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Real-Time Machine Learning for Multi-User

Massive MIMO: Symbol Detection Using

Multi-Mode StructNet
Lianjun Li, Jiarui Xu, Lizhong Zheng, and Lingjia Liu

AbstractÐIn this paper, we develop a learning-based symbol
detection algorithm for massive MIMO-OFDM systems. To
exploit the structure information inherited in the received signals
from massive antenna array, multi-mode reservoir computing is
adopted as the building block to facilitate over-the-air training in
time domain. In addition, alternating recursive least square opti-
mization method, and decision feedback mechanism are utilized
in our algorithm to achieve the real-time learning capability. That
is, the neural network is trained purely online with its weights
updated on an OFDM symbol basis to promptly and adaptively
track the dynamic environment. Furthermore, an online learning-
based module is devised to compensate the nonlinear distortion
caused by RF circuit components. On top of that, a learning-
efficient classifier named StructNet is introduced in frequency
domain to further improve the symbol detection performance by
utilizing the QAM constellation structural pattern. Evaluation
results demonstrate that our algorithm achieves substantial
gain over traditional model-based approach and state-of-the-art
learning-based techniques under dynamic channel environment
and RF circuit nonlinear distortion. Moreover, empirical result
reveals our NN model is robust to training label error, which
benefits the decision feedback mechanism.

Index TermsÐMassive MIMO, OFDM, Symbol Detection,
Online Learning, Multi-Mode Reservoir Computing, Nonlinear
Compensation, Structure Learning.

I. INTRODUCTION

By employing a large array of antennas at base station

(BS), massive multiple-input multiple-output (MIMO) can

achieve significant gain in both spectral efficiency and energy

efficiency [1]. Therefore, it is considered as one of the key

enabling technologies for the 5G mobile communication sys-

tems [2]. As a critical step of its receiver processing, symbol

detection aims to recover the transmitted signals from the

corruption of undesired wireless channel effects and hard-

ware impairments. Conventional symbol detection methods

are model-based, and require channel state information (CSI)

as input, hence suffer from model mismatch and channel

estimation error. Therefore, there are growing interests in using

neural networks (NNs) to tackle this problem.

There are many existing learning-based symbol detection

methods, to better understand the differences among them, we

define learning terminologies used in this paper as follows.

Offline learning: NN is trained by artificially generated offline

data which contains the same statistical information as the
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online test one. Online learning: NN is only trained by limited

over-the-air (OTA) training data, such as existing pilot symbols

in wireless systems. Real-time learning: in addition to meet

online learning requirements, the algorithm should also be able

to update NN weights on an OFDM symbol basis for real-time

adaptation to the environment dynamics.

Existing offline learning-based approaches can be generally

divided into two branches. One branch of research treats

the underlying NN as a black-box, let it directly learns an

inverse mapping from received signal to transmitted one,

which implicitly learns the underlying system model and CSI,

such as [3], [4]. However, those methods do not incorporate

domain knowledge into the NN design, thus increase training

complexity and ‘lack of explainability’ [5]. Alternately, other

approaches focus on replacing certain components of existing

optimization-based symbol detector with NNs, such as Det-

Net [6] and MMNet [7]. Since such methods need explicit

CSI as input, their performance degrades with imperfect CSI.

Furthermore, all aforementioned methods rely on either purely

offline training or hybrid of online and offline training where

the online training complexity is reduced owing to the same

statistical features of the offline training dataset. When offline

dataset is statistically different from the online testing one, the

symbol detection performance drops significantly. In modern

communication systems such as 4G/5G, the transmission mode

selection and resource allocation are performed on subframe

basis, which makes it challenging to adopt offline training

and calls for purely online learning-based algorithms to only

utilize the limited OTA training data within subframe to

mitigate the issue of ‘uncertainty in generalization’ [5] for

robust and adaptive communications. Efficient online learning

algorithms have been introduced in our previous work for

MIMO-OFDM symbol detection [8]±[11], where conventional

reservoir computing (RC) is adopted as the underlying NN.

Later on multi-mode RC (MMRC) was introduced in [12]

to harness the structure information inherited in the massive

MIMO system for better symbol detection performance. How-

ever, this method is designed on subframe basis where the

underlying NN weights are trained by initial OFDM symbols

(pilot symbols) within a subframe. Once learnt, the NN will be

used to conduct symbol detection for the rest OFDM symbols

(data symbols) within the subframe. Although this method

can be applied in scenarios where the wireless channel is

dynamically evolving within a subframe, the underlying NN

doesn’t consider this dynamic feature, which calls for a real-

time learning approach that can update NN weights on an
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OFDM symbol basis. Motivated by aforementioned factors, in

this paper 1,

• A training algorithm is designed to enable MMRC with

real-time learning capability. To be specific, by introducing

the alternating recursive least square (ARLS) optimization

method, and utilizing the decision feedback (DF) mecha-

nism to create training dataset on-the-fly, the NN weights

can be updated on an OFDM symbol basis to track the

environment dynamics.

• A learning-based nonlinear compensation module is de-

signed to recover the nonlinear distortion caused by

transceiver circuits. This module is trained purely online

by OTA pilot symbols, which avoids the model mismatch

problem encountered by conventional equalization and pre-

distortion based methods. Also, unlike conventional power-

back-off based method, it doesn’t sacrifice power amplifier

efficiency and wireless coverage.

• In frequency domain a learning-efficient method named

StructNet is introduced to further improve the symbol detec-

tion performance. By utilizing the QAM constellation struc-

ture information, this method solves multinominal classifica-

tion problem with a single binary classifier, which reduces

NN size and improves training efficiency. In addition, we

extend the StructNet with real-time learning capability by

utilizing the DF mechanism.

• Experiment results show significant performance improve-

ment with the new algorithm. We also discover an appealing

fact that MMRC is robust to neighbor training label error,

which explains why the DF mechanism works well.

Notations: C(R) denotes the complex (real) number set.

Scalar, vector, matrix, and tensor are denoted by non-bold let-

ter, bold lowercase letter, bold uppercase letter, and bold Euler

script letter respectively, e.g., x, x, X , and X. Xa1,:,(c1:c2) ∈
C

Nb×(c2−c1+1) is formed by taking the a1 element along the

first dimension, all Nb elements along the second dimension,

and c1 to c2 elements along the third dimension of tensor

X ∈ C
Na×Nb×Nc . ⊛ is the convolution operation. (·)

′

,

and (·)∗ denotes respectively the transpose, and Hermitian

transpose operation. Â is the estimation of matrix A. (·)† is the

Moore-Penrose matrix inversion. [A1 A2] denotes concatenate

matrices A1 and A2 along the column dimension, while

[A1;A2] or

[

A1

A2

]

denotes concatenate those two matrices

along the row dimension.

Tensor Operations: We briefly introduce tensor operations

needed for this paper, detailed definitions can be found in

[12]. A tensor with N mode (dimension) is represented as

X ∈ C
I1×I2×···×IN . The mode-n unfolding of tensor X is

denoted as X(n), where the (i1, i2, · · · , iN ) entry of X maps

to the (in, j) entry of matrix X(n) ∈ C
In×I−n , where

I−n ≜
∏

k ̸=n

Ik, j ≜ 1+

N
∑

k=1
k ̸=n

(ik−1)Jk with Jk =

N
∏

m=k+1
m ̸=n

Im.

1Part of this work has been published in the IEEE International Conference
on Communications 2022 [13]

The n-mode product of a tensor X with a matrix U ∈ C
J×In

is defined as

(X ×n U)i1,··· ,in−1,j,in+1,iN =

In
∑

in=1

xi1,··· ,iNujin .

Tucker decomposition is often considered as a higher-order

generalization of the matrix singular value decomposition. The

tucker decomposition of a tensor is defined as

X = G ×1 A1 ×2 A2 · · · ×N AN ,

where An is the nth factor matrix and G is the core tensor.

When the core tensor is super-diagonal with K blocks, denote

G(k) as the kth block. Partition the matrix An according to

the core tensor block size as [A
(1)
n A

(2)
n · · ·A

(K)
n ], the Tucker

decomposition can be expressed as a summation of sub-Tucker

decomposition:

X =

K
∑

k=1

G(k) ×1 A
(k)
1 ×2 A

(k)
2 · · · ×N A

(k)
N .

A three-mode tensor Tucker decomposition is illustrated in

Fig.1.

II. MASSIVE MIMO-OFDM SYSTEM

We consider a massive MIMO-OFDM system, where U

scheduled users (UEs) are communicating to a BS. The BS

is equipped with a massive antenna array with Nb elements,

while each UE has Ne antenna elements. Table I summarizes

MIMO-OFDM related notations.

A. Transceiver Procedure

In uplink scenario scheduled UEs transmit signals to BS.

Assuming each UE u has Nu
m independent data streams to

transmit, the source data in frequency domain from all UEs

can be represented by a tensor Xf,src ∈ C
U×Nu

m×Ns×Nc ,

where Ns × Nc is the shape of an OFDM subframe with

Ns OFDM symbols and Nc subcarriers. Fig. 2 illustrates its

structure, within a subframe, the first Np OFDM symbols are

pilot symbols, and the rest Nd = Ns−Np OFDM symbols are

data symbols. Note that the pilot symbols are designed for CSI

estimation in wireless communication systems such as Wi-Fi,

4G LTE, and 5G NR. The uplink transceiver procedure is: At

each UE u, for each OFDM resource element (RE) located

on OFDM symbol s and subcarrier c, a precoding matrix

Qu,s,c ∈ C
Ne×Nu

m maps Nu
m data streams to Ne antenna

elements (Nu
m ≤ Ne), results in Xf ∈ C

U×Ne×Ns×Nc , the

frequency-domain transmitted signal. Next, frequency-domain

OFDM symbols are converted to time domain by applying

an inverse fast Fourier transform (IFFT) across subcarriers

and appending cyclic prefix (CP) with length Ncp. Then

all time-domain OFDM symbols are concatenated together

along time axis to form the transmitted time-domain signal

Xt ∈ C
U×Ne×NsNt , where Nt = Ncp + Nc is the time-

domain OFDM symbol length, and denote xt
u,e ∈ C

NsNt as

the time-domain transmitted signal from antenna e of UE u.

Let Ht ∈ C
Nb×U×Ne×L denotes the time-domain wireless

channel between BS and all scheduled UEs, and ht
b,u,e ∈ C

L
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b) Symbol recovery

With estimated effective channel, the received data symbols

at BS subcarrier c can be expressed as

Y
f

(Np+1:Ns),c
= Ĥf,eff

c X
f,src

(Np+1:Ns),c
+N , (4)

where Y
f

(Np+1:Ns),c
∈ C

Nb×Nd , and X
f,src

(Np+1:Ns),c
∈

C
Nm×Nd . Then the source symbols can be recovered by

LMMSE method as

X̂
f,src

u,(Np+1:Ns),c
=
(

(Ĥf,eff
u,c )∗Ĥf,eff

u,c + σ2I
)−1

· (Ĥf,eff
u,c )∗Y f

u,(Np+1:Ns),c
. (5)

III. RESERVOIR COMPUTING AND STRUCTNET

A. Standard RC

RC [16], [17] is a special type of recurrent neural network

(RNN). Unlike traditional RNNs such as long short-term mem-

ory (LSTM) and gated recurrent unit (GRU), which are known

for high training complexity due to backpropagation through

time (BPTT) training of recurrent weights, RC’s recurrent

weights are initialized according to certain distributions and

remain fixed. The RC training is only required for output

weights, which can be done by least square-based methods

using closed-form solutions with low computation complexity.

Therefore, RC is widely adopted in applications where fast

and adaptive training is required, such as robot control [18],

biosignal processing [19], remote sensing [20], and wireless

communications [8]±[11], [21].

The standard RC, as shown in Fig. 3, is governed by

two equations, reservoir state transition equation and output

equation. The reservoir state transition equation is formulated

as

s(n) = f

(

Wtran

[

s(n− 1)

ĩ(n)

]

)

, (6)

where s(n) ∈ C
Nr is the reservoir state at time step n, Nr is

the number of neurons in the reservoir.

ĩ(n) ≜ [i(n); i(n− 1); · · · ; i(n− T )],

where T is a hyper-parameter controls the input window

length, i(n) ∈ C
Ni is the input vector with size Ni. Wtran ∈

C
Nr×(Nr+TNi) is the state transition weight matrix initialized

with spectral radius smaller than 1 to satisfy the echo state

property [22]. f(·) is a nonlinear function. The output equation

is formulated as

o(n) = Wout

[

s(n)

ĩ(n)

]

, (7)

where o(n) ∈ C
No is the output with size No, Wout ∈

C
No×(Nr+TNi) is the output weight matrix need to be trained

to minimize the distance between output and training label.

which can be obtained through least square-based meth-

ods [23], [24].

B. Multi-Mode RC

Recently, Zhou et al. introduce the framework of

MMRC [12], where the input sequences are configured with

more than one explicit mode (dimension), i.e., the input

sequence is formulated as matrix I(n) or tensor I(n), rather

than vector i(n). Such that MMRC can utilize the structure in-

formation of the underlying problem to improve performance.

Here we introduce MMRC through its two-mode instantiation

(Fig. 4), then enable it with real-time learning by recursive

least square-based method.

Two-mode RC is comprised of three components: recurrent

module, feature queue, and output mapping. Assuming input

with size Ni 1 × Ni 2, recurrent module maps input I(n) ∈
C

Ni 1×Ni 2 to recurrent state S(n) ∈ C
Nr×Nr , the mapping

equation is formulated as

S(n) = f

(

Wtran 1

[

S(n− 1) 0

0 Ĩ(n)

]

Wtran 2

′

)

, (8)

where

Ĩ(n) = blockdiag(I(n), I(n− 1), · · · , I(n− T )),

T is a hyper-parameter controls the input window length.

Wtran 1 ∈ C
Nr×(Nr+TNi 1), Wtran 2 ∈ C

Nr×(Nr+TNi 2)

are row-space and column-space reservoir weight matrices

respectively. With feature queue defined as

G(n) = blockdiag(S(n),S(n)
′

, Ĩ(n), Ĩ(n)
′

), (9)

the RC output is generated through output mapping

O(n) = Wout 1G(n)W
′

out 2, (10)

where Wout 1 ∈ C
No 1×Nf , Wout 2 ∈ C

No 2×Nf . Nf ≜

2Nr +T (Ni 1 +Ni 2) is the row (and column) size of G(n).
No 1 and No 2 represent the row and column size of O(n).

Assuming Ntrain training samples are collected, stack

them along the time axis to have the feature queue

G ∈ C
Nf×Nf×Ntrain , and the training label L ∈

C
No 1×No 2×Ntrain , the output weight matrices can be ob-

tained by solving the minimization problem

min
Wout 1,Wout 2

∥L −G ×1 Wout 1 ×2 Wout 2∥
2
F . (11)

An alternating least square (ALS) algorithm is introduced

in [12] to solve this problem, where Wout 1 and Wout 2

are iteratively updated by solving the following least square

problems until reaching certain stop criterion:

Wout 1 = argmin
Wout 1

∥L(1) −Wout 1Z1∥
2
F , (12)

Wout 2 = argmin
Wout 2

∥L(2) −Wout 2Z2∥
2
F , (13)

where

Z1 ≜
[

(

G(1) ×2 W
(1)
out 2

)

(1)
; · · · ;

(

G(K) ×2 W
(K)
out 2

)

(1)

]

∈ C
Nf×No 2Ntrain ,

Z2 ≜
[

(

G(1) ×1 W
(1)
out 1

)

(2)
; · · · ;

(

G(K) ×1 W
(K)
out 1

)

(2)

]

∈ C
Nf×No 1Ntrain ,
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However, their drawbacks and limitations are preventing them

from being adopted in realistic wireless communication sys-

tems [28]. To be specific, model-based nonlinear equalization

methods suffer from model mismatch. PBO reduces PA power

efficiency and wireless coverage. While DPD is considered as

a feasible method on BS side, it is impractical on UE side due

to high hardware implementation cost. To deal with the PA

distortion in the uplink case where DPD is not available, we

design a learning-based module for nonlinear compensation.

The underlying NN of this NC module is standard RC, which

has been adopted in other works for nonlinearity compensation

and shows promising performance [9], [10], [28]. The input

of NC module is prepared based on the output of MMRC-DF,

where we assume most of the channel effects have been taken

care of. Specifically, for preparing the training input, we first

reshape the MMRC-DF output X̂
t,src

:,:,(1:NpNt)
∈ C

U×Nu
m×NpNt

into X̂
t,src

:,(1:NpNt)
∈ C

Nm×NpNt , then construct its high-order

(p-order, p = 3, 5, · · · ) term X̂
t,src,p order

:,(1:NpNt)
∈ C

Nm×NpNt

by replacing each element x of X̂
t,src

:,(1:NpNt)
with x|x|p−1.

The training label is prepared by reshaping X
t,src

:,:,(1:NpNt)
∈

C
U×Nu

m×NpNt into X
t,src

:,(1:NpNt)
∈ C

Nm×NpNt . Finally, the

training dataset

Φ
NC
pilot ≜ {INC

pilot,L
NC
pilot} (40)

is prepared as:

INC
pilot =

[

X̂
t,src

:,(1:NpNt)
; X̂t,src,3 order

:,(1:NpNt)
; · · · ;

X̂
t,src,p order

:,(1:NpNt)

]

∈ C
p+1

2
Nm×NpNt , (41)

LNC
pilot = X

t,src

:,(1:NpNt)
∈ C

Nm×NpNt . (42)

On inference stage, the input is prepared in the same manner

as (41). The adoption of high-order term input can provide RC

with more information on the high-order nonlinear distortion,

making the training more efficient.

C. StructNet

Here we demonstrate the StructNet training/inference pro-

cedure with uplink case, donwnlink can be done in similar

way. As mentioned before, StructNet is designed to work in

frequency domain. Therefore, we convert the time domain NN

output to frequency domain by removing CP and performing

FFT. With a bit abuse of notation, let X̂f,src ∈ C
Nm×Ns×Nc

representing the frequency domain signals. Then at each

subcarrier c we have X̂f,src
:,:,c ∈ C

Nm×Ns , of which the

corresponding pilot parts X̂
f,src

:,(1:Np),c
∈ C

Nm×Np are used to

prepare the training input. And the transmitted source symbols

X
f,src

:,(1:Np),c
∈ C

Nm×Np are used to prepare the training label.

The training data preparation procedure is following (33), there

are total Np training symbols, for each symbol, the input ỹ is

the real-value version of y defined in equation (19), and y is

one of the column vectors of X̂
f,src

:,(1:Np),c
, i.e.,

y = X̂
f,src
:,i,c , i ∈ [1, Np]; (43)

x̃i is the ith element of x̃, which is the real-value version of x

defined in equation (19), and x is one of the column vectors

of X
f,src

:,(1:Np),c
, i.e.,

x = X
f,src
:,i,c , i ∈ [1, Np]; (44)

the channel h̃i is the real-value version of hi defined in

equation (28), hi is the effective channel after time domain NN

equalization, it is initially obtained through estimation method

(3) based on received pilot symbols

Y
f

(1:Np),c
= X̂

f,src

:,(1:Np),c
(45)

and transmitted pilot symbols X
f,src

:,(1:Np),c
. Then the estimated

channel is updated through training backpropagation. It is

worth to mention that although time domain NN removes

major part of channel effects, residuals still exist, we rely

on StructNet to fine-tune the final output. The inference

procedure is done by solving the system of equations (29

to 32). In addition, the DF mechanism can also be adopted

to update StructNet weights symbol-by-symbol, where the

inferred OFDM data symbol can be utilized to prepare training

label. Generally speaking, the number of StructNet needed

for this design should equal to the number of subcarriers

Nc. But in real implementation we can reduce the number

of StructNet by exploiting the channel correlation between

neighbor subcarriers. For example, a batch of subcarries can

share the same StructNet. In this way the NN size can be

reduced and training efficiency can be improved.

Algorithm 1 Symbol Detection Procedure of Multi-Mode

StructNet

1: for Each OFDM subframe do

2: Initialize MMRC-DF reservoir weight matrices

3: Prepare initial training data Φpilot based on received and transmitted Np pilot

symbols as defined in (34)

4: Utilizing Φpilot to obtain initial weights of MMRC-DF by ALS algorithm

5: MMRC-DF outputs inferred pilot symbols

6: if Uplink then

7: Initialize NC module reservoir weight matrix

8: Prepare training data Φ
NC
pilot based on MMRC-DF inferred pilot symbols

and transmitted pilot symbols as defined in (40)

9: Train NC module with Φ
NC
pilot

10: NC module outputs inferred pilot symbols

11: end if

12: Convert time domain NN output (inferred pilot symbols) to frequency domain

13: Utilizing time domain NN inferred pilot symbols (equation 45) and transmitted

pilot symbols to estimate effective channel through LMMSE method (3)

14: Prepare training data for StructNet (33) based on time domain NN inferred

pilot symbols (43), transmitted pilot symbols (44), and the channel estimated

in previous step
15: Train StuctNet with pilot training data

16: for OFDM symbol i = Np + 1 : Ns (data symbols) do

17: MMRC-DF infers the corresponding source data symbol

18: Prepare training dataset Φi for current data symbol as defined in (37)

19: Update MMRC-DF weights by ARLS algorithm

20: if Uplink then

21: NC module infers data symbol

22: end if

23: Convert time domain NN output (inferred data symbol) to frequency domain

24: StructNet infers data symbol by solving system of equations (29 to 32)

25: StructNet utilize inferred data symbol to prepare new training data for current

data symbol
26: Train StructNet with new training data

27: end for

28: end for

V. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity

of Multi-Mode StructNet. The main elements that contribute
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to computational cost are matrix multiplication and pseu-

doinverse, compared to which the cost of matrix addition

is negligible, so we ignore it in our analysis. Based on the

knowledge that 1) the complexity of multiplication of one

n ×m matrix and one m × p matrix is O(nmp), and 2) the

pseudoinverse of a m× n matrix (m ≥ n) is implemented by

singular value decomposition thus has complexity of O(mn2),
we start the analysis with MMRC-DF related components, then

talk about NC module related components, last but not least,

we analyse the StructNet complexity. The training and forward

pass complexities of all components are summarized in Table

III, IV, and detailed in following subsections.

A. MMRC-DF Components

• State update is the first step for both MMRC-DF training and

inference. From equation (8) we can see the computational

complexity per input sample is O(N2
rNz 2+NrNz 1Nz 2),

where Nz 1 ≜ Nr + TNi 1, Nz 2 ≜ Nr + TNi 2.

• Training with ALS, to obtain Wout 1 as shown in

equation (14), consists of one matrix pseudoinverse and

one multiplication, the complexity with training size

Ntrain is O(NtrainN
2
fNo 2 + NtrainNfNo 1No 2). Sim-

ilarly, obtaining Wout 2 requires O(NtrainN
2
fNo 1 +

NtrainNfNo 1No 2). Assume the alternative procedure re-

quires Niter iterations, the total complexity per sample is

O
(

NiterN
2
f (No 1 +No 2) + 2NiterNfNo 1No 2

)

.

• Training with ARLS, as explained in section III-B, has three

steps to update the output weights for each training sample:

1). the update of Ψ−1(n) as in equation (17) has complexity

of O(3N2
f ); 2). the update of k(n) as in equation (16) has

complexity of O(N2
f + Nf ); 3). the update of Wout 1 as

in equation (15) has complexity of O(No 1Nf ). So the

total complexity of obtaining Wout 1 and Wout 2 with

Niter iterations is O
(

8NiterN
2
f +NiterNf (No 1+No 2)+

2NiterNf

)

≈ O
(

8NiterN
2
f +NiterNf (No 1 +No 2)

)

.

• Inference, as shown in (10) has complexity of O(N2
fNo 1+

NfNo 1No 2) per input sample.

B. NC Module

Similar as MMRC-DF, we can show the per sample com-

plexity of NC module components:

• State update as defined by equation (6) has complexity of

O(NrNz), where Nz ≜ Nr + TNi.

• Training with LS has complexity of O(N2
z +NzNo).

• Inference as defined by equation (7) has complexity of

O(NzNo).

C. StructNet

StructNet is a MLP with one hidden layer of size Nh, input

size Ni, and output size No = 2 (binary classifier). It is trained

through gradient descent, assuming the training requires Nep

epochs, then the per sample complexity of StructNet is:

• Training has complexity of O
(

Nep(NiNh +NhNo)
)

.

• Forward pass has complexity of O(NiNh +NhNo)).

D. Summary

Now we summarize the training and forward pass complex-

ity of Multi-Mode StructNet. For training analysis, the state

update cost is negligible, so it is not included for simplicity.

While in the forward pass analysis, both state update and

inference costs are included.

• MMRC-DF is initially trained by pilot symbols, with num-

ber of training samples NtNp. Then it is trained by DF

mechanism at each data symbol, with number of training

samples NtNd. So the total training complexity per OFDM

subframe is O

(

NtNiterN
2
f

(

(No 1 + No 2)Np + 8Nd

)

+

NtNiterNf

(

2No 1No 2Np + (No 1 +No 2)Nd

)

)

.

• NC module is trained by pilot symbols, with number of

training samples NtNp, the complexity per OFDM subframe

is O
(

NtNp(N
2
z +NzNo)

)

.

• StructNet is trained by pilot symbols, with number of

training samples 2NcNpNm, the complexity per OFDM

subframe is O
(

2NcNpNmNep(NiNh +NhNo)
)

.

• Regarding forward pass, MMRC-DF and NC module

have the same number of samples NtNd, so the for-

ward pass complexity for MMRC-DF and NC mod-

ule are O
(

NtNd(N
2
rNz 2 + NrNz 1Nz 2 + N2

fNo 1 +

NfNo 1No 2)
)

and O
(

NtNdNz(Nr +No)
)

respectively.

• Due to the shifting process, the forward pass of StructNet

is related with the QAM modulation order, assuming 2M -

QAM is used, then the number of forward pass samples

is NcNdNm(M − 1), so the forward pass complexity per

subframe is O
(

NcNdNm(M − 1)(NiNh +NhNo)
)

.

From the analysis we can see the advantage of RC-based

methods lies in the training iteration. For standard RC, only

one iteration is required for LS-based method to obtain the

optimal output weights. And for MMRC, Niter iterations

are needed for ALS and ARLS methods, in our empirical

experiment Niter = 5 is enough for the training to converge.

As for StructNet, although the training is based on gradient

decent, because of the compact NN size, the training converges

within 10 epochs. Compare with other learning-based methods

such as DetNet [6], MMNet [7], and OAMPNet [29], which

require thousands of iterations for the training, our method

has much less training complexity, experiment results shown

in section VI-D also verify this point.

VI. NUMERICAL EXPERIMENTS

In this section, we show the performance of the introduced

Multi-Mode StructNet algorithm in terms of bit error rate

(BER) for both uplink and downlink scenarios, and compare

it with traditional methods as well as other learning-based

approaches. Next we describe the experiment settings that are

common for both uplink and downlink scenarios, and detail

the uncommon settings in the corresponding paragraphs. For

the massive MIMO-OFDM system, the number of scheduled

UEs per subframe U = 2, each UE has Nu
m = 2 data streams

to transmit or receive. One OFDM subframe contains Ns = 16
OFDM symbols, within which Np = 4 symbols are pilot

symbols, and the rest Nd = 12 are data symbols. Number

of subcarriers Nc = 512 and the CP length Ncp = 32,
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TABLE III: Training complexity

Algorithm Complexity per OFDM subframe

MMRC-DF O

(

NtNiterN
2

f

(

(No 1 +No 2)Np + 8Nd

)

+NtNiterNf

(

2No 1No 2Np + (No 1 +No 2)Nd

)

)

NC Module O
(

NtNp(N2
z +NzNo)

)

StructNet O
(

2NcNpNmNep(NiNh +NhNo)
)

Multi-Mode StructNet Sum of all components above

TABLE IV: Forward pass complexity

Algorithms Complexity per OFDM subframe

MMRC-DF O
(

NtNd(N
2
rNz 2 +NrNz 1Nz 2 +N

2

f
No 1 +NfNo 1No 2)

)

NC Module O
(

NtNdNz(Nr +No)
)

StructNet O
(

NcNdNm(M − 1)(NiNh +NhNo)
)

Multi-Mode StructNet Sum of all components above

which equals to the wireless channel length L. The channel

realizations are generated with QuaDRiGa version 2.4.0 [30],

following 3GPP non-line of sight (NLOS) urban macrocell

(UMa) channel model [31] with central frequency 2.5GHz and

bandwidth 5MHz, the channel is dynamically evolving across

OFDM symbols due to UE mobility. For the MMRC-DF, the

number of recurrent neurons is Nr × Nr = 8 × 8 = 64, the

input window length T = 32, which equals to the wireless

channel length. The forgetting factor λ of ARLS algorithm is

0.9995. The binary classifier in StructNet is a MLP with one

hidden layer of size Nh = 128, the input size is 2Nm = 8, the

output size is 2. Nbatch = 48 subcarriers share one StructNet.

A. Uplink and Downlink BER performance

In uplink experiments, the BS antenna array is set as

Nb v = 8, Nb h = 8, while UE antenna array is Ne v = 1,

Ne h = 2, antenna elements are spaced in half-wavelength.

PA nonlinear effect is not considered here (i.e., fPA(x) = x).

Identity precoding is utilized at transmitter side (i.e., Qu,s,c

is an identity matrix). Fig. 8 compares the BER performance

of nine methods when UE speed is 30km/h, the modulation

scheme is 16QAM. LMMSE and LMMSE-Interpolation are

conventional symbol detection methods introduced in Section

II-B, where LMMSE only utilizes channel estimates over

pilot symbols, while LMMSE-Interpolation utilizes the inter-

polated channel over data symbols. SD-Interpolation is also

a conventional method, it adopts the same channel estimation

method as LMMSE-Interpolation, for symbol recovery step it

utilizes the sphere decoding method introduced in [32]. Multi-

Mode StructNet and MMRC-DF are the methods introduced

in this paper. MMRC is the method introduced in [12] only

utilizes pilot symbols for training. STD-RC is the standard

RC introduced in section III-A and utilized in our previous

work [8]±[10], which can be seen as single-mode RC. MMNet,

and its simplified version MMNet-iid are introduced in [7],

which are learning-based methods build on the theory of

iterative soft-thresholding algorithms. From the results we

can see all learning-based algorithms outperform LMMSE

except for MMNet-iid, this is because its iid-noise-distribution

assumption doesn’t hold in our simulation. Also, MMNet

doesn’t improve much as SNR increases, this is because it’s

designed to work under much larger training dataset, which

suffers from overfitting under the limited yet practical OTA

training in our evaluation. LMMSE-Interpolation has better

performance than LMMSE due to better channel estimation.

SD-Interpolation is more sensitive to channel estimation ac-

curacy, in low SNR regime it has slightly worse performance

than LMMSE-Interpolation, while in high SNR regime it

outperforms LMMSE-Interpolation. For RC-based algorithms,

MMRC outperforms STD-RC as it incorporates the receiver

antenna structure information into the NN design. To be

specific, the received signals from antenna array elements

are spatially correlated, and the correlation is dependent on

the array geometry. STD-RC reshapes received signals into

a vector, therefore, the geometry information is lost. While

MMRC’s input has the same shape as the antenna array,

which reserves the geometry information. However, due to

the mobility of UEs, those NN weights trained on pilot

symbols soon become obsolete, result in unsatisfactory BER

performance around 10−1 to 10−2 even with high SNR.

On the other hand, MMRC-DF utilizes decision feedback to

continuously update NN weights on real-time, which tracks

the environment and achieves better performance than MMRC.

Also, the performance gain becomes larger as SNR increases

due to the improved decision accuracy, which achieves BER

of 10−3 to 10−4 in high SNR regime. Multi-Mode StructNet

further improves the BER by utilizing StructNet in the fre-

quency domain, which achieves 3 dB gain over MMRC-DF.

Fig. 9 shows the BER performance with QPSK modulation

scheme, we can see the same trend as in the 16QAM case,

where Multi-Model StructNet achieves the best performance.

In downlink scenario with BD precoding, BS is equipped

with a 8× 8 antenna array. For UE antenna array, we conduct

experiments on two settings, which are 3× 3 and 4× 4. Same

as uplink scenario the PA nonlinear effect is not considered.

At transmitter side, estimated CSI is used for BD precoding to

generate Qs,c, the modulation scheme is QPSK. UEs are mov-

ing with speed 30km/h. Fig. 10 shows the BER performance

of LMMSE, MMRC, MMRC-DF, and Multi-Mode StructNet.

Compared with Fig. 8 it can be seen downlink in general

has worse performance than uplink, which is not unexpected

because the estimated CSI makes BD precoding imperfect, and

receiver is equipped with smaller size antenna array than the

uplink case. When the UE antenna size increases from 3× 3
to 4 × 4, BER of all three methods improves. Among them

Multi-Mode StructNet achieves the best performance.

We also tested the maximum ratio transmission (MRT) pre-

coding [33] in downlink scenario. The MRT scheme constructs

precoding vectors aimed at each receiver antenna such that

the received signals are interference-free. As this precoding
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Training Through DF: The training tuple is prepared for

each UE u as

Ii = Y
t,arr

u,:,:,((i−1)Nt+1:iNt)
∈ C

Ne v×Ne h×Nt , (56)

Li = X̄
t,src

u,:,((i−1)Nt+1:iNt)
∈ C

1×Nu
m×Nt . (57)

C. ALS Derivation

Here we derive the ALS algorithm for obtaining Wout 1

(12). Wout 2 (13) can be derived in the same way.

Wout 1 = argmin
Wout 1

∥L −G ×1 Wout 1 ×2 Wout 2∥
2
F (58)

= argmin
Wout 1

∥L −

K
∑

k=1

G(k) ×1 W
(k)
out 1 ×2 W

(k)
out 2∥

2
F

(59)

= argmin
Wout 1

∥L(1) −

K
∑

k=1

W
(k)
out 1(G

(k) ×2 W
(k)
out 2)(1)∥

2
F

(60)

= argmin
Wout 1

∥L(1) −Wout 1

[

(

G(1) ×2 W
(1)
out 2

)

(1)
;

· · · ;
(

G(K) ×2 W
(K)
out 2

)

(1)

]

∥2F (61)

≜ argmin
Wout 1

∥L(1) −Wout 1Z1∥
2
F , (62)

where (59) comes from Tucker decomposition.
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