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Real-Time Machine Learning for Multi-User
Massive MIMO: Symbol Detection Using
Multi-Mode StructNet
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Abstract—In this paper, we develop a learning-based symbol
detection algorithm for massive MIMO-OFDM systems. To
exploit the structure information inherited in the received signals
from massive antenna array, multi-mode reservoir computing is
adopted as the building block to facilitate over-the-air training in
time domain. In addition, alternating recursive least square opti-
mization method, and decision feedback mechanism are utilized
in our algorithm to achieve the real-time learning capability. That
is, the neural network is trained purely online with its weights
updated on an OFDM symbol basis to promptly and adaptively
track the dynamic environment. Furthermore, an online learning-
based module is devised to compensate the nonlinear distortion
caused by RF circuit components. On top of that, a learning-
efficient classifier named StructNet is introduced in frequency
domain to further improve the symbol detection performance by
utilizing the QAM constellation structural pattern. Evaluation
results demonstrate that our algorithm achieves substantial
gain over traditional model-based approach and state-of-the-art
learning-based techniques under dynamic channel environment
and RF circuit nonlinear distortion. Moreover, empirical result
reveals our NN model is robust to training label error, which
benefits the decision feedback mechanism.

Index Terms—Massive MIMO, OFDM, Symbol Detection,
Online Learning, Multi-Mode Reservoir Computing, Nonlinear
Compensation, Structure Learning.

I. INTRODUCTION

By employing a large array of antennas at base station
(BS), massive multiple-input multiple-output (MIMO) can
achieve significant gain in both spectral efficiency and energy
efficiency [1]. Therefore, it is considered as one of the key
enabling technologies for the 5G mobile communication sys-
tems [2]. As a critical step of its receiver processing, symbol
detection aims to recover the transmitted signals from the
corruption of undesired wireless channel effects and hard-
ware impairments. Conventional symbol detection methods
are model-based, and require channel state information (CSI)
as input, hence suffer from model mismatch and channel
estimation error. Therefore, there are growing interests in using
neural networks (NNs) to tackle this problem.

There are many existing learning-based symbol detection
methods, to better understand the differences among them, we
define learning terminologies used in this paper as follows.
Offline learning: NN is trained by artificially generated offline
data which contains the same statistical information as the
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online test one. Online learning: NN is only trained by limited
over-the-air (OTA) training data, such as existing pilot symbols
in wireless systems. Real-time learning: in addition to meet
online learning requirements, the algorithm should also be able
to update NN weights on an OFDM symbol basis for real-time
adaptation to the environment dynamics.

Existing offline learning-based approaches can be generally
divided into two branches. One branch of research treats
the underlying NN as a black-box, let it directly learns an
inverse mapping from received signal to transmitted one,
which implicitly learns the underlying system model and CSI,
such as [3], [4]. However, those methods do not incorporate
domain knowledge into the NN design, thus increase training
complexity and ‘lack of explainability’ [5]. Alternately, other
approaches focus on replacing certain components of existing
optimization-based symbol detector with NNs, such as Det-
Net [6] and MMNet [7]. Since such methods need explicit
CSI as input, their performance degrades with imperfect CSI.
Furthermore, all aforementioned methods rely on either purely
offline training or hybrid of online and offline training where
the online training complexity is reduced owing to the same
statistical features of the offline training dataset. When offline
dataset is statistically different from the online testing one, the
symbol detection performance drops significantly. In modern
communication systems such as 4G/5G, the transmission mode
selection and resource allocation are performed on subframe
basis, which makes it challenging to adopt offline training
and calls for purely online learning-based algorithms to only
utilize the limited OTA training data within subframe to
mitigate the issue of ‘uncertainty in generalization’ [5] for
robust and adaptive communications. Efficient online learning
algorithms have been introduced in our previous work for
MIMO-OFDM symbol detection [8]-[11], where conventional
reservoir computing (RC) is adopted as the underlying NN.
Later on multi-mode RC (MMRC) was introduced in [12]
to harness the structure information inherited in the massive
MIMO system for better symbol detection performance. How-
ever, this method is designed on subframe basis where the
underlying NN weights are trained by initial OFDM symbols
(pilot symbols) within a subframe. Once learnt, the NN will be
used to conduct symbol detection for the rest OFDM symbols
(data symbols) within the subframe. Although this method
can be applied in scenarios where the wireless channel is
dynamically evolving within a subframe, the underlying NN
doesn’t consider this dynamic feature, which calls for a real-
time learning approach that can update NN weights on an
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OFDM symbol basis. Motivated by aforementioned factors, in
this paper !,

e A training algorithm is designed to enable MMRC with
real-time learning capability. To be specific, by introducing
the alternating recursive least square (ARLS) optimization
method, and utilizing the decision feedback (DF) mecha-
nism to create training dataset on-the-fly, the NN weights
can be updated on an OFDM symbol basis to track the
environment dynamics.

o A learning-based nonlinear compensation module is de-
signed to recover the nonlinear distortion caused by
transceiver circuits. This module is trained purely online
by OTA pilot symbols, which avoids the model mismatch
problem encountered by conventional equalization and pre-
distortion based methods. Also, unlike conventional power-
back-off based method, it doesn’t sacrifice power amplifier
efficiency and wireless coverage.

o In frequency domain a learning-efficient method named
StructNet is introduced to further improve the symbol detec-
tion performance. By utilizing the QAM constellation struc-
ture information, this method solves multinominal classifica-
tion problem with a single binary classifier, which reduces
NN size and improves training efficiency. In addition, we
extend the StructNet with real-time learning capability by
utilizing the DF mechanism.

o Experiment results show significant performance improve-
ment with the new algorithm. We also discover an appealing
fact that MMRC is robust to neighbor training label error,
which explains why the DF mechanism works well.

Notations: C(R) denotes the complex (real) number set.
Scalar, vector, matrix, and tensor are denoted by non-bold let-
ter, bold lowercase letter, bold uppercase letter, and bold Euler
script letter respectively, e.g., z, &, X, and X. X, . (¢;:c0) €
CNex(e2=e1+1) jg formed by taking the a, element along the
first dimension, all IV, elements along the second dimension,
and c; to co elements along the third dimension of tensor
X € CNexNoxNe @ s the convolution operation. (-),
and (-)* denotes respectively the transpose, and Hermitian
transpose operation. A is the estimation of matrix A. ()1 is the
Moore-Penrose matrix inversion. [A; As] denotes concatenate
matrices A; and A, along the column dimension, while

[A1; Ao or i;
along the row dimension.

Tensor Operations: We briefly introduce tensor operations
needed for this paper, detailed definitions can be found in
[12]. A tensor with N mode (dimension) is represented as
X € ChxIxxIN_ The mode-n unfolding of tensor X is
denoted as X ,,), where the (41,42, -+ ,in) entry of O maps
to the (in, ) entry of matrix X, € C/»*!-» where

denotes concatenate those two matrices

N N
I, 5 §214) (=1 with Jo= ] Im-
k#n k=1 m=k-+1
7> k#n m#n
IPart of this work has been published in the IEEE International Conference
on Communications 2022 [13]

The n-mode product of a tensor X with a matrix U € C/*I»
is defined as

I,
(X X0 Uiy iy iimeniing = D, Ty in Ui -

in=1

Tucker decomposition is often considered as a higher-order
generalization of the matrix singular value decomposition. The
tucker decomposition of a tensor is defined as

X =G x1 Ay Xo Ay XN Ap,

where A,, is the nth factor matrix and @ is the core tensor.
When the core tensor is super-diagonal with K blocks, denote
G®) as the kth block. Partition the matrix A,, according to
the core tensor block size as [A%I)Ag) A )], the Tucker
decomposition can be expressed as a summation of sub-Tucker
decomposition:

K
X = Zg(’“ X1 Agk) X g Agk) S XN Ag\’f).
k=1
A three-mode tensor Tucker decomposition is illustrated in
Fig.1.

II. MASSIVE MIMO-OFDM SYSTEM

We consider a massive MIMO-OFDM system, where U
scheduled users (UEs) are communicating to a BS. The BS
is equipped with a massive antenna array with N, elements,
while each UE has N, antenna elements. Table I summarizes
MIMO-OFDM related notations.

A. Transceiver Procedure

In uplink scenario scheduled UEs transmit signals to BS.
Assuming each UE u has NV}, independent data streams to
transmit, the source data in frequency domain from all UEs
can be represented by a tensor X/ 57¢ € CUXNm*NoxNe
where Ny X N, is the shape of an OFDM subframe with
N, OFDM symbols and N, subcarriers. Fig. 2 illustrates its
structure, within a subframe, the first NV, OFDM symbols are
pilot symbols, and the rest Ng = Ny — N, OFDM symbols are
data symbols. Note that the pilot symbols are designed for CSI
estimation in wireless communication systems such as Wi-Fi,
4G LTE, and 5G NR. The uplink transceiver procedure is: At
each UE u, for each OFDM resource element (RE) located
on OFDM symbol s and subcarrier ¢, a precoding matrix
Qus.c € CN*Niw maps N¥ data streams to N, antenna
elements (N < N,), results in X7 € CUXNexN:axNe  the
frequency-domain transmitted signal. Next, frequency-domain
OFDM symbols are converted to time domain by applying
an inverse fast Fourier transform (IFFT) across subcarriers
and appending cyclic prefix (CP) with length N,,. Then
all time-domain OFDM symbols are concatenated together
along time axis to form the transmitted time-domain signal
Xt e CUXNexN:Nt where Ny = N, + N, is the time-
domain OFDM symbol length, and denote xf, , € CN+™* as
the time-domain transmitted signal from antenna e of UE w.
Let #t € CNoxUxNexL (denotes the time-domain wireless
channel between BS and all scheduled UEs, and h! e Cr

b,u,e
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Fig. 1: Tucker decomposition with three-mode tensor and K=4
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Fig. 2: Massive MIMO-OFDM subframe structure

denotes the L-tap channel between BS antenna b and UE u
antenna e, which is gradually evolving across OFDM symbols.
Let Y € CNeXNsNt denotes the time-domain BS received
signal, and y € CN+™t is the received signal at antenna b.
The relation between transmitted and received signal can be
expressed as

U N.
:ZZ ue ®hbue n, (])

u=1e=1
where fpa(-) is a nonlinear function represents the power
amplifier (PA) effects, n is the Gaussian noise. In general
all active radio frequency (RF) components in the transceiver
circuits could add nonlinear distortion to the ideal signal, here
we only includes PA because it contributes the most to the
distortion. The goal of BS is to recover transmitted source data
streams JXC/°7¢ from received signals Y'*, known as symbol
detection. Note that BS can perform a jointly processing of
received signals from all antenna elements for the symbol
detection task.

The downlink scenario is similar to uplink, with the only
difference that each UE processes its own received signal
individually, this in contrast with the uplink case where a joint
process across all receiver antennas is available. Due to this
difference, a precoding scheme is required at BS side to pre-
cancel the inter-user interference, a widely adopted scheme is
block diagonal (BD) precoding [14]. The detailed description
of downlink procedure including BD precoding can be found
in Appendix VIII-A.

B. Conventional Symbol Detection Method

Linear minimum mean square error (LMMSE) is a conven-
tional symbol detection method widely adopted in practical

TABLE I: MIMO-OFDM system notations

Symbols | Data type & shape Definitions
U RT Number of UEs
N, RT Number of antenna elements at BS
Ne RT Number of antenna elements at each UE
NY RT Data streams of UE u
N R! Total number of data streams, Ny = >-0_; N
N RT Number of OFDM symbols per subframe
N, RT Number of pilot symbols per subframe
Na RT Number of data symbols per subframe
Nec RT Number of sub-carriers in OFDM system
Nep RT CP length
Ny RT Time-domain OFDM symbol length, Nt = N¢p + Ne
L RT Time-domain wireless channel length
e’ CNpXUXNeXL Time-domain wireless channel
hl .. cr Time-domain wireless channel between BS antenna b and UE u antenna e
XTsre | CUXNp xNexNe Source data in frequency domain
xthere v Source data in time domain
Qu.snc Precoding matrix
X7 Ti itted signal in frequency domain from all UEs (after precoding)
Xt signal in time domain from all UEs
E Transmitted signal in time domain at UE u antenna e
Y! Time-domain BS received signal
Yy Time-domain received signal at BS antenna b

communications systems, which includes two steps, namely
channel estimation, and symbol recovery. The symbol detec-
tion procedures are the same for both uplink and downlink
scenarios, here we illustrate it in the uplink case.

a) Channel estimation

The channel between all UEs and BS is estimated through
the pilot OFDM symbols within a subframe. At each sub-
carrier ¢, denote the frequency-domain pilot symbols trans-
mitted from all UEs as X, Josre e CUXNmxNp  gtack the

35(1:Np),e
first two dimensions together we have X {1’,81:[6) . € CNmxNp,
Np)c

where N,,, = Zu,
ceived pilot symbols at BS as Y Ny €
relation between them can be expressed as

NY Denote the frequency-domain re-

CNoeXNp then the

Yf

ANy = Hé‘,effo,src . +N, 2)

(1:Np),c
where HI < ¢ CNoxNm is the frequency-domain effective
channel (combines the effects of precoding and wireless chan-
nel) at subcarrier ¢ between BS and all UEs. IV is the additive
Gaussian noise with variance o2. The effective channel then
is estimated through

fisre s\ —1

(lsz),c) ) :

Ny X
3)

Note this method only provides channel estimates over pi-
lot symbols. When the channel is evolving across OFDM
symbols, the channel estimates over data symbols can be
obtained through the MMSE interpolation method [15], which
has higher computational cost due to the calculation of channel
statistics such as cross correlation among subcarriers at pilot
and data symbols.

I =¥ (X

) (X(fl,src) (X
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b) Symbol recovery

With estimated effective channel, the received data symbols
at BS subcarrier ¢ can be expressed as

f Jeff 3 f,s7C
YN, +1:N) e = HI* XA +1nyy,e TV “4)
Ny x N, frsre
where Y(N H1Ne € CNoxNa  and X(N F1Ne €
CNm*Na  Then the source symbols can be recovered by

LMMSE method as

o f,src -1

u,(Np+1:Ng),c :((ﬁf7eff)*ﬂ—'f7eff + 021)

(HIEYY o ve O

III. RESERVOIR COMPUTING AND STRUCTNET

A. Standard RC

RC [16], [17] is a special type of recurrent neural network
(RNN). Unlike traditional RNNs such as long short-term mem-
ory (LSTM) and gated recurrent unit (GRU), which are known
for high training complexity due to backpropagation through
time (BPTT) training of recurrent weights, RC’s recurrent
weights are initialized according to certain distributions and
remain fixed. The RC training is only required for output
weights, which can be done by least square-based methods
using closed-form solutions with low computation complexity.
Therefore, RC is widely adopted in applications where fast
and adaptive training is required, such as robot control [18],
biosignal processing [19], remote sensing [20], and wireless
communications [8]-[11], [21].

The standard RC, as shown in Fig. 3, is governed by
two equations, reservoir state transition equation and output
equation. The reservoir state transition equation is formulated

s(n) = f <Wmm [s(?(m 1)} ) : (©)

where s(n) € CVr is the reservoir state at time step n, N, is
the number of neurons in the reservoir.
. A . . .
i(n) = [i(n);i(n —1);- - 5i(n —T)],
where T' is a hyper-parameter controls the input window
length, i(n) € C¢ is the input vector with size N;. Wy,qn €
CNrx(N-+TNi) ig the state transition weight matrix initialized
with spectral radius smaller than 1 to satisfy the echo state
property [22]. f(+) is a nonlinear function. The output equation
is formulated as

o(n) = Wi [f((;ﬂ : (7)

where o(n) € CNe is the output with size N,, W,y €
CNox(N»+TNi) s the output weight matrix need to be trained
to minimize the distance between output and training label.
which can be obtained through least square-based meth-
ods [23], [24].

B. Multi-Mode RC

Recently, Zhou et al. introduce the framework of
MMRC [12], where the input sequences are configured with
more than one explicit mode (dimension), i.e., the input
sequence is formulated as matrix I(n) or tensor d(n), rather
than vector 4(n). Such that MMRC can utilize the structure in-
formation of the underlying problem to improve performance.
Here we introduce MMRC through its two-mode instantiation
(Fig. 4), then enable it with real-time learning by recursive
least square-based method.

Two-mode RC is comprised of three components: recurrent
module, feature queue, and output mapping. Assuming input
with size N; 1 X Nj; o, recurrent module maps input I(n) €
CNixNiz o recurrent state S(n) € CN-*Nr  the mapping
equation is formulated as

S(?’L) = f (Wtran_l [S(no_ 1> I~(077,):| Wtran_2,>7 (8)

where

I(n) = blockdiag(I(n), I(n —1),---,I(n—T)),

T is a hyper-parameter controls the input window length.
Wtran 1 S (CNTX(NTJFTNLI), Wtran 2 € (CNTX(NTJFTNLZ)
are row-space and column-space reservoir weight matrices
respectively. With feature queue defined as

G(n) = blockdiag(S(n), S(n) , I(n), I(n)'), (9
the RC output is generated through output mapping

O(’]’L) = OUt 1CTW( ) out_2» (10)

where Wo,; 1 € CNoaXNi W, 5 € CNo2XNs N, £
2N, +T(N; 1+ N; 2) is the row (and column) size of G(n).
N, 1 and N, o represent the row and column size of O(n).

Assuming Ny.qi, training samples are collected, stack
them along the time axis to have the feature queue
G € CNsxNgxNeain  and the training label £ €
CNoa1xXNo2xNirain - the output weight matrices can be ob-
tained by solving the minimization problem

L =G x1 W,

min
Wout_1,Wout_2

(1)

out_1 X2 Wout 2||F

An alternating least square (ALS) algorithm is introduced
in [12] to solve this problem, where W,,; 1 and W, o
are iteratively updated by solving the following least square
problems until reaching certain stop criterion:

Wou 1 = argmin || Ly = Wour 1 Zi[[f, - (12)
ot 1
Wout_o = argmin | L) — Wou 220 | %, (13)
out_2
where
Z, & {(g(l) xa Wil o) i i
(Q’(K X5 Wom , } € CNr*No2Nirain,
Z, 2 [(g(l) XA W) i

(Q(K) X1 Wout 1) ):| € (CNfXND_thmma
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Fig. 3: Standard RC

the derivation of (12) and (13) have been shown in [12], for
ease of reading we also show it in Appendix VIII-C, with
proper modification to reflect notations adopted in this paper.
The closed-form solutions for those least square problems are:

Wouw1=L)Z{, Wouo=LiZ). (14

Note the limitation of ALS algorithm is that the output weights
can be calculated only after Nyp.4i, training samples are
collected. However, in wireless communication applications
where the underlying environment is dynamically changing, a
real-time training algorithm is desired to adaptively update the
output weights based on new-coming training samples. Next,
we introduce such training algorithm, named ARLS.

In ARLS, Wy, 1 and W, o are iteratively updated, this
is similar as ALS. The difference lies within the iterative
procedure, where recursive least square (RLS) method is
adopted, instead of least square (LS) method, to update each
individual output weight matrix. In the following we take
Wut_1 as an example to illustrate the RLS procedure, W,,; 2
can be obtained in the same manner. Define z1(n) € CNs
as the n-th column of Zy, and I(1)(n) € CNot as the n-th
column of L. The output weights corresponding to n-th
training sample can be updated as

Woutr 1(n) = Woy 1(n— 1) + en_l(n)k,(n) (15)

where e, _1(n) = l(1)(n) = Wous_1(n—1)z1(n) is the current
prediction error based on previous output weights, and k(n)
is calculated as:

k(n) U1(n—1)z.(n)

T A2 () (= Dzi(n)
Tln) = (X0, Nz (m) 2, (m))f1 is the inverse of

weighted correlation matrix of z1(n), A € (0,1] is the
forgetting factor. ¥~1(n) is updated recursively by

(16)

T (n) = AN (@ (n—1)—k(n)[z,(n)® " (n—1)]). (17)

This paper only utilizes two-mode RC, therefore, we omit
the description of MMRC beyond two-mode for clear and
concise. Interested reader is referred to section III-B of [12]
for details.

C. StructNet

StructNet [25], [26] formulates MIMO symbol detection
as a multinomial classification problem. It incorporates the
wireless communications domain knowledge into the NN

5
Wiran 2 Wour 2
Feature
{(vl-] f St queue
= sm o | 0™
1) | oo 1o Werans Woue s i

1) 1o

Tay"
— ¥
|

Recurrent module Output mapping

Fig. 4: MMRC

design. To be specific, through shifting the received signal
along the channel direction to certain positions determined
by the QAM constellation symbol interval, StructNet solves
the multinomial classification problem with a single binary
classifier, which reduces the NN size and improves the learning
efficiency. As this method is designed to work in the frequency
domain, we explain its mechanism with following MIMO
model:

y=Hx+n, (18)

where & € AN™ are the transmitted symbols, A is the QAM
constellation set, e.g., for 16-QAM, A = {-3,—-1,+1,+3} x
{34, —14,+14,+3j}. H € CNoXNm represents the wireless
channel. y € C™ are the received symbols. n is noise.
The real-valued version of @ and y are used for the symbol
detection task, which are defined as:

N {Re(:ac)]7 nd @ 2 {Re('y)}7

z = Im(x) Y= Im(y) (19)

where & and y now represent transmitted and received 4-PAM
symbols. The symbol detection can be expressed as maximum
a posteriori estimation problem:

argmax P(Z|g),

xT

(20)

where y is the known received signal, and & is the transmit
signal need to be estimated. Denote the ith element of & as
Z;, by applying naive Bayesian principle, the joint distribu-
tion P(Z|g) can be approximated with marginal distribution
Pi(2i|g):

2N,

H Pi(7i|9),

i=1

P(&y) ~ 2D

then the symbol detection can be done by choosing the
transmit symbol that maximizes marginal distributions:

argmax P;(Z;|g), 1 <i < 2N,,.

:il

(22)

To solve this problem, we need to know the conditional
probability P;(Z;|g), for which we utilize NN to learn it from
training data. After training we should have

Jo, (%45 9) =~ P;(Z:]9)

where fy,(Z;;y) denotes the NN with input g, output corre-
sponding to z;, and NN weights 6;.

Binary classification: let’s consider a binary decision case
first, where ; € {—1, 41}, then the NN is a binary classifier

(23)
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with two outputs, which are trained to estimate the probability
of the corresponding two classes,

fo,(Ti = —1;9) = P;(%; = —1|y),
fo, (@i = +1;9) = P;(%; = +1]y),

(24)
(25)

when testing, the decision is made by choosing the class
with higher probability. The NN process is depict in Fig. 5.
Regarding the binary classifier structure, it is implemented
as a multilayer perceptron (MLP). Specifically, it has an
input layer with size 2N, (uplink scenario) or 2N, (downlink
scenario); following are one hidden layer with /V;, neurons and
hyperbolic tangent as activation function; finally the output
layer generates two values representing the possibilities of
been positive and negative respectively.

» P& =-113)
> P(% =+113)

Binary Classifier
fo,(&i; ¥)

A

Fig. 5: Binary classification

Multinominal classification: when the transmitted symbol
is not binary, e.g, #; € {—3, —1,+1, 43}, we can still utilize
a single binary classifier to estimate the probabilities of all
classes through the following shifting principle:

Pi(Zi = —1lg)  Pi(#; = +1|§ + 2h;)
Pi(Zi = +31g)  Py(&; = +1|§ — 2h;)’

whe:re +2I~zi and —2l~zi are the shifting vectors. Let’s take
+2h; as an example, it consists of three parts, a + sign,
meaning we are shifting a transmitted symbol to its right
neighbor in the constellation, e.g., from —3 to —1; a scalar 2,
which i§ distance between those two symbols; and the channel
vector h; is defined as

» ) [Re(h;); Im(hy)], if 1 <i<N,y,

’ [~ Im(h;—n,,); Re(hi—n,,)], if Ny <i< 2N,

(28)
where h; is the ith column of H. In summary, shift the
received symbol y by +2h; is equivalent to shift the trans-
mitted symbol from -3 to -1, in this way the binary classifier
can estimate the probability of classes -3. Similarly, shift y
by —2h;, the probability of class +3 can be estimated. With
the binary classifier and shifted inputs, the probabilities of all
classes can be obtained by solving below system of equations:

Pi(#i = =319) _ fo.(i = —1;§ + 2h) 29)
P& =—11g)  fo, (& = +1;§ +2h;)’
Pi(&i=-1§) _ fo,(@i=-1§+0) 30)
Z( '
Z(

P
iy 31
z (3D

(32)

where equation (29) and (31) are obtained by substituting
equations (24) and (25) into (26) and (27); equation (30) is
directly obtained through (24) and (25); equation (32) comes
from the property of probability, i.e., the probability sum of
all events equals to one. The decision is made by choosing the
class with the highest probability. The complete NN process
is depict in Fig. 6, note the three binary classifiers are actually
one, they are copies of each other. The channel layer is a NN
linear layer with its weights represent channel coefficients.

Training procedure: as discussed above, only one binary
classifier needs to be trained for the symbol detection task.
With each training sample (Z;,9y) (where &; is transmitted
pilot symbol, g is the received one), two binary training
samples are generated, one positive and one negative. The
label-input tuple can be expressed as:

{+1, §+ (=& +1)h;},

{~1, §+ (=% — Dh;}. (33)

We can see through shifting the received signal, the transmitted
symbol is moved to the positive position (+1), and negative
position (—1) respectively. After passing training input through
StructNet, the cross entropy loss with respect to training label
is calculated and utilized to update NN weights.

IV. MULTI-MODE STRUCTNET

In this section, we introduce the learning-based symbol
detection method for massive MIMO-OFDM system, named
Multi-Mode StructNet. As shown in Fig. 7, the NN is com-
prised of three building blocks: 1) In time domain, we adopt
MMRC as the underlying NN, and enable it with real-time
learning capability through the ARLS algorithm, in addition,
a DF mechanism is designed to conduct symbol detection
and adaptively update the NN weights on an OFDM symbol
basis, we name it MMRC-DF; 2) Nonlinear compensation
(NC) module, in uplink scenario, we utilize standard RC to
compensate the signal nonlinear distortion caused by PA; 3)
In frequency domain, StructNet is adopted to further improved
the symbol detection performance, the DF mechanism is also
utilized to enable StructNet with real-time learning capability.
Regarding training, MMRC-DF, NC, and StructNet are trained
in a sequential manner, i.e., after the predecessor block is
trained, its output is utilized to prepare training input of the
successor block, the training labels for all blocks are prepared
based on transmitted pilot symbols and inferred data symbols
(if DF mechanism is utilized). The training is purely online,
all NN weights are re-initialized at the beginning of a new
OFDM subframe, and trained online based on OTA symbols
in the new OFDM subframe. The detailed NN training and
testing procedures are discussed in following subsections and
summarized in Algorithm 1. Table II summarizes all NN
related notations.

A. MMRC-DF

The procedure of MMRC-DF mainly contains two steps.
First, the pilot OFDM symbols are used to train the ini-
tial MMRC weights. Next, for each received OFDM data
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Fig. 6: StructNet

TABLE II: Neural network notations

NN type Symbols Data type & shape D«
N; RT Input size
No RT Output size
Ny RT Number of neurons in reservoir
STD-RC T RT Input window length
N RT N. = N +TN;
Wiran CNrXN= State transition weight matrix
Wout CNoXN= Output weight matrix
Ni_1 X Ni 2 RIXT Input size
No_1 X No_2 RIXT Output size
Ny RT Number of recurrent neurons along each dimension
T RI Input window length
N._1 RT Nz = Nr+TNiy
MMRC N:_2 R! N, 2 = N +TN, 2
Wiran_1 CNrXNz1 Row-space reservoir weight matrix
Wiran_2 CNrXNz_2 Column-space reservoir weight matrix
N; RT N; Z 2N, + T(Ni + Nio)
Wout_1 CNo-1 XNy Row-space output weight matrix
Wout_2 CNo2XNy Column-space output weight matrix
Niter RI ALS and ARLS iteration number
N; RT Input size
StructNet Nh, RI Number of hidden !ayer neurons
N, RT Output size
Nep RI Training epoch

symbol, MMRC infers the transmitted one, and then utilizes
its decision as training label to further update the output
weights. In this way the underlying channel dynamics can
be adaptively tracked by MMRC in a real-time symbol-by-
symbol fashion, without adding any channel training overhead
into the wireless communications system. Next we explain the
training procedure under uplink scenario, the downlink case is
summarized in Appendix VIII-B.

As mentioned before the BS is equipped with antenna
array with N, elements, and each UE with N, elements. We
further assume those antenna arrays have rectangular shape.
To be specific, the BS antenna array shape is defined by
(Nb_v, No_p), where Ny, is the number of antenna elements
along the vertical direction, N}_p, is the number along horizon-
tal direction, and N, = Np,_, [Ny _p,. Similarly, UE antenna array
shape is defined by (N, ,, Ne ). At receiver, we reorganize
received signals according to the antenna array shape to
preserve the spatial structure information, and feed them to
the NN input. For example, in uplink scenario we reshape
Yt € CNoxNeNi jnto YhHarm € CNoww X NoonXNoNi g the NN
input § € CNia*XNi2xNirain - Also, by performing IFFT and
add CP to the source data X/+7¢, we obtain its time-domain
counterpart X17¢ € CUXNmxNsNe - which will be used to
prepare the training label &£ € CNo-1XNo2XNerain,

1) Training Through Pilot Symbols

The pilot symbols within a subframe (first /V,, symbols) are
utilized to train the initial weights of MMRC-DF, the training

7
Time domain Frequency domain
| L FFT
MMRC-DF enlink) - | StructNet
Fig. 7: Multi-Mode StructNet

dataset can be expressed by the input-label tuple:

(I)pilot £ {'gpilot; ecpilot}a (34)
which is prepared as

pzlot yt a(rer ) c (CNb_uXNb_h,XNpNt7 (35)
Lpitot = x, S(TfN N € CU > Nm X Np e, (36)

The output weights are trained by ALS algorithm.

2) Training Through DF

For each data symbol (the ¢-th OFDM symbol, N, <

i < N,), MMRC-DF takes yf;f‘[(j;l)Nf 11Ny €

CNoo¥NonxNe a5 input g;, and outputs the inferred time-

t,sre UXN}, XNy
domain source symbol I ((L_l)NszNf) e C ,

obtain its frequency-domain counterpart .I' ;
(CU X N XN,

((i—1)Ne+1:N.) €
¢ by removing CP and perform FFT. Then map

.I’ frsre DN.41in,) © the nearest QAM symbol to have
J,",S(Z—i)N +1:iN,) € CUXNm*Ne whose time-domain coun-
terpart JC; ’STC € CUYXNmxNi will be utilized as

((1—1)N¢+1:9Ny)
training label JL; to further update the NN weights. In sum-

mary, denote the training dataset for the i-th (IV, < ¢ < Ny)
OFDM symbol as:

®; £ {9;, L}, (37)
which is prepared as
t,arr Np o XN, N,
9; = y 5 ((i—1) Ny +1:0Ny) € Cle-w X Mok XA (38)
_ t src U st N,
£Li = x:,:,((iﬂ)NtH;iNt) € CxMm e, (39)

And the NN is trained by ARLS algorithm. It can be seen
that the NN weights are updated on an OFDM symbol basis,
which essentially tracks the wireless channel dynamics in real-
time. Also because the training dataset is prepared through
the decision feedback, no extra channel training overhead is
needed for the wireless system.

B. Nonlinear Compensation Module

As mentioned before, among all RF components, PA con-
tributes most to the nonlinear distortion. Conventional methods
that compensate nonlinear distortion including model-based
nonlinear equalization at receiver side, digital pre-distortion
(DPD) [27] and power-back-off (PBO) at transmitter side.
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However, their drawbacks and limitations are preventing them
from being adopted in realistic wireless communication sys-
tems [28]. To be specific, model-based nonlinear equalization
methods suffer from model mismatch. PBO reduces PA power
efficiency and wireless coverage. While DPD is considered as
a feasible method on BS side, it is impractical on UE side due
to high hardware implementation cost. To deal with the PA
distortion in the uplink case where DPD is not available, we
design a learning-based module for nonlinear compensation.
The underlying NN of this NC module is standard RC, which
has been adopted in other works for nonlinearity compensation
and shows promising performance [9], [10], [28]. The input
of NC module is prepared based on the output of MMRC-DF,
where we assume most of the channel effects have been taken
care of. Specifically, for preparing the training input, we first
reshape the MMRC-DF output .I' bere ) € CUX N X NpNu

(1N, N,
into X t(slrﬁ\, ) € CNnxNpNe | then construct its high-order

p_ord
(p-order, p = 3,5,---) term Xt(slrivpj\(;f) er CNm*Np Ny

by replacing each element z of X'*"¢

) Wwith z|z[P~L.

S (1:Np Ny
The training label is prepared by reshaping X S(rlc NN, €
CUXNEXNN: into Xt(sff\, Ny € CNm XNy Ne Finally, the

training dataset

pzlot { pzlota pzlot} (40)
is prepared as:
t,src o-t,src,3_order 3
Imlot = [X (LN Ny Y (1IN Ny) 0070
t,src,p_order LN X Np N,
X(lNNf) ]e@z t, (41
t7 m

L}, = XNy € CNmxNpNe (42)

On inference stage, the input is prepared in the same manner
as (41). The adoption of high-order term input can provide RC
with more information on the high-order nonlinear distortion,
making the training more efficient.

C. StructNet

Here we demonstrate the StructNet training/inference pro-
cedure with uplink case, donwnlink can be done in similar
way. As mentioned before, StructNet is designed to work in
frequency domain. Therefore, we convert the time domain NN
output to frequency domain by removing CP and performing
FFT. With a bit abuse of notation, let XC/»57¢ € CNmXNsxNe
representing the frequency domain signals. Then at each
subcarrier ¢ we have X f sre g CNmXNs | of which the

corresponding pilot parts X 7. (irf\, e € CNm*No are used to
prefpare the training input. And the transmitted source symbols

(;T;V )c € CN=*Nr are used to prepare the training label.
The training data preparation procedure is following (33), there
are total IV,, training symbols, for each symbol, the input ¥ is
the real-value version of y defined in equation (19), and y is
one of the column vectors of X (ETJ(V e ie.,

y=X1Cie LN, (43)

T; 1s the ith element of &, which is the real-value version of x
deﬁned in equation (19), and x is one of the column vectors

fysre
of X (1N, e ie.,

x =X/ e 1,N,);

717(/

(44)

the channel ﬁi is the real-value version of h; defined in
equation (28), h; is the effective channel after time domain NN
equalization, it is initially obtained through estimation method
(3) based on received pilot symbols

Yf — Xj',src

(1:Np),c 5(1:Np),c (45)

and transmitted pilot symbols X7 (irlcv .- Then the estimated
channel is updated through trammg backpropagation. It is
worth to mention that although time domain NN removes
major part of channel effects, residuals still exist, we rely
on StructNet to fine-tune the final output. The inference
procedure is done by solving the system of equations (29
to 32). In addition, the DF mechanism can also be adopted
to update StructNet weights symbol-by-symbol, where the
inferred OFDM data symbol can be utilized to prepare training
label. Generally speaking, the number of StructNet needed
for this design should equal to the number of subcarriers
N.. But in real implementation we can reduce the number
of StructNet by exploiting the channel correlation between
neighbor subcarriers. For example, a batch of subcarries can
share the same StructNet. In this way the NN size can be
reduced and training efficiency can be improved.

Algorithm 1 Symbol Detection Procedure of Multi-Mode
StructNet

1: for Each OFDM subframe do

2: Initialize MMRC-DF reservoir weight matrices

3: Prepare initial training data ®,,;;,¢ based on received and transmitted N;, pilot
symbols as defined in (34)

4 Utilizing ®,;;,¢ to obtain initial weights of MMRC-DF by ALS algorithm

5: MMRC-DF outputs inferred pilot symbols

6: if Uplink then

7.

8

Initialize NC module reservoir weight matrix
Prepare training data <I>p”m based on MMRC-DF inferred pilot symbols
and transmitted pilot symbols as defined in (40)

9: Train NC module with @mlm

10: NC module outputs inferred pilot symbols

11: end if

12: Convert time domain NN output (inferred pilot symbols) to frequency domain

13: Utilizing time domain NN inferred pilot symbols (equation 45) and transmitted
pilot symbols to estimate effective channel through LMMSE method (3)

14: Prepare training data for StructNet (33) based on time domain NN inferred

pilot symbols (43), transmitted pilot symbols (44), and the channel estimated
in previous step

15: Train StuctNet with pilot training data

16: for OFDM symbol ¢ = N, + 1 : N, (data symbols) do

17: MMRC-DF infers the corresponding source data symbol

18: Prepare training dataset €, for current data symbol as defined in (37)

19: Update MMRC-DF weights by ARLS algorithm

20: if Uplink then

21: NC module infers data symbol

22: end if

23: Convert time domain NN output (inferred data symbol) to frequency domain

24 StructNet infers data symbol by solving system of equations (29 to 32)

25: StructNet utilize inferred data symbol to prepare new training data for current
data symbol

26: Train StructNet with new training data

27: end for

28: end for

V. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
of Multi-Mode StructNet. The main elements that contribute
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to computational cost are matrix multiplication and pseu-
doinverse, compared to which the cost of matrix addition
is negligible, so we ignore it in our analysis. Based on the
knowledge that 1) the complexity of multiplication of one
n X m matrix and one m X p matrix is O(nmp), and 2) the
pseudoinverse of a m x n matrix (m > n) is implemented by
singular value decomposition thus has complexity of O (mn?),
we start the analysis with MMRC-DF related components, then
talk about NC module related components, last but not least,
we analyse the StructNet complexity. The training and forward
pass complexities of all components are summarized in Table
III, IV, and detailed in following subsections.

A. MMRC-DF Components

« State update is the first step for both MMRC-DF training and
inference. From equation (8) we can see the computational
complexity per input sample is O(N2N, o+ NN, 1N, 2),
where Nz_l = N,« + TNi_h NZ_2 = N»,« + TNi_Q.

e Training with ALS, to obtain Wy, 1 as shown in
equation (14), consists of one matrix pseudoinverse and
one multiplication, the complexity with training size
Nirain is Q(NtrainN]%No_2 + NtraianNo_lNo_2)~ Sim-
ilarly, obtaining Wy,: 2 requires @(NtmmN)%No_l +
NirainIN§No_1 N, 2). Assume the alternative procedure re-
quires N, iterations, the total complexity per sample is
©) (NiterNj%(No_l + NO_Q) + 2N1iteerNo_1No_2)-

o Training with ARLS, as explained in section III-B, has three
steps to update the output weights for each training sample:
1). the update of ¥~1(n) as in equation (17) has complexity
of @(3NJ%); 2). the update of k(n) as in equation (16) has
complexity of (C)(N]% + N f); 3). the update of W,,; 1 as
in equation (15) has complexity of O(N, 1Nf). So the
total complexity of obtaining Wy,: 1 and W,,: o with
Njter iterations is O (SNMTN? + Niter Ny (No 1+ Ny 2) +
2N7Lteer) ~ ©(8NiterNJ% + Niteer(No_l + NO_Q))-

« Inference, as shown in (10) has complexity of @(N]%No_l +
N¢N, 1N, o) per input sample.

B. NC Module

Similar as MMRC-DF, we can show the per sample com-
plexity of NC module components:

« State update as defined by equation (6) has complexity of
O(N,.N.), where N, & N, +TN;.

o Training with LS has complexity of O(N2 + N,N,).

o Inference as defined by equation (7) has complexity of
O(N,N,).

C. StructNet

StructNet is a MLP with one hidden layer of size NV}, input
size N;, and output size N, = 2 (binary classifier). It is trained
through gradient descent, assuming the training requires N,
epochs, then the per sample complexity of StructNet is:

o Training has complexity of © (Nep(NiNh + NhNO)).
o Forward pass has complexity of O(N;N;, + N, N,)).

D. Summary

Now we summarize the training and forward pass complex-
ity of Multi-Mode StructNet. For training analysis, the state
update cost is negligible, so it is not included for simplicity.
While in the forward pass analysis, both state update and
inference costs are included.

« MMRC-DF is initially trained by pilot symbols, with num-
ber of training samples N;N,. Then it is trained by DF
mechanism at each data symbol, with number of training
samples Ny Ng. So the total training complexity per OFDM

subframe is @(NtNimNj%((No_l + N,o)N,, + 8N,) +

NtNiteer (2N0_1N0_2Np + (No_l + No_2)Nd) .

o NC module is trained by pilot symbols, with number of
training samples N, N, the complexity per OFDM subframe
is (Q(Nth(Nf + NZNO)).

o StructNet is trained by pilot symbols, with number of
training samples 2N.N,N,,, the complexity per OFDM
subframe is (9(2NchNmNep(NiNh + NhNo)).

o Regarding forward pass, MMRC-DF and NC module
have the same number of samples N;Nj4, so the for-
ward pass complexity for MMRC-DF and NC mod-
ule are Q(NtNd(NENz_Q + Ner_lNz_2 -+ N?No_l +
NyNy1N,2)) and O(NyNgN.(N, 4+ N,)) respectively.

o Due to the shifting process, the forward pass of StructNet
is related with the QAM modulation order, assuming 2/-
QAM is used, then the number of forward pass samples
is NeNgN,,,(M — 1), so the forward pass complexity per
subframe is (Q(NCNde(M — )(N;Np, + NhNo)).

From the analysis we can see the advantage of RC-based
methods lies in the training iteration. For standard RC, only
one iteration is required for LS-based method to obtain the
optimal output weights. And for MMRC, N, iterations
are needed for ALS and ARLS methods, in our empirical
experiment N, = 5 is enough for the training to converge.
As for StructNet, although the training is based on gradient
decent, because of the compact NN size, the training converges
within 10 epochs. Compare with other learning-based methods
such as DetNet [6], MMNet [7], and OAMPNet [29], which
require thousands of iterations for the training, our method
has much less training complexity, experiment results shown
in section VI-D also verify this point.

VI. NUMERICAL EXPERIMENTS

In this section, we show the performance of the introduced
Multi-Mode StructNet algorithm in terms of bit error rate
(BER) for both uplink and downlink scenarios, and compare
it with traditional methods as well as other learning-based
approaches. Next we describe the experiment settings that are
common for both uplink and downlink scenarios, and detail
the uncommon settings in the corresponding paragraphs. For
the massive MIMO-OFDM system, the number of scheduled
UEs per subframe U = 2, each UE has N}, = 2 data streams
to transmit or receive. One OFDM subframe contains N, = 16
OFDM symbols, within which N, = 4 symbols are pilot
symbols, and the rest N; = 12 are data symbols. Number
of subcarriers N, = 512 and the CP length N., = 32,
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TABLE III: Training complexity

Algorithm Complexity per OFDM subframe
MMRC-DF O (NeNiter N3 ((No_t + No_2)Np + 8Na) + NeNiter Ny (2No_1No_2Np + (No_t + No_2)Na) )
NC Module O(N:Np(NZ + N.No))

StructNet

O(2NeNpNmNep(NiNp + N No))

Multi-Mode StructNet

Sum of all components above

TABLE IV: Forward pass complexity

Algorithms Complexity per OFDM subframe

MMRC-DF O(NeNg(NFNz2 + NeNo_1Nz 2 + N7No1 + Ny No_1 N 2))
NC Module © (NtNdNZ(NT + NO))

StructNet O(NeNgNp (M = 1)(NiNj, + Ny No))
Multi-Mode StructNet Sum of all components above

which equals to the wireless channel length L. The channel
realizations are generated with QuaDRiGa version 2.4.0 [30],
following 3GPP non-line of sight (NLOS) urban macrocell
(UMa) channel model [31] with central frequency 2.5GHz and
bandwidth 5MHz, the channel is dynamically evolving across
OFDM symbols due to UE mobility. For the MMRC-DF, the
number of recurrent neurons is N, X N, = 8 x 8 = 64, the
input window length 7" = 32, which equals to the wireless
channel length. The forgetting factor A of ARLS algorithm is
0.9995. The binary classifier in StructNet is a MLP with one
hidden layer of size N, = 128, the input size is 2NV, = 8, the
output size is 2. Npqicr, = 48 subcarriers share one StructNet.

A. Uplink and Downlink BER performance

In uplink experiments, the BS antenna array is set as
Ny » = 8, Ny p, = 8, while UE antenna array is N, , = 1,
N, n, = 2, antenna elements are spaced in half-wavelength.
PA nonlinear effect is not considered here (i.e., fpa(x) = x).
Identity precoding is utilized at transmitter side (i.e., Q. s,c
is an identity matrix). Fig. 8 compares the BER performance
of nine methods when UE speed is 30km/h, the modulation
scheme is 16QAM. LMMSE and LMMSE-Interpolation are
conventional symbol detection methods introduced in Section
II-B, where LMMSE only utilizes channel estimates over
pilot symbols, while LMMSE-Interpolation utilizes the inter-
polated channel over data symbols. SD-Interpolation is also
a conventional method, it adopts the same channel estimation
method as LMMSE-Interpolation, for symbol recovery step it
utilizes the sphere decoding method introduced in [32]. Multi-
Mode StructNet and MMRC-DF are the methods introduced
in this paper. MMRC is the method introduced in [12] only
utilizes pilot symbols for training. STD-RC is the standard
RC introduced in section III-A and utilized in our previous
work [8]-[10], which can be seen as single-mode RC. MMNet,
and its simplified version MMNet-iid are introduced in [7],
which are learning-based methods build on the theory of
iterative soft-thresholding algorithms. From the results we
can see all learning-based algorithms outperform LMMSE
except for MMNet-iid, this is because its iid-noise-distribution
assumption doesn’t hold in our simulation. Also, MMNet
doesn’t improve much as SNR increases, this is because it’s
designed to work under much larger training dataset, which
suffers from overfitting under the limited yet practical OTA
training in our evaluation. LMMSE-Interpolation has better
performance than LMMSE due to better channel estimation.

SD-Interpolation is more sensitive to channel estimation ac-
curacy, in low SNR regime it has slightly worse performance
than LMMSE-Interpolation, while in high SNR regime it
outperforms LMMSE-Interpolation. For RC-based algorithms,
MMRC outperforms STD-RC as it incorporates the receiver
antenna structure information into the NN design. To be
specific, the received signals from antenna array elements
are spatially correlated, and the correlation is dependent on
the array geometry. STD-RC reshapes received signals into
a vector, therefore, the geometry information is lost. While
MMRC'’s input has the same shape as the antenna array,
which reserves the geometry information. However, due to
the mobility of UEs, those NN weights trained on pilot
symbols soon become obsolete, result in unsatisfactory BER
performance around 107! to 1072 even with high SNR.
On the other hand, MMRC-DF utilizes decision feedback to
continuously update NN weights on real-time, which tracks
the environment and achieves better performance than MMRC.
Also, the performance gain becomes larger as SNR increases
due to the improved decision accuracy, which achieves BER
of 1072 to 10~* in high SNR regime. Multi-Mode StructNet
further improves the BER by utilizing StructNet in the fre-
quency domain, which achieves 3 dB gain over MMRC-DF.
Fig. 9 shows the BER performance with QPSK modulation
scheme, we can see the same trend as in the 16QAM case,
where Multi-Model StructNet achieves the best performance.

In downlink scenario with BD precoding, BS is equipped
with a 8 x 8 antenna array. For UE antenna array, we conduct
experiments on two settings, which are 3 x 3 and 4 x 4. Same
as uplink scenario the PA nonlinear effect is not considered.
At transmitter side, estimated CSI is used for BD precoding to
generate Q) ., the modulation scheme is QPSK. UEs are mov-
ing with speed 30km/h. Fig. 10 shows the BER performance
of LMMSE, MMRC, MMRC-DF, and Multi-Mode StructNet.
Compared with Fig. 8 it can be seen downlink in general
has worse performance than uplink, which is not unexpected
because the estimated CSI makes BD precoding imperfect, and
receiver is equipped with smaller size antenna array than the
uplink case. When the UE antenna size increases from 3 x 3
to 4 x 4, BER of all three methods improves. Among them
Multi-Mode StructNet achieves the best performance.

We also tested the maximum ratio transmission (MRT) pre-
coding [33] in downlink scenario. The MRT scheme constructs
precoding vectors aimed at each receiver antenna such that
the received signals are interference-free. As this precoding
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method assumes at each UE, the number of antennas equals to
the number of data streams (N, = NN,%,), so in this experiment
the UE antenna array settings are 2 X 2, 1 x 3 and 1 x 1,
corresponding to 4 data streams, 3 data streams, and 1 data
stream per UE respectively. The rest settings are the same as
the BD precoding case. Fig. 11 shows the BER performance of
MRT precoding, compare it with Fig. 10 we can see a general
trend that MRT precoding is worse than BD precoding, this
is because the assumption adopted in MRT makes it unable
to utilize larger receiver antenna array (e.g., N > N, as in
the BD precoding case) to perform symbol detection. Never-
theless, Multi-Mode StructNet still outperforms conventional
LMMSE method under MRT precoding scheme.

B. PA Nonlinearity Compensation

In this section we apply PA nonlinear distortion on transmit-
ted signal, and show the Multi-Mode StructNet performance
in uplink with and without the NC module. The NC module is
a standard RC with recurrent neuron size N, = 8, the output
size equals to number of streams V,, = 4, 3rd order term (i.e.,
p = 3) is added for input, so the input size N; = p%le =38,
the input window length T = 20. All network settings are
the same as previous uplink scenario, except for fp4(-) is no
longer an identity function. The PA model we adopt is RAPP
[34], which is characterized as

fra(z) =

X

{1 + (&L )2p] 1/2p

where z is the input of PA, x,; is the PA saturation level, and
p is the smoothing parameter. In our simulation, we follow [35]
set p = 3, and use x4y, to control the nonlinear distortion level.
In this paper we adopt a metric called error vector magnitude
(EVM) to quantify the nonlinear distortion, which is defined

as
EVM — \/ B[z g[f;lg](m |

(46)

(47)

where E[] is average over transmitted signals. Higher EVM
means higher distortion level. Fig. 12 shows the BER per-
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Fig. 9: Uplink MIMO BER, QPSK

formance of Multi-Mode StructNet under 6.5%, 7.5%, and
10.5% EVM, ‘NC’ means with the NC module described
in section IV-B, ‘NoNC’ means without it. From the figure
it can be seen as the distortion level increases, the symbol
detection performance degrades. Adding NC module helps to
compensate the nonlinear distortion, and achieves 2 to 3 dB
gain on the BER plot.

C. Training Label Error

Experiment results in previous section have shown the
promising performance of MMRC-DE. However, DF mech-
anism is known for the error propagation issue, i.e., when
the decision is wrong, NN will be trained by wrong label,
in return it will produce more error. So a natural question
is, why MMRC-DF does not collapse when BER is high,
especially in the low SNR regime where the BER is on the
level of 10712 A short answer is the decision error possesses
a special pattern which is not random, and our method is
robust to such error pattern. In order to elaborating this point,
first we plot the decision confusion matrix of MMRC-DF in
uplink scenario with 16-QAM modulation and 15dB SNR. In
Fig. 13, the 16 x 16 matrix compares the symbol detection
decision with the ground truth. Where the diagonal locations
represent correct decisions and the corresponding value is the
correct decision percentage, while other locations are wrong
decisions. From the confusion matrix we observe that 90%
of the decision errors are neighbor errors, that is, the wrong
decision lies in the neighbor QAM constellation list of the
ground truth. With this observation, next, we conduct a simple
experiment to test the robustness of our NN against the training
label error. To be specific, we still adopt the uplink scenario
settings, with 16-QAM modulation and 15dB SNR, the NN is
trained through 4 OFDM pilot symbols and tested under 12
OFDM data symbols, instead of training with 100% correct
label, we manually add errors into the training label. There are
two kinds of error we added, one is neighbor error as explained
earlier, another is random error, where we randomly choose
a constellation point to replace the true label. Fig. 14 shows
the testing BER over different percentage of training label
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error. It can be seen when the label error percentage increases
from 0% to 100%, the NN collapses in the random error case
with testing BER reaches 50%, while for the neighbor error
case, the testing BER only degrades from 10% to 20%. Which
indicates our NN is robust to the neighbor label error, and this
property benefits the DF mechanism.

D. Parameter size and empirical complexity of symbol detec-
tion methods

First we compare the trainable parameter size of learning-
based methods, all results are based on the uplink scenario. As
shown in Table V, MMRC-DF has the smallest parameter size,
this is because it operates in time domain, where only one NN
is needed to process signals from all subcarriers at the same
time. Regarding StructNet, it can be shared among multiple
subcarriers in frequency domain, on top of that, its input size
is reduced from the massive receiver antenna size IV, to the
number of streams N,,, so its parameter size is moderate.
The size of Multi-Mode StructNet is simply a summation of
MMRC-DF and StructNet. On the other hand, MMNet needs
one NN for each subcarrier, and the NN size is proportion
to the wireless channel size NpUDN,, this results in huge
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Fig. 11: Downlink BER (MRT precoding)

parameter size, which is ten times more than our method.
Although MMNet-iid has parameter size comparable to our
method, it is designed under an over-simplified noise model
which shows poor BER performance.

Next we show the CPU run time of different methods,
which empirically reflects their computational complexity. The
simulation is conducted on a desktop computer with Intel
Core 15-7400 CPU @ 3.00GHz and 12GB RAM. The average
CPU run time (in second) for different algorithms to process
one OFDM subframe (N; = 16 OFDM symbols) is shown
in Table V. Specifically, the time for MMRC-DF, StructNet,
and Multi-Mode StructNet includes the initial online training
with N, = 4 pilot symbols, the detection of Ng = 12 data
symbols, and the DF training based on detected data sym-
bols. The time for LMMSE, LMMSE-Interpolation, and SD-
Interpolation includes channel estimation and symbol recovery.
The time for MMNet and MMNet-iid includes training with
pilot symbols and detection of data symbols. We can see
among conventional methods, LMMSE is extremely fast, while
LMMSE-Interpolation requires much longer processing time.
The difference between LMMSE and LMMSE-Interpolation
is the channel estimation step, for LMMSE it is a simple
matrix inversion (3) by only utilizing pilot symbols. While
for LMMSE-Interpolation, channel over data symbols need
to be estimated through MMSE interpolation, this requires
to calculate the channel correlation matrix, in our setting
the matrix size is N.Ng x N.N, = 7168 x 2048 for each
transceiver antenna pair, and in total there are 4 x 64 = 256
antenna pairs, the huge amount of matrices computation causes
the long processing time. SD-Interpolation has slightly higher
CPU run time than LMMSE-Interpolation, this is because the
symbol recovery complexity of SD is higher than LMMSE.
Regarding learning-based methods, MMNet and MMNet-iid
require large number of training iterations to achieve accept-
able performance, their processing time is around 1.4 hours.
Multi-Mode StructNet achieves the best BER performance
with CPU run time five times less than MMNet.
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TABLE V: Parameter size and CPU run time of symbol
detection methods

Detection Method Trainable Parameter  Train Iteration CPU Run Time (Sec.)

MMRC-DF 4,224 5 981.41
StructNet 14,080 10 16.58
Multi-Mode StructNet 18,304 5&10 997.99

LMMSE - - 0.34

LMMSE-Interpolation 8,064.12
SD-Interpolation 8.,078.64
MMNet 2,662,400 2,000 5,681.66
MMNet-iid 10,240 2,000 4,917.30

VII. CONCLUSION

In this paper, we presented a real-time learning-based sym-
bol detection algorithm for massive MIMO systems. This
method has high training efficiency owing to the carefully
designed NN that incorporates the massive antenna array and
QAM constellation structure information into the learning. Nu-
merical results demonstrate the outstanding BER performance
of Multi-Mode StructNet under dynamic channel environment
and PA nonlinear distortion with limited OTA training data,
as well as its robustness against training label error.

VIII. APPENDIX
A. Downlink Massive MIMO Procedure

In downlink scenario, BS transmits and UEs receive. On BS
side there are IV,,, = ij: 1 IV source data streams need to be
transmitted, denoted as JC57¢ € CUXNm*xNaxNe  Similar as
uplink, at each RE, a precoding matrix Q. € CMo*Nm maps
N,, streams onto [V, antenna elements (N, < Ny), results in
X/ € CNoxNsxNe the frequency-domain transmitted signal.
After IFFT and CP appendmg, denote the corresponding time-
domain signal as X' CNoxN:Nt “and x} CNsNt gg
the signal transmitted at antenna b. We keep the wireless
channel notations the same as uplink case. At UE wu, let
Y,! € CNexNeNi denotes the time-domain received signal,
and y, , € CNsNt denotes the received signal at antenna e.
Then the relation between x| and yzﬁe can be expressed as

ZfPA () ® hiy o + (48)
b=1

Symbol detection is performed at each UE u to recover the

data streams intended to it, namely JXC/*¢ € CNm*NoxNe,

from its received signal Y,’. Note that there is no information
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Fig. 14: Testing BER v.s. training label error

exchange among UEs, i.e., each UE processes its own received
signal individually, this differs the downlink scenario from the
uplink one, where a joint process across all receiver antennas
is available. Although the unavailability of joint process across
UEs increases the difficulty of symbol detection task, a joint
precoding at BS side could ease this issue, a widely adopted
scheme is block diagonal (BD) precoding [14]. Assuming
downlink CSI is known at transmitter, by projecting each
UE’s transmit data onto the null space of its corresponding
interference channel, BD precoding cancels the inter-user
interference, makes the effective channel between BS and
all UEs into a block diagonal form. Denote the frequency-
domain wireless channel between UE u and BS at RE (s, ¢)
as HS . e CNeXNo and define the interference channel of

u,s,C

UE u as
7!  2[H]

u,s,c 1,s,¢7 "

Hf 1,s,c? H1Jj+1,s,c; T ;H(J;s,c]'
(49)
Partition the precoding matrix Q.. into per-UE form

Qs,c £ [Ql,s,c . Qu,s,c e QU,s,c]a (50)

where Q5. € CNo*Nm_ then Q. 5. can be calculated as
following: First, perform singular value decomposition (SVD)
on the interference channel of UE u:

B =0f v/ (1) v /0

u,s,c u,s,c uec[u u,s,c ]

(5D

where Vuf S(% (CN”X(Nrr""k(H“ s ”)) forms an orthogonal

basis for the null space of Hu,s,c' Next, perform a second
SVD on the effective channel between UE v and BS:

H VI =032 [V} vIOT
denote Dy, 22 as the first N columns of V;Lf, 39(710), then the
precoding matrix is obtained by

(52)

usc

QUuS’(’ = Vufs((():) 5(52 (53)
B. MMRC-DF Training in Downlink Scenario
We reshape the received signal Y,! € CNex*NsNt jnto

tarr ¢ CNeoXNenXNsNe 35 NN input.
Training Through Pilot Symbols: The training tuple is
prepared for each UE u as

t,arr Ne v XNe p X Ny Ny

gpilot = yu,:,:,(l:NpNt) € C™ " " f’ (54)
t,src I1XN" xN,N;

Lpitor = L 5 vy € CHNmX NN, (55)
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Training Through DF: The training tuple is prepared for
each UE u as

t,arr Ne_ywXNe_p XNt
$i=Y,. (-ynrrang €CT e, (56)
L = iut,src e CIXN::LXNt. (57)

w,:,((1—1)N¢+1:2Ny)

C. ALS Derivation

Here we derive the ALS algorithm for obtaining W, i
(12). Wyyt 2 (13) can be derived in the same way.

Wout_l = a‘f‘gmin ||°C - Q X1 Wout_l X9 Wout_Q”%" (58)
out_1
K
= argmin[|.L£ = > ¢® x; W <o W) |3
Wout_1 1 - -
(59)
K
. k k
= argmin || Ly — > W) {(G® xa W) I3
Wout_l k:l
(60)
= argmin ||L(1) —Wout 1 [(Q(l) X9 Wo(iz_2)(1);
out_1
K
(@ W) |1 6D
£ argmin || L1y — Woue_1 Z1| 3, (62)

Wout_l

where (59) comes from Tucker decomposition.
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