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Abstract

In galaxy clusters, the intracluster medium (ICM) is expected to host a diffuse, long-lived, and invisible population
of “fossil” cosmic-ray electrons (CRe) with 1–100MeV energies. These CRe, if reaccelerated by 100× in energy,
can contribute synchrotron luminosity to cluster radio halos, relics, and phoenices. Reacceleration may be aided by
CRe scattering upon the ion-Larmor-scale waves that spawn when ICM is compressed, dilated, or sheared. We
study CRe scattering and energy gain due to ion cyclotron (IC) waves generated by continuously driven
compression in 1D fully kinetic particle-in-cell simulations. We find that pitch-angle scattering of CRe by IC
waves induces energy gain via magnetic pumping. In an optimal range of IC-resonant momenta, CRe may gain up
to ∼10%–30% of their initial energy in one compression/dilation cycle with magnetic field amplification ∼3–6×,
assuming adiabatic decompression without further scattering and averaging over initial pitch angle.

Unified Astronomy Thesaurus concepts: Intracluster medium (858); Plasma astrophysics (1261); Cosmic rays
(329); Non-thermal radiation sources (1119)

Supporting material: machine-readable table

1. Introduction

Clusters of galaxies host hot, diffuse, X-ray emitting gas,
which we call the intracluster medium (ICM). Some clusters,
especially disturbed and merging clusters, also host a rich
variety of diffuse MHz–GHz radio emission in their ICM: radio
synchrotron halos, bridges, relics, and phoenices powered by
relativistic cosmic-ray electrons (CRe; van Weeren et al. 2019).
These CRe cool via synchrotron radiation and inverse-
Compton scattering off cosmic microwave background photons
over megayears to gigayears, reaching 1–100MeV energies.
Because radiative power losses decrease at lower electron
energies, and Coulomb collisions are weak in the ICM, MeV
“fossil” CRe may persist in clusters for Gyr (Enßlin 1999;
Petrosian 2001; Pinzke et al. 2013).

Fossil CRe energies are too low to emit detectable radio
synchrotron emission. However, a reacceleration of 100× in
energy can make fossil CRe shine again in radio synchrotron
and permit them to contribute to the power budget of radio
emission in the ICM (Brunetti et al. 2001; van Weeren et al.
2019; Brunetti & Vazza 2020). Many mechanisms can energize
fossil CRe: large-scale adiabatic compression from subsonic
sloshing or shocks (Enßlin & Gopal-Krishna 2001; Markevitch
et al. 2005), diffusive shock acceleration in cluster merger
shocks (Kang et al. 2012; Guo et al. 2014; Kang & Ryu 2016;
van Weeren et al. 2017; Ha et al. 2022), and wave damping or
reconnection within a turbulent scale-by-scale cascade (Bru-
netti & Lazarian 2007, 2011, 2016).
We consider another possibility for reaccelerating fossil

CRe, wherein large-scale deformation—compression, dilation,
or shear—drives small-scale plasma waves that might directly
scatter and energize CRe. When the ICM deforms on

timescales shorter than the Coulomb collision time and longer
than the Larmor gyration time, the B-perpendicular temper-
ature T⊥ changes due to conservation of particle magnetic
moment p B2

^ , and the B-parallel temperature T∥ changes due
to conservation of particle bounce invariant ∮ p∥ ds integrated
along a field line (assuming periodicity in parallel motion). As
T⊥ and T∥ evolve independently, the plasma becomes
temperature and pressure anisotropic: Δ≡ T⊥/T∥− 1≠ 0.
Because the ICM’s thermal pressure dominates over magnetic
pressure, i.e., its plasma beta βp= Pthermal/Pmagnetic? 1,
Δ≠ 0 easily triggers the growth of various Larmor-scale
plasma waves (Kasper et al. 2002; Bale et al. 2009; Kunz et al.
2014, 2019). The strongest waves reside at proton Larmor
scales; although they are triggered by and regulated by proton
anisotropy, they may also interact with fossil CRe, which
gyrate more slowly and have larger Larmor radii than typical
ICM thermal electrons.
We focus on CRe interaction with ion cyclotron (IC) waves

driven by thermal ICM proton (i.e., ion) anisotropyΔ> 0, with
the anisotropy in turn driven by continuous compression. IC
waves interact with electrons via the gyroresonance condition:

∣ ∣ ( )kv , 1ew g- = - W


where ω is wave angular frequency, k= 2π/λ is wavenumber,
λ is wavelength, v∥ is electron velocity parallel to B, Ωe=
− eB/(me c) is the signed nonrelativistic electron cyclotron
frequency, and γ is the electron’s Lorentz factor. Equation (1)
specifies an “anomalous” resonance, wherein an electron
overtaking the wave (|v∥|> |ω/k|) sees the Doppler-shifted
IC wave polarization as right-circular rather than left-circular,
thus enabling gyroresonance (Tsurutani & Lakhina 1997;
Terasawa & Matsukiyo 2012). The resonance condition is
simplified in the low-frequency limit, appropriate for ICM
plasma with Alfvén speed vA/c= 1 and ion–electron mass
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Here, v k T m3th,i B i i= is the ion thermal velocity. The form
of Equation (2) anticipates that k−1 is on the order of the ion
Larmor radius ρi for temperature-anisotropy-driven IC waves at
marginal stability (Davidson & Ogden 1975; Yoon et al. 2010;
Sironi & Narayan 2015).5For ICM temperatures
Ti≈ Te∼ 1–10 keV (Chen et al. 2007), IC waves with k
ρi∼ 0.5, and mi/me= 1836 for a proton–electron plasma, we
anticipate resonant momenta p∥∼ 7 to 21mec within the
expected range for fossil CRe in the ICM, p∼ 1 to 300mec
(Pinzke et al. 2013). We thus expect that IC waves may
efficiently scatter fossil CRe.

Gyroresonant IC wave scattering may energize CRe in at
least two different ways. First, the nonzero phase velocity of IC
waves will transfer energy from waves to CRe via second-order
Fermi acceleration (Fermi 1949), but this is slow because the
energy gain per cycle scales with the square of the scatterers’
velocity, ( )v c 1A

2  for IC waves. Second, pitch-angle
scattering couples parallel and perpendicular momenta p∥, p⊥
and drives CRe toward isotropy. Pitch-angle scattering, in
isolation, conserves particle energy. However, scattering during
bulk deformation can heat particles via magnetic pumping if
the scattering rate is comparable to the bulk deformation rate
(Berger et al. 1958; Lichko et al. 2017).
Magnetic pumping in a compressing plasma works as

follows. Because particle momenta p⊥ and p∥ have different
adiabatic responses to compression, a scattering rate compar-
able to the bulk compression rate can cause a net transfer of
energy from p⊥ to p∥ over one compression–decompression
cycle; this energy transfer may be linked to a phase difference
between pressure anisotropy and magnetic field compression
(Lichko et al. 2017). Magnetic pumping has been previously
studied in the contexts of plasma confinement, planetary
magnetospheres, and the solar wind (Alfvén 1950; Schlü-
ter 1957; Berger et al. 1958; Goertz 1978; Borovsky et al.
1981, 2017; Borovsky 1986; Lichko et al. 2017; Fowler et al.
2020; Lichko & Egedal 2020).
In high-βp plasmas with Δ> 0, anisotropy-driven IC waves

may not be the dominant fluctuations. Nonpropagating
structures created by the mirror instability are thought to
prevail over IC waves, based on theory (e.g., Shoji et al. 2009;
Isenberg et al. 2013) and measurements in Earth’s magne-
tosheath (Schwartz et al. 1996) and the solar wind (Bale et al.
2009). Nevertheless: IC waves may coexist with mirror
structures; IC waves appear in 3D hybrid simulations of
turbulent high-βp plasma (Markovskii et al. 2020; Arzamasskiy
et al. 2023); there may be local regions of the ICM with
reduced plasma βp or with reduced electron/ion temperature
ratio Te/Ti (Fox & Loeb 1997) more conducive for IC wave
growth. Mirror modes also have k i

1r~ - , so they may
nonresonantly scatter fossil CRe and drive magnetic pumping
as well. The same will likely hold for firehose modes excited
when Δ< 0.

IC-resonant scattering of relativistic MeV electrons also
occurs in Earth’s radiation belts and can precipitate electrons
into the upper atmosphere (e.g., Thorne & Kennel 1971;
Meredith et al. 2003; Zhang et al. 2016; Adair et al. 2022). In
particular, Borovsky et al. (2017) studied the same mechanism
as this article—compression-driven IC waves energizing
relativistic electrons via magnetic pumping—applied to Earth’s
outer radiation belt.

2. Methods

We simulate continuously compressed ICM plasma using
the relativistic particle-in-cell (PIC) code TRISTAN-MP
(Buneman 1993; Spitkovsky 2005). The PIC equations are
solved in comoving coordinates while subject to global
compression or expansion, as implemented by Sironi &
Narayan (2015), similar to hybrid expanding box simulations
in the literature (Liewer et al. 2001; Hellinger et al. 2003;
Hellinger & Trávníček 2005; Innocenti et al. 2019; Bott et al.
2021). To do this, Sironi & Narayan (2015) transform from the
physical laboratory frame (tlab, x lab) to a comoving coordinate
frame ( )xt ,¢ ¢ via a transformation law x Lxlab = ¢, where:

⎛

⎝
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and the differential transformation law is:

x L x Lxd d dt .lab = ¢ + ¢ ¢


The scale factors ax, ay, and az are >1 for expansion and <1 for
contraction. We report quantities (fields, particle positions,
momenta, distribution function moments) in physical CGS
units in the plasma’s local rest frame; i.e., the unprimed
coordinates x L xd d= ¢ of Sironi & Narayan (2015).
We use a 1D domain parallel to a background magnetic field

B, which permits the growth of parallel-propagating IC waves
and precludes the growth of the mirror instability. Our domain
and magnetic field B are aligned along y; all wavenumbers
k≡ ky in this article. We compress along both x and z axes by
choosing scale factors:

( ) ( ) ( )a t a t
qt

1

1
, 3x z= =

+


where q> 0 is a tunable constant controlling the compression
rate. We fix ay(t)= 1. The background field evolves consistent
with flux freezing as

( ) ( )B B t B qt1 ,y g 0
2= = +


where B0 is the initial field strength. The imposed B
-perpendicular compression conserves two particle invariants,
p B2
^ and p∥, if there is no wave–particle interaction (Sironi &
Narayan 2015, Appendix A.2).
The ICM is modeled as a thermal ion–electron plasma with

Maxwell–Jüttner distributions of initial temperature T0 and
density n0 for each species. The fossil CRe are modeled as test
particles, i.e., passive tracer particles, which advance according
to the electromagnetic fields on the grid but do not contribute to

5 For kc 1piw = D D + at marginal stability (Equation (6) in Davidson
& Ogden 1975), adopting S i

0.5
bD = with order-unity constant S (Sironi &

Narayan 2015) yields k ρi ≈ S for Δ = 1. Here c/ωpi is the ion skin depth, and
βi∥ is the B -parallel ion beta.
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the plasma dynamics—in the PIC algorithm, they have no
weight and so deposit no current. The treatment of fossil CRe
as passive tracers is motivated by their low kinetic energy
density, ∼104× smaller than the thermal ICM, in cluster
outskirts as simulated by Pinzke et al. (2013, Figure 3).
However, fossil CRe could become dynamically important in
the recently shocked ICM responsible for radio relics; see, e.g.,
Böss et al. (2023, Figure 11) and Ha et al. (2022).

Standard length- and timescales are defined as follows for
thermal plasma species sä {i, e}. The signed, nonrelativistic
particle cyclotron frequency Ωs= qs B/(ms c). The plasma
frequency n e m4ps s

2
sw p= . The Larmor radius ρs=ms vth,s

c/(eB), where v k T m3th,s B s s= is a thermal velocity.
Subscript 0 in Ωs0, ωps0, ρs0, and other symbols hereafter
means that the quantity is evaluated at t= 0. Subscripts ⊥ and
∥ indicate vector projections with respect to the background
magnetic field direction ŷ .

Our results center on one “fiducial” simulation with ion-to-
electron mass ratio mi/me= 8, initial plasma beta

n k T B16 20p0 0 B 0 0
2b p= = , initial Alfvén speed v cA0 =

( )B m m n c4 0.0670 i e 0
2p + = , and compression timescale

q 8001
i0
1= W- - . The choice of vA0/c is equivalent to choosing

an initial temperature of kB T0/(me c
2)= 0.2 for fixed βp0. We

use 16,384 particles per cell for the thermal plasma (i.e., 8192
ions and 8192 electrons per cell); Appendix E shows
convergence with respect to the number of particles per cell.
The plasma skin depth c pe0

2
pi0
2w w+ is resolved with five

cells. The domain size is 4608 cells= 307.2c/ωpi0= 79.3ρi0.
The Debye length ( )k T n e4De B 0 0

2l p= is resolved with 2.4
cells. The numerical speed of light is 0.25 grid cells per
simulation time step to ensure that the Courant–Friedrichs–
Lewy condition is satisfied for smaller physical cell lengths at
late simulation times (Sironi & Narayan 2015, Appendix A.1).
In each time step, the electric current is smoothed with 32
passes of a three-point binomial (“1-2-1”) filter, approximating
a Gaussian filter with a standard deviation of four cells
(Birdsall & Langdon 1991, Appendix C). Outputs are saved at
1 i0

1~ W- intervals.
We use two different initial test-particle CRe distributions

f (p)dp depending on our analysis needs: f (p) constant (flat) or
f (p)∝ p−1 to uniformly sample p or plog , respectively. Both
distributions are isotropic. The f (p) constant case uses
2,880,000 CRe in p= 0 to 70me c, and the f (p)∝ p−1 case
uses 14,400,000 CRe in p = 0.0014 to 1400me c. Neither case
mimics nature, but the uniform p and plog sampling means that
our results can be reweighted to describe any initially isotropic
CRe distribution. The test-particle distributions span the
momentum range of CRe that should be efficiently scattered
by IC waves in our simulation: p∥∼ 4 to 25me c based on
Equation (2).6

Besides our fiducial simulation, we also run simulations with
varying q, mi/me, vA0/c, and βp0; the detailed parameters are
given in Appendix F and Table 1. The domain size is pinned to
∼80ρi0 for all such simulations. The test-particle CRe spectrum
is kept flat ( f (p) constant), but the upper bound is rescaled
according to (mi/me)(vth,i/c) per Equation (2) to capture the
momentum range of the expected IC gyroresonance. The
simulations with varying βp0 are not presented in the main text
and appear only in Appendix B. In cases with slow

compression, e.g., q 32001
i0
1W =- - or mi/me= 32 in

Table 1, we saw gyrophase-dependent numerical errors in
particle momenta when using single-precision (32 bit) floats in
the PIC algorithm. We therefore use double-precision (64 bit)
floats for all simulations in the article, except for convergence
checks in Appendix E.
Besides IC waves, whistlers (i.e., electron cyclotron waves)

are excited by the thermal electrons in our simulations. To help
separate the effects of whistler and IC waves upon fossil CRe
energy gain, we perform simulations in which one particle
species, ions or electrons, is compressed isotropically in order
to suppress that species’ cyclotron waves. The species may still
participate in plasma dynamics by generating currents. To
implement isotropic compression, we modify the comoving
momentum equation (Boris particle push):

⎛
⎝

⎞
⎠

( )p
LL p E

v
B

d

dt
q

c
. 41= - + + ´-


For the chosen species, we set the diagonal elements of LL 1 - in
the Boris pusher to ax= ay= az= 1/(1+ qiso t). We choose
qiso= 2q/3 to match the initial energy input rate from
anisotropic compression; i.e., at t= 0, the determinant

( )Lℓ q tdet 1 1 iso
3º = + has first derivative equal to that

for the anisotropic ℓ= 1/(1+ qt)2. The rest of the code in the
PIC algorithm retains the anisotropic compression. For
electrons, isotropic forcing is only applied to regular particles
(thermal ICM) and not test particles (fossil CRe).

3. Wave Properties

3.1. Time Evolution

The simulation evolves as follows. The compression at first
drives ( )T B t T constantg µ > =^ for all species while con-
serving the adiabatic invariants of magnetized particles
(Northrop 1963), which can be recast according to the
Chew–Goldberger–Low (CGL) fluid theory as pressure or
temperature invariants (Chew et al. 1956). Instability is
triggered, and waves grow, between t= 0.2q−1 and 0.5q−1

(Figures 1(a)–(c)). Right-circularly polarized (RCP) whistlers
appear first and are the dominant mode at t= 0.2q−1, followed
by left-circularly polarized (LCP) ion cyclotron waves from
t = 0.3 to 0.5q−1. The wave polarizations are distinguished by
Fourier transform of Bz+ iBx in Figure 1(a), which separates
LCP and RCP waves into ω> 0 and <0, respectively,
following Ley et al. (2019). The wave fluctuation power
( )B Bg 2d ^ saturates at a near-constant or slightly decreasing
level by t∼ 0.55q−1 (Figure 1(c)); while saturated, the IC wave
power drifts toward lower ω and k (Figures 1(a)–(b)). We plot a
manually chosen approximation to the k-space drift,

( ) [ ( ) ] ( )k t qt c0.09 0.18 1.5 , 5IC
5

pi0w= + -


in Figure 1(b), to be used later in this article (Section 7).
The saturated waves drive the ion and electron temperature

anisotropy Δ away from CGL-invariant conservation and
toward a marginally stable state at late times t 1q−1

(Figure 1(d)). At marginal stability, we expect s
0.5
bD µ - for

both ions (Gary & Lee 1994; Gary et al. 1994b; Hellinger et al.
2006) and electrons (Gary & Wang 1996; Gary & Karima-
badi 2006), where ( ) ( ) ( )n t k T t B t8 gs B s

2
 b p= . We fit the6 Assuming k ρi ∼ 0.5 and Bg(t) increasing 6× from t = 0 to 1.5q−1.
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relation As s
0.5
bD µ - between t= 1q−1 and the simulation’s

end to obtain Ai= 0.98± 0.02 and Ae= 0.785± 0.012; the
best-fit relations are the dotted lines in Figure 1(d). The
uncertainty on Ai and Ae is one standard deviation estimated by
assuming 1reduced

2c = , as no data uncertainty is used in fitting.
We expect that the systematic uncertainty is larger.

When the IC waves saturate, we expect balance between
compression increasing Δ and wave pitch-angle scattering
decreasing Δ, as suggested by the marginal-stability scaling in
Figure 1(d). This balance may be stated as:

( ) ( ) ( )d

dt

B

B
1 2 3 0, 6


n

D
= D + - D D + »


which we obtain from moments of the Vlasov equation with a
Lorentz-operator scattering frequency ν constant with respect
to momentum p and pitch-angle cosine μ≡ p∥/p
(Appendix A), using a drift-kinetic model as in Zweibel
(2020) and Ley et al. (2023) and following a similar argument
as in Kunz et al. (2020, Section 3.1.2). If scattering scales like
the quasi-linear approximation, B 2n dµ ^ , then we expect

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠
⎛
⎝

⎞
⎠( ) ( ) ( ) ( )
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B t t

B B
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1

2 3
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2

i i

i

i i

d n
µ

W
»

W
D +

D D +
^


In taking Δ=Δi, we assume that only ions source and control
the wave power ( )B B 2d ^ at late times. In Figure 1(c), we show
Equation (7) computed with arbitrary normalization and using
Δi= Ti⊥/Ti∥− 1 measured from the simulation. Equation (7)
does not explain the total late-time wave power in our
simulation, but it better matches the power in currently
unstable IC waves (Figures 1(a), (c)). We conjecture that
waves in the unstable IC region may be most important for
regulating Δi, in contrast to the stronger IC wave power at
lower k.

The total plasma beta decreases to half its initial value by the
simulation’s end, with ions hotter than electrons (Figure 1(e)).
At early times t 0.1q−1, βe⊥ deviates from the nonrelativistic
CGL prediction because electrons are almost relativistic with
kB T0= 0.2 me c

2.

3.2. Wave Identification

Let us now more closely study the wave properties and
evolution. To predict the wave ω, k, and damping/growth as a
function of time, we solve the nonrelativistic dispersion relation
for B -parallel electromagnetic waves in a bi-Maxwellian ion–
electron plasma:

⎜ ⎟⎛
⎝

⎞
⎠
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥( ) ( ) ( )

D
k c

Z
T

T
Z

1

1

2
1 8

2 2

2

s
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2

0 1
s

s
1


å

w
w
w

z z z

= -

+ - - ¢




^




as stated in Davidson & Ogden (1975) and Stix (1992, Section
11-2), keeping only the n= 0, ± 1 resonant terms. The
subscript s= i, e indexes component species,

( ) ( ) ( )Z i t dt2 exp exp
i2 2òz z= - -
z

-¥
is the plasma dispersion

function (Fried & Conte 1961), ζn= (ω− nΩs)/k∥ ws∥, and
w k T m2 ss B s = . We approximate Ts∥ and Ts⊥ using the
second moments of the ion and electron distributions in our
simulations. In Equation (8), ω= ωR+ iΓ is complex, but in all
other text and figures, ω refers only to the real angular
frequency ωR unless otherwise noted. The imaginary part Γ> 0
for instability and <0 for damping. We use Equation (8) to
show the unstable ω range for LCP waves over time in
Figure 1(b), and to show the expected ω and k for both LCP
and RCP waves in the ω–k power spectra of Figure 2.
We note several features of interest in the Bz+ iBx spectro-

gram (Figure 1(b)). LCP and RCP modes both appear at
t∼ 0.2q−1. The LCP mode is more monochromatic and has
lower ω, while the RCP mode has broader bandwidth and
higher ω. The LCP modes persist from t> 0.2q−1 through the
rest of the simulation. The RCP modes appear in two transient
bursts, at t = 0.2 and 0.4 q−1, and the second RCP burst
coincides with a growth in the LCP power and near-peak ion
anisotropy Δi. Some RCP power aliases from ω< 0 into ω> 0
at the top of Figure 1(b) and in each panel of Figure 2.
The LCP power splits into high- and low-frequency bands at

t≈ 0.8–1.0q−1 (Figure 1(a)); each band continues to, respec-
tively, rise and fall in frequency over time. The high-frequency
LCP power lies within the expected ω range of IC wave
instability as predicted by Equation (8). The low-frequency
LCP power resides in a frequency/wavenumber range that is
not expected to spontaneously grow IC waves. We remain
agnostic about why the low-frequency LCP power evolves
toward low k, but we note that Ley et al. (2019, Figure 9) saw a
similar drift of the IC wave power to low k in a shearing-box
PIC simulation. In Appendix C, we show that wave power
drifts to low frequencies even if compression halts at
t= 0.5q−1, so the low-frequency power drift is not caused by
external compression or by a numerical artifact of the
comoving PIC domain.
We verify that the LCP and RCP modes are IC waves and

whistlers, respectively, by inspecting the ω–k power spectra
in three time intervals (Figure 2). The LCP wave power
agrees well with the predicted (ω, k) from Equation (8) in all
time snapshots of Figure 2, and the previously noted high-
frequency band in Figure 1(b) agrees well with the
prediction for IC wave instability. The RCP wave power
agrees with the bi-Maxwellian whistler dispersion in some
respects. The phase speed ω/k agrees with Equation (8) at
later times (Figures 2(b)–(c)). In simulations with higher
mi/me (Appendix B), the RCP phase speed ω/k increases
with respect to the LCP phase speed and continues to agree
with Equation (8). However, the RCP wave power disagrees
with the bi-Maxwellian dispersion curve in some respects.
At early times t = 0.2–0.3q−1, the RCP mode is offset
toward higher k than expected for the whistler mode; it does
not appear to lie on a curve passing through (ω, k)= (0, 0).
At later times, the RCP power shows better agreement with
the whistler mode: the k offset disappears and RCP power
connects continuously to (ω, k)= (0, 0) (Figures 2(b)–(c)).
The later-time RCP power also has ω somewhat lower than
that predicted by Equation (8) for k = 0.5–1.0ωpi0/c
(Figures 2(b)–(c)). Some more observations on the RCP
mode are in Appendix B. All considered, despite the
imperfect agreement with Equation (8), we attribute the
RCP waves to thermal electron anisotropy and call them
whistlers hereafter.
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Equation (8) is approximate, as particles are not exactly bi-
Maxwellian. Wave scattering alters distributions to quench
instability, and the resulting anisotropic distributions can be
stable to ion cyclotron waves (Isenberg et al. 2013).
Appendix C checks the frequency of waves driven unstable

by the actual particle distribution, and we find that the resulting
waves do lie in a high-frequency LCP power band as predicted
by Equation (8), validating our use of the bi-Maxwellian
approximation in this context.
Equation (8) also does not account for the background

plasma density and magnetic field varying during instability
growth; the plasma properties are assumed to vary on a much
longer timescale than is relevant to the linear dispersion
calculation. The maximum IC growth rate predicted by
Equation (8) is 0.1 i0~ W at t≈ 0.5q−1 (Figure 2(b)), which is
80× faster than the compression rate q. The growth rate may be
smaller in practice due to particles quenching their own
instability; nevertheless, we expect that waves should grow on
a short timescale that is well separated from the compres-
sion time.

Figure 1. (a) Wave power spectral density (PSD) of (Bz + iBx)/Bg(t). Left- and
right-circularly polarized (LCP, RCP) waves have ω > 0 and ω <0,
respectively. The white line is the ion cyclotron frequency Ωi(t). Black dotted
lines mark the region of unstable IC waves with linear growth rate
Γ > 10−3 Ωi0 from Equation (8). PSD is normalized so that the ω-axis average
yields ( )B B tg

2 2d ^ . (b) Wave PSD with k on the y-axis. The axis limits omit
high-k power to emphasize low-k LCP waves. The white curve is Equation (5)
for t > 0.3q−1. (c) Total magnetic fluctuation power ( )B B tg

2 2d ^ (solid black).
Green squares and red circles, respectively, show the LCP and RCP power
from (a). The purple stars show the power within the unstable IC wave region
from (a); i.e., PSD between the black dotted lines. The saturated wave scaling
Equation (7) (dashed black) is plotted with arbitrary normalization. Gray bands
mark the time intervals in Figures 2–3. (d) Ion (blue) and electron (orange)
temperature anisotropy with best-fit scalings at marginal stability:

0.98i i
0.5
bD = - (dotted blue), 0.785e e

0.5
bD = - (dotted orange). (e) Ion and

electron plasma beta perpendicular (solid) and parallel (dashed) to B ; colors as
in (d). In (d)–(e), the light-gray curves are nonrelativistic CGL predictions for
adiabatic compression.

Figure 2. Power spectrum of Bz + iBx for three different time intervals.
Positive/negative ω are LCP/RCP, respectively. The real and imaginary parts
of the bi-Maxwellian dispersion relation, ω(k) and Γ(k) computed from
Equation (8), are the red and white curves, respectively. Only Γ > 0, indicating
instability, is shown. The IC and whistler growth rates are plotted 5× and 2×
larger than their true values for visibility. The dashed red curve is high-
frequency whistler mode, aliased due to finite time sampling. The dispersion
curves truncate when damping becomes strong, Γ(k) < − |ω(k)|.
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4. Wave Scattering

Let us compare the CRe scattering directly measured in our
simulations against the quasi-linear theory (QLT) description of
resonant scattering as a diffusive process, in the limit of weak,
uncorrelated, and broadband waves (Jokipii 1966; Kennel &
Engelmann 1966; Kennel & Petschek 1966; Kulsrud &
Pearce 1969). In particular, we wish to check the following.
(1) Do particles with a 90° pitch angle (i.e., p⊥? p∥) scatter
efficiently in our simulations? As p∥→ 0, the resonant
wavenumber kres  ¥, and particles cannot scatter at exactly
90° pitch angle in QLT. (2) Does the resonant QLT description
hold for our simulations? The saturated wave power δ
B⊥/B∼ 0.1 (Figure 1(a)) may be too strong to satisfy QLT
(Liu et al. 2010). Strong waves may lead to, for example,
momentum-space advection instead of diffusion (Albert &
Bortnik 2009).

We compute the QLT diffusion coefficient Dμ μ for the
pitch-angle cosine p pcos m a= = , assuming low-frequency
(ω≈ 0) waves, following Summers (2005):

( ) ( ) ∣ ( )∣ ( )
( ) ( )

( )D p
t k W k

B t
, 1

2 8
. 9

g

2 e res res
2

m m
p

g p
» -

W
mm


Because momentum scattering is subdominant in our simula-
tions (Section 9), and is expected to be even more subdominant
for lower vA/c in the real ICM, we neglect the QLT diffusion
coefficients Dpp and Dp μ for now. The resonant signed
wavenumber is

( )
( )k

eB t

pc
, 10

g
res

m
= 


with + and − signs for CRe resonance with IC and whistler
waves, respectively. We take W(k) to be the two-sided wave
power spectrum of B2d ^ measured directly from our simulation,
with the sign of k specifying propagation direction. We
decompose W(k)=WL(k)+WR(k) into LCP and RCP pieces
by Fourier transforming Bz+ iBx over a time window of length
18.9 i0

1W- , which is 4× larger than the time step used to measure
particle scattering. The power at ω� 0 is assigned to WL and
the remainder to WR. We smooth WR(k) and WL(k) with a
Hanning window of length 0.14ωpi0/c (7 points) and then
linearly interpolate to compute Dμ μ for arbitrary (p, μ).
Because our simulation has balanced forward- and backward-
propagating waves, we average Dμ μ over μ< 0 and μ> 0 in
Figure 3.

We directly measure 〈ΔμΔμ〉/(2Δt) by computing Δμ= μ

(t+Δt)− μ(t) over an output time step t 4.7 i0
1D = W- for each

test-particle CRe. The pitch angle α is defined with respect to
the background field ( ) ˆB t yg . Then, we compute the particle-
averaged 〈ΔμΔμ〉 as a function of the phase-space coordinates
(p, |μ|) using and 140 bins over p ä [0, 70]me c and 50 bins
over |μ|ä [0, 1]. The choice of Δt affects the shape and
strength of the scattering regions in Figures 3(j)–(l). We find
that time steps Δt= 4.7–18.8 i0

1W- give somewhat consistent
scattering region shapes, but shorter time steps
Δt= 0.9–1.9 i0

1W- do not resolve the scattering interaction,
especially for the highest p CRe. Appendix D further shows

and discusses the effect of varying Δt in our scattering
measurement.
Figure 3 compares the measured pitch-angle scattering rates

〈ΔμΔμ〉/(2Δt) (Figures 3(j)–(l)) to the predicted rates Dμ μ

from LCP (Figures 3(d)–(f)) and RCP (Figures 3(g)–(i)) waves
at t = 0.25, 0.45, and 1.05q−1. The smoothed WL and WR used
to compute Dμ μ are shown in Figures 3(a)–(c); the one-sided
spectra, as normalized, are averages of two-sided spectra over
k> 0 and k< 0. The full QLT prediction for Dμ μ is the sum of
the middle two rows (d)–(i), which separate the ion cyclotron
and whistler contributions to show their relative importance.
White dotted lines mark all particles resonant with a wave of
given kres according to Equation (10). At t= 0.25q−1 (left
column), the whistler power is strong and the particles most
efficiently scattered have small momenta p∼ 1–5me c. At
t= 0.45q−1 (middle column), the ion cyclotron power has
overtaken whistlers in strength, with most resonant scattering
predicted at the k= 0.3ωpi0/c contour, though the measured
scattering 〈ΔμΔμ〉 has a broader bandwidth in (p, |μ|) space
and does not exactly follow the resonant contour shape of
Equation (10). At t= 1.05q−1 (right column), the wave power
is saturated (Figure 1(a)) and the IC spectrum has broadened to
k= 0.1 ωpi0/c, as seen in both the 1D wave spectrum (top row)
and the QLT prediction (second row).
As time progresses, both the measured and modeled

scattering extend toward larger p due to two effects. First, the
increase in Bg(t) leads to a rightward drift of the resonant
contours p∝ Bg(t)/μ (Equation (10)) for fixed kres. Second, the
saturated wave power drifts toward smaller k over time
(Figures 1(c), 3(b)–(c)). Comparing Figures 3(e) and (f), the
QLT-predicted scattering expands from the k= 0.3 ωpi0/c
contour to k= 0.1 ωpi0/c as time progresses. Likewise,
comparing Figures 3(k) and (l), the measured scattering
expands beyond the k= 0.1 ωpi0/ccontour. The drift of k-
resonant surfaces through momentum space due to both effects
allows the cyclotron modes to interact with and scatter a larger
volume of CRe than would otherwise be possible.
The measured scattering differs from the QLT prediction in

some respects. The scattering region in (p, |μ|) is continuous
through the μ= 0 (α= 90°) barrier, and the region is more
extended in (p, |μ|) space compared to the QLT prediction.
Scattering through μ= 0 may be explained by the mirroring of
particles with ( )B B 2g

2
m
2m d< ^ (Felice & Kulsrud 2001,

Equation (22)), where ( )B Bg m
2d ^ is the power at the specific

wavenumber(s) responsible for nonresonant mirroring. The
total wave power (Figure 1(a)) sets an upper bound
( )B B 0.03g m

2d ^  , and so we expect mirroring to be important
at |μ| 0.12. We speculate that resonance broadening (e.g.,
Tonoian et al. 2022) or a nonmagnetostatic calculation with ω/
k≠ 0 may also expand the scattering extent in (p, |μ|). In
particular, the magnetostatic assumption is less valid for the
higher vA/c in our simulations as compared to that of the real
ICM. See also Holcomb & Spitkovsky (2019) for further recent
discussion.

5. Particle Spectrum from Magnetic Pumping

We now seek a time-integrated view of the energy gain due
to magnetic pumping from IC wave scattering during
compression. Some particles scatter more efficiently and at
different times than others, and it follows that some fossil CRe
may gain more energy from magnetic pumping than others.
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To frame the problem, we ask: given CRe of initial
momentum p0 at t= 0, what is their energy gain due to
magnetic pumping during compression? We consider the
following hypothetical scenario. After a compression to time
t in our simulation, let the test-particle CRe decompress back to
their initial volume, with no further wave scattering during
decompression; i.e., map [ ( )]p p B B t0

1 2^ ^ and hold p∥
constant for all particles. We call this adiabatic decompression
a “reversion” of the particle distribution, and we say that the
particles have undergone a “compress-revert” cycle. The
decompressed particle energy is defined as

( ) ( ) ( ) [ ( )]t p t p t B B t1 .revert
2 2

0g = + + ^


One cycle of compression to arbitrary time t, followed by a
revert, yields an energy gain:

( ) ( )U U U t t 0 ,revert revert 0 revertg gD = - = á ñ - á = ñ


where U(t)= 〈γ(t)〉, U0=U(t= 0), and angle brackets 〈L〉 are
ensemble averages over particles in an initial momentum bin
p0. Recall that our initial test-particle CRe distribution is
isotropic; i.e., uniform on μ ä [−1, +1]. We useΔUrevert(t) as a
proxy for magnetic pumping efficiency.

The “revert” is artificial; particles may scatter during
decompression. However, the compress-revert cycle permits
us to focus solely on magnetic pumping due to compression-
driven waves, without needing to also study and separate the
effect of decompression-driven waves (e.g., firehose).
We shall now seek to understand how particles respond to a

compress-revert cycle, before proceeding to use ΔUrevert as a
proxy for magnetic pumping efficiency. In Figures 4–5, we use
a test-particle CRe spectrum ( )dN dp f p p 1= µ - that uni-
formly samples plog with p ä [0.0014, 1400]me c using
14,400,000 particles. However, we reiterate that our results
can be reweighted to apply to any initial f (p), and Figure 5
shows one such reweighting to f (p)∝ p−2.
Figure 4 shows one compress-revert cycle acting upon the

simulated CRe, where the “Final” particle distribution is from
the simulation’s end, and the “Revert” particle distribution is
taken after one compress-revert cycle. The “Final,CGL”
distribution shows the same compression as for “Final,” but
without scattering. We call attention to four points. First, the
“Revert” particle spectrum is skewed; although the mean
“revert” particle momentum is ∼1.1–1.3× p0, individual
particles may be energized up to ∼2.4× p0 (Figures 4(a)–
(c)). Second, scattering is strongest for low starting p0 and
weakens toward higher p0, as judged by the particles’ deviation
from the predictions for adiabatic compression and adiabatic
decompression (Figures 4(d)–(l), black curves). Third, the final
particle momentum correlates with the cosine of the particle’s

Figure 3. Measured scattering compared to the quasi-linear model at three different times advancing from left to right. (a)–(c) LCP (blue line) and RCP (orange line)
magnetic power spectra WL and WR. The spectra are normalized using the number of grid points N and the Fourier spacing Δk so that ( ) ( )W W dk B BgL R

2ò d+ = ^ .
The thick line is the spectrum smoothed with a Hanning window of length 0.14ωpi0/c (7 points), as used to compute Dμ μ in panels (d)–(i) below. (d)–(f) Quasi-linear
model for LCP (IC) wave diffusion computed using WL. (g)–(i) Quasi-linear model for RCP (whistler) wave diffusion computed using WR. (j)–(l) Measured pitch-
angle scattering rate 〈ΔμΔμ〉/(2Δt) for test-particle CRe. White dotted lines mark particles resonant with wavenumbers, from left to right: k c 1res pi0w = , 0.3, and
0.1, according to Equation (10); the same wavenumbers are marked as vertical dotted black lines in panels (a)–(c). All scattering rates in panels (d)–(l) are scaled
by Ωi0.
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initial pitch angle μ0, and that correlation strengthens for larger
p0 (Figures 4(d)–(f)). The energy gain for particles with large
p0 is nearly consistent with adiabatic compression, shown by
comparing the “Final” particle distributions to the “Final,CGL”
curve in Figures 4(a)–(c) and thick black curves in Figures 4(d)
–(l). Fourth, the “Final” particle distribution extends rightward
of the expected maximum momentum from adiabatic compres-
sion alone, ( )p B t B0 0 , from comparing the “Final” and
“Final,CGL” distributions in Figures 4(a)–(c). We attribute the
particles with ( )p p B t B0 0> to momentum diffusion Dpp;
the number of such particles decreases as we lower vA0/c
toward realistic values for the ICM and hence decrease Dpp.

We can model the magnetic pumping upon any isotropic
CRe spectrum f (p) by computing the response of a Dirac-delta
distribution δ(p−p0) to one compress-revert cycle, for multiple
choices of constant p0, in the spirit of a Green’s function. Let p
and p¢ be momentum coordinates before and after a compress-
revert cycle, respectively. Define ( )G p p dp, 0¢ ¢ as the distribu-
tion obtained by applying one compress-revert cycle to an
initial distribution f (p)dp= δ(p−p0)dp with p0 being an
arbitrary constant, similar to Figures 4(a)–(c). To construct G,
we average over μ, even though the particle spectrum after a
compress-revert cycle is not isotropic (Figures 4(j)–(l)). Then,
the action of one revert cycle upon f (p) is:

( ) ( ) ( ) ( )f p f p G p p dp, 11revert ò¢ = ¢


for any f (p). To numerically implement Equation (11), we
compute ( )G p p,¢ for each of 300 logarithmically spaced bins
over p ä [0.0014, 1400]me c with 96,000 test-particle CRe
per bin.

Figure 5 demonstrates the effect of magnetic pumping for an
“Initial” spectrum f (p)dp∝ p−2 dp with lower bound
p= 10−0.5 me c. The “Revert” spectrum frevert has two distinct
bumps compared to the Initial spectrum (Figure 5(a)). We
attribute the higher-p bump at p∼ 10–100me c to the IC wave
resonance; hereafter, we call this the “IC bump.” The lower-p
bump with maximum at p∼ 1me c has shape similar to a
thermal Maxwell–Jüttner distribution. At high energies
p 300me c, particle momenta remain nearly adiabatic
through a compress-revert cycle, as previously seen in
Figures 4(c), (f), (i), (l). We visualize the convolution of f (p)
by plotting the kernels ( )G p p,¢ for various p (Figure 5(a));
these kernels are constructed using the same procedure as the
1D “Revert” spectra in Figures 4(a)–(c), up to details of
numerical binning and normalization.
The IC bump in frevert(p) has an upper bound at p∼ 100me c

that is not exceeded by multiple pump cycles. What sets this p
bound? We attribute this bound to the rightward skew of the
convolution kernel ( )G p p,¢ , most visible for the kernels with p
between 101 and 102me c in Figure 5(a). In contrast, the mean
(μ-averaged) energy gain after one compress-revert cycle has a
maximum of ∼30% for CRe with initial momenta
p0∼ 20–30me c, which we will shortly see in Figure 6; see
also the mean energy gain (vertical orange lines) in Figures 4(a)
–(c). A mean energy gain of 1.3× 30me c does not easily
explain the increase in frevert(p) at p∼ 100me c.
Is the IC bump in frevert(p) sensitive to our choice of the low-

p boundary for f (p)? Figure 5(b) shows that altering the low-p
cutoff on f (p) also alters the amplitude and peak momentum of
the thermal bump; i.e., all electrons below p∼ 1me c are
reorganized into a thermal distribution. Lowering the p
boundary of our input spectrum places more electrons into

Figure 4. CRe response to compression and adiabatic decompression (“revert”) for three narrow initial distributions of mean momentum p0 = 2, 20, 200me c (left to
right), and width ±0.01p0. (a)–(c) 1D CRe spectrum in p at t = 0 (“Initial,” black), end of simulation (“Final,” blue), and after adiabatic decompression (“Revert,”
orange). For comparison, the CRe spectrum that would result from pure adiabatic compression is “Final, CGL” (dotted black). The mean momentum after the
compress-revert cycle is the vertical orange line. (d)–(f) The CRe (p, |μ0|) distribution shows that the energy gain becomes closer to adiabatic and correlates more with
|μ0|, as p0 increases. (g)–(i) Final, compressed CRe (p, |μ|) distribution at the end of the simulation. (j)–(l) Revert CRe (p, |μ|) distribution, after a compress-revert
cycle. In panels (d)–(l), the vertical black line indicates the starting momentum, and the thick black curve marks the shape of the expected particle distribution for
purely adiabatic compression. The histogram bin densities are counts divided by both the 1D/2D bin size and the total count of the particle sample.

8

The Astrophysical Journal, 948:130 (20pp), 2023 May 10 Tran et al.



this thermal bump. The IC bump is not affected by the low-p
boundary, which confirms that the thermal and fossil electrons
are well separated in momentum space.

The IC bump extends toward higher momenta for longer
compression duration. In Figure 5(c) we show frevert
computed for three evenly spaced times t= 0.47, 0.94,
1.41q−1 in our fiducial simulation. The spectrum at
t= 0.47q−1 shows a very weak IC bump, which we attribute
to weaker IC scattering at early times when IC waves are not
yet saturated. The IC bump becomes more prominent at
t= 0.94q−1 and 1.41q−1. We further explore the link
between the compression duration and the onset of scattering
at high p later in this article.

We also consider the effect of multiple compress-revert
cycles by assuming that, at the end of each compress-revert
cycle, frevert(p) instantly becomes isotropic in μ; the result is
shown in Figure 5(d). Multiple cycles strengthen the IC energy
gain between p= 10 to 100me c. The IC pumping does not
extend to p? 100me c; CRe with p∼ 103me c remain
adiabatic through multiple compress-revert cycles. The
assumption of instant isotropization between each compress-
revert cycle is questionable; we know from Figures 4(j)–(l) that
the revert spectra are far from isotropic. The effect of scattering
during decompression, which should bring electrons closer to
isotropy, is left for future work.

6. Cumulative Energy Gain from Magnetic Pumping

Let us now focus on the efficiency metric ΔUrevert,
abstracting away details of the underlying μ-dependent particle
spectra. Figure 6 shows ΔUrevert/U0 computed for all test-
particle CRe in our simulation, binned by the initial CRe
momentum with bin size Δp0= 0.5me c. We emphasize three
main features. The lowest-energy CRe, p0∼ 1–10me c, gain
little energy from magnetic pumping. The medium-energy
CRe, p0∼ 10–30me c, pump the most efficiently by virtue of
their having initial momenta at or above the expected resonant
p∥∼ 4–25me c (Equation (2)). The highest-energy CRe,
p0 30me c, gain energy at later times; as compression
proceeds, CRe of progressively higher p0 “turn on” their
energy gain.
We also introduce Ugain to represent the time-integrated

energy gain from all mechanisms other than adiabatic
compression, in particular momentum diffusion. To compute
Ugain, we decompose each particle’s energy gain over a time
step Δt into adiabatic and nonadiabatic pieces:

( ) ( )t t t ,gain CGLg g g g+ D - = D + D


where γ is the particle’s Lorentz factor,

( ) ( ) [ ( ) ( )] ( )p t p t B t t B t t1 ,CGL
2 2

g gD = + + + D -^


Figure 5. Convolution of an initial CRe spectrum f (p)dp = p−2 dp with the
Dirac-delta spectrum response ( )G p p,¢ to one and multiple compress-revert
cycles. (a) Initial spectrum f (p) (thin black) and revert spectrum after an
assumed adiabatic decompression (thick black). Seven kernels ( )G p p,¢ that
contribute to the revert spectrum are shown, with their initial p0 shown by
dotted vertical black lines. (b) The low-p bound on f (p) sets the amplitude and
position of a thermal bump at p ∼ 1 me c, but does not strongly alter the ion
cyclotron (IC) resonance bump at p ∼ 10–100 me c. We show four different
bounds: p = 10−1 (blue), 10−0.5 (black), 100 (orange), and 100.5 me c (green).
(c) Compression duration determines the maximum p attained by the IC bump.
Here we show frevert from our fiducial spectrum computed at three different
times: t = 0.47q−1 (orange), t = 0.94q−1 (blue), and t = 1.41q−1 (black). The
black curve is computed at the simulation’s end. Corresponding colored arrows
indicate the rightward extent of the IC bump in p. (d) Effect of multiple revert
cycles, assuming that the spectrum is instantly reisotropized after each revert
cycle. In all of panels (a)–(d), the black curve frevert is the same.

Figure 6. Energy gains ΔUrevert/U0 (left column) and Ugain/U0 (right column),
normalized to the initial energy. Top row: energy gain as a function of the CRe
initial momentum p0 and simulation time t, averaged over pitch angle. Middle
and bottom rows: 1D slices of the energy gain as a function of time for varying
p0. The horizontal white lines in top row correspond to p0 selections in the
middle and bottom rows.
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and the remaining energy gain is Δγgain. Then we may time
integrate and ensemble average to define

( ) ( )
⌊ ⌋

U t j t t, ,
j

t t

gain
0

gainå g= D D D
=

D


shown as a function of p0 and t in Figure 6. The time step
t 4.7 i0

1D = W- matches that used to measure particle scattering
in Section 4.

In Figure 6 we draw three conclusions concerning Ugain.
First, both Ugain and ΔUrevert show the same qualitative
features in (t, p0) coordinates. We attribute this to the shared
gyroresonant nature of both energy-gain processes: Dpp for
nonadiabatic diffusive energization Ugain, and Dμ μ for
magnetic pumping ΔUrevert. Second, the magnitude of Ugain

is ∼10% that of the initial particle energy by the end of the
simulation; however, Ugain(t) is small compared to the total
particle energy U(t) arising from compression, which is 200%
of the initial particle energy U0 by the end of the simulation.
Finally, Ugain decreases as vA0/c is lowered toward a more
realistic value, whereas ΔUrevert does not vary as strongly with
vA0/c; we show this decrease in Ugain later in the article
(Figure 12). On the basis of these observations, we view Ugain

and hence Dpp as a minor player in CRe energization through
our compressive cycle.

7. Continuous Compression Controls the Efficiency of
Magnetic Pumping

The 2D structure of ( )U t p,revert 0D encodes information
regarding which particles scatter and when they scatter; i.e., it
encodes the time- and k-dependent wave spectrum W(k, t), but
we lack a mapping from W(k, t) and Bg(t) to ( )U t p,revert 0D . To
understand the 2D structure of ΔUrevert, we perform Fokker–
Planck (F-P) simulations of compression with time-dependent
pitch-angle scattering:
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
We sample 280,000 CRe with momenta between p0 between
0.25 to 69.75me c and an isotropic pitch-angle distribution (i.e.,
uniform μ ä [−1, + 1]). Then, we subject the CRe to the same
continuous compression as in our fiducial simulation,

( ) ( )B t B qt1g 0
2= + with q 8001

i0
1= W- - , using a finite-

difference method. Advancing from time tn to tn+1= tn+Δt,
each particle’s perpendicular momentum is increased adiaba-
tically as ( ) ( ) ( ) ( )p t p t B t B t ;n n g n g n1 1=^ + ^ + the parallel
momentum p∥(tn+1)= p∥(tn) is held constant. The finite-
difference time step t 0.94 i0

1D = W- .
At first, the compression is adiabatic to mimic the relatively

weak wave power at early times in our fiducial simulation
(Figures 1(a)–(c)). After t= 0.3q−1, we begin scattering all
particles that satisfy:

∣ ∣
( )

∣ ∣
( ) ( )k

eB t

pc
k t , 12

g
res min

m
= >


where ( )k tmin is a user-chosen function. The scattering is
implemented as a 1D random walk in pitch angle α. For each

time tn, each particle satisfying Equation (12) takes a randomly
signed step Δα=± 0.04 prior to the compression step
p⊥(tn)→ p⊥(tn+1). The variance of the total displacement after
N steps is 〈ΔαΔα〉N= N(Δα)2, so the effective diffusion
coefficient Dμ μ∼ (1− μ2)〈ΔαΔα〉/(2Δt) is approximately
8.5× 10−4(1− μ2)Ωi0. This Dμ μ value is weaker than the
scattering rate measured in our fiducial simulation (Figures 3(j)
–(l)); nevertheless, the F-P model returns a comparable value of
ΔUrevert. Also, our F-P model deviates from quasi-linear theory
in having no 90° barrier; particles with μ= 0 scatter efficiently
in order to mimic the presence of scattering at μ= 0 in
Figures 3(j)–(l). Varying the start time of scattering to either
t= 0.0q−1 or 0.6q−1 has only a small effect on the F-P model
energy gain; the time evolution of ( )k tmin is more important.
Figure 7 shows the magnetic-pumping energy gain in our

F-P model for four different choices of kmin. We first consider
constant k 0.3min = , 0.15, and 0.09 ωpi0/c in Figures 7(a)–(c).
Then, we adopt a time-dependent ( )k k tmin IC= , using
Equation (5) to mimic the decreasing-k drift of ion cyclotron
wave power in our fiducial PIC simulation. We draw three
conclusions. First, the magnetic-pumping energy gain has a
self-similar geometric structure in (t, p0) coordinates for kmin
constant in time; changing kmin is the same as rescaling p0 by a
factor k1 min (Equation (12)), so Figures 7(a)–(c) are identical
up to linear rescaling along the y-axis. Second, the particles
gaining the most energy from magnetic pumping have p0
somewhat higher than the initial resonant p∥ at t= 0. For
example, choosing k c0.09min pi0w= gives the most energy to
particles with p0≈ 20–30me c (Figure 7(c)), whereas
Equation (12) requires p∥� 6–36me c. Third, the time-
dependent ( )k k tmin IC= broadens the energy-gain “resonance”
feature in ΔUrevert toward higher p0 (Figure 7(d)).
To understand how magnetic pumping interacts with

continuously driven compression to “select” a range of p0
with the highest magnetic pumping efficiency, Figure 8 shows
how isotropic, monoenergetic particle distributions with p0= 4,
12, 36me c evolve over time while subjected to both
compression and pitch-angle scattering (after t= 0.3q−1) for
all particles with k c0.15min pi0w= (Figure 7(b)). The lowest-
energy particles, p0= 4me c (blue), scatter promptly at all pitch
angles from t� 0.3q−1 onward, so the magnetic pumping is
less efficient. The medium-energyparticles, p0= 12me c
(orange), only scatter near μ= 0 at early times t∼ 0.3q−1,
but their scattering extends to most μ values by the simulation’s
end. The highest-energy particles, p0= 36me c (green), are
mostly adiabatic; few such particles scatter until later times, so
their energy gain from magnetic pumping is small.
Preferential scattering near μ= 0, where compression gives

the most energy (as compared to larger |μ|), causes medium-
energy particles to migrate to large |μ| and “lock in” their
compressive energy gain; therefore, medium-energy particles
participate most efficiently in magnetic pumping. We interpret
orange particles accumulating at the scattering region bound-
aries in Figure 8, as well as the skewed particles at large |μ| in
Figures 4(j)–(l), as evidence for energy locking. The highest-
energy particles also scatter from μ∼ 0 toward the scattering
boundary (Figure 8), but (1) fewer particles are able to
participate, and (2) the smaller μ of the scattering boundary
causes more compressive energy gain to be removed in
decompression. The lowest-energy particles, because they
scatter at all μ, easily flow between μ∼ 0 and |μ|∼ 1; there
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is no region of (p, |μ|) space in which particles may lock energy
gained from μ∼ 0.

The drift of IC power toward low k further modifies particle
energization. In Figure 8, the gray scattering region expands
rightward as time progresses: ( )p B t kg resµ , and kres decreas-
ing in time will hasten that expansion and therefore widen the
band of medium-energy particles. Previously, Matsukiyo &
Hada (2009, Section 4) have also noted how Alfvénic waves
drifting to low k may help accelerate particles that can stay
within the range of resonant momenta of the time-evolving
waves.

Compression and the drift of IC power toward low k together
can thus explain, qualitatively, the distinct low-, medium-, and
high-energy CRe structure of ΔUrevert as a function of t and p0
(Figure 6).

8. Compression Rate Dependence

In our simulations, the compression timescale
q 8001

i0
1= W- - corresponds to q−1∼ 10−3 yr if one assumes

B0= 3 μG, which is much smaller than the actual sound-
crossing time ∼108 yr for cluster-scale ICM bulk motion. How
do the CRe energy gain and the IC wave spectrum change with
q−1 in our simulations? For larger q−1, linearly unstable IC
waves grow earlier and attain smaller k at late times (Figure 9),
so we expect the IC wave resonance to broaden toward
higher p.

We also expect the wave power B2d ^ to weaken for larger
q−1 as per Equation (7), which may be rewritten more

explicitly as

⎜ ⎟
⎛

⎝

⎞

⎠
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( )
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1

2

1
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d D D +
D +
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+
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 In Figure 10, we check if the linear scaling with q predicted
by Equation (13) holds in our simulations. Both ( )B Bg 2d ^ and
Δi decrease when q decreases (Figures 10(a)–(b)). At
t= 1.2q−1, we sample and plot ( )B Bg 2d ^ as a function of q
(Figure 10(c), solid markers). We similarly compute and plot
the left-hand side (LHS) of Equation (13) (Figure 10(c), hollow
markers). Both quantities appear to follow a power-law scaling
qn with exponent n 0.5, which is a weaker proportionality
than that predicted by Equation (13).
Waves at differing k may not contribute equally toward

balancing the compression-driven anisotropy; recall how the
strongest waves lie outside the unstable ω range in Figure 1(a),
and how Equation (7) agrees better with the unstable wave
power rather than the total wave power in Figure 1(c). We thus
suspect that low-frequency wave power may participate less in
regulating the ion anisotropy. Does the anisotropy-driven high-
frequency wave power, rather than the total wave power, scale
linearly with q as per Equation (13)? We select wave power
with ω/Ωi0> 0.9 by computing the average wave power
spectral density (PSD) in the top-right white boxes of
Figures 9(a)–(e);7the resulting PSD is plotted against q in
Figure 10(d). The PSD multiplied by Δi(2Δi+ 3)/(Δi+ 1)
appears to follow a power-law scaling qn with exponent n
between 0.5 and 1.

Figure 7. Energy gain from a pure pitch-angle scattering Fokker–Planck (F-P)
model, with different prescriptions kmin for the particle scattering. Particles
compress with the same Bg(t) as that in the fiducial PIC simulation. For
t < 0.3q−1, no particles scatter; compression is adiabatic. For t � 0.3q−1,
particles satisfying Equation (12) scatter by random walk in pitch angle; see the
text for details. (a)–(c) Time-constant k 0.3min = , 0.15, and 0.09 ωpi0/c. (d)
Time-dependent ( )k k tmin IC= (Equation (5)) mimicking the decreasing-k drift
of ion cyclotron wave power seen in our fiducial PIC simulation. The dashed
white lines in (b) correspond to the particle samples in Figure 8.

Figure 8. Evolution of initially isotropic, monoenergetic particle distributions
with p0 = 4, 12, 36 in the F-P scattering model with k c0.15min pi0w= ,
corresponding to Figure 7(b). The black solid curves show the bounds of
Equation (12); particles scatter within the bounded, gray-shaded region and
evolve adiabatically otherwise. The black dashed lines mark curves upon which
particles would evolve from p0 if there were no scattering at all.

7 The PSD averaged in Fourier space equals the real-space average of
( )B Bg 2d ^ (i.e., an ω-average of Figures 9(a)–(e) or a k-average of Figures 9(f)–
(j) will return the domain-averaged wave power in Figure 10(a)).
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Least-squares fits of form ( )A q n
i0W , with free parameters A

and n, are plotted as solid black lines in Figures 10(c)–(d). For
Equation (13) LHS (Figure 10(c), hollow squares), and B 2d ^
(Figure 10(c), solid circles), we obtain n= 0.48± 0.02 and
0.32± 0.02, respectively. For the high-frequency wave PSD
replacing B 2d ^ in Equation (13) LHS (Figure 10(d), hollow
squares), and the high-frequency wave PSD alone
(Figure 10(d), solid circles), we obtain n= 0.69± 0.05 and
0.54± 0.07, respectively. We fit the data in log coordinates
(i.e., linear regression). The uncertainty on n is one standard
deviation estimated by assuming 1reduced

2c = , as no data
uncertainty is used in fitting. We expect that the systematic
uncertainty is larger.

We warn that our ω/Ωi0> 0.9 threshold does not cleanly
separate low- and high-frequency wave power for every
simulation because the ω range of the wave power varies with
q (Figure 9). Altering the ω threshold will also alter the q-
scaling exponent in Figure 10(d). A multicomponent fit to the
power spectrum may better separate the low- and high-
frequency wave power and so provide a better test of
Equation (7), but we omit such detailed modeling for now.

We also show how the CRe energy gain ΔUrevert changes
with q in Figure 11. As q−1 increases, the optimal p0 range for
magnetic pumping both widens and moves to higher momenta,
which we ascribe to both the lower late-time k and earlier onset
of waves with respect to the compression timescale q−1. We
suspect that wave evolution toward lower k is the dominant
effect altering the shape of ΔUrevert for varying q−1. We do not
observe, by eye, a trend in the peak magnitude of ΔUrevert with
respect to q.

9. Scaling to Realistic ICM Plasma Parameters

How do more realistic simulation parameters (higher mi/me,
lower vA/c) alter our results? Let us define a dimensionless
CRe momentum

⎜ ⎟
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⎞
⎠

⎛
⎝

⎞
⎠

p̃ p
m

m
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c
i

e

1
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1

µ
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
with the constraint p̃ p= for our fiducial simulation
parameters, motivated by the gyroresonance scaling

(Equation (2)); recall that vth,i/c∝ vA/c for fixed βp. As in
Sections 5–6, p̃0 is the value of p̃ for CRe particles at t= 0.
If simulations of varying vA0/c and mi/me have a similar IC
wave spectrum W(t, k) for fixed q/Ωi0, then particle
scattering and energization should also have a similar
structure in p̃.
We vary vA0/c of our fiducial simulation by factors of 2

and measure the particle scattering rates 〈ΔpΔp/p2〉/(2Δt) and
〈ΔμΔμ〉/(2Δt) in discrete (p, μ) bins. As in Section 4, the time
step is t 5 i0

1D » W- . The momentum bin width 0.5me c is fixed

Figure 9.Wave power spectrogram of Bz + iBx for varying q, from small q−1/fast compression (left) to large q−1/slow compression (right). (a)–(e) Spectrogram in (t,
ω) coordinates with a finite time binning for each pixel. The white curve on the top left of each panel is Ωi(t). Within the white boxes (t > 1q−1 and ω/Ωi0 > 0.9), we
average the PSD to estimate the power due to unstable IC waves at high ω, omitting the linearly stable IC waves at low ω. (f)–(j) Wave power spectrum in (t, k)
coordinates without time binning. The red-dash-framed panels (c), (h) mark the fiducial simulation; i.e., same data as Figure 1.

Figure 10. Scaling of ( )B B tg
2 2d ^ power from simulations with varying q,

indicated by the marker/line color. (a) Wave power ( )B B tg
2 2d ^ over time,

domain-averaged. (b) Ion temperature anisotropy Δi = Ti⊥/Ti∥ −1 over time t.
(c) Wave power at t = 1.2 q−1 plotted as a function of q (solid circles). The
same wave power is multiplied byΔi(2Δi + 3))(Δi + 1), i.e., the left-hand side
(LHS) of Equation (13) (hollow squares), to test the linear q scaling of
Equation (13). The solid, dashed light-gray lines are ∝q, q scalings,
respectively. The solid black lines are least-squares power-law fits. (d) Like (c),
but replace ( )B B tg

2 2d ^ with time-averaged PSD sampled from white-boxed
subsets of the spectrograms in Figures 9(a)–(e); see the text for details.
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for all simulations, so the plotted p̃ bin width varies between
simulations in Figure 12.

The measured scattering rates indeed have similar shape in
( ˜ ∣ ∣)p , m coordinates for varying vA0/c (Figure 12). At lower
vA0/c, a double-lobed scattering region appears along the
resonant contours. Lower vA0/c also alters the apparent edge of
the scattering region at p̃ 25> toward possibly better
agreement with the predicted resonant contours from
Equation (10), although the scattering region edge still disagrees
at low p̃ 25< .

To explore how scattering scales with vA0/c, we average the
scattering rates over |μ| and ˜ [ ]p m c5, 25 eÎ to sample the
strongest IC wave signal in momentum space. The average
rates are plotted as a function of time in Figures 13(a)–(b); the
same rates sampled at three discrete times are then plotted as a
function of vA0/c in Figures 13(c)–(d). The pitch-angle and
momentum scattering rates increase and decrease, respectively,
as vA0/c decreases. We interpret the data as showing a

transition from mildly relativistic to nonrelativistic behavior as
we lower vA0/c. At lower vA0/c than shown, we expect that the
pitch-angle scattering should become independent of vA0/c,
while momentum scattering should scale as ( )v cA0

2. We also
verify the expected QLT scaling:

⎛
⎝

⎞
⎠

p p p v

c

2
A

2

m m
áD D ñ
áD D ñ

µ

in Figure 13(e), which shows a power-law-like scaling
consistent through the entire range of vA0/c considered.
As previously claimed, momentum scattering is not

important in a single compress-revert cycle for our simulation
parameters. We see that 〈ΔpΔp/p2〉/(2Δt) is ∼10−2×
smaller than 〈ΔμΔμ〉/(2Δt), and the QLT scaling assures us
that momentum scattering is even less important in real ICM
with vA/c 10−3. In Figure 13(e), the separation between data
measured at different times in the same simulation may be
partly attributed to time variation in vA(t)/c.

Figure 11. Energy-gain metric ΔUrevert/U0, showing the effect of (a) faster q 2001
i0
1= W- - to (e) slower q 32001

i0
1= W- - compression upon CRe energization. The

red-dash-framed panel (c) is the fiducial simulation, same as Figure 6.

Figure 12. Scattering rates measured at t = 0.35q−1 in simulations of varying vA0/c, decreasing left to right. (a)–(e) Pitch-angle scattering 〈ΔμΔμ〉/(2Δt). (f)–(j)
Momentum scattering 〈ΔpΔp/p2〉/(2Δt). The white dotted vertical lines mark the averaging region used in Figure 13. The white dotted curves are the same contours
of the constant resonant wavenumber as those in Figure 3. The red-dash-framed panels (b), (g) mark the fiducial simulation. All rates are in units of Ωi0.

Figure 13. (a)–(b) Scattering rates 〈ΔμΔμ〉/(2Δt) and 〈ΔpΔp/p2〉/(2Δt) measured in five simulations with varying vA0/c (line/marker color), reported in units of
Ωi0. The rates are averages over the ( ˜ ∣ ∣)p , m regions marked in Figure 12. (c)–(d) Sample points from (a)–(b) plotted as a function of vA0/c. Light-gray lines show
( )v cA

1- (panel (c)) and ( )v cA
1+ (panel (d)) scalings. (e) Ratio of p and μ scattering rates. Light-gray lines show ( )v cA

2 (panel (e)) scaling. In all panels, symbols
correspond to different times at which the scattering rates are measured.
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We proceed to vary mi/me and vA0/c together, now focusing
solely on the magnetic pumping efficiency ΔUrevert, in
Figure 14. Across all panels, we observe a similar three-band
structure as in our fiducial simulation: low-energy CRe
( p̃ 50  ) gain little energy, medium-energy CRe ( p̃ 100 = –

30) gain the most energy, and high-energy CRe ( p̃ 300  )
progressively “turn on” their energy gain over time, later for
higher-energy CRe. If we remove whistler waves by compres-
sing electrons isotropically (Section 2), comparing
Figures 14(e)–(h) against Figures 14(i)–(l): the region of the
most efficient energy gain shifts to higher p̃0, and the maximum
value of ΔUrevert/U0 decreases in magnitude by ∼0.05.
Otherwise, the overall shape of ΔUrevert remains similar when
comparing simulations with and without whistler waves.

10. Conclusions and Outlook

We have used 1D PIC simulations to show how ICM
fossil CRe gain energy from bulk compression by scattering
upon IC waves excited by anisotropic thermal ions. The
energy gain comes from magnetic pumping, and we have
measured the momentum-dependent pumping efficiency.
Some summary points follow. First, high-βp plasma micro-
instabilities have a convenient wavelength—comparable to
the Larmor radius of thermal protons—to interact with and
scatter fossil CRe in the ICM of galaxy clusters. Second,

continuous compression and wave-power drift toward low k
both increase, over time, the CRe momentum p that can
resonantly scatter on IC waves and hence gain energy via
magnetic pumping. The increase in the resonant p may be
viewed as a time-delayed scattering for high-p CRe, which
can help increase the pumping energy gain compared to
continuous scattering from beginning to end of the
simulation. Third, IC wave pumping is robust with respect to
mi/me and vA0/c and is not sensitive to the presence or
absence of whistler waves driven by thermal electrons.
Although the simulated mi/me and vA0/c are not realistic,
the lower mi/me and higher vA0/c cancel such that the
simulated resonant momenta are only 2–3× lower than those
of real fossil CRe.
Our 1D setup with an adiabatic “revert” is unrealistic in

some ways. The compression factor ∼6 at the end of our
simulation exceeds the expected density contrast of both weak
ICM shocks and subsonic compressive ICM turbulence (e.g.,
Gaspari & Churazov 2013). More realistic, nonadiabatic
decompression may excite firehose modes that should also
resonantly scatter CRe and alter ΔUrevert (Melville et al. 2016;
Riquelme et al. 2018; Ley et al. 2023). In 2D or 3D
simulations, the low-k drift of IC wave power may not persist,
and mirror modes may weaken IC waves; both effects will
weaken the energy gain from IC wave pumping. Nevertheless,

Figure 14. Energy-gain metric ΔUrevert/U0, like Figure 6 but with p̃0 rather than p0 on the y-axis, for simulations of varying vA0/c and mi/me. (a)–(d) Varying vA0/c
with fixed mi/me = 8. (e)–(h) Varying mi/me and vA/c together, to help understand the effect of mi/me. (i)–(l) Like panels (e)–(h), but disabling whistler waves by
compressing electrons isotropically at the rate qiso = 2q/3. The red-dash framed panels (b), (f) are the fiducial simulation, previously shown in Figure 6.
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magnetic pumping via resonant scattering on firehose fluctua-
tions or nonresonant scattering on mirror modes remains
possible, as both firehose and mirror modes will also have a
convenient wavelength to interact with fossil CRe. Varying
| B | in solenoidal, shear-deforming flows will also excite the
same high-βp plasma microinstabilities to scatter and magne-
tically pump CRe.

Our treatment of a collisionless ion–electron plasma has
neglected (1) Coulomb collisions and (2) the presence of
heavier ions. Regarding (1), the collision rate varies within a
cluster. The ICM density decreases to ∼10−5

–10−4 cm−3 at
large radii from cluster centers, and the proton collision time
can reach 100 Myr, comparable to the sound-crossing time as
discussed in Section 8. In denser gas closer to cluster centers,
collisions may inhibit large-scale eddies from driving particle
anisotropy. However, we expect that the turbulent cascade will
eventually reach an eddy scale where the turnover rate is faster
than the collision rate, so that particle anisotropy may be
collisionlessly driven. Regarding (2), He and heavier ions are
known to exist in the ICM (Abramopoulos et al. 1981; Peng &
Nagai 2009; Berlok & Pessah 2015; Mernier et al. 2018). He+
+ and other ions will modify the parallel plasma dispersion
relation (Smith & Brice 1964) and proton cyclotron instability
growth rate (Gary et al. 1993), and He++ cyclotron waves
may themselves be excited (Gary et al. 1994a). Mirror and
firehose linear instability thresholds will be altered as well
(Hellinger 2007; Chen et al. 2016). The precise wave spectrum
and hence CRe energy gain would thus change, but we expect
that CRe may still gain energy by magnetic pumping in the
presence of heavier ICM ions.

How does CRe energization by high-βp IC wave magnetic
pumping fit into the broader context of large-scale ICM flows
and turbulence? At ion Larmor scales, we expect power from
high-βp plasma microinstabilities to be much larger than power
from the direct turbulent cascade. Let us suppose that the ICM
has a turbulent magnetic energy spectrum:
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with outer scale L and n= 5/3 for a Kolmogorov cascade. The
energy at the ion (proton) Larmor wavenumber ki= 2π/ρi may
be estimated as (Kulsrud & Pearce 1969):
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for ICM parameters L= 1Mpc and ρi= 1 npc. For comparison,
our fiducial simulation has:
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We suppose that the simulated Bg

2 corresponds to the total
magnetic energy 〈B2〉 in the ICM, because energy resides at the
largest scales in the Kolmogorov spectrum.

Let us further consider IC waves driven by a compressive
eddy at a galaxy cluster’s outer scale, ∼1Mpc. Using the
estimate from the beginning of Section 8, the compression
timescale q−1 will be 1011× larger than in our simulation.

Combined with the scaling B q2 0.32d µ^ from Figure 10(c), we
should decrease our estimate of ki WPIC(ki) in Equation (15) by
a factor of 3× 103 in order to extrapolate to realistic
conditions. The IC wave power so extrapolated remains 105

times larger than the power expected from the turbulent direct
cascade at ion Larmor scales.
The excess power at ion Larmor scales may also contribute to

stochastic reacceleration via momentum scattering (Dpp), as
explored for Alfvénic cascades by Blasi (2000) and Brunetti
et al. (2004). Let us suppose that ( )D v c qpp A

2 0.32µ , from
Figure 13 and its accompanying discussion. Again, we take the
ICM outer scale q−1∼ 1011× larger than our simulation, and
also take ICM vA/c∼ 10−3 and 10 yri

1 6W ~- - . Our measured
momentum scattering rate 10−4 Ωi (Figure 13)then extrapolates
to 〈ΔpΔp/p2〉/(2Δt)∼ 10−11Ωi. The corresponding accelera-
tion time ∼105 yr is short compared to cosmological timescales.
What is the efficiency of magnetic pumping, as well as

stochastic reacceleration, upon IC waves in this slowly forced,
turbulent setting? A quantitative answer is beyond the scope of
this work, but we make a few remarks. For CRe momenta
within the band of IC wave resonance, scattering will occur
quickly and persist throughout the bulk compression. Both
resonant magnetic pumping and stochastic reacceleration will
be limited by the available IC wave bandwidth, so electrons
will not reach arbitrarily high energies. If the IC wave drift rate
toward low k scales with Ωi rather than q, owing to the smaller
q in reality, wave energy may continue to cascade to smaller k
than in our simulations and so help scatter and pump CRe at
even higher momenta. At galaxy cluster merger shocks,
nonthermal protons may also alter the growth and damping
of IC waves and hence their resulting bandwidth (e.g., dos
Santos et al. 2015). In a turbulent flow, the microinstabilities
will not be volume filling; CRe streaming in and out of the
scattering regions may also alter the energy gain from magnetic
pumping (Egedal & Lichko 2021; Egedal et al. 2021).
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Appendix A
Drift-kinetic Moment Equations

Here we derive Equation (6) from a set of moment equations,
similar to the drift-kinetic models of Zweibel (2020) and Ley
et al. (2023); a more general form is given by Chew et al.
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(1956, Equations (31)–(32)). Assuming gyrotropy, compres-
sion perpendicular to B , and Lorentz pitch-angle scattering
with rate ν constant over momentum and pitch angle, the
relativistic Vlasov equation is
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where v is normalized to c, p is normalized to mc, and m is
either the ion or electron mass, depending on the species of
interest. Let us compute the evolution equations for the
moments P⊥= 〈p⊥ v⊥/2〉 and P∥= 〈p∥ v∥〉, where 〈χ〉= ∫χ
fd3 p , by multiplying Equation (A1) by p⊥ v⊥/2 and p∥ v∥. For
P⊥, we have:
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Similarly for P∥, we have:
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In the nonrelativistic limit,
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which we then use to obtain Equation (6).

Appendix B
Whistler-mode Offset from Bi-Maxwellian Dispersion

What causes the RCP mode offset discussed in Section 3.2?
Though we do not yet know, we checked how it behaves in
varying plasma conditions. The offset mode must come from
free energy in electron temperature anisotropy flowing into the
whistler branch, and the offset requires hot ions, based on
several simulations shown in Figure 15. If we compress
electrons isotropically, the offset mode disappears, whereas if
we compress ions isotropically, the offset mode persists
(Figures 15(b)–(c)). The offset persists at higher βp0= 63 and
disappears at lower βp0= 6.3 and βp0= 2, with Ti0= Te0 for all
βp0 values (Figures 15(d)–(f)). The offset mode persists at
larger q−1 and lower vA0/c, i.e., toward more realistic ICM
conditions (Figures 15(g)–(h)). Further, the offset mode
persists at mi/me= 32; the location and the bandwidth of the
mode power in (ω, k) space follows the whistler branch rather
than the IC branch (Figure 15(i)).

Figure 15. The RCP wave offset is a high-βp effect driven by anisotropic electrons in the presence of hot ions, which we show by plotting (ω, k) power spectra, at
early times in the simulation when RCP waves are first excited, for eight simulations altered in one or a few parameters with respect to our fiducial simulation. Like
Figure 2, RCP/LCP wave power has ω > 0 and < 0, respectively; the red curves are the whistler and IC dispersion curves, truncated at strong damping Γ(k) < − |ω
(k)|. (a) Fiducial simulation, same as Figure 2(a). (b) Isotropic electrons using qiso = 2q/3. (c) Isotropic protons using qiso = 2q/3. (d)–(f) Initial total plasma beta
βp0 = 2, 6.3, and 63. (g) Slower compression with q−1 = 4 × larger than the fiducial simulation. (h) Lower vA0/c by a factor 0.25× with respect to the fiducial
simulation; i.e., less relativistic. (i) Raise mi/me = 32 and lower vA0/c, same simulation as that shown in Figure 14(h). Panels (f)–(i) have different time selections
because altering βp0, q

−1, vA0/c, and mi/me also alters the time of appearance of the RCP offset waves.
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Appendix C
Why do Waves Form Two Frequency Bands?

We perform four numerical experiments to check the origin
of the two distinct frequency bands of wave power in
Figure 1(a).

First, we halt the compression at t= 0.5q−1 and t= 1.0q−1.
The scale factors ax(t) and az(t) (Equation (3)) are pinned to
constants; the waves and particles are allowed to evolve self-
consistently without further external driving.

The result is shown by Figures 16(a), (c), (i) and (c), (g), (k).
The existing wave power drifts toward lower frequencies, while
the high-frequency band either does not appear as a distinct
feature (Figure 16(a)) or weakens in strength (Figure 16(c)) as
compared to Figure 1(a).

Then, we halt compression and also “reset” waves to
see (i) what waves are driven unstable by the particles’
own anisotropic distribution, and (ii) if said waves are
reasonably predicted by the nonrelativistic bi-Maxwellian
approximation of Equation (8). To “reset” waves, we zero all
electromagnetic fields except for the background field Bg.
We also subtract all particles’ bulk motion as follows. We
compute the ion and electron bulk three-velocities with a
five-cell kernel for particle-to-grid mapping. All macropar-
ticles are Lorentz boosted so as to cancel their own species’
bulk velocity; their PIC weights are also adjusted to account
for the spatial part of the Lorentz transformation (Zeni-
tani 2015). The velocity subtraction is not perfect; it leaves a
residual bulk motion at a few percent of its original
amplitude. Therefore, we apply the same velocity subtrac-
tion procedure again. Two velocity subtractions suffice to
leave no detectable ion bulk motion.

The result of halting compression and resetting waves is
shown by Figures 16(b), (f), (j) and (d), (h), (l). The anisotropic
particle distributions grow waves in a comparatively “high”
frequency band consistent with the unstable wave prediction of
Equation (8).

Appendix D
Scattering Measurement Time Step

To measure pitch-angle scattering in Figure 3, the measure-
ment time step Δt cannot be too short or too long.
If Δt is too short, an electron may not have time to interact

with one or multiple waves; its trajectory in momentum
space may not yet be diffusive. The relativistic cyclotron
frequency is eB/(γ me c)∼ Ωi for p/(me c)∼ 10 and
mi/me= 8, so a time step Δt a few i0

1W- should suffice to
resolve the wave–particle interaction. More energetic
electrons with larger γ and hence slower gyration may need
a correspondingly longer time step.
If Δt is too long, electrons may scatter out of the wave

resonance and experience very different scattering rates within
the measurement time Δt; our measurement becomes nonlocal
in μ. The wave resonance region itself may evolve in time.
Additionally, electron displacements in μ may become
comparable to the finite range of μ ä [−1, 1]; our measurement
of 〈ΔμΔμ〉 would trend toward a constant rather than
increasing linearly with Δt as expected for an unbounded
random walk.
In Figure 17, we show how altering Δt by 0.2× to 10× (i.e.,

0.9 i0
1W- to 47 i0

1W- ) alters the measured scattering rates 〈ΔμΔμ〉/
(2Δt) in phase-space coordinates (p, |μ|). Recall our fiducial
t 4.7 i0

1D = W- in Figure 3.

Figure 16. Halt compression and/or reset waves in the fiducial simulation (procedure given in Appendix C), to test the origin of low- and high-frequency LCP wave
power in Figure 1(a). The panel layout matches Figures 1(a), (c), and (d): the top row is the wave spectrogram, the middle row is the magnetic fluctuation power scaled
to the background field Bg(t), and the bottom row is the ion and electron anisotropy Δ. In the left two columns, compression halts at t = 0.5q−1; in the right two
columns, compression halts at t = 1.0q−1. In panels (a) and (c), when compression halts, low-frequency wave power persists and high-frequency power weakens or
does not appear. In panels (b) and (d), when compression halts and waves are also reset, the particle thermal anisotropy drives waves in the unstable frequency band
predicted by Equation (8) (black dotted lines), and lower-frequency wave power does not appear.
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Appendix E
Numerical Convergence

In Figure 18 we show numerical convergence with respect to
the number of particles per cell, focusing on the total wave
power B 2d ^ , ion temperature anisotropy Δi, and electron
temperature anisotropy Δe. In particular, we sample these
quantities at t= 1q−1 in order to check convergence at late
times when waves scatter CRe appreciably. We check
convergence for our fiducial simulation and also all runs with
varying q−1, vA0/c, and mi/me. The simulations in Figure 18
used single-precision floats for particle momenta in the PIC
algorithm, which introduces a small numerical error (see
Section 2). This precision error does not depend on particle
sampling, so we consider it acceptable for our convergence test.

It is most important that the wave power and ion temperature
anisotropy are converged with respect to the particle sampling
for our study. For all simulations considered, a 2 or 4 times
increase in the particle count does not modify B 2d ^ or Δi by
more than a factor of 1.5×. We consider this rate of
convergence acceptable.
The electron temperature anisotropy is more sensitive to

particle sampling. Some simulations are not converged in
Δe, in particular those with large q−1. We consider this
incomplete convergence acceptable because of the
minor role of electron-driven waves in CRe energization,
as shown by our simulations of CRe energy gain with
electrons heated isotropically to prevent whistler wave
growth (Figures 14(i)–(l)).

Figure 17. Effect of varying Δt upon the measured pitch-angle scattering rate, measured between times t and t + Δt. The scattering time step Δt is smallest at the top
and increases going down each row, varying from 0.9 to 47 ;i0

1W- the third row from the top corresponds to t 4.7 i0
1D = W- as used for Figures 3(j), (k), (l). The

simulation time varies from left to right columns as t ≈ 0.25q−1, 0.45q−1, and 1.05q−1 to match Figure 3.
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Appendix F
Simulation Parameters

Table 1 provides the input parameters for all simulations in
this article: first the fiducial simulation, followed by parameter
sweeps of q−1, kB T0 (equivalently vA0/c), mi/me, and βp0. The
simulations with varying βp0 are only used in Appendix B.
Simulations with varying particle count (Appendix E) or with
one species isotropic are not explicitly shown.

We define some input parameters in code units: my is the
domain size in cells; intv is the number of time steps
between output file dumps, relevant for wave-power spectra
and particle scattering measurements; dur is the simulation
duration in time steps. Other key parameters such as the grid
cell size, particles per cell, current filtering, and numerical
speed of light are identical across all simulations and are
stated in Section 2.

Figure 18. Convergence of our simulations with respect to particle sampling for thermal ICM particles (both ions and electrons). Left-most column: time-evolving (a)
wave power B 2d ^ , (b) ion anisotropy Δi, and (c) electron anisotropy Δe for varying particles per cell (colored curves) compared to our fiducial simulation (black
curve). Thick light-gray curve is nonrelativistic CGL prediction in (b)–(c). The black squares at t = 1q−1 correspond to the same symbols in (d)–(l). Right three
columns: wave power and anisotropy, measured at t = 1q−1 for simulations with varying q−1 (d)–(f), vA0/c (g)–(i), and mi/me (j)–(l). Each marker set represents one
simulation from the main article with varied particle sampling. The black squares represent fiducial simulation in all panels (d)–(l), and correspond to the data and
markers in (a)–(c). The vertical light-gray bar indicates the fiducial particle sampling of 16,384 ions and electrons per cell (excluding test-particle CRe); all markers
within the light-gray bar correspond to a simulation from the main article (see Table 1). The legends above each column report the ratio of q−1, vA0/c, and mi/me with
respect to the fiducial simulation (1×).

Table 1
Simulation Input Parameters

Purpose mi/me βp0 kB T0 vA0/c q−1 my my intv intv dur dur

[ ]m ce 2 [ ]i0
1W- [ ]i0r [ ]i0

1W- [ ]q 1-

Fiducial 8 20.0 0.20 0.067 800 4608 79.3 800 0.94 960000 1.41

Vary q−1 8 20.0 0.20 0.067 200 4608 79.3 800 0.94 240000 1.41
Vary q−1 8 20.0 0.20 0.067 400 4608 79.3 800 0.94 480000 1.41
Vary q−1 8 20.0 0.20 0.067 1600 4608 79.3 800 0.94 1920000 1.41
Vary q−1 8 20.0 0.20 0.067 3200 4608 79.3 800 0.94 3840000 1.41

Vary vA0/c 8 20.0 0.40 0.094 800 4608 79.3 600 1.00 720000 1.50
Vary vA0/c 8 20.0 0.10 0.047 800 4608 79.3 1200 1.00 1440000 1.50
Vary vA0/c 8 20.0 0.05 0.033 800 4608 79.3 1700 1.00 2040000 1.50
Vary vA0/c 8 20.0 0.03 0.024 800 4608 79.3 2400 1.00 2880000 1.50

Vary mi/me 4 20.0 0.20 0.089 800 3840 88.7 400 0.89 480000 1.34
Vary mi/me 16 20.0 0.20 0.049 800 6144 77.0 1600 0.97 1920000 1.46
Vary mi/me 32 20.0 0.20 0.035 800 9216 82.8 3200 0.98 3840000 1.48

Vary βp0 8 2.0 0.20 0.211 800 1536 83.6 300 1.12 360000 1.68
Vary βp0 8 6.3 0.20 0.119 800 2688 82.3 500 1.05 600000 1.57
Vary βp0 8 63.2 0.20 0.037 800 8192 79.3 1500 0.99 1800000 1.49

Note. The columns are defined in Section 2 and Appendix F.

(This table is available in machine-readable form.)
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