n/ŠŠ
.2n�1/ŠŠ

�
p
�n for n!1. Then (14) also implies a

decay of LC in the order of 1p
n

conjectured by Fougeron.
Finally, by (32), we conclude that

�2

3
carea.1

n;�1n/DLC.1n;�1n/C
n

18

D
2

1C .2n�2/ŠŠ
.2n�3/ŠŠ

C
n

18
;

thus proving (13). In particular, it confirms [2, Table 8] for the case g D 1 with
p�1 .n/D

1
36
.n2 � n/ and q�1 .n/D

1
36
nC 1.

4.4. carea and LC of affine invariant submanifolds
Recall that a stratum of quadratic differentials can be lifted to the corresponding
stratum of Abelian differentials via the canonical double cover, such that the image
becomes an affine invariant submanifold. In general, let N be an arbitrary affine
invariant submanifold in a stratum of Abelian differentials H .�/. Suppose that the
tangent space of N projects onto a subspace A of absolute periods, with kernel R
of relative periods. Denote dimCA D a and dimCR D r , so that dimC N D a C r .
Without loss of generality, assume that a basis of R is given by integration over r
paths joining the zeros z1; : : : ; zr to a reference zero.

Denote by PN the closure of PN in the IVC of the projectivized stratum. Then
dimC PN D .a � 1/C r . Let � be the first Chern class of the universal line bundle
O.1/, and let ı be the boundary divisor class. We make the following bold conjecture.
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CONJECTURE 4.3
The area Siegel–Veech constant and sum of Lyapunov exponents of N can be obtained
as the following intersection numbers:

carea.N /D�
1

4�2

R
PN
�a�2 1 � � � rıR

PN
�a�1 1 � � � r

; (38)

L.N /D�

R
PN
�a�2 1 � � � r�1R

PN
�a�1 1 � � � r

; (39)

where  i is associated with the zero zi in the chosen basis of R.

We briefly explain the idea behind this conjecture. Since we work with the pro-
jectivized stratum, we can set one absolute period to be 1; hence �a�1 governs the
absolute part of the volume form of N , and  1; : : : ; r govern the relative part by
varying the relevant zeros in N . Therefore, the denominator in (38) and (39) can
be regarded as the volume of N , up to a volume normalization factor. By now it
has become clear that the boundary divisor class is responsible for carea and the first
Chern class of the Hodge bundle is responsible for L, thus explaining the structure of
the conjectural formulas. In particular, using a different volume normalization factor
should not matter, as it would cancel out between the numerator and denominator in
each of the formulas.

Moreover, there is evidence to support this conjecture from a number of known
cases. If PN is a Teichmüller curve, then the conjectural formulas reduce to evalu-
ating deg ı=deg � and deg�1=deg � up to the normalizing factors, and this case was
well understood after the works [7], [9], [18], and [32]. If PN is a Hurwitz space
of torus covers, then the above conjecture was established in [11, Section 4]. If N

is the entire stratum H .�/, then as said the above conjecture was verified in [10,
Theorem 1.4]. If N arises from a stratum of quadratic differentials via the canonical
double cover, then Conjecture 4.3 reduces to Conjecture 1.9, which was proved in
Theorem 1.6 for the case of the principal strata. Note that in this case � D 2� after
lifting via the canonical double cover, which explains the difference of a factor 2 in
the two conjectures. More recently, the conjecture was verified in [8] for the gothic
locus as a special affine invariant submanifold discovered by [36].

We plan to treat the conjectures in this paper in future work.



VOLUMES OF STRATA OF QUADRATIC DIFFERENTIALS 1763

Appendix. A second topological recursion for Masur–Veech volumes

GAËTAN BOROT, ALESSANDRO GIACCHETTO, and DANILO LEWAŃSKI

In [2], we constructed a collection of generating series .W I
g;n/

n�1
g�0 encoding some

aspects of length statistics of multicurves, in which the Masur–Veech volumes of
the principal strata of quadratic differentials appear as the lowest coefficients, and
which satisfy the Eynard–Orantin topological recursion for a spectral curve SI. This
appendix shows that a generating seriesW II

g;n of intersection indices of the Segre class
of Section 3.1 with  -classes, in which the Masur–Veech volume is also the lowest
coefficient, satisfy the same topological recursion for a (very different) spectral curve
SII. The two generating series have different meanings and are not a priori related.
Only their lowest coefficients agree. We first review in Section A.1 the definitions of
the topological recursion, which originate in [24], in a simplified fashion which is suf-
ficient for our needs. The main result of this appendix is exposed in Proposition A.5.
We prove it in Section A.3.1 as a direct consequence (after some algebraic manip-
ulations) of general relations between topological recursion and intersection theory
established in [22] and reviewed in Section A.2.

A.1. Topological recursion for Masur–Veech volumes

A.1.1. Definition
For us, a spectral curve will be a quadruple S D .C ; x; y;!0;2/ as follows. C is an
open subset of P1, x is a (perhaps multivalued) function on C such that dx is mero-
morphic with a single, simple zero at a 2 C n ¹1º, y is a holomorphic function on C

such that dy.a/¤ 0, and !0;2 is a meromorphic bidifferential whose only singularity
on C2 is a double pole with biresidue 1 on the diagonal.

We define � to be the holomorphic involution defined in a neighborhood U
 C

of a such that �.a/D a, x ı � D x, and � ¤ id. We introduce the recursion kernel

K.z0; z/ WD
1

2

R z
�.z/

!0;2.�; z0/

.y.z/� y.�.z///dx.z/
;

which is a 1-form in the variable z0 2 C and a .�1/-form in the variable z 2U. This
allows the definition of multidifferentials !g;n on Cn, indexed by g � 0 and n > 0
with 2g � 2C n� 0, by the following induction on 2g � 2C n:

!g;n.z1; : : : ; zn/D Res
zDa

K.z1; z/
�
!g�1;nC1

�
z; �.z/; z2; : : : ; zn

�
C

X
hCh0Dg

JtJ 0D¹z2;:::;znº

!h;1CjJ j.z; J /!h0;1CjJ 0j
�
�.z/; J 0

��
; (40)
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with the convention that !0;1 D 0. To be precise, !g;n 2H 0.Cn;KC .�a/
�n/ where

�a means allowing poles of arbitrary order at a, and although it is not apparent in
their definition, !g;n are invariant under permutation of their n variables. For nD 0
and g � 2, we also define the numbers

!g;0 D
1

2� 2g
Res
zDa

�Z z

a

y dx
�
!g;1.z/: (41)

We call !g;n the TR amplitudes.
The !g;n for 2g � 2C n > 0 can be decomposed as

!g;n.z1; : : : ; zn/D
X

k1;:::;kn�0
k1C���Ckn�3g�3Cn

Fg;nŒk1; : : : ; kn�

nY
iD1

�k.zi / (42)

on the basis of 1-forms .�k/k�0 defined by

�0.z0/ WD Res
zDa

� !0;2.z0; z/p
2.x.z/� x.a//

�
; �k WD �d

��k�1
dx

�
:

For nD 0, we also use the notation Fg;0 D !g;0 for uniformity.

A.1.2. Applications to Masur–Veech volumes
Here is the first topological recursion announced in the introduction of the appendix.

THEOREM A.4 ([2])
Let !I

g;n be the TR amplitudes for the spectral curve SI where C is a small neighbor-
hood of 0 in C, x.z/D z2=2, y.z/D�z, and

!I
0;2.z1; z2/D

dz1dz2
2

� 1

.z1 � z2/2
C

�2

sin2 �.z1 � z2/

�
:

For 2g � 2C n > 0, we have

vol
�
Qg;4g�4C2n.1

4g�4Cn;�1n/
�

D
24g�2Cn.4g � 4C n/Š

.6g � 7C 2n/Š
F I
g;nŒ0; : : : ; 0�

D
24g�2Cn.4g � 4C n/Š

.6g � 7C 2n/Š
Res
z1D0
� � � Res

znD0
!I
g;n.z1; : : : ; zn/

nY
iD1

zi ;

where the third line is only valid for n > 0. For nD 0 and g � 2, we have

vol
�
Qg;4g�4.1

4g�4;�10/
�
D
3 � 24g�2.4g � 4/Š

.6g � 6/Š
F I
g;1Œ1�:
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In this appendix, we show a second topological recursion.

PROPOSITION A.5
Let !II

g;n be the TR amplitudes for the spectral curve SII defined by

C D P1; x.z/D�z � lnz; y.z/D z2; !0;2.z1; z2/D
dz1dz2
.z1 � z2/2

:

For 2g � 2C n > 0 and k1; : : : ; kn � 0, we have

F II
g;nŒk1; : : : ; kn�D 2

2�2g�n

Z
Mg;n

s.Qg;n/

nY
iD1

 
ki
i : (43)

In particular, in view of Proposition 3.1, we have

vol
�
Qg;4g�4C2n.1

4g�4Cn;�1n/
�

D
24g�1Cn.i�/6g�6C2n.4g � 4C n/Š

.6g � 7C 2n/Š
F II
g;nŒ0; : : : ; 0�

D
24g�1Cn.i�/6g�6C2n.4g � 4C n/Š

.6g � 7C 2n/Š

� Res
z1D�1

� � � Res
znD�1

!II
g;n.z1; : : : ; zn/

nY
iD1

.zi C 1/; (44)

where the third line is only valid for n > 0. For nD 0 and g � 2, we have

vol
�
Qg;4g�4.1

4g�4;�10/
�
D
3 � 24g.i�/6g�6.4g � 4/Š

.6g � 6/Š

�
F II
g;1Œ1�CF

II
g;1Œ2�

�
: (45)

A.2. Topological recursion and intersection theory
Let S be a spectral curve as in Section A.1.1, and let !g;n be the corresponding TR
amplitudes. The coefficients in (42) can then be interpreted in terms of intersection
theory on Mg;n. To state the formula, we introduce two formal power series:

T .u/D
ex.a/u

�1

p
2�u

Z
�

e�x.z/u
�1

dy.z/D exp
�
�
X
d�0

tdu
d
�
; (46)

R.u/D
ex.a/u

�1

p
2�u�1

Z
�

e�x.z/u
�1

�0.z/D exp
�X
d�1

rdu
d
�
D exp

�
r.u/

�
: (47)

Here � is the steepest descent contour for the function x=u on C , going around a in
the positive direction. T .u/ and R.u/ are the asymptotic series to the right-hand side
when u! 0C, and these definitions depend only on the germ of � near a (see below).
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We define a class 	g;n 2H 	.Mg;n/ by the formula

	g;n D exp
�X
d�0

td�d C

nX
iD1

r. i /C
1

2
iirr�

�r. 1/C r. 2/
 1C 2

�

C
1

2

gX
hD0

X
S�ŒŒ1;n��

ih;S�

�r. 1/C r. 2/
 1C 2

��
; (48)

where iirr and ih;S are the maps introduced in Section 3.1.

THEOREM A.6
For 2g � 2C n > 0, we have the equality in CŒŒ��11 ; : : : ;�

�1
n ��Z

�n
!g;n.z1; : : : ; zn/

nY
iD1

e��i .x.zi /�x.a//p
2�=�iR.1=�i /

D

Z
Mg;n

	g;n

nY
iD1

1

1C�i i
: (49)

Equivalently, in the decomposition (42) we have for k1; : : : ; kn � 0,

Fg;nŒk1; : : : ; kn�D

Z
Mg;n

	g;n

nY
iD1

 
ki
i :

Proof
We explain how to derive the particular form we give to the result (49) from [22,
Theorem 3.1].

First, the Laplace variable u in [22] is the variable u�1 for us. We chose this
convention, as we found it more convenient to work with formal power series in u
(instead of u�1).

Second, as it is clear from the proof in [22], the contribution of boundary divisors
in [22, (3.11)] should not be understood as the genuine exponential of a class, but
rather as a sum over stable graphs, where the weight of the edges is LB.1= 1; 1= 2/,
which we here denote E. 1; 2/. The weight E.u1; u2/ is a formal power series in u1
and u2 which can be computed form the data of x and !0;2. Since dx is meromorphic
on the compact curve P1, we can use [22, Appendix B] which justifies (with the
preceding conventions) that

E.u; v/D
1�R.u/R.v/

uC v
: (50)

Our R.u/ corresponds to ˙fa;0.u�1/ in [22]. The sign depends on the choice of
square root, which should be made so that R.u/D 1CO.u/, but it does not affect
(50) since R appears by pairs. We also warn the reader familiar with cohomological
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field theories that R rather corresponds to the inverse of the R-matrix in Givental
formalism.

Third, the sum over stable graphs can be converted into intersections in Mg;n

of the exponential of a boundary class. Namely, [22, (3.11)] is correctly interpreted
as involving the exponential of a boundary class if we replace the contribution of
boundary divisors by the pushforward of E. 1; 2/, where the new generating series
is

E.u1; u2/D�
ln.1� .u1C u2/E.u1; u2//

u1C u2
;

or, equivalently,

E.u1; u2/D
1� e�.u1Cu2/E.u1;u2/

u1C u2
:

This relation comes from taking into account self-intersections of divisors (see, e.g.,
[2, Lemma 3.10]).

Fourth, the relation (50) leads to a simplification of the contribution of  -classes
in [22, (3.10)], namely,

2
p
�e��ix.a/
p
�i

� �i

1C�i i
�E.1=�i ; i /

�
D 2

p
�=�ie

��ix.a/
R.1=�i /R. i /

��1i C i
:

If we factor out
Qn
iD1

p
2�=�iR.1=�i / to put it in the left-hand side of [22, (3.10)],

then this leaves in the right-hand side a power 2n=2, which combines with the overall
power 23g�3Cn to give 2.3=2/.2g�2Cn/ D 2.3=2/�0 . Therefore, we can change the defi-
nition of the coefficient of �0 in [22]; it was there denoted Ot0 and it is related to our t0
by Ot0 C .3=2/ ln2D t0. Note that there seems to be a misprint in [22], where formu-
las (3.12) and (4.15) should have the prefactor of 2 in the numerator rather than in the
denominator. Making this correction led us to the definition of T .u/ with a prefactor
of 2�1=2.

For certain .x; y/, T .u/ and R.u/ can be identified with well-known special
functions and tk and rk can be computed explicitly. A term-by-term computation is
always possible, for instance as follows. Let �.z/ D

p
2.x.z/� x.a// be the local

coordinate near a (for the standard determination of the square root), which has the
property that �.�.z//D��.z/, and compute the expansion near z D a:

y.z/D
X
k�0

yk�.z/
k; �0.z/D

d�.z/

�.z/2
C
X
k�0

�0;k�.z/
k d�.z/:

Then to obtain the asymptotic expansion of the integrals when u! 0 up to O.u1/,
we can take u > 0 and replace � in the z-plane with a contour ı in the �-plane that
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goes from C1� i0 to �i0, then follows the half-circle leaving 0 to its right until i0,
from where it goes to C1C i0. We haveZ

ı

e�	
2=2u�2k

d�
p
2�u

D�.2k � 1/ŠŠuk;

where the global minus sign comes from the orientation of the contour. This formula
remains valid for any k ��1, with the convention that .�1/ŠŠD 1 and .�3/ŠŠD�1.
Thus

T .u/D�
X
d�0

.2d C 1/ŠŠy2dC1u
d ; R.u/D 1C

X
d�0

.2d � 1/ŠŠ�0;2du
dC1:

A.3. Study of a family of spectral curves

A.3.1. Definition and basic properties
Let .a; b/ 2C� �Z�, and consider the spectral curve S Œa; b� defined by

x.z/D�zC a lnz; y.z/D zb; !0;2.z1; z2/D
dz1dz2
.z1 � z2/2

: (51)

Notice that dx has a unique, simple zero at z D a. To complete the definition, we
choose C to be a small neighborhood of a in C. The determination of the logarithm
is chosen arbitrarily and will not affect our discussion. For the record, we compute

x.a/D a
�
ln.a/� 1

�
; x00.a/D�

1

a
:

We will use instead of z the coordinate t D z � a, so that

x.z/D�.t C a/C a ln.t C a/; y.z/D .t C a/b:

The involution such that x.aC �.t//D x.aC t / is given by �.t/D�a�1 O�.�a�1t /,
where O� is the unique solution to

t � O�.t/D ln
�1� O�.t/
1� t

�
; O�.t/D�t CO.t2/:

It does not have a simple expression, but can be generated to high order on the com-
puter:

O�.t/D�
�
t C

2t2

3
C
4t3

9
C
44t4

135
C
104t5

405
C
40t6

189
C
7648t7

42525

C
2848t8

18225
C
31712t9

229635
CO.t10/

�
:
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LEMMA A.7
For 2g � 2C n > 0 and k1; : : : ; kn � 0, we have

Fg;nŒk1; : : : ; kn� 2
�
.�a/b�1=2b

�2�2g�n
�QŒa�1; b�:

Proof
As we need to stress the dependence in a and b in this proof, we momentarily denote
!
Œa;b�
g;n the TR amplitudes associated with S Œa; b�. We claim that for 2g � 2C n > 0,

we have

!Œa;b�g;n .z1; : : : ; zn/D .�a/
.bC1/.2�2g�n/!Œ�1;b�g;n .�z1=a; : : : ;�zn=a/: (52)

This is justified by noticing that x.z/D�a Qx.�z=a/ and y.z/D .�a/b.�z=a/b with
Qx. Qz/ D c C x. Qz/jaD�1 for some constant c, Qy. Qz/ D y. Qz/jaD�1 and !0;2.z1; z2/ D
!0;2.�z1=a;�z2=a/. Since .x; y/ are involved in (40) only via the 1-form ydx in the
denominator of the recursion kernel and !g;n is reached by 2g � 2C n steps of the
recursion, we deduce (52) for n > 0. Inserting this result for !g;1 in (41), we see that
(52) also holds for nD 0.

We denote by � Œa�
k

the basis of 1-forms, since it only depends on a. One easily
checks by induction on k that

�
Œa�

k
.z/D�.�a/�.kC1=2/�

Œ�1�

k
.�z=a/:

We deduce that

F Œa;b�g;n Œk1; : : : ; kn�D .�1/
n.�a/.bC1/.2�2g�n/C

Pn
iD1.kiC1=2/F Œ�1;b�g;n Œk1; : : : ; kn�:

Since in (42) we have
P
i ki � 3g � 3C n, we obtain that, for any value of b 2 Z�,

F Œa;b�g;n Œk1; : : : ; kn� 2 .�a/
.b�1=2/.2�2g�n/ �Q3g�3CnŒa

�1�: (53)

We now study the dependence in b. Taking into account the dependence in a of the
involution, we observe that the t! 0 expansion of the kernel K.aC t1; aC t / belongs
to t�1.bab�2/�1 �QŒt�11 ; a�1; b�ŒŒt �� � dt1

dt . This implies by induction that for 2g� 2C
n > 0 and n > 0,

!g;n.t1; : : : ; tn/ 2 .ba
b�2/2�2g�n �QŒa�1; b�Œt�11 ; : : : ; t�1n �

nY
iD1

dti
ti
: (54)

Combining with (41) then extends the validity of (54) to nD 0, which together with
(53) proves the claim.
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A.3.2. Intersection theory
We recall the Hankel representation for v 2C,

1

�.v/
D

1

2i�

Z
c

et t�v dt;

where the contour c (as given by Theorem A.6) goes in the v-plane from �1� i0
to �i0, then follows the half-circle leaving 0 to its left until i0, from where it goes
to �1C i0. We also recall that for fixed ˇ 2 C, we have the asymptotic expansion
when v!1 such that jarg.v/j< � � � for some fixed � > 0,

�.vCˇ/D exp
�
v lnv� vC

�
ˇ�

1

2

�
lnvC

ln.2�/

2
C
X
d�1

.�1/dC1BdC1.ˇ/

d.d C 1/
v�d

�
;

where Bd .ˇ/ are the Bernoulli polynomials and Bd .0/DBd are the Bernoulli num-
bers (see Section 3.1). They vanish if d is odd and greater than 2.

We can compute T .u/ and R.u/ for the spectral curve (51), first setting u > 0
and a …R�:

T .u/D
b

p
2�u

eau
�1.ln.a/�1/

Z
�

ezu
�1

z�au
�1

zb�1 dz

D
b

p
2�u

eau
�1.ln.au�1/�1/�b ln.u�1/

Z
c

et t�au
�1Cb�1 dt

D
ibeau

�1 ln.au�1/�au�1C.1=2�b/ ln.u�1/C 12 ln.2
/

�.au�1C 1� b/
;

where we used the Hankel representation. Using the asymptotic expansion for ln.�/,
we obtain when u! 0,

T .u/D ibab�1=2 exp
�X
d�1

.�1/dBdC1.1� b/

d.d C 1/ad
ud
�
I

that is,

et0 D�ib�1a1=2�b; td D .�1/
dC1BdC1.1� b/

d.d C 1/ad
.for d � 1/:

We compute using integration by parts

R.u/D
eau
�1.ln.a/�1/p
�2�.au/�1

Z
�

ezu
�1
z�au

�1

.z � a/2
dz

D
eau
�1.ln.a/�1/p

�2�.au�1/�1

Z
�

ezu
�1

z�au
�1�1 dz;
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where we notice the cancellation of poles between the integrated factor .z�a/�1 and
the factor coming from the derivative, the only effect being an extra factor of .zu/�1

turning u1=2 into u�1=2 and z�au
�1

into z�au
�1�1. We then get

R.u/D

p
2�au�1eau

�1.ln.au�1/�1/

�.au�1C 1/
:

It admits the asymptotic expansion when u! 0:

R.u/D exp
�
�
X
d�1

BdC1

d.d C 1/ad
ud
�
:

Therefore, we are led to define the class

	g;nŒa; b� WD exp
°X
d�1

� .�1/dC1BdC1.1� b/
d.d C 1/ad

�d �

nX
iD1

BdC1

d.d C 1/ad
 di

C
1

2

BdC1

d.d C 1/ad

X
iCjDd�1

iirr�.� 1/
i 

j
2

C
1

2

BdC1

d.d C 1/ad

gX
hD0

X
S�ŒŒ1;n��

X
iCjDd�1

ih;S�.� 1/
i 

j
2

�±
;

where compared to (48) we have excluded the �0 term. Due to the vanishing of
odd Bernoulli numbers and the symmetry .�1/dBd .1 � b/ D Bd .b/, we have
	g;nŒ�a; b�D	

�1
g;nŒa; 1� b�. Notice that	g;nŒa; b� is a polynomial in a�1 (for each

fixed g, n), where it therefore makes sense even if a is on the negative real axis.

COROLLARY A.8
For any .a; b/ 2 C� � Z�, the TR amplitudes of the spectral curve (51) are decom-
posed as in (42) with

Fg;nŒk1; : : : ; kn�D .iba
b�1=2/2�2g�n

Z
Mg;n

	g;nŒa; b�

nY
iD1

 
ki
i : (55)

In particular,

Fg;nŒ0; : : : ; 0�D .iba
b�1=2/2�2g�n

Z
Mg;n

	g;nŒa; b�:

Proof
For a … R�, we just apply Theorem A.6. We know a priori that the left-hand side
of (55) divided by .bab�1=2/2�2g�n is a polynomial in a�1 and b, and the class
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	g;nŒa; b� depends polynomially on a�1 and b. Therefore, the equality holds for all
.a; b/ 2C� �Z�.

Remark A.9
The Chiodo class ch.R	��S/ of [12] for the values .r; s/D .1; b/ coincides with our
class 	g;nŒ1; b�. For b D 1, this is simply the Chern character of the Hodge bundle:
the first proof of Corollary A.8 in that case comes from combining [17] (ELSV for-
mula for Hurwitz numbers) and topological recursion for Hurwitz numbers in [23];
computations similar to ours appear in [42].

A.3.3. Specialization to .a; b/D .�1; 2/
For these values, the class we have constructed is precisely the Segre class appearing
in Lemma 3.2:

	g;nŒ�1; 2�D exp
�X
d�1

� .�1/dBdC1.2/
d.d C 1/

�d �

nX
iD1

.�1/dBdC1

d.d C 1/
 di

C
1

2

.�1/dBdC1

d.d C 1/

X
iCjDd�1

iirr�.� 1/
i 

j
2

C
1

2

.�1/dBdC1

d.d C 1/

gX
hD0

X
S�ŒŒ1;n��

X
iCjDd�1

ih;S�.� 1/
i 

j
2

�

D s.Eg;n/ exp
�X
d�1

.�1/d

d
�d

�
D s.Qg;n/:

The application of Corollary A.8 yields for 2g � 2C n > 0 and k1; : : : ; kn � 0,

Fg;nŒ0; : : : ; 0�D 2
2�2g�n

Z
Mg;n

s.Qg;n/: (56)

Recalling Proposition 3.1, we have proved Theorem A.5, except for the alternative
formula (45) for the nD 0 case. To obtain it, we go back to (41) which gives

Fg;0 D
1

2g � 2
Res
zD�1

.2z � 1/.zC 1/2

6

�3g�3X
kD0

Fg;1Œk��k.z/
�
: (57)

It is easy to prove by induction on k � 0 that

�k.z/D

2kX
lDk

ck;l dz

.zC 1/lC2
; ck;l 2 Z:
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Therefore, only the terms k 2 ¹1; 2º contribute to the residue in (57) and we find that

Fg;0 D
Fg;1Œ1�CFg;1Œ2�

g � 1
;

which can be rearranged into the desired equation (45).
For computations of the TR amplitudes, it is simpler to work with rational func-

tions instead of rational differential forms. We therefore set

Wg;n.t1; : : : ; tn/D
!g;n.t1C a; : : : ; tnC a/

dt1 � � �dtn
;

K.t1; t /D K.t1C a; t C a/�
0.t C a/

dt

dt1
;

„k.t/D
�k.t/

dt
:

Then Wg;n.t1; : : : ; tn/ 2
Qn
iD1 t

�1
i � CŒt

�1
1 ; : : : ; t�1n �. We focus on the case .a; b/ D

.�1; 2/, in which case

K.t1; t /D
t O� 0.t/

2.t C 1/.2� t � O�.t//

1

.t1 � t /.t1 � O�.t//
:

The recursion formula becomes

Wg;n.t1; : : : ; tn/D Res
tD0

dtK.t1; t /
�
Wg�1;nC1

�
t; O�.t/; t2; : : : ; tn

�
C

X
JtJ 0D¹t2;:::;tnº

hCh0Dg

Wh;1CjJ j.t; J /Wh0;1CjJ 0j
�
O�.t/; J 0

��
: (58)

The first elements on the basis in which we can read the Fg;n are

„0.t/D
1

t2
;

„1.t/D�
2

t3
C
3

t4
;

„2.t/D
6

t4
�
20

t5
C
15

t6
;

„3.t/D�
24

t5
C
130

t6
�
210

t7
C
105

t8
;

„4.t/D
120

t6
�
924

t7
C
2380

t8
�
2520

t9
C
945

t10
;

„5.t/D�
720

t7
C
7308

t8
�
26432

t9
C
44100

t10
�
34650

t11
C
10395

t12
:
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Table 1. For low values of .g;n/ we indicate the nonzero values of Fg;nŒk1; : : : ; kn� for
k1 � � � � � kn � 0 (the others are obtained by symmetry). These coefficients were denoted
F II
g;nŒk1; : : : ; kn� in Proposition A.5. Inserting the values in bold in (44) recovers the values of

the Masur–Veech volumes given in [2, Table 11]. The other values match with the intersection
numbers computed from (56) via admcycles (see [15]).

.g;n/ .k1; : : : ; kn/ Fg;nŒk�

.0;3/ .0;0;0/ 1
2

.0;4/ .0;0;0;0/ � 1
4

.1;0;0;0/ 1
4

.0;5/ .0;0;0;0;0/ 3
8

.1;0;0;0;0/ � 3
8

.2;0;0;0;0/ 1
8

.1;1;0;0;0/ 1
4

.2;1/ .0/ 29
5120

.1/ � 29
5120

.2/ 47
15360

.3/ � 41
46080

.4/ 1
9216

.2;0/ ; � 1
384

.g;n/ .k1; : : : ; kn/ Fg;nŒk�

.1;1/ .0/ � 1
24

.1/ 1
48

.1;2/ .0;0/ 1
32

.1;0/ � 1
32

.2;0/ � 1
96

.1;1/ 1
96

.1;3/ .0;0;0/ � 11
192

.1;0;0/ 11
192

.2;0;0/ � 5
192

.1;1;0/ � 1
24

.3;0;0/ 1
192

.2;1;0/ 1
96

.1;1;1/ 1
96

We need to expand the recursion kernel when t! 0,

K.t1; t /D
X
j��1

Kj .t1/t
j ;

and it is useful to decompose the coefficients on the .„m.t1//m�0:

K�1 D
„0

4
;

K0 D
„0

12
;

K1 D�
„0

12
C
„1

12
;

K2 D�
49„0

540
C
„1

12
;

K3 D�
59„0

1620
C
17„1

540
C
„2

60
;

K4 D�
„0

2268
�
„1

324
C
„2

36
;

K5 D
1021„0

170100
�
11„1

1260
C
97„2

3780
C
„3

420
;

K6 D
17„0

72900
�
59„1

24300
C
149„2

8100
C
„3

180
:

Applying (58) and rearranging the result as a multilinear combination of „ki .ti /, we
arrive at Table 1.
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