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Abstract

Operations and maintenance (O&M) is a key contributor to wind farm expenditures. To increase competi-

tiveness, wind farm operators are increasingly looking into leveraging real-time sensor data from condition

monitoring (CM) systems. CM provides significant insights on evolving asset failure risks for wind turbines.

To date, these insights have not been fully leveraged in wind farm O&M due to ad-hoc connections to

decision-making. Specifically, CM applications in wind farms have been limited to detection of turbines with

imminent failure risks that require immediate replacement. In reality, wind farm maintenance requires a

careful proactive orchestration of O&M dependencies across turbines along with multiple sources of uncer-

tainty associated with asset availability, operational and market conditions. This paper proposes a unified

condition-based maintenance and operations scheduling approach for wind farms that models uncertainties

related to turbine availability, wind power output and market price. The proposed formulation explicitly

considers the turbine-to-turbine dependencies in operations and maintenance, such as opportunistic mainte-

nance, to identify the O&M decisions that are optimal for multiple wind farms. The problem is formulated

as a chance-constrained stochastic programming model to maximize operational revenue while ensuring high

levels of turbine availability and generation. To make the chance constraints tractable, two approximations

are proposed with a focus on sample average approximation (SAA) and prominent tail inequalities such

as Markov’s inequality and Chernoff bound. Our results on a comprehensive set of experiments demon-

strate that the proposed approach provides significant improvements in asset availability, market revenue

and maintenance costs in large scale wind farms.

Highlights

• A stochastic condition-based optimization model is proposed for wind farm operations & maintenance.

• Condition-based chance constraints are formulated to model farm-level availability risks.
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• Tractable approximations are developed for the proposed chance constraints.

• Degradation and operational data are used to build a comprehensive experimental framework.

• Proposed model significantly improves asset availability, market revenue and maintenance costs.

Keywords: Chance-constrained programming, condition-based maintenance, stochastic programming,

wind farm operations and maintenance, sample average approximation
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Nomenclature
Sets:

T Maintenance epochs (periods)

H Operational sub-periods

L Wind farm locations

Gℓ Wind turbines at location ℓ

Go,ℓ Operational wind turbines at location ℓ

Gf,ℓ Failed wind turbines at location ℓ

Ω Uncertainty scenarios

Parameters:

Cf,i
t Corrective maintenance cost of wind turbine i in

period t

Cp,i
t Preventive maintenance cost of turbine i in period t

Cv,ℓ
t Crew visit cost in period t at location ℓ

Cd,i
t Dynamic maintenance cost associated with schedul-

ing turbine i’s maintenance in period t

Γt,h,ω Electricity price in period t and sub-period h under

scenario ω

Φi
t,h,ω Available wind power of turbine i in period t and

sub-period h under scenario ω

Mp
t Planned maintenance capacity in period t

Mo
t On-the-spot maintenance capacity in period t

θℓ,ℓ′ Travel time from location ℓ to ℓ′

τ iω Failure time of turbine i under scenario ω

pω Probability of scenario ω

Variables:

zit 1, if operational turbine i is scheduled to be preven-

tively maintained at period t

νit 1, if failed turbine i is scheduled to be correctively

maintained at period t

xℓ
t 1, if the crew visits location ℓ in period t

uℓ
s,t 1, if the crew visits location ℓ between (and includ-

ing) periods s and t, where s ≤ t

ζit,ω 1, if turbine i is available to operate at time period t

under scenario ω

yit,h,ω Power generation of turbine i at time period t and

sub-period h under scenario ω

1. Introduction

Effective Operations and Maintenance (O&M) strategies play a pivotal role in improving competitiveness

of wind energy. Expenditures due to O&M account for 31% and 34% of the running expenses for onshore

and offshore wind farms, respectively; and cast significant implications for a wide range of operational

metrics. Among these, the number of operational turbines (i.e., farm-level availability) is widely regarded as

a critical metric, directly impacting dispatch capabilities and operational revenues [1, 2, 3]em. Predicting and

controlling farm-level availability, however, is a complex task that revolves around fine-tuning the relationship

between evolving turbine failure risks, and scheduled O&M decisions to mitigate their impact. In the absence

of sensor data, wind farm operators typically rely on overly conservative measures to identify probable turbine

failure instances. Sensor-driven condition monitoring (CM) systems provide increased visibility on turbine

failure risks, and enables sensor-driven maintenance policies called condition-based maintenance (CBM). A

central focus of CBM is to leverage the insights gained from CM systems to optimally coordinate O&M

decisions to maximize revenue and mitigate financial and reliability risks. The integration of insights from
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CM (e.g., inference of failure risks) into CBM (e.g., O&M decision making) constitutes a difficult modeling

problem for wind farm operations. Evidently, existing CBM approaches typically propose ad-hoc connections

to decision-making that revolves around conducting immediate maintenance on turbines with imminent

failure risks. To enable proactive maintenance planning, CBM approaches require a new generation of risk-

based optimization models that explicitly model sensor-driven predictions on turbine failure risks, and impact

of unavailability on complex wind farm operations. The objective of this paper is to address this need.

O&M modeling and optimization in wind farms has a rich and growing literature. Conventional O&M

approaches focus primarily on complex wind farm operations, such as transportation and routing [4, 5],

logistics planning [6, 7], environmental factors [8], and expenditures [9, 10]. While providing a detailed

representation for operations, these approaches typically have comparatively simpler models for conducting

maintenance. Maintenance is typically modeled via a set of constraints to ensure every turbine undergoes

a time-based (or periodic) repair/replacement following a pre-specified frequency (yearly or semi-annually),

which are obtained through manufacturing recommendations, engineering expertise, and field observations

[11, 12]. Operators collect the failure time data for certain types of turbines to develop population-based

distributions, which are then used to predict the time of failure for specific turbines in their wind farms.

Population-based failure distributions assume that every turbine degrades and fails in a similar fashion

and pace. In reality, identical turbines exhibit significant differences in terms of how they fail due to

variations in manufacturing & material imperfections, and operational environments. Evidently, population-

based estimates result in high levels of uncertainty and inaccuracies. Operators typically address this issue

by developing conservative maintenance schedules that impose frequent maintenance actions to minimize

potential risks of turbine failure [13, 14]. These overly conservative maintenance policies require additional

financial and maintenance resources while still resulting in a significant number of turbine failures. As

operational requirements become more stringent, relying on the inefficient conventional O&M approaches is

becoming an increasingly precarious position.

Recent developments in sensor technology, data processing and storage capabilities enabled CM-based ap-

proaches that leverage real-time sensor information to provide accurate predictions on turbine failure risks.

These sensor-driven failure predictions are significantly different from the conventional population-based es-

timates, as they use sensor data from specific turbines in the field for prediction purposes [15]. Specifically,

CM approaches use the streaming sensor data to capture unique degradation and failure characteristics of

turbines, thus generating an asset-specific distribution of failure that comes with significant improvements in

prediction accuracy [16]. CM predictions typically have two forms: diagnostics and prognostics. Diagnostic

approaches use sensor data to estimate the current state of health [17, 18, 19], and are typically used to

identify turbines with imminent failure risks. Prognostic approaches derive remaining life distributions for

turbines, which require an estimate of the current state of health (as in diagnostics), as well as an accurate

prediction of how the health state of the turbine is likely to evolve in the future [20, 21]. From an O&M plan-

ning perspective, prognostics have significant advantages over diagnostics, since prognostic predictions on

remaining life distribution enable the operators to proactively understand and mitigate the risks associated

with when to schedule maintenance actions.

In line with the existing CM approaches, literature on CBM in wind energy also focuses on two types of

models: diagnostics-based maintenance, and prognostics-based maintenance. Diagnostics-based maintenance

models mainly constrain their focus to identifying imminent turbine failure risks and fixing them via imme-
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diate maintenance actions, without proactive O&M planning [22]. Existing commercial solutions for CBM

often use these type of policies [23, 24]. Prognostics-based maintenance incorporates remaining life distri-

bution predictions into maintenance planning. Existing models in prognostics-based maintenance of wind

farms typically focus on single-turbine systems with limited applicability to multi-turbine settings [25, 26],

or rule-based opportunistic maintenance models that initiate maintenance actions for turbines when their

degradation reaches a certain level of severity [27]. In recent years, there has been a growing literature in en-

ergy systems [28, 29, 30] and wind farm applications [31, 32] that uses prognostics-based costs to coordinate

operations and maintenance decisions. They typically use a maintenance cost function to connect remaining

life distribution to its corresponding maintenance cost values in the optimization model. These approaches

are either deterministic [31, 32], or stochastic models with only operational uncertainty (i.e., demand, gen-

eration) [30]. To date, wind farm O&M optimization models have not captured the uncertainty and risks

associated with turbine remaining life distributions on fleet-level maintenance, operations and availability in

large scale wind farms.

A significant challenge in wind farm CBM revolves around capturing turbine-to-turbine dependencies in

operations and maintenance. In operations, farm-level production and revenue is a joint function of as-

set availability and wind power characteristics experienced by all the turbines within a farm. In mainte-

nance, costs associated with maintenance crew deployment provides significant initiatives of grouping turbine

maintenances together (i.e. opportunistic maintenance) to reduce the number of maintenance crew visits

[27, 31, 33, 34]. Opportunistic maintenance is particularly crucial in offshore wind farm settings, where crew

visits require the use of specialized boats and helicopters. The considerations associated with opportunistic

maintenance in wind farm CBM is conventionally captured via fixed rule-based degradation threshold poli-

cies [27]. In reality, the opportunistic maintenance decisions are highly dynamic and evolve as a function

of operational conditions (e.g. market price, wind speed), and asset availability & failure risks. Modeling

these dynamic interactions require stochastic models that explicitly characterize operational outcomes as

a function of three categories of maintenance actions. The first category, called preventive maintenance,

denotes planned maintenance actions conducted prior to turbine failure. For this maintenance type, tur-

bine remains unavailable during the duration of the preventive maintenance action. The second category,

planned corrective maintenance, models the maintenance actions conducted on turbines that are already in

failed stage at the time of planning. These turbines remain unavailable until their maintenance actions are

completed. Finally, the third category, called on-the-spot corrective maintenance, is conducted on turbines

that are operational at the time of planning, but fail prior to their scheduled preventive maintenance. These

category of turbines are opportunistically repaired when the maintenance crew visits the location for fixing

another turbine in the vicinity. In this scenario, turbines remain unavailable from their time of failure, to

the completion of their opportunistic maintenance action. It is a significant challenge to model these differ-

ent types of maintenance actions, the associated turbine availability conditions, and their implications on

operational revenues.

In this paper, we propose a risk-based, stochastic optimization model for condition-based maintenance and

operations in wind farms. The proposed stochastic optimization model leverages predictions on turbine

remaining life distributions to maximize operational revenue and mitigate the risks associated with turbine

availability. Unique to our approach is the explicit modeling of operational and maintenance uncertainties,

and the development of chance constraints to represent turbine availability risks. To date, wind energy and

renewable integration literature used chance constraints to model a wide range of operational uncertainties,
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such as renewable energy utilization [35, 36], power balance satisfaction [37, 38], reserve requirements [39],

and line flow limits [40, 41, 42]. Our approach shifts the focus to maintenance-related uncertainties as well.

The proposed chance constraints enable the optimization models to fully harness sensor-driven remaining

life predictions to represent the significant failure risks and their implications on wind farm O&M. The

contributions of the proposed model can be listed as follows:

• We propose a new generation of risk-based O&M optimization models that embed sensor-driven pre-

dictions on turbine remaining life distributions within a risk-based stochastic optimization model. The

proposed model simultaneously characterizes operational and maintenance-related uncertainties for a

large-scale wind farm, and enables the explicit modeling and control of the impact of these uncer-

tainties on complex wind farm operations. Specifically, turbine-to-turbine dependencies in terms of

operations (e.g., farm-level generation) and maintenance (e.g., opportunistic maintenance) are explic-

itly captured. The proposed model makes provision for on-the spot corrective maintenance actions that

conduct opportunistic corrective maintenance when the maintenance crew visits neighboring turbines.

• We formulate sensor-driven chance constraints that adapt to remaining life distribution predictions to

derive evolving turbine availability risks in a large-scale wind farm. The proposed chance constraints

differ from the existing formulations that focus on operational risks, and do not incorporate prognostic

predictions. The chance constraints enable the models to fully harness the value of sensor-driven pre-

dictions by representing costs, uncertainties, and risks as a function of these predictions; and restricting

the unavailability of units through explicit consideration of probabilistic failures and crew visits.

• We develop two tractable approximations for the proposed chance constraints and compare their per-

formances for large-scale models. The proposed approximations rely on tail inequalities including

Markov’s inequality and Chernoff bound, and sample average approximation (SAA). Employing tail

inequalities enables the estimation of the constraint violation probabilities without the need for sam-

pling. In SAA, the original chance constraints are approximated through the use of Monte Carlo

simulation and integer programming reformulation methods.

• We provide a simulation framework to evaluate and compare the performance of risk-based O&M op-

timization models with the prominent approaches in literature. The proposed framework incorporates

real-time condition monitoring data to emulate the degradation process of turbines and uses actual

weather and market price data to create realistic operational environments of wind farms.

Extensive numerical studies are performed to illustrate and validate the the performance of the risk-based

O&M model in large-scale cases. We schedule maintenance and operations of 100 wind turbines in a wide

range of settings and conditions. The results show significant improvements in terms of costs, reliability,

availability, and renewable penetration. As a case in point, the computational experiments highlight 62%-

70% reduction in average unavailability of turbines using the proposed risk-based O&M approach relative

to the risk-neutral time-based (periodic) maintenance policy.

The remainder of the paper proceeds as follows. Section 2 introduces predictive analytics that explain

how the sensor-data is harnessed to develop predictions on turbine remaining life distributions. Predictions

of operational uncertainties are also discussed within the same section. Section 3 develops the proposed

O&M optimization model that embeds the predictions on remaining life distributions within a stochastic
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optimization framework. Section 4 discusses the chance constraint approximations that enable tractability

of the risk-based model for large-scale applications. In Section 5, a comprehensive set of computational

experiments are conducted to demonstrate the performance of the proposed model compared to the existing

maintenance approaches. Finally, Section 6 concludes the paper with a discussion on results and future work.

2. Predictive Analytics

The optimization model that schedules the operations and maintenance activities of wind farms (presented

in detail in Section 3) builds on (i) sensor readings from wind turbines and the resulting remaining lifetime

distribution (RLD) predictions, and (ii) turbine failure uncertainty scenarios generated as a function of the

predicted turbine RLDs. The modeling of the underlying degradation processes and the Bayesian framework

that is used for updating the RLD parameters with new sensor observations are described in detail in Section

2.1. Section 2.2 shifts the focus to the scenario generation method used for producing uncertainty scenarios

that are good representations of the physical system.

2.1. Degradation Modeling and Bayesian Framework

The degradation of a turbine i is modeled using the degradation function, Di(t), as given in equation (1). In

this function, ϕi(t;κ, θi) and ϵi(t;σ) denote the underlying base degradation function (given the deterministic

and stochastic degradation parameters κ and θi) and the error term (given the volatility σ) associated with

turbine i, respectively.

Di(t|θi) = ϕi(t;κ, θi) + ϵi(t;σ) (1)

The failure time of turbine i, denoted as fi, is the first time at which the degradation function Di(t) surpasses

a pre-defined degradation threshold, Λi; i.e., fi = min{t ≥ 0 : Di(t) ≥ Λi}. Thus, the conditional cumulative

distribution function (CDF) of the failure time can be characterized with equation (2), given that the age

of turbine i at the time of observation is toi .

F
toi
fi|θi(t) = P (fi ≤ t|θi) = 1−P

(︃
sup

0≤s≤t
Di(s|θi) < Λi

)︃
= 1−P

(︃
sup

0≤s≤t
{ϕi(s;κ, θi) + ϵi(s;σ)} < Λi|θi

)︃
(2)

RLD of each turbine i, characterized by (2), is contingent on the value of the stochastic degradation parameter

θi. In reality, the true value of this parameter is not known, and reliable estimates are key for accurate

degradation modeling and RLD estimation. The Bayesian framework for estimating and updating this

parameter starts with an initial estimate, denoted as π(θi). As new sensor readings are observed, the

posterior distribution of θi, denoted as υ(θi), is computed via a Bayesian update mechanism, the details of

which can be found in [28]. The resulting RLD of turbine i, F
toi
fi
(t), can be characterized as in (3).

F
toi
fi
(t) = P (fi ≤ t) = 1−

∫︂
P (fi > t|θi) υ (θi) dθi = 1−

∫︂
P

(︃
sup

0≤s≤t
Di (s|θi) < Λi

)︃
υ (θi) dθi (3)
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Note that the proposed degradation modeling and Bayesian framework use every new sensor observation, to

generate an update on the posterior distribution υ (θi), and the associated prediction on RLD using (3).

2.2. Scenario Generation

Incorporating prevailing operational uncertainties of wind turbines plays a crucial role in obtaining optimal

operations and maintenance scheduling of wind farms. Thus, the optimization framework presented in this

paper explicitly accounts for uncertainties through scenarios in a stochastic programming model. We consider

uncertainties in (i) turbine failure times, (ii) wind power, and (iii) electricity price. A representative number

of scenarios, which encompass all three uncertainties, are generated by using remaining life distributions and

historical data.

2.2.1. Failure Time Uncertainty

In order to account for the uncertainty associated with the failure time of each turbine, we generate a set

of turbine failure scenarios. A failure scenario represents a joint uncertainty realization of failure time, fi,

of each wind turbine i. Failure scenarios are generated according to the RLDs, which use the most recent

degradation signal observations (as described in Section 2.1).

An important consideration in generating failure scenarios is that the optimization model (presented in

detail in Section 3) requires discrete time periods. More specifically, the planning horizon is divided into T

time periods, where each time period t ∈ {1, 2, . . . , T} represents a time interval [t − 1, t), where 0 marks

the beginning of the planning horizon. Thus, in order to generate failure scenarios that are compatible

with the discrete-time nature of the optimization model, we introduce the notion of failure time periods.

If the uncertainty realization associated with scenario ω reveals that turbine i fails at time fi, then the

corresponding failure time period, denoted as τ iω, can be computed as the time period t such that t − 1 ≤
fi < t.

The generation of uncertainty realizations is done via a Monte Carlo sampling procedure. For each scenario

ω and each turbine i, a uniform random variate U i
ω is generated, and the failure time period corresponding

to that variate is obtained using the RLD of turbine i. The failure time period corresponding to U i
ω is

t ∈ {1, 2, . . . , T} such that F
toi
fi
(t − 1) ≤ U i

ω < F
toi
fi
(t). An artificial time period T + 1 is added to the

optimization model in order to denote cases where a turbine does not fail within the planning horizon; i.e., if

U i
ω ≥ F

toi
fi
(T ), then the failure period of turbine i under scenario ω is recorded as T +1. With this sampling

method, independent and identically distributed samples of failure scenarios are generated.

2.2.2. Wind Energy & Market Price Prediction Uncertainties

Wind power and electricity price forecast errors can have a significant impact on the stochastic operations

and profitability of the wind farm [43]. It is shown that these two factors impact the extent to which grouping

maintenance actions together is beneficial [31]. Thus, these two sources of uncertainty are also considered

within the uncertainty scenarios of the proposed stochastic programming model.
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To incorporate the uncertainty of the wind power into our proposed decision-making framework, the available

wind power of each turbine is considered in the uncertainty scenarios. In generating the production capacity

scenarios, wind speed is assumed to follow a wn W (κ, λ), where κ > 0 is the shape parameter and λ > 0 is the

scale parameter. Then, historical data is used to obtain the shape and scale parameters of the distribution,

and the production capacity scenarios for each turbine i is generated according to the turbine-specific power

curves[44].

In generating the electricity price scenarios, the electricity price forecast error is assumed to follow a Gaussian

distribution [45, 46]. Once the distribution parameters are estimated using historical data, a Monte Carlo

simulation is employed to generate scenarios, similarly to the failure scenario generation procedure described

in Section 2.2.1.

3. Sensor-Driven Adaptive Opportunistic Maintenance & Operations Scheduling Model

In this section, we develop an optimization model for the joint maintenance and operations scheduling of

wind turbines in a wind farm, with explicit consideration of unexpected turbine failures, as well as electricity

price and generation uncertainty. We formulate this problem as a mixed integer stochastic program, and refer

to it as the Stochastic Adaptive Opportunistic Maintenance & Operations Scheduling (SAOMOS) model.

In the proposed model, a set of wind farm locations, L, is considered, and the set of wind turbines for

each location ℓ ∈ L is denoted as Gℓ. Based on the status of turbines at the time of planning, the set

Gℓ is partitioned into two subsets, Go
ℓ and Gf

ℓ , which respectively denote the set of wind turbines that are

either operational or under maintenance, and the set of failed turbines. Additionally, Go =
⋃︁

ℓ∈L Go
ℓ and

Gf =
⋃︁

ℓ∈L Gf
ℓ denote the sets of all wind turbines that are operational and failed, respectively, at the time

of planning. The SAOMOS model spans a time horizon T , consisting of T time periods, and at each time

period t ∈ T , decisions regarding maintenance and operations must be made. In order to increase the time

granularity for operational decisions, a time period t is further divided into a set of operational time periods,

H. This way, maintenance decisions are made for every time period t ∈ T (e.g., every day), but operational

decisions are made for every operational period h ∈ H (e.g., every hour) of every period t ∈ T .

Preventive maintenance, which can only be scheduled for operational turbines, is denoted with a binary

decision variable zit for each time period t and each operational wind turbine i. This decision variable will

take the value 1 if preventive maintenance is initiated on turbine i at period t. A failed turbine can only

undergo corrective maintenance. To incorporate this in SAOMOS, a binary decision variable νit for each time

period t and each failed turbine i is defined. This decision variable takes the value 1 if turbine i is scheduled

for a corrective maintenance at period t. A binary variable xℓ
t is defined for each time period t and each

wind farm location ℓ to denote the maintenance crew visits. This decision variable will take the value 1 if

the maintenance crew visits wind farm location ℓ at period t.

The failure time uncertainty of the turbines is incorporated into the model through the notion of scenarios

[39, 47]. We assume that there is a finite number of possible joint uncertainty realizations, i.e., scenarios,

regarding the failure times of turbines that are operational at the time of planning, wind power, and energy

price (see Section 2.2 for the details). Let Ω denote the set of these scenarios, where each scenario ω ∈ Ω
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has a probability pω of occurring, and
∑︁

ω∈Ω pω = 1. Turbine availability is denoted with the binary

decision variable ζit,ω, which takes the value 1 if turbine i is operational at time period t under scenario ω.

Furthermore, the amount of power (in MW) generated by turbine i in operational period h of period t under

scenario ω is denoted with the non-negative continuous decision variable yit,h,ω.

In what follows, the objective and the constraints of the optimization model are described.

3.1. Objective Function

The objective of SAOMOS is to maximize the expected profit of wind farms as a function of decisions

for operations and maintenance by utilizing sensor data. The objective function, given in (4), consists of

expected operational revenue and maintenance costs, as well as crew visit costs.

max
z,ν,x,y

∑︂
ω∈Ω

pω
∑︂
i∈Go

(︃∑︂
t∈T

∑︂
h∈H

Γt,h,ω · yit,h,ω −
τ i
ω−1∑︂
t=1

Cp,i
t · zit −

T∑︂
t=τ i

ω

Cf,i
t · zit

)︃
−
∑︂
ℓ∈L

∑︂
t∈T

Cv,ℓ
t · xℓ

t −
∑︂
i∈Gf

∑︂
t∈T

Cf,i
t · νit −

∑︂
i∈Go

∑︂
t∈T

Cd,i
t · zit (4)

The first term of the objective captures the expected operational revenue minus the maintenance costs of

the turbines that are operational at the time of planning. The electricity price at operational period h of

period t under scenario ω is denoted with Γt,h,ω. Furthermore, τ iω denotes the time period at which turbine

i fails under scenario ω, and Cp,i
t and Cf,i

t denote the preventive and corrective maintenance costs of turbine

i in period t, respectively. By using the failure time period τ iω in the limits of the summations, we ensure

that the corrective maintenance cost is incurred if the turbine is maintained after its failure time, otherwise

the preventive maintenance cost is incurred under scenario ω. The second and third terms of the objective

account for the cost of crew visits to wind farm locations and the corrective maintenance cost of the turbines

that were at a failed state at the time of planning, respectively. The parameter Cv,ℓ
t denotes the cost of a

maintenance crew visit to wind farm location ℓ at period t.

The last term of the objective represents the dynamic maintenance cost of conducting maintenance at time

period t. The proposed maintenance cost Cd,i
t casts a balance between (i) premature (early) maintenance

that inefficiently uses the equipment lifetime, and (ii) late maintenance that increases failure risks. The cost,

Cd,i
t , associated with conducting maintenance of a partially degraded turbine i at time period t is given as

follows:

Cd,i
t = Uf,i

∫︂ t

s=0

(t− s)P (τi = s)ds+ Up,i

∫︂ ∞

s=t

(s− t)P (τi = s)ds, (5)

where τi denotes the random variable defining the failure time period of turbine i, and P (τi = t′) denotes the

probability that turbine i fails in time period t′. In defining the dynamic maintenance cost, Uf,i and Up,i

denote the costs per unit time of conducting maintenance after and before the time of failure, respectively.

The proposed function outputs a penalty when the maintenance time t deviates from the time of failure τi:

the first and second terms penalize deviation due to late and premature maintenances, respectively. In this

formulation, Uf,i >> Up,i, meaning that late maintenance (which causes failure) is penalized significantly

higher than a premature maintenance; therefore enabling the maintenance function to remain conservative.
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Note that the probabilities P (τi = t′) are computed using the RLDs, and thus maintenance cost Cd,i
t evolves

as a function the turbine RLD predictions that are introduced in Section 2.1. As a result, updates to turbine

RLDs are integrated into the objective function through this maintenance cost function.

3.2. Maintenance Coordination Constraints

Constraints (6)–(8) coordinate and limit turbine maintenance decisions.

∑︂
t∈T

zit = 1, ∀i ∈ Go (6)∑︂
t∈T

νit ≤ 1, ∀i ∈ Gf (7)∑︂
i∈Go

zit +
∑︂
i∈Gf

νit ≤ Mp
t , ∀t ∈ T (8)

Constraints (6) ensure that the operational turbines are maintained once during the planning horizon. Con-

straints (7) limit the number of corrective maintenance actions on a turbine that was in a failed state at

the time of planning to at most one. Note that constraint set (7) does not enforce corrective maintenance

on failed turbines; rather, it allows turbines to be idle for some time so that corrective maintenance actions

can be grouped opportunistically with more maintenance actions. Constraints (8) are the labor capacity

constraints, where Mp
t denotes the planned maintenance capacity at period t.

3.3. Maintenance Crew Coordination Constraints

In this section, constraints that establish relationships between the different maintenance decision variables

are presented. In addition to the decision variables introduced in Section 3, let the binary decision variable

uℓ
s,t, defined for all wind farm locations ℓ ∈ L, all periods t ∈ T and all periods s ≤ t, denote whether or not

a maintenance crew visits wind farm location ℓ between periods s and t. This variable will take the value 1

if there is a maintenance crew visiting location ℓ between periods s and t (including periods s and t).

zit ≤ xℓ
t ∀ℓ ∈ L, i ∈ Go

ℓ , t ∈ T (9)

νit ≤ xℓ
t ∀ℓ ∈ L, i ∈ Gf

ℓ , t ∈ T (10)

xℓ
t ≤

∑︂
i∈Go

ℓ

zit +
∑︂
i∈Gf

ℓ

νit ∀ℓ ∈ L, t ∈ T (11)

∑︂
ℓ∈L

xℓ
t ≤ 1 ∀t ∈ T (12)

xℓ
t + xℓ′

t′ ≤ 1 ∀ℓ, ℓ′ ∈ L, ℓ ̸= ℓ′, t ∈ {1, . . . , T − θℓ,ℓ′},∀t
′ ∈ {t, . . . , t+ θℓ,ℓ′} (13)

xℓ
t′ ≤ uℓ

s,t ∀ℓ ∈ L, t ∈ T , s ∈ {1, . . . , t}, t′ ∈ {s, . . . , t} (14)

uℓ
s,t ≤

t∑︂
t′=s

xℓ
t′ ∀ℓ ∈ L, t ∈ T , s ∈ {1, ..., t} (15)

Constraints (9)–(11) enforce that the maintenance crew visits wind farm location ℓ if and only if at least one

wind turbine in location ℓ is scheduled for preventive or corrective maintenance. Constraints (12) enforce
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that at most one wind farm location can be visited in a time period. Constraints (13) enforce the travel time

between wind farm locations: If the maintenance crew visits location ℓ in period t, it cannot visit another

location ℓ′ before the travel time between the two locations, θℓ,ℓ′ , passes. Constraints (14) and (15) establish

the relationship between variables uℓ
s,t and xℓ

t′
, i.e., uℓ

s,t takes the value 1 if and only if there is at least one

crew visit to location ℓ between periods s and t.

3.4. Coupling Constraints for Wind Turbine Availability and Maintenance

Constraints (16) and (17) model the availability of the wind turbines, which is defined with the decision

variable ζit,ω. This decision variable will assume the value 1 if turbine i is available to operate at time period

t under scenario ω. Note that turbine availability depends on maintenance and crew visit decisions, as well

as the failure scenarios.

ζit,ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− zit, if t < τ iω
t−1∑︂
s=1

zis, if t = τ iω

τ i
ω−1∑︂
s=1

zis + uℓ
τ i
ω,t−1 ·

(︃ T∑︂
s=τ i

ω

zis

)︃
, if t > τ iω

, ∀ℓ ∈ L, i ∈ Go
ℓ , t ∈ T , ω ∈ Ω (16)

Constraints (16) establish the availability of turbines that are operational at the time of planning. The

availability of operational wind turbines under any scenario ω ∈ Ω can be examined in three cases. Let cases

I, II, and III correspond to the time periods before, during, and after the failure period of turbine i under

scenario ω, respectively. In case I, for time periods before the failure time of turbine i under scenario ω, τ iω,

the turbine is available if it is not under the preventive maintenance. In case II, i.e., at the time period in

which turbine i fails under scenario ω, the turbine would be available only if it has gone under preventive

maintenance before that time period. Lastly, case III corresponds to the time periods after the failure time

of a wind turbine i under scenario ω. In this case, the turbine is available in a period t if (i) it has been

preventively maintained before its failure time, or (ii) it has not been preventively maintained before its

failure time but has undergone on-the-spot corrective maintenance when the maintenance crew visited the

wind farm location to maintain other turbines. To model case III, the binary indicator
∑︁T

s=τ i
ω
zis, which

takes the value 1 if preventive maintenance is scheduled after the failure time of turbine i under scenario

ω, is used. If the aforementioned binary indicator is 1, and if the maintenance crew visits the wind farm

location after the failure time τ iω and before t (so, uℓ
τ i
ω,t−1 is equal to 1), then the availability variable ζit,ω

will be set to 1.

Constraints (17) set the value of ζit,ω for the turbines that are at a failed state at the time of planning. It

establishes that failed turbines are not available until they undergo planned corrective maintenance.

ζit,ω =

t−1∑︂
s=1

νis, ∀i ∈ Gf , t ∈ T , ω ∈ Ω (17)

Constraints (18) are introduced to limit the number of turbines that undergo on-the-spot corrective main-

tenance when the maintenance crew visits the wind farm location to maintain other turbines; a concept

11



that is introduced with the uℓ
s,t variables, as in case III of constraint set (16). The number of turbines

that fail before their scheduled preventive maintenance but are maintained through on-the-spot corrective

maintenance is limited to at most Mo
t at every time period t ∈ T .

∑︂
ℓ∈L

∑︂
i∈Go

ℓ :

τ i
ω<t

uℓ
τ i
ω,t−1 ·

(︃ T∑︂
s=τ i

ω

zis

)︃
≤ Mo

t , ∀ω ∈ Ω, t ∈ T (18)

Note that constraints (18) and case III of constraints (16) are non-linear. But since they involve binary

variables, the linearization procedure for these constraints is relatively straightforward. For the sake of

completeness, the linear counterparts of these constraints are derived in Appendix B.

3.5. Coupling Constraints for Wind Turbine Availability and Operations

Constraints (19) limit the power produced by each turbine. They ensure that an unavailable turbine cannot

produce any power, and the production of an available turbine is limited by the maximum production

capacity of that turbine and the weather conditions. The parameter Φi
t,h,ω denotes the predicted production

output of turbine i at operational period h of period t under scenario ω, which is obtained by using (i) wind

speed scenarios generated with historical wind speed data, and (ii) wind turbine specifications.

yit,h,ω ≤ Φi
t,h,ω · ζit,ω, ∀ℓ ∈ L, i ∈ Gℓ, t ∈ T , h ∈ H, ω ∈ Ω (19)

3.6. Chance constraints

In this section, we introduce the chance constraints of the SAOMOS formulation, which guarantee a high

level of availability at each time period. Let χi
t be a random variable denoting the non-availability of turbine

i at period t, which will take the value 1 if turbine i is not available in period t. Then, the chance constraints

given in (20) guarantee that at each time period t, the number of turbines that may become unavailable is

below a threshold N with a probability of at least 1− ϵ.

P

(︄∑︂
i∈Go

χi
t ≥ N

)︄
≤ ϵ, ∀t ∈ T (20)

The random variable χi
t, which denotes the non-availability of wind turbine i at period t, is defined in

equation (21) for each turbine that is operational at the time of planning, i.e. i ∈ Go. The non-availability

of turbine i at period t will be equal to 1 if one of the following two cases hold true: (i) turbine i has not

failed yet but is undergoing scheduled preventive maintenance at period t, or (ii) turbine i has failed before

period t and has not experienced on-the-spot corrective maintenance yet. In order to distinguish between

these two cases, we define the random variable ηit, which takes the value 1 if time period t is on or after the

failure period of turbine i, τi, and the value 0 otherwise.

χi
t =

(︁
1− ηit

)︁
zit + ηit

(︁
1− uℓ

τi,t−1

)︁
, ∀ℓ ∈ L, i ∈ Go

ℓ , t ∈ T (21)
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The ηit random variable follows a Bernoulli distribution. The probability distribution of this random variable

is generated from the predicted RLD of turbine i through sensors, namely F
toi
fi
(t). This way, constraints (20)

fully adapt to sensor information.

It is important to note that the chance constraints (20) are intractable. Thus, to incorporate these constraints

into the SAOMOS model in a tractable way, safe approximations are derived in Section 4.

4. Chance Constraint Approximations

As mentioned earlier, the chance constraints given in (20) are intractable, as is typical for chance-constrained

stochastic programs [48, 49]. In this section, two tractable approximation methods for the chance constraints

are presented.

4.1. Analytical Safe Tractable Approximation of Chance Constraints

A safe approximation is a constraint whose satisfaction guarantees the satisfaction of the original constraint.

Proposition 1 provides a tractable safe approximation, (22), for the chance constraints given in (20). This

means that any solution that satisfies constraints (22) is guaranteed to also satisfy constraints (20).

Proposition 1. The deterministic linear constraint set (22) is a safe approximation of (20).

E

[︄∑︂
i∈Go

χi
t

]︄
≤ max

⎧⎨⎩N ϵ, max
α>0

2|Go|
(︂(︁

ϵeαN
)︁ 1

2|Go| − 1
)︂

eα − 1

⎫⎬⎭ , ∀t ∈ T (22)

The proof of Proposition 1 is provided in Appendix A.

4.2. Scenario Approximation for the Chance Constraints

The safe approximation presented in Section 4.1 is beneficial because it guarantees a certain level of turbine

availability. However, safe approximations give no indication as to how close they are to the original con-

straint. In this section, we derive a simple yet effective sampling-based approximation that remains close to

the original chance constraint (20), on average [50].

Let ξt =
(︂
ξ1t , ..., ξ

|Go|
t

)︂
denote the vector of ξit random variables, which define whether or not turbine i has

failed by time period t. Then, we define a function Gt(x, ξt) as follows:

Gt(x, ξt) =
∑︂
i∈Go

χi
t −N , ∀t ∈ T (23)

Using (23), the chance constraints (20) can be formulated in the following way:

P
(︂
Gt(x, ξt) ≥ 0

)︂
≤ ϵ, ∀t ∈ T (24)
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Equivalently,

Eχ

[︂
1{Gt(x,ξt)≥0}

]︂
≤ ϵ, ∀t ∈ T . (25)

In inequality set (25), 1 is the indicator function, i.e., 1{Gt(x,ξt)≥0} takes the value 1 if Gt(x, ξt) is non-

negative, and 0 otherwise.

Let ξt,1, . . . , ξt,|Ω| be an independently identically distributed (iid) sample of |Ω| realizations of the random

vector ξt. This sample can be used to approximate the expectation in constraints (25). Using this idea, a

natural approximation of the chance constraints is given in (26).

1

|Ω|

|Ω|∑︂
ω=1

1{Gt(x,ξt,ω)≥0} ≤ γ, ∀t ∈ T (26)

Note that the proportion of realizations ω with Gt(x, ξt,ω) ≥ 0 approximates the probability that the number

of unavailable turbines exceed N . Although constraint set (26) constitutes a tractable approximation to

the chance constraints, it is not a safe approximation, i.e., a feasible solution to constraints (26) is not

guaranteed to be feasible to the original chance constraints (20). Thus, the choice of γ is important for

ensuring feasibility. Choosing a small enough γ (γ < ϵ) would increase the likelihood of obtaining solutions

that satisfy the original chance constraints. On the other hand, choosing a value for γ such that γ > ϵ can

be useful for obtaining a lower bound on the objective value of the original problem.

In order to incorporate constraints (26) into the SAOMOS formulation, a new binary decision variable, vt,ω,

is defined for each period t and uncertainty realization (scenario) ω ∈ Ω. The decision variable vt,ω takes

the value 1 if the availability requirement is violated at time period t under scenario ω. Constraints (27),

where M denotes a sufficiently large positive number, ensure that vt,ω takes the value 1 when Gt(x, ξt,ω) ≥ 0

holds, i.e., when the unavailability tolerance is exceeded. Constraints (28) limit the proportion of scenarios

under which the unavailability tolerance is exceeded.

Gt(x, ξt,ω)−M · vt,ω ≤ 0, ∀t ∈ T , ω ∈ Ω (27)

1

|Ω|
∑︂
ω∈Ω

vt,ω ≤ γ, ∀t ∈ T (28)

5. Computational Experiments

In this section, a comprehensive set of experiments are designed and conducted in order to (i) evaluate the

performance of the SAOMOS model across different realistic settings, and (ii) demonstrate the generaliz-

ability of the findings. Section 5.1 introduces and justifies the experimental setting, data, and parameter

values used in the computational experiments. Consequently, Section 5.2 presents and discusses the results

of the computational experiments.
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5.1. Experimental Setting and Data

The experimental framework consists of three modules: (i) predictive analytics module, (ii) planning module,

and (iii) execution module. The predictive analytics module uses the degradation data to derive the RLDs of

wind turbines based on new observations, and accordingly updates the associated dynamic maintenance costs

and failure predictions. The planning module takes the output of the predictive analytics module as input,

and solves the SAOMOS model to schedule maintenance and operations for a 30-day planning horizon. Then

the sequence of events is simulated in the execution module. In these simulations, the optimal maintenance

schedule obtained from SAOMOS is fixed to be executed for a number of periods (commonly referred to as the

“freeze period”), and the chronology of events that occur following this maintenance schedule is simulated.

By tracking the degradation signals of the wind turbines, the execution module checks to see which turbines

fail before their scheduled maintenance and which successfully undergo maintenance within the freeze period.

The turbines that fail during the freeze period can be correctively maintained if the maintenance crew visits

the wind farm location after the failure time. Otherwise, they remain offline and should be scheduled for a

corrective maintenance the next time the planning module is executed. At the end of each freeze period, the

execution module calculates the resulting operational revenue of the wind farms based on updated turbine

availability, observed wind profile, and energy prices. The degradation signals of turbines are then updated

based on outages or new sensor observations, and the planning horizon is moved forward (commonly referred

to as the “rolling horizon”) to plan the next monthly schedule. The predictive analytics, planning, and

execution modules are executed 15 times in a rolling horizon fashion to simulate a time horizon of 315 days.

Furthermore, this procedure is repeated 10 times with different initial turbine ages and degradation signals.

The metrics presented in the remainder of Section 5 are obtained by calculating the average of these ten

replications.

In all cases, maintenance and operations are scheduled and simulated for 100 wind turbines, each with a rated

capacity of 2 MW. The identical cut-in, cut-out, and rated speed of the turbines are 3, 30, and 12 meters per

second (m/s), respectively. The planning horizon is 30 days with daily maintenance and hourly operational

decisions. In all experiments, the corrective and preventive maintenance costs of turbines are Cf = $8 000

and Cp = $2 000, respectively. Unless otherwise indicated, a crew deployment cost of Cv = $32 000 per visit

is assumed. The chance constraints are implemented by setting N = 10, ϵ = 0.05, and γ = 0.04, unless

stated otherwise.

The real-world vibration-based degradation data from a bearing application is used to mimic the degradation

process in wind turbines. The RLDs of the turbines are dynamically estimated from the data by employing

the Bayesian updating technique described in Section 2.1. The sensor-driven RLDs are (i) discretized

into daily periods to generate independently and identically distributed (iid) turbine failure scenarios, and

(ii) transformed to derive the expected cost of deviation from optimal maintenance time of individual wind

turbines (denoted as Cd,i
t ). The wind speed distribution is calculated using data obtained from National

Centers for Environmental Information [51, 52], and this distribution is used to generate production scenarios

for wind turbines. For incorporating the energy price scenarios into the optimization model, real-time prices

reported by the PJM are used. Following the works of [53, 46, 54], Gaussian distribution is used to represent

the price forecast error, with the base value as the mean and 10% of the base value as the standard deviation.

The performance of the SAOMOS model is benchmarked against (i) a time-based opportunistic mainte-
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nance policy, and (ii) a sensor-driven availability-neutral opportunistic maintenance policy. The time-based

opportunistic (TBO) maintenance policy schedules maintenance actions at fixed industrially approved time

intervals, regardless of the degradation states of turbines, without using sensor information. The sensor-

driven availability-neutral opportunistic (SANO)maintenance policy uses sensor observations and accordingly

adapts maintenance schedules. However, it does not limit the number of unavailable turbines. The main-

tenance schedules for the SANO policy are obtained by implementing and solving SAOMOS without the

chance constraints.

The details of individual case studies are outlined in Table 1. The first case conducts a benchmark analysis

with 5 wind farm locations. The second case is aimed at evaluating the effect of corrective maintenance

costs on the availability of wind turbines. The third case study assesses the effect of crew costs on resulting

maintenance schedules. Finally, the fourth case study focuses on testing the effect of the number of wind

farm locations on maintenance schedules. The experimental results associated with these four case studies

are presented in Section 5.2.

Table 1: Comparative case studies
Case Description Sensitivity Analysis

Case 1 O&M scheduling of 5 wind farms Benchmark analysis
Case 2 O&M scheduling of 5 wind farms Corrective maintenance cost
Case 3 O&M scheduling of 5 wind farms Crew cost
Case 4 O&M scheduling of 100 turbines Number of wind farms

5.2. Experimental Results

Sections 5.2.1 to 5.2.4 present and discuss the results of the case studies summarizes in Table 1. In order

to conduct a thorough comparison of various maintenance policies and parameter settings, the performance

metrics listed and detailed below are used.

• The number of preventive and corrective maintenance actions and crew visits are recorded. The

corrective maintenance actions are considered in two categories: planned and on-the-spot. Planned

corrective maintenance is conducted on turbines that were already at a failed state before the planning

module solves SAOMOS, and on-the-spot corrective maintenance is conducted on turbines that fail

unexpectedly after planning, when a maintenance crew visits the wind farm location to maintain

another turbine.

• Average unavailability (in turbine-days), average curtailed power (in MW), and the maximum number

of turbines that are simultaneously unavailable in a day are reported. Since the chance constraints are

enforced on the number of unavailable turbines each day, we expect that they have a profound effect

on reducing the maximum number of unavailable turbines.

• Average unused life is recorded to assess the efficiency of maintenance policies. This metric reports, at

the time of preventive maintenance, the number of days a turbine would have functioned if it had not

gone under maintenance.

• Finally, total maintenance cost, operational revenue, and the resulting profit are presented.
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5.2.1. Case 1: Benchmark Analysis

This first case focuses on comparing the performance of the SAOMOS model with the two benchmark

maintenance policies, TBO and SANO. Both chance constraint approximation methods presented in Section

4 are implemented and tested. The safe (Section 4.1) and scenario (Section 4.2) approximation methods are

referred to as SAOMOS-Safe and SAOMOS-Scenario, respectively, in the presentation of results.

Table 2 provides the reliability and operational metrics for the three policies (TBO, SANO, SAOMOS),

with two approximation method variants of SAOMOS (SAOMOS-Safe, SAOMOS-Scenario). In this case

study, five wind farms containing a total of 100 turbines are simulated for a time horizon of 315 days. The

simulations are repeated 10 times and the averages of these 10 replications are presented in Table 2.

Table 2: Benchmark Analysis of Maintenance Policies

Performance Metric TBO SANO
SAOMOS-

Safe
SAOMOS-
Scenario

Preventive Actions 147.4 140 138.9 138.2
Corrective Actions - Planned 32.5 3.7 3 4.5
Corrective Actions - On-the-Spot 3.3 12.3 15.9 12.2
Crew Visits 29 25.1 32.7 25.7

Average Curtailed Power (MW) 308.74 106.71 106.22 93.96
Average Unavailability (days) 8.61 2.98 2.95 2.6
Maximum Unavailable Turbines 21.6 15.6 8.5 13.8
Average Unused Life (days) 66 24.2 26.1 25.9

Maintenance Cost $1.51 M $1.21 M $1.48 M $1.23 M
Operational Revenue $18.33 M $18.65 M $18.64 M $18.67 M
Net Profit $16.83 M $17.43 M $17.17 M $17.43 M

The impact of chance constraints in reducing unavailability can be clearly observed in Table 2. Compared to

the TBO policy, SAOMOS-Safe and SAOMOS-Scenario decrease the average unavailability by 69.86% and

65.79%, respectively, whereas this decrease is 65.42% for SANO, which does not consider chance constraints.

Perhaps more notably, compared to TBO, SAOMOS-Safe and SAOMOS-Scenario reduce the maximum

number of unavailable turbines by 36.11% and 60.65%, respectively, while SANO could only reduce it by

27.78%.

All three sensor-driven maintenance models (SANO, SAOMOS-Safe, SAOMOS-Scenario) are able to sig-

nificantly reduce the number of corrective maintenance actions, and at the same time, the average unused

life of the turbines. By incorporating failure predictions into maintenance decisions, these models provide

a good balance between conducting maintenance too soon (which results in waste in the form of unused

life) or too late (which results in unavailability, corrective maintenance, and reduced production). The ef-

fectiveness of sensor-driven models in avoiding waste can also be observed in the number of maintenance

actions: SANO results in 5.02% fewer preventive maintenance actions than TBO, whereas SAOMOS-Safe

and SAOMOS-Scenario reduce the number of preventive maintenance actions by 6.24% and 5.77%, respec-

tively. Since the chance-constrained models have a strong emphasis on turbine availability, they take into

account that turbines become unavailable for production during maintenance and therefore schedule fewer

preventive maintenance actions than SANO.

The sensor-driven models are also effective in reducing the number of crew visits. By making use of oppor-
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tunistic preventive and corrective maintenance options, SANO and SAOMOS-Scenario are able to provide

higher turbine availability and operational revenue than the TBO policy, with fewer crew visits. Differently

than SANO and SAOMOS-Scenario, SAOMOS-Safe resulted in more crew visits than TBO, due to its high

level of conservatism. It is important to recall that the safe approximation, unlike the scenario approxi-

mation, guarantees the satisfaction of the original chance constraints, and therefore is more conservative in

limiting unavailability. The impact of this conservatism can also be observed in the total maintenance costs:

While SANO and SAOMOS-Scenario result in 19.75% and 18.34% lower total maintenance costs than TBO,

this reduction in maintenance cost is only 2.24% for SAOMOS-Safe.

All sensor-driven policies result in a higher net profit than the TBO policy. More interestingly, SANO

and SAOMOS-Scenario generate the same net profit, whereas SAOMOS-Scenario has lower average and

maximum unavailability. This means that the chance-constrained model with a scenario approximation can

achieve higher availability compared to an availability-neutral model (with no chance constraints) without

any significant additional costs.

5.2.2. Case 2: Effect of the Corrective Maintenance Cost

In this section, the effect of increasing corrective maintenance costs on maintenance schedules and resulting

performance metrics is examined. To do so, the ratio of corrective maintenance cost to preventive mainte-

nance cost, Cf

Cp , is varied between 3 and 5, and all other parameter values are kept constant. The results are

presented in Table 3. Note that from this point onward, unless stated otherwise, the scenario approxima-

tion method is used for tractably approximating the chance constraints. For the sake of brevity, the label

“SAOMOS” is used to indicate the SAOMOS model with scenario-approximated chance constraints.

Table 3: Impact of Corrective Maintenance Cost on Maintenance Policies

Cf

Cp Policy
Preventive
Actions

Corrective
Actions

(Planned/On-

the-Spot)

Maximum
Unavail-

able
Turbines

Crew
Visits

Average
Curtailed
Power
(MW)

Average
Unavail-

able
Days

Average
Unused
Life
(days)

Mainte-
nance
Cost

Net
Profit

3
TBO 147.4 32.5/3.3 21.6 29 308.74 8.61 135.2 $1.44 M $16.90 M
SANO 138 4.9/12.7 15.5 25.4 110.57 3.1 23.8 $1.19 M $17.44 M
SAOMOS 139.7 4.8/13.5 10.7 28.7 109.29 3.03 26.5 $1.31 M $17.33 M

4
TBO 147.4 32.5/3.3 21.6 29 308.74 8.61 135.2 $1.51 M $16.83 M
SANO 140 3.7/12.3 15.6 25.1 106.71 2.98 24.2 $1.21 M $17.43 M
SAOMOS 138.6 3.8/13.4 10.5 29.1 100.8 2.76 26.7 $1.35 M $17.31 M

5
TBO 147.4 32.5/3.3 21.6 29 308.74 8.61 135.2 $1.58 M $16.75 M
SANO 141.6 3.1/12.6 15.4 25 103.96 2.91 24.7 $1.24 M $17.41 M
SAOMOS 141.6 2.6/12.1 10.4 29.3 92.19 2.55 26.3 $1.37 M $17.30 M

It can be observed in Table 3 that as the corrective maintenance cost increases, all three policies result in

higher maintenance costs and lower profits. It is interesting to note that the rate at which net profit decreases

with increasing corrective maintenance costs is smaller in sensor-driven policies (SANO and SAOMOS)

compared to the TBO policy. When Cf

Cp = 3, SANO and SAOMOS bring in 3.20% and 2.54% more profit

than TBO, respectively, whereas these figures become 3.94% and 3.28%, respectively, when Cf

Cp = 5. The

sensor-driven policies result in increasingly more profitable schedules, because they are able to adapt their

O&M schedules to the increasing corrective maintenance costs unlike the TBO policy, which schedules

maintenance actions within fixed, industry-recommended time windows, regardless of costs. Note that due

to the same reason, the number of preventive and corrective maintenance actions, crew visits, availability,
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and unused life remains the same for TBO, irrespective of the corrective maintenance cost ratio.

As the corrective maintenance cost increases, both SANO and SAOMOS increase the number of preventive

maintenance actions in order to avoid failures and costly corrective maintenance actions, and therefore

result in higher average availability, lower curtailment, and longer unused life. It can also be observed

that SAOMOS has a lower average number of unavailable days than SANO, although the difference is small.

Furthermore, the difference in average unavailability between SANO and SAOMOS increases with increasing

corrective maintenance cost, which means that SAOMOS is better at lowering unavailability when corrective

maintenance cost is high. The maximum number of unavailable turbines does not change significantly, since

increased unavailability due to preventive maintenance actions balances out the decreased unavailability due

to failures.

5.2.3. Case 3: Effect of the Crew Visit Cost

This section presents an investigation of how increasing crew visit costs affect the maintenance schedules

and their corresponding performance metrics. In order to observe the effects of the crew visit cost, the ratio

of crew visit cost to the preventive maintenance cost, Cv

Cp , is changed between 8 and 16, while all other

parameter values are kept constant. The resulting performance metrics for TBO, SANO, and SAOMOS

policies are given in Table 4.

Table 4: Impact of Crew Cost on Maintenance Policies

Cv

Cp Policy
Preventive
Actions

Corrective
Actions

(Planned/On-

the-Spot)

Maximum
Unavail-

able
Turbines

Crew
Visits

Average
Curtailed
Power
(MW)

Average
Unavail-

able
Days

Average
Unused
Life
(days)

Mainte-
nance
Cost

Net
Profit

8
TBO 152.2 29.7/4.7 14.2 35.5 239.92 6.79 66.4 $1.15 M $17.29 M
SANO 135.9 4.7/12.9 10.1 35.3 93.05 2.66 18.66 $0.98 M $17.69 M
SAOMOS 137.3 4/14.1 9.1 38.8 90.28 2.56 18.67 $1.04 M $17.63 M

12
TBO 151.1 33.1/4.5 14.9 32.9 297.04 8.21 65 $1.39 M $16.96 M
SANO 141.7 3.8/12.6 11.2 26.4 116.47 3.22 25.1 $1.05 M $17.58 M
SAOMOS 139.4 4/12.9 9.8 32 100.33 2.84 25.9 $1.18 M $17.47 M

16
TBO 150.4 32.7/4.5 15.3 32.2 309.09 8.58 65.4 $1.63 M $16.71 M
SANO 145 3.4/12 12 23.7 100.98 2.86 27.7 $1.17 M $17.48 M
SAOMOS 145.6 3.1/13.2 10.8 28.9 95.48 2.56 28.2 $1.35 M $17.32 M

It can be observed in Table 4 that all models respond to increasing crew visit costs by decreasing the number

of crew visits. The adaptive formulations of SANO and SAOMOS casts a balance between: (i) reducing

crew visits and the associated crew logistics expenditures, and (ii) controlling the opportunistic grouping

of turbines (e.g., expediting or delaying maintenances) in an effort to contain the risks associated with

premature maintenances and turbine failures. The response of the SANO policy is the most prominent, as

it reduces the number of crew visits by 32.86% when the crew visit cost ratio is increased from 8 to 16. This

reduction in the number of visits is 25.52% in SAOMOS. The reduction in the number of crew visits is less in

SAOMOS, because of its explicit focus on high turbine availability. In contrast to the sensor-driven policies,

TBO reacts much less to increasing crew visit costs. This is due to the obligation of the TBO to adhere to

fixed maintenance time windows.

The increasing crew visit costs prompt the sensor-driven models to group maintenance actions more aggres-

sively, and hence minimizing the number of crew visits. In sensor-driven models (i.e. SANO and SAOMOS),

19



increasing crew visit cost leads to higher number of preventive maintenances, and lower number of failures

& corrective maintenance actions. Specifically, the number of corrective maintenance actions decreases by

12.5% for SANO and 9.94% for SAOMOS, when the crew visit cost ratio increases from 8 to 16. It is note-

worthy that the total number of corrective maintenance actions is larger in SAOMOS than in SANO, even

though the number of planned corrective maintenance actions is comparable in both policies. The reason

for this outcome is that the SAOMOS model places emphasis specifically on availability, and therefore takes

better advantage of on-the-spot corrective maintenance opportunities. The impact of this behavior can be

observed in average unavailable days and average curtailed power, which are always lower with SAOMOS

than with the SANO policy.

All three policies respond to increasing crew visit costs with an increase in the maximum number of un-

available turbines. As crew costs increase, all three policies focus on grouping maintenance actions more

aggressively. But regardless of the crew costs, SAOMOS always results in the smallest value for this metric.

A similar behavior can be observed in the average unavailable days: Although the average unavailability

increases in all policies with increasing crew costs, the minimum is always achieved with the SAOMOS pol-

icy. It is also noteworthy that under TBO, the increase in crew costs results in a significant increase in the

average unavailability and power curtailment.

Similarly to the situation observed in Case 2 (Section 5.2.2), the increasing crew visit cost results in higher

maintenance costs and lower profits in all three policies. However, the decrease in the profit is slower under

SANO and SAOMOS than that under TBO. As the crew visit cost ratio, Cv

Cp , increases from 8 to 16, the

net profit obtained with SANO and SAOMOS decrease by 1.19% and 1.76%, respectively, while the profit

decrease under TBO is 3.35%.

5.2.4. Case 4: Effect of the Number of Wind Farms

This case study examines the impact of number of wind farm locations, |L|, on the maintenance schedules

and the resulting performance metrics of the three policies. In each experiment, a total of 100 wind turbines

are assumed to be distributed among a number of wind farms as equally as possible. For observing the effects

of the number of wind farm locations on the performance metrics, 3, 4, and 5 locations are considered.

The results of this case study are given in Table 5. It can be observed that as the number of locations

increases, the number of crew visits increases for all three policies. However, this increase is the steepest

under TBO: the number of crew visits increases by 31.43% under TBO when the number of locations

increases from 3 to 5, whereas this increase amounts to only 17.48% and 24.08%, respectively, for SANO

and SAOMOS.

When the TBO policy is adopted, the increasing number of locations results in an increase in unavailability

and power curtailment. The larger number of locations forces the maintenance crew to visit each location

less frequently, which results in longer waiting times before failed turbines are brought back to operational

state. The situation, however, is quite different in the sensor-driven policies. By pursuing opportunistic

maintenance more aggressively and scheduling more preventive maintenance actions with increasing number

of locations, the SANO and SAOMOS policies are able to keep unavailability the same, or even decrease

it. When the number of locations increase from 3 to 5, unavailability (curtailed power) increases by 19.32%
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Table 5: Impact of Number of Wind Farm Locations on Maintenance Policies

|L| Policy
Preventive
Actions

Corrective
Actions

(Planned/On-

the-Spot)

Maximum
Unavail-

able
Turbines

Crew
Visits

Average
Curtailed
Power
(MW)

Average
Unavail-

able
Days

Average
Unused
Life
(days)

Mainte-
nance
Cost

Net
Profit

3
TBO 154.7 32.7/3.7 20.9 24.5 260.54 7.19 66.3 $1.38 M $17.02 M
SANO 138.3 4.4/11.4 15.6 19.1 126.23 3.55 23.8 $1.01 M $17.6 M
SAOMOS 142.1 3.9/11.8 10.8 24.6 96.3 2.63 25.5 $1.2 M $17.46 M

4
TBO 148.1 32.8/4.6 21.5 27 294.52 8.2 66.6 $1.46 M $16.9 M
SANO 139.6 3.7/12.4 14.5 21.3 112.69 3.14 25.4 $1.09 M $17.55 M
SAOMOS 142.4 5/13.6 11.1 27.5 109.88 3 25.7 $1.31 M $17.33 M

5
TBO 150.4 32.7/4.5 15.3 32.2 309.09 8.58 65.4 $1.63 M $16.71 M
SANO 145 3.4/12 12 23.7 100.98 2.86 27.7 $1.17 M $17.48 M
SAOMOS 145.6 3.1/13.2 10.8 28.9 95.48 2.56 28.2 $1.35 M $17.32 M

(18.64%) under TBO, whereas a decrease of 19.48% (20%) and 2.7% (0.84%) is observed under SANO and

SAOMOS, respectively.

The sensor-driven policies respond to the increasing number of locations by conducting more opportunistic

maintenance. Since being responsible for more wind farm locations means potentially having to wait longer

before the maintenance crew can bring a failed turbine back to operational state, these policies act more

proactively in conducting preventive maintenance actions when the number of locations increases. As a

result, when the number of wind farm locations increases from 3 to 5, the SANO and SAOMOS policies

conduct 4.84% and 2.46% more preventive maintenance actions, respectively. This increasingly opportunistic

behavior also results in a 16.39% and 10.59% increase in average unused life, respectively, for SANO and

SAOMOS.

Similar to Cases 2 and 3 (Sections 5.2.2 and 5.2.3), an overall increase in maintenance costs and a decrease in

net profits is observed as the number of wind farm locations increases. Although the increased maintenance

cost and decreased profit is observed under all policies, the sensor-driven policies are able to keep the rate of

cost increase and profit decrease relatively low. As the number of locations increases from 3 to 5, the total

maintenance cost increases by 17.64% and the net profit decreases by 1.84% under the TBO policy, while

the maintenance cost decreases by 15.52% and 12.48%, and the net profit decreases by only 0.7% and 0.85%,

respectively, for SANO and SAOMOS.

6. Conclusion

Due to ever-increasing energy demand and the uncertainties surrounding maintenance and its impact on

turbine failure risks, availability is of increasing importance for wind farms. In this paper, we develop a

risk-based maintenance and operations scheduling model, SAOMOS, that explicitly keeps track of availabil-

ity and schedules maintenance actions for multiple wind farms by taking into consideration (i) preventive

and corrective maintenance costs, (ii) a sensor-based dynamic maintenance cost that assesses the trade-off

between maintaining too early and too late, (iii) uncertain electricity price, (iv) uncertain turbine failure

scenarios, (v) crew travel time between wind farm locations, (vi) on-the-spot corrective maintenance actions

in addition to planned ones, and (vii) chance constraints that limit the total unavailability at each time

period. With the acknowledgment that the chance constraints given in (20) become intractable for wind
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farm systems of practically relevant size, we develop two methods, namely safe approximation (Section 4.1)

and scenario approximation (Section 4.2), to approximate these chance constraints in a tractable manner.

The SAOMOS formulation is extensively tested on 100-turbine test instances with varying maintenance

costs and number of wind farms, and the resulting maintenance schedules are compared with those resulting

from time-based opportunistic (TBO) and sensor-driven availability-neutral opportunistic (SANO) policies,

through simulations. All cases presented in Section 5 demonstrate the prominent effect of the chance con-

straints in significantly reducing the maximum number of turbines that are simultaneously unavailable. In

all experiments, SAOMOS results in lower maximum unavailable turbines than the non-chance-constrained

policies, TBO and SANO. It is noteworthy that SAOMOS also results in the lowest average unavailability

and the lowest average curtailed power among all policies.

Sensor-based policies, SANO and SAOMOS, leverage sensor information for making accurate remaining life

predictions, and use these predictions to decide when to conduct maintenance. It is observed in all exper-

iments that the sensor-driven policies conduct fewer maintenance actions (both preventive and corrective)

compared to the time-based strategy, and at the same time result in less average unused life. It is also

noteworthy that when corrective maintenance cost (Section 5.2.2), crew visit cost (Section 5.2.3), or the

number of wind farm locations (Section 5.2.4) increase, the net profit decreases for all policies (mostly due

to increasing maintenance costs). However, this decrease occurs at a slower rate for the sensor-based poli-

cies than for the time-based policy. This observation demonstrates the strength of sensor-driven policies

in adapting the maintenance schedules to changing conditions, such as increasing maintenance costs (and

therefore an increasing emphasis on failure prevention and opportunistic maintenance) or increasing number

of wind farm locations.

In Cases 2 and 3 (Sections 5.2.2 and 5.2.3), we demonstrate that not only the sensor-driven chance-constrained

model (SAOMOS) results in maintenance schedules with a lower average and maximum unavailability com-

pared to its non-chance-constrained counterpart (SANO), but also the difference in average availability

between the two increases with increasing corrective maintenance and crew visit costs. This outcome pro-

vides evidence that SAOMOS is better than SANO at limiting unavailability when maintenance actions are

increasingly costly and therefore timely and opportunistic maintenance is increasingly important.

The proposed chance-constrained model provides a general wind farm O&M framework that leverages sensor

information to optimize condition based maintenance and operations. The proposed model can be adapted

to an extensive set of wind farm operations (ranging from onshore to offshore) and demonstrates significant

advantages in terms of improving operational revenue, reducing maintenance cost, while also mitigating

availability risks. The framework also unlocks a number of interesting research directions in wind farm

O&M. First research direction would be to augment the proposed model with spare part logistics. A second

research direction would model turbines as multi-component systems, and develop chance constraints for

turbine failures and farm-level availability risks. Finally, a third research direction relates to using risk

based models to incorporate limited access of the maintenance crew to different wind farm locations. This

application would be particularly important for offshore wind, where maintenance crew access may be blocked

due to unfavorable weather or wave conditions.
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Appendices

Appendix A. Preliminaries and Proof of Proposition 1

A.1. Preliminaries and Definitions

Recall that the non-availability random variable, χi
t is defined as follows:

χi
t =

(︁
1− ηit

)︁
zit + ηit

(︁
1− uℓ

τi,t−1

)︁
For notational convenience, we define two random variablesXi

t and Y i
t , to denote the unavailability of turbine

i at period t due to preventive maintenance being conducted and being at a failed (and not yet maintained)

state, respectively.

Xi
t =

(︁
1− ηit

)︁
zit

Y i
t = ηit

(︁
1− uℓ

τi,t−1

)︁

Given that ηit denotes whether time period t is on or after the failure time of turbine i, τi, X
i
t and Y i

t are

Bernoulli random variables where

Xi
t =

⎧⎨⎩1, with probability pXit (z) = P (t < τi) z
i
t

0, with probability 1− pXit (z)
, and

Y i
t =

⎧⎨⎩1, with probability pYit(u) = P (t ≥ τi)
(︂
1− uℓ

τ i,t−1

)︂
0, with probability 1− pYit(u)

Since the failure time period of wind turbine i, τi, is uncertain, we obtain pYit(u) by conditioning on possible

failure periods of turbine i:

pYit(u) =

t−1∑︂
s=1

P (s− 1 ≤ τi < s)
(︁
1− uℓ

s,t−1

)︁

Unavailability random variable χi
t can be defined as χi

t = Xi
t + Y i

t , and then chance constraints (20) can be

rewritten as follows:

P

(︄∑︂
i∈Go

(︁
Xi

t + Y i
t

)︁
≥ N

)︄
≤ ϵ, ∀t ∈ T

Lemma 1. Random variables eα
∑︁

i∈Go Xi
t and eα

∑︁
i∈Go Y i

t are negatively associated, i.e.,

E
[︂
eα

∑︁
i∈Go(Xi

t+Y i
t )
]︂
≤ E

[︂
eα

∑︁
i∈Go Xi

t

]︂
E
[︂
eα

∑︁
i∈Go Y i

t

]︂
.
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Proof. The covariance of random variables eα
∑︁

i∈Go Xi
t and eα

∑︁
i∈Go Y i

t can be computed as follows:

σ
(︂
eα

∑︁
i∈Go Xi

t , eα
∑︁

i∈Go Y i
t

)︂
= E

[︂
eα

∑︁
i∈Go Xi

teα
∑︁

i∈Go Y i
t

]︂
− E

[︂
eα

∑︁
i∈Go Xi

t

]︂
E
[︂
eα

∑︁
i∈Go Y i

t

]︂
= E

[︂
eα

∑︁
i∈Go(Xi

t+Y i
t )
]︂
− E

[︂
eα

∑︁
i∈Go Xi

t

]︂
E
[︂
eα

∑︁
i∈Go Y i

t

]︂
So, proving that the covariance of eα

∑︁
i∈Go Xi

t and eα
∑︁

i∈Go Y i
t is non-positive would suffice to show the

desired result.

Recall that χi
t = Xi

t + Y i
t . Thus,

σ
(︂
eα

∑︁
i∈Go Xi

t , eα
∑︁

i∈Go Y i
t

)︂
= E

[︂
eα

∑︁
i∈Go χi

t

]︂
− E

[︂
eα

∑︁
i∈Go Xi

t

]︂
E
[︂
eα

∑︁
i∈Go Y i

t

]︂
(A.1)

Also recall that χi
t is a Bernoulli random variable which represents the non-availability of wind turbine i in

period t.

χi
t =

⎧⎨⎩1, with probability pXit (z) + pYit(u)

0, with probability 1−
(︁
pXit (z) + pYit(u)

)︁
The availability (and therefore non-availability) of a turbine at a certain time period is independent of

another turbine’s availability at the same time period. More specifically, χi′

t and χi′′

t are independent for

each i′, i′′ ∈ Go. Using this independence, we get:

E
[︂
eα

∑︁
i∈Go χi

t

]︂
=
∏︂
i∈Go

E
[︂
eαχ

i
t

]︂
=
∏︂
i∈Go

(︁
P
(︁
χi
t = 1

)︁
eα +

(︁
1− P

(︁
χi
t = 1

)︁)︁)︁
=
∏︂
i∈Go

(︁(︁
pXit (z) + pYit(u)

)︁
eα +

(︁
1− pXit (z)− pYit(u)

)︁)︁
=
∏︂
i∈Go

(︂
pXit (z) (e

α − 1)⏞ ⏟⏟ ⏞
βX
it

+ pYit(u) (e
α − 1)⏞ ⏟⏟ ⏞

βY
it

+1
)︂

=
∏︂
i∈Go

(︁
βX
it + βY

it + 1
)︁

(A.2)

Note that for any α > 0, βX
it and βY

it are non-negative. So, βX
it + βY

it + 1 ≥ 1.

Similarly to χi
t, X

i
t for each turbine i ∈ Go and Y i

t for each turbine i ∈ Go are also independent. Thus, we

have:

E
[︂
eα

∑︁
i∈Go Xi

t

]︂
E
[︂
eα

∑︁
i∈Go Y i

t

]︂
=
∏︂
i∈Go

E
[︂
eαX

i
t

]︂
E
[︂
eαY

i
t

]︂
=
∏︂
i∈Go

(︁
pXit (z)e

α +
(︁
1− pXit (z)

)︁)︁ (︁
pYit(u)e

α +
(︁
1− pYit(u)

)︁)︁
=
∏︂
i∈Go

(︁
pXit (z) (e

α − 1) + 1
)︁ (︁

pYit(u) (e
α − 1) + 1

)︁
=
∏︂
i∈Go

(︁
βX
it + 1

)︁ (︁
βY
it + 1

)︁
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=
∏︂
i∈Go

(︁
βX
it + βY

it + βX
it β

Y
it + 1

)︁
(A.3)

By substituting (A.2) and (A.3) in the covariance formula (A.1) we obtain:

σ
(︂
eα

∑︁
i∈Go Xi

t , eα
∑︁

i∈Go Y i
t

)︂
=
∏︂
i∈Go

(︂
βX
it + βY

it + 1⏞ ⏟⏟ ⏞
≥1

)︂
−
∏︂
i∈Go

(︂
βX
it + βY

it + βX
it β

Y
it + 1⏞ ⏟⏟ ⏞

≥1

)︂

Since all βX
it and βY

it values are non-negative, and therefore βX
it + βY

it +1 ≥ 1 and βX
it + βY

it + βX
it β

Y
it +1 ≥ 1,

βX
it + βY

it + 1 ≤ βX
it + βY

it + βX
it β

Y
it + 1 holds for all i ∈ G and t ∈ T . Thus,

σ
(︂
eα

∑︁
i∈Go Xi

t , eα
∑︁

i∈Go Y i
t

)︂
=
∏︂
i∈Go

(︁
βX
it + βY

it + 1
)︁
−
∏︂
i∈Go

(︁
βX
it + βY

it + βX
it β

Y
it + 1

)︁
≤ 0

A.2. Proof of Proposition 1

First, using Markov’s inequality, we have:

P

(︄∑︂
i∈Go

χi
t ≥ N

)︄
≤

E
[︁∑︁

i∈Go χi
t

]︁
N

, ∀t ∈ T

Thus, whenever (A.4) holds, the chance constraints (20) will also hold. So, (A.4) provides a safe approxima-

tion to chance constraints (20).

E

[︄∑︂
i∈Go

χi
t

]︄
≤ N ϵ, ∀t ∈ T (A.4)

In what follows, we obtain the Chernoff bound for the random variable
∑︁

i∈Go χi
t by applying Markov’s

inequality to the random variable eα
∑︁

i∈Go χi
t .

For any α > 0 we have (by Markov’s inequality):

P

(︄∑︂
i∈Go

(︁
Xi

t + Y i
t

)︁
≥ N

)︄
= P

(︂
eα

∑︁
i∈Go(Xi

t+Y i
t ) ≥ eαN

)︂
≤ e−αNE

[︂
eα

∑︁
i∈Go(Xi

t+Y i
t )
]︂

(⋆)

By Lemma 1, eα
∑︁

i∈Go Xi
t and eα

∑︁
i∈Go Y i

t have a negative association. Given this, and the observation that

Xi
t and Y i

t random variables are independent for all i ∈ Go, an upper bound on expression (⋆) can be

computed as follows:

(⋆) ≤ e−αNE
[︂
eα

∑︁
i∈Go Xi

t

]︂
E
[︂
eα

∑︁
i∈Go Y i

t

]︂
= e−αN

∏︂
i∈Go

E
[︂
eαX

i
t

]︂
E
[︂
eαY

i
t

]︂
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= e−αN
∏︂
i∈Go

(︁
pXit (z)e

α +
(︁
1− pXit (z)

)︁)︁ (︁
pYit(u)e

α +
(︁
1− pYit(u)

)︁)︁
(⋆⋆)

Then, by using the geometric-arithmetic means inequality and defining pX
t (z) = 1

|Go|
∑︁

i∈Go pXit (z) and

pY
t (u) =

1
|Go|

∑︁
i∈Go pYit(u), we have:

(⋆⋆) ≤ e−αN (︁pX
t (z)eα +

(︁
1− pX

t (z)
)︁)︁|Go| (︁

pY
t (u)e

α +
(︁
1− pY

t (u)
)︁)︁|Go|

= e−αN (︁pX
t (z) (eα − 1) + 1

)︁|Go| (︁
pY
t (u) (e

α − 1) + 1
)︁|Go|

(⋆ ⋆ ⋆)

For any α > 0, we have eα−1 > 0. Then, using the geometric-arithmetic means inequality again, we obtain:

(⋆ ⋆ ⋆) ≤ e−αN
(︃
pX
t (z) (eα − 1) + pY

t (u) (e
α − 1) + 2

2

)︃2|Go|

By upper bounding the final expression by ϵ, we get:

e−αN
(︃
pX
t (z) (eα − 1) + pY

t (u) (e
α − 1) + 2

2

)︃2|Go|

≤ ϵ

=⇒ pX
t (z) (eα − 1) + pY

t (u) (e
α − 1) ≤ 2

(︁
ϵeαN

)︁ 1
2|Go| − 2

=⇒ pX
t (z) + pY

t (u) ≤
2
(︁
ϵeαN

)︁ 1
2|Go| − 2

eα − 1

Substituting pX
t (z) and pY

t (u), we get:

∑︂
i∈Go

pXit (z) +
∑︂
i∈Go

pYit(u) ≤
2|Go|

(︂(︁
ϵeαN

)︁ 1
2|Go| − 1

)︂
eα − 1

(A.5)

Since E
[︁∑︁

i∈Go Xi
t

]︁
=
∑︁

i∈Go pXit (z) and E
[︁∑︁

i∈Go Y i
t

]︁
=
∑︁

i∈Go pYit(u), and therefore E
[︁∑︁

i∈Go χi
t

]︁
=

E
[︁∑︁

i∈Go Xi
t

]︁
+ E

[︁∑︁
i∈Go Y i

t

]︁
=
∑︁

i∈Go pXit (z) +
∑︁

i∈Go pYit(u), (A.5) is equivalent to

E

[︄∑︂
i∈Go

χi
t

]︄
≤

2|Go|
(︂(︁

ϵeαN
)︁ 1

2|Go| − 1
)︂

eα − 1

for any α > 0. To achieve the least conservative safe approximation, we select the α value that maximizes

the right hand side of the constraint:

E

[︄∑︂
i∈Go

χi
t

]︄
≤ max

α>0

2|Go|
(︂(︁

ϵeαN
)︁ 1

2|Go| − 1
)︂

eα − 1
(A.6)

By combining the two safe approximations derived in (A.4) and (A.6) we obtain the desired result:
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E

[︄∑︂
i∈Go

χi
t

]︄
≤ max

⎧⎨⎩N ϵ, max
α>0

2|Go|
(︂(︁

ϵeαN
)︁ 1

2|Go| − 1
)︂

eα − 1

⎫⎬⎭
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Appendix B. Linearization of Nonlinear Constraints

The nonlinear part of constraints (18) can be linearized by introducing auxiliary binary variables δit,ω for

each operational turbine i ∈ Go at every time period t ∈ T under each scenario ω ∈ Ω. This variable takes

the value 1 if turbine i fails before its scheduled preventive maintenance under scenario ω, but experiences

on-the-spot corrective maintenance by a maintenance crew visiting its wind farm location before time period

t. This relationship is established by constraints (B.7) and (B.8).

δit,ω ≤ uℓ
τ i
ω,t−1, ∀ℓ ∈ L, i ∈ Go

ℓ , t ∈ T , ω ∈ Ω (B.7)

δit,ω ≤
T∑︂

s=τ i
ω

zis, ∀ℓ ∈ L, i ∈ Go
ℓ , t ∈ T , ω ∈ Ω (B.8)

The limit on the number of on-the-spot corrective maintenance actions defined by the variables is enforced

at every time period by constraints (B.9).∑︂
ℓ∈L

∑︂
i∈Go

ℓ :

τ i
ω<t

δit,ω ≤ Mo
t , ∀t ∈ T , ω ∈ Ω (B.9)

Nonlinear constraints (18) are replaced with linear constraints (B.7)–(B.9) in order to solve SAOMOS as a

Mixed-Integer Linear Programming (MILP) model.

The nonlinearity in the case III of constraints (16) is also addressed with the auxiliary binary variables

δit,ω. Recall that the value of these variables are enforced by linear constraints (B.7) and (B.8). Thus, the

linearization of constraints (16) becomes:

ζit,ω =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− zit if t < τ iω
t−1∑︂
t′=1

zit′ if t = τ iω

δit,ω +
∑︁τ i

ω−1
s=1 zis if t > τ iω

, ∀ℓ ∈ L, i ∈ Go
ℓ , t ∈ T , ω ∈ Ω (B.10)

Nonlinear constraints (16) are replaced with linear constraints (B.10) in order to solve SAOMOS as an MILP

model.
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