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Increasing attention has recently focused on nontraditional dark-matter production mechanisms which
result in primordial dark-matter velocity distributions with highly nonthermal shapes. In this paper, we
undertake an assessment of how the detailed shape of a general dark-matter velocity distribution impacts
structure formation in the nonlinear regime. In particular, we investigate the impact on the halo-mass and
subhalo-mass functions, as well as on astrophysical observables such as satellite and cluster-number
counts. We find that many of the standard expectations no longer hold in situations in which this velocity
distribution takes a highly nontrivial, even multimodal shape. For example, we find that the nominal free-
streaming scale alone becomes insufficient to characterize the effect of free-streaming on structure
formation. In addition, we propose a simple one-line conjecture which can be used to “reconstruct” the
primordial dark-matter velocity distribution directly from the shape of the halo-mass function. Although
our conjecture is completely heuristic, we show that it successfully reproduces the salient features of the
underlying dark-matter velocity distribution even for nontrivial distributions which are highly nonthermal
and/or multimodal, such as might occur for nonminimal dark sectors. Moreover, since our approach relies
only on the halo-mass function, our conjecture provides a method of probing dark-matter properties even
for scenarios in which the dark and visible sectors interact only gravitationally.
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I. INTRODUCTION

It is now evident that the majority of matter in our
Universe is dark, in the sense that it interacts at most weakly
with the fields of the Standard Model (SM). Nevertheless,
despite an impressive array of experimental efforts dedicated
to probing the particle properties of this dark matter, its
fundamental nature remains amystery. It is still possible that
a conclusive discovery—at the LHC, at one of the many
direct-detection experiments currently in operation or under
construction, at one of the telescopes sensitive to indirect-
detection signatures of dark-matter annihilation or decay, or
at one of the experiments dedicated to the detection of axions
and/or axionlike particles—will revolutionize our under-
standing of dark matter within the next few years. However,
such a breakthrough is far from assured. Indeed, most

experimental strategies for probing the particle properties
of the darkmatter rely on the assumption that the darkmatter
has appreciable nongravitational interactions with the par-
ticles of the SM, but there is no guarantee that the darkmatter
possesses such interactions. For this reason, it is crucial to
explore other possible methods for probing the particle
properties of the darkmatter—methodswhich do not rely on
its interactions with SM particles.
One characteristic of the dark matter which could reveal

information about both its particle properties and its
production mechanism in the early Universe is its primor-
dial velocity distribution fðv; tÞ. This distribution is con-
ventionally described in terms of fðvÞ≡ fðv; tnowÞ, i.e., the
distribution obtained by redshifting fðv; tÞ from some early
time t to the present time tnow, while ignoring effects such
as virialization. This dark-matter velocity distribution plays
a crucial role in determining the structure of the present-day
Universe. In fact, many important quantities follow from
the form of fðvÞ, such as the nonlinear matter power
spectrum and the halo-mass function dn=d logM, where n
is the number density of matter halos with mass M.
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The form which fðvÞ takes in any given dark-matter
scenario is primarily determined by the early-Universe
dynamics through which the dark matter is produced. In
warm-dark-matter (WDM) scenarios, wherein the dark
matter freezes out from the radiation bath while still
relativistic, the dark-matter velocity distribution takes a
simple, unimodal shape.
By contrast, in other dark-matter scenarios, the produc-

tion of dark matter is far more complicated than it is in
WDM scenarios and includes contributions from multiple
production channels that leave markedly different kin-
ematic imprints on fðvÞ. For example, freeze-in production
and production from the out-of-equilibrium decays of
unstable particles can both contribute non-negligibly to
the overall dark-matter abundance [1–3], or multiple decay
pathways for the same unstable particle species can
contribute to that abundance—pathways that can involve
the direct decays of this species into dark-matter particles
[4] or dark-matter production via extended decay chains
[5]. The dark-matter velocity distributions which arise in
such scenarios are generally far more complicated than
those which arise in WDM scenarios and are indeed often
multimodal. Moreover, features in the dark-matter velocity
distribution encode information about the underlying par-
ticle-physics processes which gave rise to them. For
example, features generated by the thermal freeze-out of
a relativistic particle species encode information about the
mass of the species. Likewise, a feature generated by the
decay of a heavy, unstable particle encodes information
about the decay width of that particle and the relationship
between its mass and the mass of the particles into which it
decays [5]. This information can be correlated with the
results of particle-physics experiments which are capable of
probing these quantities more directly. It is therefore
important to assess how the detailed shape of fðvÞ affects
the formation of structure within both the linear and
nonlinear regimes.
A systematic study of how the detailed shape of fðvÞ

affects structure within the linear regime was performed in
Ref. [5]. The relationship between the dark-matter phase-
space distribution and the linear matter power spectrum
PðkÞ was investigated numerically, and it was shown that
the power spectra associated with complicated fðvÞ dis-
tributions deviate from those associated with simple,
unimodal distributions of the sort that arise in WDM
models in a quantifiable way. On the basis of these results,
an empirical procedure was formulated by means of which
the shape of fðvÞ can be reconstructed solely from
information contained within PðkÞ.
By contrast, the impact of fðvÞ on structure formation

within the nonlinear regime is far less straightforward to
assess. The spectrum of primordial density perturbations
initially established during the epoch of cosmic inflation
evolves with time according to the Einstein-Boltzmann
equations—equations which depend both on fðvÞ and on

other aspects of the background cosmology. While these
perturbations are sufficiently small at early times that their
evolution may be reliably modeled using a linearized-
gravity approach, this approach remains valid only until
nonlinear feedback becomes significant and perturbation
theory becomes less reliable. As a result, the time evolution
of the density perturbations is complicated (and not even
invertible), and one must adopt a different strategy for
understanding the mass density at late times. Such strat-
egies typically involve approaching the problem numeri-
cally, using N-body or hydrodynamic simulations. Such
simulations are computationally expensive and therefore
impractical to perform when surveying broad classes of
dark-matter models.
In this paper, we make a first foray into assessing how

the detailed shape of the dark-matter velocity distribution
impacts structure formation in the nonlinear regime. In
doing so, we use the analytic approach originally pioneered
by Press and Schechter [6] and subsequently refined in a
number of ways by others [7–10]. We investigate how the
halo-mass and subhalo-mass functions obtained for com-
plicated, multimodal fðvÞ distributions differ from those
obtained for simple, unimodal distributions with the same
naïve free-streaming scale. On the basis of these results, we
then propose a simple technique for extracting information
about the primordial dark-matter velocity distribution from
the spatial distribution of dark matter within the present-
day Universe. In particular, we posit an empirical con-
jecture for reconstructing fðvÞ directly from the shape
of dn=d logM.
We note that while the halo- and subhalo-mass functions

are of course challenging (or perhaps even impossible) to
measure directly, there has recently been considerable
interest—and progress—in the development of methods
for probing and constraining their properties on the basis of
observational data in a model-independent way [11–15]. It
is therefore interesting and timely to consider how infor-
mation about the underlying cosmology might potentially
be extracted from these functions. Along these lines, we
demonstrate within the context of an illustrative model that
our reconstruction conjecture is quite robust. Indeed our
reconstruction conjecture is capable of reproducing the
salient features of fðvÞ, even in situations in which this
velocity distribution is nonthermal and even multimodal.
This paper is organized as follows. In Sec. II, we review

the manner in which the free-streaming effects associated
with the primordial dark-matter velocity distribution
modify the shape of the linear matter power spectrum
PðkÞ. We then proceed to demonstrate that complicated,
multimodal dark-matter velocity distributions can give rise
to matter power spectra which cannot be realized within the
context of warm-dark-matter scenarios. In Sec. III, we
review how modifications of PðkÞ in turn lead to mod-
ifications of the halo-mass function within the context of
the extended Press-Schechter formalism. In Sec. IV, we
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make use of this formalism in order to investigate the ways
in which the halo-mass function is influenced by the shape
of fðvÞ and highlight the ways in which the results obtained
for complicated, multimodal dark-matter velocity distribu-
tions differ from those obtained for unimodal distributions
such as those associated with warm dark matter. In Sec. V,
we investigate how the detailed shape of fðvÞ impacts
observables such as cluster-number counts and the number
of satellites within the halo of a typical Milky-Way-sized
galaxy. In Sec. VI, we formulate our conjecture which
allows us to work backward and reconstruct the underlying
dark-matter velocity distribution from the shape of the halo-
mass function. We then apply this reconstruction conjecture
in the context of an illustrative model—a model which is
capable of producing highly nonthermal and even multi-
modal dark-matter velocity distributions. In Sec. VII,
we conclude with a summary of our results and discuss
possible directions for future work.

II. FROM DARK-MATTER VELOCITY
DISTRIBUTIONS TO MATTER POWER SPECTRA

Our ultimate goal in this paper is to investigate the
relationship between the detailed shape of the primordial
dark-matter velocity distribution fðvÞ and quantities such
as the halo-mass function dn=d logM and the subhalo-
mass function dNSH=d logM and to examine ways in
which the form of this relationship could potentially be
exploited in order to reveal meaningful information about
fðvÞ. A necessary first step toward this goal is to investigate
the relationship between fðvÞ and the linear matter power
spectrum PðkÞ. A detailed investigation along these
lines was performed in Ref. [5]. In this section we briefly
review the results of Ref. [5]. In particular, we review the
physics behind how dark-matter velocities affect structure
formation through free-streaming. We also highlight how
standard approximations designed to assess the effects of
free-streaming on PðkÞ in WDM models fail—sometimes
spectacularly—when applied to dark-matter scenarios with
more complicated fðvÞ distributions.
We begin by reviewing the way in which the velocity

distribution of dark-matter particles affects the develop-
ment of structure in the linear regime. For simplicity, we
focus on the case in which the dark matter consists of a
single particle species and assume an otherwise standard
background cosmology. The velocity distribution fð  v; tÞ of
that species at time t is conventionally normalized such that

nðtÞ ¼ gint
ð2πÞ3

Z
d3vfð  v; tÞ; ð2:1Þ

where gint is the number of internal number of degrees of
freedom for a particle of that species and where nðtÞ is its
physical number density. Within a Friedmann-Robertson-
Walker universe, the underlying assumption of isotropy
implies that fð  v; tÞ ¼ fðv; tÞ depends only on themagnitude

v≡  v. Within such a universe, we may also define a
corresponding comoving number density NðtÞ≡ a3nðtÞ,
where a is the scale factor, defined according the usual
convention in which a ¼ 1 at t ¼ tnow.
We note that this comoving dark-matter number density

may also be written in the form

NðtÞ ¼ ginta3

2π2

Z
dvv2fðv; tÞ

¼ gint
2π2

Z
d log vgvðv; tÞ; ð2:2Þ

where we have defined

gvðv; tÞ≡ ðavÞ3fðv; tÞ: ð2:3Þ

The advantage of working with gvðv; tÞ is that this form of
the dark-matter velocity distribution transforms in a par-
ticularly straightforward way during any epoch within
which the rates for dark-matter production, scattering,
and decay are negligible. In particular, Eq. (2.2) implies
that the gvðv; tÞ distribution shifts uniformly toward smaller
values of log v during such an epoch as a consequence of
cosmological redshifting—i.e., that the shape of this
distribution remains invariant [5]. For convenience, we
define gvðvÞ≡ gvðv; tnowÞ ¼ v3fðvÞ to refer to the corre-
sponding present-day velocity distribution. As with fðvÞ,
this distribution is obtained by redshifting gvðv; tÞ from
some early time t to tnow while ignoring effects such as
virialization.
The inhomogeneity of matter halos in the present-day

Universe arises due to spatial variations in the density of
matter in the early Universe. Such variations can be
characterized by the fractional overdensity δð  x; tÞ, while
point-to-point correlations in δð  x; tÞ are given by the two-
point correlation function ξð  r; tÞ. For a universe which is
homogeneous and isotropic on large scales, ξð  r; tÞ ¼ ξðr; tÞ
depends only on the magnitude r of the displacement
vector. Given these assumptions, the Fourier transform of
ξðr; tÞ, which is commonly referred to as the matter power
spectrum, may be written in the form

Pðk; tÞ≡ 4π

Z
drr2

sinðkrÞ
kr

ξðr; tÞ: ð2:4Þ

In the following we shall evaluate Pðk; tÞ using linear
perturbation theory (thereby producing the linear matter
power spectrum), and we shall adopt the shorthand
PðkÞ≡ Pðk; tnowÞ. We also define the transfer function
TðkÞ according the relation

T2ðkÞ ¼ PðkÞ
PCDMðkÞ

; ð2:5Þ
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where PCDMðkÞ is the matter power spectrum obtained for
purely cold dark matter (CDM).
The velocity distribution of dark-matter particles in the

early Universe affects the manner in which Pðk; tÞ evolves
with time. For example, dark-matter particles with suffi-
ciently large velocities can free-stream out of overdense
regions which might have otherwise collapsed into halos,
thereby suppressing the growth of structure on small scales.
The distance scale below which a population of dark-matter
particles with present-day velocity v is capable of sup-
pressing small-scale structure in this way is set by the
corresponding particle horizon

dhorðvÞ≡
Z

tnow

tprod

dt
aðtÞ vðtÞ ð2:6Þ

where tprod denotes the time at which these particles were
initially produced and vðtÞ is the velocity of these particles
at time t. Given that

vðtÞ ¼ p=aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=a2ðtÞ þm2

p ¼ γvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2v2 þ a2ðtÞ

p ; ð2:7Þ

where γ ¼ ð1 − v2Þ−1=2 is the usual relativistic factor and
where p ¼ γmv is the present-day momentum, one finds
that the horizon distance may also be expressed as

dhorðvÞ ¼
Z

1

aprod

da
Ha2

γvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2v2 þ a2

p ; ð2:8Þ

where aprod ≡ aðtprodÞ and where H ≡ _a=a is the Hubble
parameter.
On the one hand, large-scale-structure considerations

imply that the present-day dark-matter velocity distribution
gvðvÞ must receive non-negligible support only at non-
relativistic speeds v ≪ 1. On the other hand, in order for
free-streaming effects to have a significant impact on small-
scale structure, the dark matter must typically be relativistic
at production. Within this regime, one finds that dhorðvÞ is
insensitive to the value of tprod and well approximated by

dhorðvÞ ¼
Z

1

aprod

da
Ha2

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ a2

p

≈
v

ða2HÞMRE

�
2 − 2a1=2MRE þ log

�
2aMRE

v

��
; ð2:9Þ

up to corrections of Oðv3Þ, where the subscript “MRE”
indicates the value of the corresponding quantity at the time
of matter-radiation equality.
In order to assess the impact of free-streaming on PðkÞ, it

is useful to associate a wave number khorðvÞ ∼ 1=dhorðvÞ
with the particle horizon. While dhorðvÞ is an unambigu-
ously defined quantity, the precise relationship between this
distance scale and khorðvÞ depends on the conventions

adopted and is defined only up to an overall Oð1Þ
multiplicative factor. In other words, the horizon wave
number may be written as

khorðvÞ≡ ξ

�Z
1

aprod

da
Ha2

γvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2v2 þ a2

p �
−1
; ð2:10Þ

where ξ represents this Oð1Þ factor. Physically, khorðvÞ
represents the wave number above which the free-streaming
of a population of particles with velocity v leads to a
suppression of power in PðkÞ.
Up to this point, we have considered the free-streaming

effects associated with a population of dark-matter particles
with a uniform speed v. For such a population of particles,
there exists a single, well-defined particle horizon dhorðvÞ,
and thus a single horizon wave number khorðvÞ. By contrast,
for a population of dark-matter particles with a continuous
distribution of speeds gvðvÞ, the situation is significantly
more complicated. Indeed, for such a distribution of
particle speeds, Eq. (2.10) implies that there is a continuous
distribution of horizon wave numbers and, thus, that
different parts of the dark-matter velocity distribution
contribute to the suppression of structure above different
threshold values of k. Nevertheless, even for complicated
gvðvÞ distributions spanning a broad range of dark-matter
speeds, the impact of free-streaming on the shape of the
linear matter power spectrum at late times may reliably be
assessed numerically by means of Einstein-Boltzmann
solvers such as the CLASS software package [16–19]. In
this way, under standard cosmological assumptions, a given
dark-matter velocity distribution gvðvÞ gives rise to a
particular form for PðkÞ.
We also observe that for any particular choice of ξ, the

function khorðvÞ in Eq. (2.10) represents a one-to-one map
between a present-day dark-matter velocity v within this
distribution and a corresponding wave number k. This map
is also invertible in the sense that one may define a function
k−1horðkÞ which maps a particular wave number k to a value
of v—in particular, to the value of v for which this input
value of k is the threshold value for free-streaming
suppression. Given this one-to-one correspondence, we
shall take an unorthodox approach in what follows and
regard Eq. (2.10) as defining a functional map between v
and the variable k itself [5]. We emphasize, however, that
this interpretation of Eq. (2.10) is simply a reflection of the
threshold relationship that exists between v and k.
Of course, for certain classes of gvðvÞ distributions—in

particular, distributions which are unimodal and sharply
peaked around some particular value of v—the fact that
different values of v within the gvðvÞ distribution corre-
spond to different particle horizons is relatively unimpor-
tant. Indeed, for velocity distributions of this sort, it is
common practice to define a single “free-streaming scale”
kFSH for the distribution as a whole by replacing the
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present-day velocity v in Eq. (2.10) with the average
velocity

hvi ¼ gint
2π2NðtÞ

Z
0

−∞
d log vvgvðvÞ: ð2:11Þ

For velocity distributions of this sort, including those
associated with WDMmodels, this approximation provides
a reasonably reliable way of assessing the effects of free-
streaming on PðkÞ. However, we emphasize that it is an
approximation. Moreover, as we shall see, this approxi-
mation is often inadequate to characterize the effects of
free-streaming on the growth of structure in dark-matter
scenarios with more general velocity distributions outside
its regime of validity.
In order to illustrate how this approximation can yield

misleading results when applied to more complicated dark-
matter velocity distributions, we consider a class of such
distributions with a particular functional form and assess
the impact of free-streaming on PðkÞ for distributions
within this class. In particular, we shall consider gvðvÞ
distributions of the form

gvðvÞ ¼
X1
i¼0

NΩiffiffiffiffiffiffi
2π

p
σ̂iΩDM

× exp

�
−

1

2σ̂2i

�
log

�
p̂ðvÞ
hp̂ii

�
þ 1

2
σ̂2i

�
2
�
; ð2:12Þ

where p̂ðvÞ≡ γmv. In other words this choice for gvðvÞ is
nothing but a log-normal distribution in p space, with Ωi,
hp̂ii and σ̂i respectively representing the abundance,
average momentum, and width associated with the corre-
sponding peak in p space. Here ΩDM ¼ Ω0 þ Ω1 is the
total present-day dark-matter abundance, N is an appro-
priate normalization factor, and we adopt the convention
that the index i labels the peaks in order of decreasing
average speed. Of course, since p̂ðvÞ is generally a non-
linear function of v, a log-normal function in p space is
generally not a log-normal function in v space. However, in
cases for which hp̂ii ≪ m for all i and for which σ̂i is not
exceedingly large, gvðvÞmostly receives support for v ≪ 1.
In such cases, this function reduces to

gvðvÞ ≈
X1
i¼0

NΩiffiffiffiffiffiffi
2π

p
σiΩDM

× exp

�
−

1

2σ2i

�
log

�
v

hvii

�
þ 1

2
σ2i

�
2
�
; ð2:13Þ

where Ωi, hvii and σi respectively represent the abundance,
average speed, and widths associated with the correspond-
ing peaks in v space. This provides a very good approxi-
mation for any phenomenologically viable present-day
dark-matter velocity distribution,which necessarily receives

non-negligible support only at velocities v ≪ 1. We empha-
size that whilewe have chosen this functional form for gvðvÞ
for purposes of illustration, bimodal gvðvÞ distributions with
approximately this form arise naturally in a variety of
nonminimal dark-sector scenarios [1–5].

In the left panel of Fig. 1, we show three gvðvÞ distribu-
tions of the form given in Eq. (2.13). All of these distribu-
tions have the same average velocity hvi ¼ 5 × 10−7 and
therefore the same nominal free-streaming scale kFSH.
The blue curve corresponds to the case in which Ω1 ¼ 0
and gvðvÞ consists of a single Gaussian peak with
hvi0 ¼ 5 × 10−7. We note that the center of the peak does
not coincide with hvi0 because gvðvÞ is a log-normal
distribution with respect to v itself, and the mean value
for such a distribution is offset from the maximum. The red
curve corresponds to the parameter choicesΩ0=ΩDM ¼ 0.1,
hvi0 ¼ 4.9 × 10−6, and hvi0 ¼ 1.0 × 10−8, while the green
curve corresponds to the parameter choicesΩ0=ΩDM ¼ 0.1,
hvi0 ¼ 4.4 × 10−6, and hvi0 ¼ 7.1 × 10−8. For all of these
distributions, we have taken σ0 ¼ σ1 ¼ 0.63, a value which
corresponds to the standard deviation of log v obtained for
any WDM distribution, regardless of the mass of the dark-
matter particle.
In the right panel of Fig. 1, we show the transfer function

T2ðkÞ obtained for each of these three gvðvÞ distributions.
We observe that the two transfer functions obtained for the
bimodal distributions differ dramatically from that obtained
for the unimodal distribution with the same nominal free-
streaming scale, despite the fact that the fractional abun-
dance Ω0=ΩDM associated with the higher-velocity peak is
quite small. These results, then, illustrate how kFSH alone
fails to provide a complete and accurate picture of how
free-streaming affects the linear matter power spectrum in
dark-matter scenarios with complicated, multimodal gvðvÞ
distributions and how the variation of khorðvÞ across the
dark-matter velocity distribution must be taken into account
in such scenarios in order to obtain an accurate description
of PðkÞ.
While the results in Fig. 1 provide a qualitative picture of

the extent to which the matter power spectra associated with
complicated, multimodal gvðvÞ distributions differ from
those associated with narrow, unimodal such distributions,
it is also illuminating to investigate these differences in a
more systematic, quantitative manner. For example, it is
interesting to assess the degree to which the matter power
spectrum that follows from a given gvðvÞ distribution differs
not merely from the PðkÞ curve associated with one
particular narrow, unimodal distribution, but from any such
distribution.
In order to perform such an analysis for gvðvÞ distribu-

tions of the form given in Eq. (2.13), we begin by
evaluating the transfer function T2ðkÞ for the gvðvÞ dis-
tribution of interest using the CLASS code package. We then
compare this distribution to a family of transfer functions
obtained for a representative sample of narrow, unimodal
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gvðvÞ distributions. Since any two narrow, unimodal gvðvÞ
distributions with the same hvi yield very similar matter
power spectra, it is sufficient to include only gvðvÞ
distributions associated with WDM models in this sample.
To a very good approximation, the transfer function for a
WDM model depends only on the mass mWDM of the dark-
matter particle and takes the form [20–22]

T2
WDMðkÞ ≈ ½1þ ðαkÞ2ν�−10=ν; ð2:14Þ

where ν ¼ 1.12 and where

α ¼ 0.049 Mpc
h

�
mWDM

keV

�
−1.11

�
ΩWDM

0.25

�
0.11

�
h
0.7

�
1.22

:

ð2:15Þ

Thus, the family of transfer functions to which we shall
compare T2ðkÞ for our gvðvÞ distribution of interest consists
of a sample of WDM transfer functions T2

WDMðkÞ corre-
sponding to different values of mWDM. In constructing this
sample, we survey a broad range of mWDM masses with a
step size sufficiently small that further reducing that step
size does not significantly impact our results.
For each value of mWDM in this survey, we sample both

the corresponding transfer function T2
WDMðkÞ given by

Eq. (2.14) and the transfer function T2ðkÞ obtained for our
double-peak gvðvÞ distribution at a series of wave numbers

kj separated by regular intervals in ðlog kÞ space within the
range 0.1 hMpc−1 ≤ k ≤ 2000 hMpc−1. We assess the
goodness of fit between the two curves using the chi-
square statistic

χ2ðmWDMÞ ¼
X
j

½T2ðkjÞ − T2
WDMðkjÞ�2

σ2T2ðkjÞ
; ð2:16Þ

where σT2ðkjÞ is the uncertainty in the transfer function at
kj. For simplicity, since the choice of σT2ðkjÞ values for this
theoretical comparison is somewhat arbitrary, we take
σT2ðkjÞ to be equal to a common value σT2 for all kj.
Under this assumption, σT2 may be viewed simply as a
normalization factor. We take the minimum value

χ2min ¼ min
mWDM

fχ2ðmWDMÞg ð2:17Þ

from among all of the χ2ðmWDMÞ values obtained in this
way to be our relative measure of the distinctiveness
of T2ðkÞ.
We can endow this goodness-of-fit statistic with a

meaningful interpretation by choosing the normalization
factor σT2 in accord with the usual statistical expectation
that χ2min=Nd:o:f: ∼ 1 when the fit between T2ðkÞ and the
optimal T2

WDMðkÞ distribution in our sample is good, where
Nd:o:f: is the number of degrees of freedom. Thus, we

FIG. 1. Three dark-matter velocity distributions gvðvÞ of the general form specified in Eq. (2.13) (left panel), all of which have the
same average velocity hvi ¼ 5 × 10−7 and therefore the same nominal free-streaming scale kFSH but lead to very different matter power
spectra PðkÞ (right panel). The blue curve in each panel corresponds to the case in whichΩ1 ¼ 0 and gvðvÞ consists of a single Gaussian
peak with hvi0 ¼ 5 × 10−7. The red curve corresponds to the case of a bimodal gvðvÞ distribution with Ω0=ΩDM ¼ 0.1,
hvi0 ¼ 4.9 × 10−6, and hvi0 ¼ 1.0 × 10−8. The green curve corresponds to the case of a bimodal gvðvÞ distribution with
Ω0=ΩDM ¼ 0.1, hvi0 ¼ 4.4 × 10−6, and hvi0 ¼ 7.1 × 10−8. For all of these distributions, we have taken σ0 ¼ σ1 ¼ 0.63. We observe
from the right panel that the matter power spectra associated these latter gvðvÞ distributions differ significantly from the spectrum
associated with the unimodal one.
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choose σT2 such that χ2min=Nd:o:f: ¼ 1 when Ω0 ¼ 1 and
σ0 ¼ 0.63 and the gvðvÞ distribution reduces to a unimodal
distribution with a standard deviation equal to that of a
WDM distribution. With this choice of normalization,
χ2min=Nd:o:f: ∼Oð1Þ indicates that the matter power spec-
trum obtained from the corresponding double-peak gvðvÞ
distribution does not differ significantly from that obtained
in some WDM scenario, while χ2min=Nd:o:f: ≫ 1 indicates a
significant difference.
In Fig. 2, we show the value of χ2min=Nd:o:f: within the

ðhvi1=hvi0;Ω1=ΩDMÞ plane for the gvðvÞ distribution in
Eq. (2.13) with σ0 ¼ σ1 ¼ 0.63 and hvi0 ¼ 10−6. We
observe that there exists a sizable region of parameter
space within which χ2min=Nd:o:f: ≫ 1 and the matter power
spectrum obtained from the double-peak gvðvÞ distribution
in Eq. (2.13) indeed differs significantly from that obtained
from any WDM distribution. The largest values of
χ2min=Nd:o:f: are obtained within regions of the plane
whereinΩ0 is smaller than but not negligible in comparison
with Ω1 and there is significant separation between the
mean velocities of the two peaks.
To summarize the results of this section, we have

reviewed the physical principles behind the suppression
of small-scale structure due to the free-streaming of dark-
matter particles. We have demonstrated that while the
variation of the horizon wave number khorðvÞ across the
dark-matter velocity distribution has relatively little impact
on PðkÞ when gvðvÞ is unimodal and narrow, it can have an
enormous impact on PðkÞ for more general gvðvÞ distri-
butions. Moreover, on the basis of the threshold relation-
ship between v and k that exists by virtue of Eq. (2.10), we

have been able to define an invertible map between these
two variables—a map which can be exploited in order to
extract information about gvðvÞ from PðkÞ [5].

III. FROM MATTER POWER SPECTRA
TO HALO-MASS FUNCTIONS

Having summarized the relationship between gvðvÞ and
PðkÞ, we now discuss the relationship between PðkÞ and
dn=d logM. In relating these two quantities, we follow the
analytic approach originally posited by Press and Schechter
[6] and subsequently justified using the excursion-set
formalism of Bond et al. [8].
At late times, regions of space with sufficiently large

average overdensity collapse under their own gravity and
form compact, virialized objects—i.e., matter halos. The
probability that a randomly chosen spherical region of
space with radius R will collapse prior to a given cosmo-
logical time t depends on the statistical properties of δð  x; tÞ.
The crucial quantity in this regard is the spatial average
σ2ðt; RÞ of the variance of δð  x; tÞ within the same region.
This spatial average may be written as

σ2ðt; RÞ≡
Z

∞

−∞
d log kW2ðk; RÞ k

3Pðk; tÞ
2π2

; ð3:1Þ

where Wðk; RÞ is the Fourier transform in k space of the
position-space top-hat function Wðr; RÞ≡ Θð1 − r=RÞ,
where ΘðxÞ denotes the Heaviside function. This enforces
the condition that only points at distances r ≤ R away from
the center of the region are included in the average.
However, this definition of σ2ðt; RÞ may also be general-
ized to include other functional forms for Wðk; RÞ. In this
paper, we shall instead adopt a window function which is a
top-hat function in k space [23]:

Wðk; RÞ ¼ Θð1 − kRÞ: ð3:2Þ

One well-known advantage of the window function in
Eq. (3.2) is that its flatness in k space allows σ2ðt; RÞ to be
sensitive to the natural shape of the matter power spectrum
itself, rather than that ofWðk; RÞ [24]. This window function
also has other advantages. One of these is that only density
perturbationswithwave numbers k ≤ R−1 have any effect on
σ2ðt; RÞ. The primary drawback of this form of Wðk; RÞ,
however, is that the precise mathematical relationship
between the value of R associated with a halo and the
corresponding halomassM is notwell defined.Nevertheless,
since symmetry considerations dictate that M ∝ R3, the
relationship between M and R may be parametrized as

M ≡ 4π

3
ρ̄ðcWRÞ3; ð3:3Þ

where ρ̄ is the present-day mass density of the Universe and
where the value of the coefficient cW may be obtained from

FIG. 2. The minimum value χ2min of the chi-square statistic
obtained by fitting the linear matter power spectrum obtained for
bimodal dark-matter velocity distribution to the spectrum obtained
for any WDM distribution, displayed in the ðhvi1=hvi0;Ω1=Ω0Þ
plane. The results displayed here correspond to the parameter
choices σ0 ¼ σ1 ¼ 0.63 and hvi0 ¼ 10−6.
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the results of numerical simulations. FollowingRef. [25], we
take cW ≈ 2.5. The value of ρ̄ ¼ Ωmρcrit can be determined
from the total present-day matter abundance and critical
density, which we take to beΩm ≈ 0.315 and ρcrit ≈ 2.775 ×
1011 h2M⊙ Mpc−3 [26], respectively. Given that a well-
defined one-to-one relationship exists betweenM and R, the
spatially averaged variance σ2ðt;MÞmay also be viewed as a
function of the halo mass M.
Within the Press-Schechter formalism, the present-day

halo-mass function which follows from any particular PðkÞ
profile takes the form

dn
d logM

¼ ρ̄

2M
ηðMÞ d log νðMÞ

d logM
; ð3:4Þ

where νðMÞ≡ δ2c=σ2ðtnow;MÞ, with δc ≈ 1.686 denoting
the critical overdensity, and where the function ηðMÞ,
which depends on M only through the function νðMÞ,
represents the probability density of obtaining an averaged
fractional overdensity at a given location. For the window
function in Eq. (3.2), regardless of the form of ηðMÞ, the
expression for dn=d logM in Eq. (3.4) simplifies to

dn
d logM

¼ ρ̄

12π2M
νðMÞηðMÞPð1=RðMÞÞ

δ2cR3ðMÞ ; ð3:5Þ

where RðMÞ is the particular value of R which corresponds
to a given halo mass M through Eq. (3.3).
A variety of possible forms for the function ηðMÞ have

been proposed, based either on purely theoretical grounds
or based on the results of N-body or hydrodynamic
simulations [6,9,10,27–33]. In what follows, we adopt
the form [9,10]

ηðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2νðMÞ

π

r
A½1þ ν−αðMÞ�e−νðMÞ=2; ð3:6Þ

where A ≈ 0.3222 and α ¼ 0.3. This form for ηðMÞ is
mathematically simple and accords reasonably well with
the results of numerical simulations. We shall discuss the
way in which alternative functional forms for ηðMÞ could
affect the results of our analysis in Sec. VII.
In order to quantify the extent to which dn=d logM

deviates from the corresponding result ðdn=d log MÞCDM
that we would obtain for purely cold dark matter, we shall
henceforth define the dimensionless structure-suppression
function according to the relation

SðMÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dn=d log M
ðdn=d log MÞCDM

s
: ð3:7Þ

This function may be viewed as playing an analogous role
with respect to the halo-mass function that the transfer
function TðkÞ plays with respect to the linear matter power

spectrum. Moreover, for the Press-Schechter halo-mass
function in Eq. (3.5), we find that S2ðMÞ and T2ðkÞ are
related in any given dark-matter model by

S2ðMÞ ¼ νðMÞηðMÞ
νCDMðMÞηCDMðMÞT

2ð1=RðMÞÞ; ð3:8Þ

where νðMÞ and ηðMÞ are obtained from the corresponding
matter power spectrum PðkÞ for the dark-matter model in
question.
By examining the mathematical relationship between

gvðvÞ and S2ðMÞ, we may hope to develop some intuition
about the manner in which the detailed shape of the dark-
matter velocity distribution affects the statistical properties
of dark-matter halos and subhalos. As a first step toward
developing that intuition, we begin by examining the
relationship between k and the halo mass M. The under-
lying reason wewere able to construct a map between v and
k in Sec. II is that khorðvÞ represents the threshold value of k
below which dark-matter particles with momentum v
cannot suppress structure by free-streaming. Fortunately,
a similar relationship exists between k and M by virtue of
the window function Wðk; RÞ. Indeed, we see from the
relationship between R and M in Eq. (3.3) that Wðk; RÞ
establishes a threshold value of M for any given wave
number k above which density perturbations with that value
of k have no effect on σ2ðtnow;MÞ and therefore no effect
on the halo-mass function. In particular, we see from
Eqs. (3.2) and (3.3) that this threshold value of M is
specified by the function

MhalðkÞ≡ 4π

3
ρ̄

�
cW
k

�
3

: ð3:9Þ

Just as we regarded Eq. (2.10) as defining a functional map
between v and k, we shall likewise regard Eq. (3.9) as
defining a functional map between k and M. As with our
map between v and k, this map between k andM is likewise
one-to-one and invertible.
We note that the threshold relationship between k andM

which have used in in constructing the functional map in
Eq. (3.9) is only precisely defined for a window function
with a sharp cutoff in k which decreases with increasingM.
Indeed, this is one of the reasons why we have adopted the
form forWðk; RÞ in Eq. (3.2) in this analysis. However, this
does not mean that a heuristic functional map between k
and M cannot be defined for other forms of Wðk; RÞ as
well. Indeed, by construction any sensible functional form
for Wðk; RÞ must serve to suppress the contribution to
σ2ðt; RÞ from small-scale fluctuations with wave numbers
k ≫ R−1. Thus, even in cases in which Wðk; RÞ does not
have a sharp cutoff in k, a qualitative threshold relationship
exists between k andM which can be used to formulated an
invertible functional map between these variables. In such
cases, one could account for the ambiguity in the cutoff by
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incorporating an additional overall proportionality factor
into Eq. (3.9) analogous to the parameter ξ in Eq. (2.10), the
optimal value of which would likewise be determined
empirically. We emphasize that this proportionality factor is
not necessarily equivalent to the quantity c3W that appears in
Eq. (3.9) as a consequence of ambiguities in the relation-
ship between M and R but that c3W could of course be
incorporated into this factor.
Combining the two functional maps in Eqs. (2.10) and

(3.9) and taking the aprod → 0 limit appropriate for particles
which are relativistic at production, we can likewise define
a direct functional map between v and M, which takes the
form

MhalðvÞ≡ 4πρ̄c3W
3ξ3

�Z
1

0

da
Ha2

γvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2v2 þ a2

p �
3

: ð3:10Þ

As with the individual maps in Eqs. (2.10) and (3.9), this
map is one-to-one and invertible.
The physical motivation for defining MhalðvÞ, which we

plot in Fig. 3, is that it conveys information about what parts
of gvðvÞ are capable of affecting the halo-mass function at a
given mass scale. Dark-matter particles with velocities
below a given value v can only suppress structure at wave
numbers k > k−1horðvÞ and can therefore only affect the
number density of halos with masses M < Mhalðk−1horðvÞÞ.
Thus, the value of M associated with a given value of v
through Eq. (3.10) represents the maximum halo mass
for which dark-matter particles with that velocity can affect
S2ðMÞ.

Some comments about this functional map between v
and M are in order. First, we may use this map in order to
perform a change of variables and define a velocity
distribution in M space which corresponds to the distribu-
tion gvðvÞ in v space. In particular, by changing variables
from v to M in Eq. (2.2), we find that

NðtÞ ¼ gint
2π2

Z
d log MgMðMÞ; ð3:11Þ

where

gMðM; tÞ≡ gvðM−1
halðMÞ; tÞ

				 d log v
d logMhalðvÞ

				; ð3:12Þ

where the factor jd log v=d log MðvÞj is simply the
Jacobian for this change of variables. This M-space
velocity distribution in Eq. (3.12) has a straightforward
physical meaning. In particular, up to an overall factor of
gint=2π, this distribution is simply the differential number
density of dark-matter particles per unit logM with
velocities just barely sufficient to free-stream out of regions
of space within which the dark matter would otherwise
collapse into halos of mass M.
One advantage of defining gMðMÞ is that it can be used

to facilitate a direct graphical comparison between the
features of the dark-matter velocity distribution and the
features of S2ðMÞ. Since gMðMÞ is also a function of M, it
can be plotted on the same axes as the structure-suppression
function. As we shall see, juxtaposing gMðMÞ and S2ðMÞ in
this way can provide valuable insights into the relationship
between these two functions.
Another advantage of defining gMðMÞ in this way is that

it allows us to characterize the fraction of dark-matter
particles which are “hot” relative to the mass scaleM—i.e.,
capable of free-streaming out of regions which would
collapse into halos of mass M—in a straightforward
manner. The threshold velocity above which dark-matter
particles can free-stream out of such regions is
v ¼ M−1

halðMÞ. The portion of gvðv0Þ with velocities v0 >
v above this threshold corresponds to the portion of gMðM0Þ
with M0 > M. Thus, up to an overall proportionality
constant, the number density of dark-matter particles with
velocities sufficient to free-stream out of halos of mass M
can be obtained by integrating gMðM0Þ over M0 above this
threshold. Motivated by this consideration, we define the
hot-fraction function

FðMÞ≡
R
∞
logM d log M0 gMðM0ÞR
∞
−∞ d log M0 gMðM0Þ ; ð3:13Þ

which represents the fraction of the total dark-matter
abundance associated with these particles.

FIG. 3. The halo-mass variable MhalðvÞ, as defined in
Eq. (3.10), plotted as a function of v. The purple shaded region
corresponds to the range of M shown in Fig. 10.
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IV. HALO-MASS FUNCTIONS FOR NONTRIVIAL
DARK-MATTER VELOCITY DISTRIBUTIONS

We shall now examine how the detailed shape of gvðvÞ
affects the shape of the halo-mass function within the
context of the analytic formalism outlined in Sec. III. In
doing so, we shall begin by focusing on a comparatively
simple form for gvðvÞ which can be modified in a
controlled way and assessing the effect of these modifica-
tions on S2ðMÞ. In particular, we shall consider the limiting
case of Eq. (2.13) in which and σ1 is narrow and hvi1 is
sufficiently small that the dark-matter particles associated
with the lower-velocity peak behave like CDM. In this
limit, the gvðvÞ distribution reduces to a single Gaussian
peak accompanied by a purely cold component which
makes up the remainder of ΩDM. This single peak is
characterized by only three parameters: its average velocity
hvi0, width σ0, and abundance Ω0.
In Fig. 4, we illustrate the effect of varying Ω0 while

holding its width σ0 and average velocity hvi0 fixed. In the
left panel, we show the gvðvÞ distributions obtained for
several such distributions with different Ω0 values as
functions of v. In the right panel, we show both the
corresponding distributions gMðMÞ that we obtain from
our functional map between v andM as functions ofM and
the corresponding structure-suppression functions S2ðMÞ.
Moving from right to left across the right panel of Fig. 4,

we observe that the S2ðMÞ remains effectively unsup-
pressed in the region to the right of the peak in gMðMÞ.
More importantly, we also observe that the logarithmic
slope d log S2ðMÞ=d log M of the structure-suppression

function in the region immediately to the left of the peak
appears to be correlated with the abundance Ω0.
In Fig. 5, we illustrate the effect of varying the width σ0

of the Gaussian peak while holding its abundance Ω0 ¼
ΩDM and average velocity hvi0 fixed. We emphasize that
since each Gaussian peak in Eq. (2.13) is centered at
loghvii − σ2i =2 in (log v) space, the location of the peak in
gvðvÞ shown in the left panel of the figure shifts to the left
as the corresponding σ0 increases. A corresponding shift is
of course also evident in the gMðMÞ distributions shown in
the right panel.
We observe that increasing σ0 induces to a more gradual

suppression of S2ðMÞ as we move from right to left across
the right panel of Fig. 5, ultimately resulting in less net
suppression in S2ðMÞ at small values of M. However, we
also observe that while the value of S2ðMÞ in the region to
the left of the peak in gMðMÞ is sensitive to the width of the
peak, the logarithmic slope d log S2ðMÞ=d log M in that
same region is not.
Taken together, the results shown in Figs. 4 and 5 suggest

that the value of d log S2ðMÞ=d log M at any given value
of M is correlated with the total abundance contribution
associated with the portion of gMðM0Þ with M0 > M. This
total abundance contribution is simply ΩDMFðMÞ, where
FðMÞ is the hot-fraction function in Eq. (3.13). Indeed, an
equivalent statement of this conjecture, which follows from
the invertible map in Eq. (3.10), is that the value of
d log S2ðMÞ=d log M is correlated with the total abun-
dance contributed by dark-matter particles within gvðv0Þ
with velocities v0 > v, where v ¼ M−1

halðMÞ is the threshold
velocity associated with M by the inverse of this map.

FIG. 4. Several dark-matter velocity distributions, each consisting of a single Gaussian peak with a different fractional abundance
Ω0=ΩDM and a purely cold component which contributes the remainder of ΩDM, along with the corresponding structure-suppression
functions S2ðMÞ. The left panels shows the gvðvÞ distributions as functions of v; the right panel shows both the corresponding
distributions gMðMÞ that we obtain from our functional map between v andM as functions ofM and the S2ðMÞ curves that we obtain for
these distributions. For each of the distributions shown, we have taken σ0 ¼ 0.63 and hvi0 ¼ 10−6. We observe that the logarithmic
slope d log S2ðMÞ=d log M of the structure-suppression function at small M is correlated with the total abundance of dark-matter
particles in the gMðM0Þ distribution with M0 > M.
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In order to test this conjecture further, we now consider
more complicated gvðvÞ distributions in which both
Gaussian peaks inEq. (2.13) occur at velocities large enough
to have a significant impact on structure. In Fig. 6, we
illustrate the effect of varying hvi1 of the lower-velocity peak
while holding hvi0 ¼ 10−6, the widths σ0 ¼ σ1 ¼ 0.63, and
the abundances Ω0 ¼ Ω1 fixed. The blue curve in the left
panel represents the case in which hvi1 ¼ hvi0 and the two
peaks in gvðvÞ coincide, effectively yielding a single
Gaussian. By contrast, the green, yellow, and red curves
represent gvðvÞ distributions with successively greater dis-
tances between hvi1 and hvi0. The corresponding S2ðMÞ
curves and gMðMÞ distributions are shown in the right panel
of the figure.

We observe that the S2ðMÞ curves obtained for the
gvðvÞ distributions in which there is a significant separation
between the peaks qualitatively differ from the curves
obtained for narrow, unimodal gvðvÞ distributions.
Moreover, these curves provide additional insight into
the relationship between S2ðMÞ and gMðMÞ. For example,
we observe that d log S2ðMÞ=d log M at a location M
immediately to the left of each peak in gMðMÞ is correlated
with the value of FðMÞ at such locations. Indeed, as we
scan from larger to smaller values of M across either of
the peaks in a given gMðMÞ distribution, we see that
d log S2ðMÞ=d log M becomes increasingly steep as the
cumulative abundance associated with dark-matter particles
whose speeds v map to halo masses above M increases.

FIG. 5. Similar to Fig. 4, but for a set of dark-matter velocity distributions in which the width σ0 of the Gaussian peak is varied while
the total abundance Ω0 ¼ ΩDM and average velocity hvi0 ¼ 10−6 are held fixed. We observe that the value of S2ðMÞ in the region to the
left of the peak in gMðMÞ is sensitive to the width of the peak; the value of d log S2ðMÞ=d log M in this same region is not.

FIG. 6. Similar to Fig. 4, but for a set of double-peak dark-matter velocity distributions in which the average velocity hvi1 of the lower-
velocity peak is varied, while hvi0 ¼ 10−6, the widths σ0 ¼ σ1 ¼ 0.63, and the abundances Ω1 ¼ Ω2 ¼ ΩDM=2 are all held fixed. We
observe that as we scan from right to left across the right panel of the figure, any two d log S2ðMÞ=d logM curves coincide up until the
point at which the corresponding gMðMÞ distributions begin to differ.
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By contrast, as we scan from larger to smaller values
of M across the region between each pair of peaks, where
gMðMÞ is negligible, we see that d log S2ðMÞ=d logM
either remains constant or increases. Indeed, this is the
case regardless of how much separation there is between
the peaks.
The behavior of the curves in the right panel of Fig. 6

also illustrates the “locality” inherent in the relationship
between gMðMÞ and S2ðMÞ. If two gvðv0Þ distributions are
identical above some velocity v, but differ for v0 < v, the
corresponding S2ðM0Þ distributions differ only for masses
M0 < MðvÞ. As a result, any two structure-suppression
functions shown in Fig. 6 coincide almost perfectly at large
M and continue to track each other as M decreases, all the
way down to the point which the corresponding gMðMÞ
distributions begin to diverge. We emphasize that this is
true regardless of whether d2 log S2ðMÞ=ðd log MÞ2 is
negative throughout the range of M above which the two
gMðMÞ distributions coincide. Indeed, it still holds even
if d2 log S2ðMÞ=ðd log MÞ2 ≥ 0 across some or all of
this range.
Finally, in Fig. 7, we illustrate the effect on S2ðMÞ of

varying the relative abundances associated with the two
peaks while holding hvi0 ¼ 2 × 106, hvi1 ¼ 108, and the
widths σ0 ¼ σ1 ¼ 0.63 fixed. As in Fig. 6, we see that
d log S2ðMÞ=d log M decreases as we scan from larger to
smaller values ofM across any particular peak in gMðMÞ but
that it remains constant or increases as we scan across
regions in which gMðMÞ is negligible. However, we also see
that the corresponding change in d log S2ðMÞ=d log M is
indeed correlated with FðMÞ.
Indeed, taken together, the results shown in Figs. 4–7

suggest that there is a direct relationship between
d log S2ðMÞ=d log M and FðMÞ. In particular, as we shall

demonstrate explicitly in Sec. VI, we find that within any
interval in M space at which gMðMÞ is non-negligible, this
relationship is well described by a simple empirical relation
of the form

d log S2ðMÞ
d log M

≈
7

10
F2ðMÞ: ð4:1Þ

Since FðMÞ is by definition a monotonically decreasing
function of M, this relation implies that d2 log S2ðMÞ=
ðd log MÞ2 ≤ 0within any such interval. We stress that this
empirical relation is quite robust and holds regardless of
how complicated the dark-matter velocity distribution
might be.
We also note that in cases in which the features in the

dark-matter velocity distribution are well clustered in M
space—i.e., in which there are no extended intervals of M
space within which gMðMÞ ≈ 0 between these features—
we may obtain an approximate expression for S2ðMÞ itself
by integrating Eq. (4.1) directly:

log S2ðMÞ ≈ 7

10

Z
∞

logM
d log M0F2ðM0Þ

¼ 7

10

Z
∞

logM
d log M0

×

�
1

N

Z
∞

logM0
d log M00gMðM00Þ

�
2

: ð4:2Þ

Moreover, as a consequence of the locality inherent in the
relationship between gMðMÞ and S2ðMÞ, this procedure
may also be applied to more general dark-matter velocity
distributions in order to derive an an approximation for
S2ðMÞ at values of M above all such extended intervals.

FIG. 7. Similar to Fig. 4, but for a set of double-peak dark-matter velocity distributions in which the abundancesΩ0 and Ω1 associated
with the two peaks are varied, while hvi0 ¼ 2 × 10−6, hvi1 ¼ 10−8, the widths σ0 ¼ σ1 ¼ 0.63, and the sum Ω0 þΩ1 ¼ ΩDM of these
abundances are all held fixed. We observe that d log S2ðMÞ=d log M at a location M immediately to the left of any individual peak in
gMðMÞ is correlated with the value of FðMÞ at that same location.
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Such an approximation is potentially useful, as it would
enable one to circumvent the rather complex procedure
outlined in Sec. III through which the calculation of S2ðMÞ
is normally performed. Of course, the usefulness of this
approach will ultimately depend on the precision with
which one might seek to evaluate S2ðMÞ.
The precise mathematical form of Eq. (4.1) and the value

of the numerical constant of course depend on the particular
choice for the function ηðMÞ specified in Eq. (3.6).
Nevertheless, we emphasize that a similar mathematical
relationship between S2ðMÞ and gMðMÞ will exist for any
alternative functional form of ηðMÞwhich likewise respects
the physical thresholds that served as the basis for our
functional map between v andM in Eq. (3.10). Indeed, this
relationship is a consequence of locality—i.e., the fact that
d log S2ðMÞ=d log M is sensitive only to the portion of
gMðM0Þ for which M0 > M. As we have seen, this locality
ultimately stems from the assumption inherent in Eq. (3.4)
that ηðMÞ depends on M only through quantities which
respect these physical thresholds.
That said, given that a fullN-body analysis of the class of

highly nontrivial gvðvÞ distributions that we are considering
in this paper has never been performed, one might wonder
whether this property of ηðMÞ still holds for these gvðvÞ
distributions. While a conclusive answer to this question
cannot be obtained without extensive numerical simulation,
there are nevertheless indications that ηðMÞ indeed respects
the same thresholds, even for more complicated forms of
gvðvÞ. For example, an N-body analysis of the kinds of
halo-mass functions which arise in so-called mixed-dark-
matter scenarios—i.e., scenarios in which the dark-matter
velocity distribution includes both a WDM and a CDM
contribution—was performed in Ref. [34]. Despite the
more complicated form of gvðvÞ which characterizes these
scenarios, the resulting dn=d log M were nevertheless
found to be well modeled by an analytic function of the
general form Eq. (3.4) with a universal ηðMÞ function
which respects the relevant physical thresholds.

V. CONNECTING TO OBSERVABLES

While the effect that the detailed shape of gvðvÞ on
S2ðMÞ has on the S2ðMÞ is interesting in its own right, it is
also interesting to extend this analysis a step further and
consider how this detailed shape affects astrophysical
observables which serve as probes of structure in the
nonlinear regime. We focus here on two such observables:
satellite counts within the halos of large galaxies and
cluster-number counts. As we shall see, the detailed shape
of the dark-matter velocity distribution can have a non-
trivial impact on both of these observables.

A. Satellite counts

One observable which which provides information about
the spatial distribution of matter within the Universe is the

number of satellite galaxiesNSH with massesM above some
observability threshold Mmin which reside within a typical
host halo of massM0. Of particular interest is the number of
satellite galaxies within the halo of the Milky Way.
A theoretical prediction for NSH can be derived analyti-

cally for a given gvðvÞ distribution and a given value
of M0. This prediction is derived not from the halo-mass
function, but rather from the conditional mass function
dNðM; zjM0; z0Þ=dM. This latter quantity represents the
differential number of halos per unit mass M present in the
Universe at redshift z which, on average, will have been
incorporated into a single host halo of massM0 by the time
the Universe reaches the redshift z0 < z. An approximate
analytic expression for dNðM; zjM0; z0Þ=dM can be
derived from the same excursion-set formalism [8] from
which Eq. (3.4) can be obtained. In particular, it can be
shown that [35]

dNðM; zjM0; z0Þ
dM

¼ −
M0

M
σ2ðMÞζðM; zjM0; z0Þ

dσ2ðMÞ
dM

;

ð5:1Þ

where σ2ðMÞ≡ σ2ðtnow;MÞ and where ζðM; zjM0; z0Þ
represents the probability that a particle present in a halo
of massM at redshift zwould have been incorporated into a
halo of mass M0 by the time the Universe reaches redshift
z0. Under the simplifying assumption of spherical collapse,
this conditional probability takes the analytic form

ζðM; tjM0; t0Þ ¼
δðzÞ − δðz0Þ

ð2πÞ1=2½σ2ðMÞ − σ2ðM0Þ�3=2

× exp

�
−

½δðzÞ − δðz0Þ�2
2½σ2ðMÞ − σ2ðM0Þ�

�
; ð5:2Þ

where δðzÞ≡ δc=DðzÞ is defined in terms of the universal
growth factor DðzÞ for perturbations at redshift z.

In order to estimate the number of subhalos with masses
above a given threshold, we follow the procedure outlined
in Refs. [25,36]. We integrate the conditional mass function
over z in order to obtain the differential number dNSH=dM
of subhalos per unit M:

dNSH

dM
¼ 1

N SH

Z
∞

0

dNðM; tjM0; t0Þ
dM

dδðzÞ
dz

dz; ð5:3Þ

whereN SH is a normalization factor which accounts for the
fact that this integration overcounts the number of halos by
including the same progenitor at multiple redshifts. Thus,
the total expected number of subhalos with masses above a
given mass thresholdMmin within a host halo of massM0 is
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NSH ¼
Z

M0

Mmin

dNSH

dM
dM: ð5:4Þ

In order to assess the degree to which NSH depends on
the detailed shape of the dark-matter velocity distribution,
we evaluate the predicted number of Milky-Way satellites
for a variety of gvðvÞ distributions of the form given in
Eq. (2.13) using Eq. (5.4). For the window function in
Eq. (3.2), the expression in Eq. (5.3) reduces to

dNSH

dM
¼ 1

6π2N SH

�
M0

M2

�

×
Pð1=RðMÞÞ

R3ðMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π½σ2ðMÞ − σ2ðM0Þ�

p : ð5:5Þ

We choose this normalization factor N SH such that the
value of NSH obtained from Eq. (5.4) for a Milky-Way-
sized galaxy in a purely CDM scenario accords with the
value obtained from N-body simulations. In particular, we
base our value of N SH on the results obtained by Aquarius
project [37], which obtained a value NSH ¼ 157 for the
number of subhalos of mass M > 108 h−1M⊙ in a Milky-
Way-like galaxy of mass M0 ¼ 1.77 × 1012 h−1M⊙.
Accordingly, we adopt Mmin ¼ 108 h−1M⊙ as our mass
threshold. For this value of Mmin, we find numerically that
N ≈ 46.9, which is roughly similar to the result N SH ¼
44.5 obtained in Ref. [25].
In order to present the results of this analysis in an

illustrative way, we shall also define the quantity
NWDM

SH ðkFSHÞ for a given gvðvÞ distribution to represent
the value of NSH that one would obtain for a WDM velocity

distribution with the same average velocity hvi as gðvÞ—
and hence also the same nominal free-streaming scale kFSH.
Since the dark-matter velocity distribution for a WDM
model is completely specified by the single parameter
mWDM, NWDM

SH ðkFSHÞ is uniquely defined. The ratio1

ð5:6Þ

of the actual value of NSH obtained for this gvðvÞ to the
value of NWDM

SH ðkFSHÞ quantifies the degree to which NSH

departs from the WDM result due to the detailed shape
of gvðvÞ.
In the left panel of Fig. 8, we show contours within

the ðΩ0=ΩDM; hvi0=hvi1Þ plane of the expected number
of satellite galaxies with masses M > 108 h−1M⊙ con-
tained within a Milky-Way-sized galaxy of mass M0 ¼
1.77 × 1012 h−1M⊙. The results shown here correspond to
the parameter choices hvi0 ¼ 10−6 and σ0 ¼ σ1 ¼ 0.63.
In the right panel, we show contours of the ratio within
the ðΩ0=ΩDMhvi0=hvi1Þ plane for the same choice of
parameters. In each panel, we have also included contours
(dashed black lines) of the nominal free-streaming
scale kFSH.
In interpreting these results displayed in Fig. 8, we begin

by noting that we may establish a rough bound on gvðvÞ by

FIG. 8. Left panel: the expected number NSH of satellites with massesM > 108 h−1 M⊙ within the halo of a Milky-Way-sized galaxy
for a dark-matter scenario with a velocity distribution given by Eq. (2.13), displayed within the ðΩ0=ΩDM; hvi0=hvi1Þ plane. The results
shown in the figure correspond to the parameter choices hvi0 ¼ 10−6 and σ0 ¼ σ1 ¼ 0.63. Right panel: the ratio of NSH to the number
of satellites obtained for the WDM model with the same nominal free-streaming scale kFSH, likewise displayed within the
ðΩ0=ΩDM; hvi0=hvi1Þ plane. Contours of kFSH (dashed black lines) are also provided in each panel for reference.

1In keeping with our notation wherein subhalos are indicated
through the subscript “SH,” we have chosen to denote this ratio
with the Hebrew letter , pronounced “shin” and signifying the
sound “sh.”
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requiring that NSH accord with the number NðobsÞ
SH actually

observed in the halo of the Milky Way. The known Milky-
Way satellites with masses above our Mmin threshold
include 11 classical satellites and 15 ultrafaint satellites
discovered by the Sloan Digital Sky Survey (SDSS), as
well as a number of additional satellites identified by the
Dark Energy Survey (DES) [38–41]. However, the current
catalog of ∼50 such satellites is presumably highly incom-
plete, given that SDSS and DES do not together cover the
entire sky and are subject to flux thresholds. We therefore

estimate NðobsÞ
SH by multiplying the number of SDSS

satellites by 3.5 in order to account for the limited sky
coverage of the SDSS [25,42,43] and adding to this
the number of classical satellites. This accounting yields

NðobsÞ
SH ¼ 62 for the total number of Milky-Way subhalos

with masses M > Mmin.
The results shown in the right panel of Fig. 8 reflect the

extent to which the detailed shape of gvðvÞ affects the value
of NSH. The ratio differs significantly from unity within
the region whereinΩ0=ΩDM is large and hvi1=hvi0 ≤ 0.1—
in some places by as much as 2 orders of magnitude. These
results make it clear that the detailed shape of gvðvÞ can have
a significant impact on the substructure of galactic halos.
In addition to the rough lower bound on NSH, other

considerations related to structure formation likewise con-
strain on the form of gvðvÞ. For example, Lyman-α-forest
data impose stringent constraints on the shape of the matter
power spectrum at wave numbers 1h=Mpc≲k≲50h=Mpc.
These constraints likewise depend of the detailed shape
of gvðvÞ. Constraints on gvðvÞ distributions of the form
in Eq. (2.13) were derived in Ref. [44]. For the values
of hvi0, σ0, and σ1 we have adopted in Fig. 8, an analysis
employing the area criterion δA [45] excludes the region of
the ðΩ0=ΩDM; hvi0=hvi1Þ planewhereinΩ0=ΩDM ≳ 0.1 and
hvi1=hvi0 ≳ 0.25. While this excludes the region wherein
is significantly below unity, the allowed region of parameter
space includes sizable regions wherein .

B. Cluster-number counts

Another observable which provides information about
the spatial distribution of matter within the Universe is the
number of galaxy clusters NC observed within a given
region of the sky. However, unlike satellite counts, cluster-
number counts of this sort are directly related to the halo-
mass function and therefore serve as a probe of S2ðMÞ—
and thus to the results derived in Sec. IV.
Observationally speaking, the cluster-number count

obtained from a given survey is simply the total number
of galaxy clusters observed within a particular region of
the sky out to some maximum redshift zmax with masses
which lie above some threshold MminðzÞ which may be
redshift-dependent. Thus, a theoretical prediction for NC
within a given dark-matter scenario may be obtained by
evaluating [46]

NC ¼
Z

zmax

0

z
dV
dz

Z
∞

log MminðzÞ
d log M

dn
d log M

; ð5:7Þ

where dV=dz is the comoving volume element per unit z.
This comoving volume element may be written in the form

dV
dz

¼ 4πΔΩ
cχ2ðzÞ
HðzÞ ; ð5:8Þ

where ΔΩ is solid angle on the sky under observation,
where c is the speed of light, where χðzÞ is the comoving
distance, and where HðzÞ is the Hubble parameter.
In assessing the cluster-number count which follows

from any particular gvðvÞ distribution, we adopt a set of
parameters which allow us to compare our predictions with
results predicted from the Euclid survey [47]. In particular,
we take ΔΩ ≈ 4.57 sr and zmax ¼ 2 and we adopt the
redshift-dependent detection mass threshold presented in
Ref. [47], in which MminðzÞ varies between ∼1013.8 and
1014.1 M⊙.
In order to examine the effect of the primordial dark-

matter velocity distribution on NC, we shall once again
consider gvðvÞ distributions of the form given in Eq. (2.13).
Moreover, since our aim is to highlight the effect of varying
the detailed shape of gvðvÞ, rather than the effect of varying
the nominal free-streaming scale kFSH, we shall proceed by
examining how NC varies along surfaces of fixed kFSH
within our parameter space. In order that we may compare
our results for NC to those we have obtained for NSH in a
straightforward manner, we shall once again take hvi0 ¼
10−6 and σ0 ¼ σ1 ¼ 0.63 and focus on the effect of varying
Ω0=ΩDM and hv1i=hv0i along contours of constant kFSH.
In Fig. 9, we show the extent to whichNC differs from the

cluster count N1pk
C obtained for the gvðvÞ distribution which

has the same value of kFSH but consists of a single Gaussian
peak whose width is likewise set to the value σ0 ¼ 0.63
characteristic of a WDM distribution. In particular, we fix
hvi ¼ 5 × 10−7, which fixes kFSH ≈ 0.76 h=Mpc, and show
how the ratio ðN1pk

C − NCÞ=σ1pkC varies as a function of

Ω0=ΩDM for this fixed value of kFSH, where σ1pkC is the
Poisson uncertainty associated with the single-peak distri-
bution. This ratio provides an estimate of the statistical
significance of the impact of the detailed shape of gvðvÞ on
NC. The value of hvi1=hvi0 which corresponds to a given
value of Ω0=ΩDM along this contour is indicated along the
top axis of the figure.We emphasize that moving from left to
right across Fig. 9 corresponds to following a contour in the
ðΩ0=ΩDM; hvi0=hvi1Þ plane which lies nearby the kFSH ¼
1 h=Mpc contour indicated Fig. 8.
The results displayed in Fig. 9 clearly indicate that the

detailed shape of gvðvÞ can have a significant impact on
cluster-number counts. The most significant deviation
occurs along the portion of the kFSH contour where
Ω0=ΩDM is large and hv1i=hv0i is small. Indeed, this
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portion of the contour corresponds to the region of
parameter space in Fig. 8 within which the greatest
deviations likewise arose between the value of NSH for
our double-peak gvðvÞ distributions and the expected value
for a WDM distribution with the same nominal free-
streaming scale.
To summarize the results of this section, we find that the

detailed shape of the primordial dark-matter velocity
distribution not only affects the halo-mass function, but
also has an impact on observables such as NSH and NC.
Thus, these observables can play a role in probing and
constraining gvðvÞ and the halo- or subhalo-mass functions
which follow from it.

VI. A RECONSTRUCTION CONJECTURE

In Sec. III, we examined the mathematical relationship
between gMðMÞ and S2ðMÞ in the extended Press-
Schechter formalism. In doing so, we identified a pair of
physical thresholds which underpin this relationship. The
presence of these thresholds permits us to construct a map
between v andM analogous to the expression in Eq. (3.10)
for any well-behaved functional forms for Wðk; RÞ and
ηðMÞ. Moreover, in Sec. V, we also saw that this relation-
ship between gMðMÞ and S2ðMÞ is such that the detailed
shape of the dark-matter velocity distribution has a poten-
tially measurable impact on astrophysical observables such
as cluster-number counts.
Motivated by these findings, we propose a method

for inverting the procedure outlined in Sec. III and

reconstructing the detailed shape of gvðvÞ directly from
information contained in S2ðMÞ. This conjecture is clearly
more speculative than the results we have presented thus
far. Indeed, it is more sensitive to the particular functional
forms one chooses for Wðk; RÞ and ηðMÞ. Moreover, the
fact that the halo-mass function is not directly measurable,
but rather must itself be inferred indirectly from observa-
tional data, imposes some restrictions on its practical
applicability. Nevertheless, as we shall argue below, this
reconstruction conjecture can provide a potentially useful
method of extracting information about the primordial
velocity distribution of the dark matter, and by extension
the underlying particle-physics processes which produced
it in the early Universe.

A. Formulating the conjecture

Our stated goal, then, is to invert Eq. (4.1) and obtain
information about gMðMÞ from S2ðMÞ. We begin by
considering the case in which the features in gMðMÞ are
well clustered in M space. In this case, a statement about
the functional form of gMðMÞ may then be obtained in a
straightforward manner from Eq. (4.1). Taking the loga-
rithmic derivative of both sides of this relation and using
the definition of the hot-fraction function in Eq. (3.13) to
relate dFðMÞ=dM to gMðMÞ, we find that

gMðMÞ
N

≈
ffiffiffiffiffi
5

14

r �
d log S2ðMÞ
d logM

�−1=2				 d2 log S2ðMÞ
ðd logMÞ2

				: ð6:1Þ

This is the basic form of our conjecture which allows us to
reconstruct the salient features of the dark-matter velocity
distribution gMðMÞ directly from the first and second
logarithmic derivatives of the structure-suppression
function.
As stated above, our conjecture in Eq. (6.1) holds under

the assumption that d2 logS2ðMÞ=ðd logMÞ2 is always
either zero or negative—i.e., that log S2ðMÞ is always
either a straight line or concave down when plotted versus
logM. However, this conjecture may also be extended to
the more general case in which this condition is not always
satisfied. Indeed, while we have seen in Sec. IV that
logS2ðMÞ can in fact be concave up, we have also seen
that this behavior only arises within intervals of M space
within which gMðMÞ is negligible. Thus, in order to
generalize our reconstruction conjecture to account for
this possibility, we need only to posit that gMðMÞ ≈ 0

whenever d2 logS2ðMÞ=ðd logMÞ2 > 0. In other words,
we posit that

gMðMÞ
N

≈
ffiffiffiffiffi
5

14

r �
d logS2ðMÞ
d logM

�−1=2

×

				min

�
0;
d2 logS2ðMÞ
ðd logMÞ2

�				: ð6:2Þ

FIG. 9. The difference between the cluster-number count N1pk
C

obtained for gvðvÞ distribution with a single Gaussian peak and
the count NC obtained for a gvðvÞ distributions of the form given
in given by Eq. (2.13), normalized to the Poisson uncertainty σ1pkC
associated with the single-peak distribution, shown as a function
ofΩ0=ΩDM for fixed kFSH ≈ 0.76 h=Mpc. The value of hv1i=hv0i
which corresponds to a given value of Ω0=ΩDM along this kFSH
contour is indicated along the top axis. We note that NC < N1pk

C .

DIENES, HUANG, KOST, MANOGUE, and THOMAS PHYS. REV. D 106, 083506 (2022)

083506-16



This, then, is the complete statement of our reconstruction
conjecture.
Several important caveats must be borne in mind

regarding this conjecture. First, we emphasize that it is
not meant to be a precise mathematical statement. Indeed,
given the rather complicated nature of the Einstein-
Boltzmann evolution equations which connect gMðMÞ to
SðMÞ, we do not expect a relation of the simple form in
Eq. (6.2) to provide a precise inverse (except perhaps under
some limiting approximations and simplifications). Rather,
this conjecture is intended merely as an approximate
practical guide—a back-of-the-envelope method for repro-
ducing the rough characteristics of gMðMÞ given a par-
ticular structure-suppression function SðMÞ.
Second, as discussed in more detail in Sec. II, our map

between v and M in Eq. (3.10) has been formulated under
the assumption that the dark matter is relativistic at the time
at which it is produced. When this is not the case, we expect
that a more appropriate map between these two variables
will depend on further details such as the time at which the
dark matter is produced and hence will carry a sensitivity to
the particular dark-matter production scenario envisaged.
However, in the vast majority of situations in which this
assumption is violated and a significant population of dark-
matter particles is nonrelativistic at the time of production,
this population of nonrelativistic dark-matter particles is
typically sufficiently cold that it has no effect on S2ðMÞ for
M within our regime of interest. While it is possible to
engineer situations in which the map in Eq. (3.10) might
require modification while free-streaming effects on S2ðMÞ
are non-negligible, such situations require a somewhat
unusual dark-matter cosmology—a cosmology in which
a significant nonrelativistic yet “lukewarm” population of
dark-matter particles is generated at exceedingly late times
by some dynamics that contributes significantly to fðvÞ
within a particular range of velocities.
Third, our procedure for calculating PðkÞ from a given

gvðvÞ implicitly incorporates certain assumptions. One of
these assumptions is that the background cosmology does
not deviate significantly from that of the standard cosmol-
ogy. For example, it is assumed that the time tMRE of
matter-radiation equality is the same as in the standard
cosmology and that the Universe is effectively radiation-
dominated at all times from the end of the reheating epoch
until tMRE. It is also assumed that the primordial spectrum
of density perturbations produced after inflation is
Gaussian-random. Another of these assumptions is that
the velocity distribution of dark-matter particles has ceased
evolving, except as a consequence of redshifting effects, by
some very early time deep within the radiation-dominated
epoch. This implies not only that the production of the dark
matter is effectively complete by that time, but also that the
effect of scattering and decay processes involving dark-
matter particles is negligible thereafter. Of course, the
above assumptions do not necessarily imply limitations

on our conjecture per se in these regimes. While it is
possible that our conjecture ceases to provide accurate
results for cosmological histories wherein the above
assumptions are relaxed, it is also possible that our
conjecture remains robust even in the presence of these
deviations.
The restrictions implied by these caveats are not severe.

Indeed, as we shall demonstrate in Sec. VI B, our con-
jecture as stated here will still allow us to resurrect the
salient features of gMðMÞ—and hence also of fðvÞ—for
a wide variety of different dark-sector scenarios.
Clearly, details such as the proportionality constants in
Eq. (3.10) and the precise functional relationship between
d logS2ðMÞ=d lnM and FðMÞ depend on the particular
functional forms for Wðk; RÞ and ηðMÞ. However, the
qualitative picture that we have developed for reconstruct-
ing gMðMÞ from S2ðMÞ is predicated only on one crucial
assumption—the assumption of locality which follows
from the physical thresholds which have allowed us to
formulate the map between v to M in Eq. (3.10). Thus, a
reconstruction conjecture qualitatively similar to Eq. (6.2)
can likewise be formulated for any alternative functional
forms that one might adopt forWðk; RÞ and ηðMÞ, provided
that these functions respect the same thresholds. It is also
worth emphasizing that, as a consequence of this locality,
our reconstruction procedure permits us to reconstruct the
value of gMðMÞ at any particular M solely based on
information about S2ðMÞ and its derivatives at that same
value of M without any additional information about the
global properties of this structure-suppression function.
Thus, even if the functional form of S2ðMÞ is known only
across a limited range of halo masses, our conjecture can
still be applied in order to reconstruct gMðMÞ across that
same range of M.
It is also important to note the similarities and differences

between our conjecture for reconstructing fðvÞ from the
shape of S2ðMÞ and the similar proposal that we advanced
in Ref. [5] for extracting information about the dark-matter
phase-space distribution from the linear matter power
spectrum [5]. First, as emphasized in the Introduction,
the conjecture in Eq. (6.2) does not rely on this previous
proposal in any way. Moreover, in principle, the conjecture
in Eq. (6.2) permits one to extract information about fðvÞ at
much lower velocities. Measurements of PðkÞ based on
data obtained at low redshifts are currently reliable up to
around k≲ 0.05–0.1 Mpc−1. Information from Lyman-α-
forest measurements can provide additional information
about PðkÞ at wave numbers up to around k ∼ 1 Mpc−1.
While future measurements of the 21-cm line of neutral
hydrogen could in principle yield information about PðkÞ at
significantly higher redshifts, the present state of our
knowledge of PðkÞ permits us to reconstruct fðvÞ only
down to v ∼ 5 × 10−7 using the methods of Ref. [5].

By contrast, our reconstruction conjecture in Eq. (6.2)
relies solely on information contained within the halo-mass
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function in order to reconstruct fðvÞ. Thus, one could in
principle use this conjecture to probe fðvÞ down to v ∼
10−9 or lower. In practice, exploiting this property of the
conjecture is somewhat challenging, given that astrophysi-
cal observables from which meaningful information about
the structure-suppression function can currently be
extracted, such as differential cluster-number counts, typ-
ically provide information about S2ðMÞ at halo-mass scales
M ≳ 1013 M⊙—and thus to regions of gvðvÞ wherein
v≳ 10−6. Nevertheless, if observational techniques can
be developed which permit one to probe S2ðMÞ in a
meaningful way at lower scales, our reconstruction con-
jecture can provide a method of extracting meaningful
information about the dark-matter velocity distribution
from those measurements.

B. Testing the conjecture

Having stated our conjecture, we now assess the extent to
which it enables us to reconstruct the underlying dark-
matter velocity distribution from the halo-mass function. In
particular, we shall test this conjecture within the context of
an illustrative dark-matter model in which gMðMÞ deviates
significantly from that of purely cold dark matter in a
variety of ways within different regions of model-parameter
space. For a set of illustrative points in that parameter
space, we will then reconstruct gMðMÞ using our conjecture
and compare it with the corresponding “true” gMðMÞ
distribution.
The model which we shall adopt for purposes of

illustration—a model which was introduced in Ref. [5]—
is one in which the cosmological abundance of dark matter
is generated nonthermally, via the decays of unstable
dark-sector particles. The dark sector in this scenario
consists of an ensemble of N real scalar fields ϕl with
l ¼ 0; 1; 2;…; N − 1whose decaywidths are dominated by
two-body processes associated with trilinear terms in the
interaction Lagrangian of the form

Lint ∋
XN
l¼0

Xl
i¼0

Xi

j¼0

clijϕlϕiϕj; ð6:3Þ

where the clij are coupling constants with dimensions of
mass. The masses of the ϕl are given byml ¼ ð2lþ 1Þm0,
where m0 is the mass of ϕ0, while these coupling constants
are given by

clij ¼ μRlij

�
ml −mi −mj

2m0

�
r
�
1þ jmi −mjj

2m0

�
s

× Θðml −mi −mjÞ; ð6:4Þ

where μ is a parameter with dimensions ofmass, whereΘðxÞ
denotes the Heaviside function, and where

Rlij ¼
8<
:

6 all indices different

3 only two indices equal

1 all indices equal

ð6:5Þ

is a combinatorial factor. In what follows, for concreteness,
we take μ ¼ m0=10.
Physically, the parameter r appearing in Eq. (6.4)

governs the manner in which the clij scale with the overall
kinetic energy released during the decay process. Taking
r > 0 establishes a preference for highly exothermic decays
in which a substantial fraction of the initial mass energyml
of the decaying particle is converted into kinetic energy,
while taking r < 0 establishes a preference for decays in
which a comparatively small fraction of ml is converted to
kinetic energy. By contrast, the parameter s governs the
manner in which the clij scale with the difference in mass
jmi −mjj between the two daughter particles. Taking s > 0

establishes a preference for decays in which mi and mj are
very similar, while taking s < 0 establishes a preference for
decays with a significant difference between these two
daughter-particle masses. Thus, by varying the parameters
of this model—and, in particular, by varying r and s—we
are able to realize a variety of qualitatively different dark-
matter velocity distributions in a straightforward way.
For any given choice of model parameters, we evaluate

the resulting dark-matter velocity distribution gvðvÞ by
numerically solving the coupled system of Boltzmann
equations for the ϕl. We then determine the linear matter
power spectrum PðkÞ for this gvðvÞ distribution and the
linear matter power spectrum PCDMðkÞ for purely cold dark
matter numerically using CLASS. We obtain dn=d logM and
ðdn=d logMÞCDM from the corresponding matter power
spectra using the Press-Schechter formalism, as encapsu-
lated in Eq. (3.4) and use these results to construct the
structure-suppression function S2ðMÞ. We then test our
conjecture by using it to reconstruct gMðMÞ from S2ðMÞ
and assess how well this reconstructed gMðMÞ matches the
gMðMÞ test function that we obtain from our original gvðvÞ
function through use of the functional map in Eq. (3.10).
In Fig. 10, we display the results of our analysis for nine

different combinations of the model parameters r and s.
These parameter combinations have been chosen such that
the corresponding dark-matter velocity distributions exhibit
a wide variety of profiles. The blue curve displayed in each
panel represents the “true” velocity distribution gMðMÞ for
the corresponding choice of model parameters. Indeed, we
see that the set of gMðMÞ functions obtained for this set of
parameter combinations includes unimodal distributions as
well as a variety of multimodal distributions. Thus, the
velocity distributions shown in Fig. 10 collectively provide
a thorough “stress test” of how well our conjecture
performs when applied to qualitatively different kinds of
dark-matter scenarios.
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The black curve appearing in each panel of Fig. 10
represents the structure-suppression function S2ðMÞ which
corresponds to the velocity distribution gMðMÞ. The green
curve, on the other hand, represents the reconstructed
gMðMÞ obtained solely from information contained in
S2ðMÞ using Eq. (6.2). In performing this test, we have
chosen the value of the proportionality constant in
Eq. (3.10) to be ξ ¼ 9=4, as this tends to horizontally
align the original and reconstructed dark-matter velocity
distributions with each other.
We observe that in each case shown, our reconstruction

conjecture indeed reproduces the salient features of the

original velocity distribution. In particular, we see that
our conjecture allows us to reconstruct not only the
approximate locations of the peaks in gMðMÞ, but also
the relative areas under those peaks to an impressive
degree of accuracy across the entire range of M shown.
Thus, while our conjecture of course does not reproduce
the detailed shapes of the features in gMðMÞ with perfect
fidelity, the results in Fig. 10 attest that the simple relation
in Eq. (6.2) nevertheless provides a versatile tool for
extracting meaningful information about the properties
of the dark matter directly from the shape of the halo-mass
function alone.

FIG. 10. An explicit test of our reconstruction conjecture for a variety of different dark-matter phase-space distributions gMðMÞ which
arise in the context of our illustrative dark-matter model—a model in which the dark matter is produced nonthermally through decay
cascadeswithin an extended dark sector. These distributions correspond to different choices of the parameters r and s in Eq. (6.4). Some of
these distributions are unimodal, some are bimodal, and some exhibit even more complex configurations of peaks and troughs. The blue
curve shown in each panel represents the original dark-matter velocity distribution gMðMÞ. The black curve represents the corresponding
structure-suppression function S2ðMÞ to which it gives rise. The green curve represents the reconstruction of gMðMÞ from S2ðMÞ using in
Eq. (6.2). In all cases, we see that our conjecture successfully reproduces the salient features of the original velocity distribution.
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VII. CONCLUSIONS

The dark-matter velocity distributions which arise within
the context of nonminimal dark-sector scenarios can be
complicated and even multimodal. Even within the linear
regime, the small-scale-structure predictions of such sce-
narios differ significantly from the predictions of scenarios
in which fðvÞ is relatively narrow and unimodal, such as
WDM. In this paper, we have investigated how the detailed
shape of the dark-matter velocity distribution impacts
structure in the nonlinear regime. In particular, through
use of the analytic Press-Schechter formalism, we have
developed an intuition as to how features present in fðvÞ
affect the halo-mass and subhalo-mass functions. We have
also studied the implications of these results for observ-
ables such as the number counts of galaxy clusters and the
expected number of satellites for a Milky-Way-sized
galaxy. Finally, we have proposed a conjecture which
can be used to reconstruct the salient features of the
primordial dark-matter velocity distribution fðvÞ directly
from the shape of the halo-mass function dn=d logM. This
reconstruction conjecture requires essentially no additional
information about the properties of the dark matter beyond
what is imprinted on dn=d logM itself. Moreover, we have
shown that our conjecture successfully reproduces the
salient features of the underlying dark-matter velocity
distribution even in situations in which that distribution
is complicated and even multimodal.
Several comments are in order. First of all, our results are

predicated on a number of theoretical assumptions con-
cerning the form of the halo-mass function, the window
function Wðk; RÞ, etc. For example, in our analysis, we
have adopted the functional form for ηðMÞ in Eq. (3.6).
However, as discussed in Sec. III, there exist a number of
alternatives we could have chosen for ηðMÞ. Likewise,
while our choice of the window function in Eq. (3.2) allows
us to formulate the map between k and M in an unam-
biguous way, it is certainly possible to consider alternatives
for Wðk; RÞ. Such modifications would of course have an
impact on our quantitative results for S2ðMÞ, NSH, and NC,
as well as the precise form of the empirical relation between
d log S2ðMÞ=d logM and FðMÞ in Eq. (4.1). However, for
well-behaved window functions—i.e., functions which
have sufficiently flat tops and which decay sufficiently
rapidly for k≳ R−1—we expect that these modifications
will not alter the qualitative nature of our results, including
the fundamental relationship between d log S2ðMÞ=d logM
and FðMÞ which underlies the reconstruction conjecture in
Eq. (6.2). This issue merits further exploration.
One interesting feature of our analysis is that it makes no

particular assumption about the masses of the individual
dark-matter particles themselves. As such, this analysis is
applicable not only to the case in which gvðvÞ receives
contributions from a single dark-matter species with a
well-defined mass, but also to the case in which multiple
particle species contribute to the present-day dark-matter

abundance (an extreme example of which occurs in the
Dynamical Dark Matter framework [48,49]). The corre-
sponding distribution gvðvÞ in this latter case represents the
aggregate velocity distribution for all particle species which
contribute to the present-day dark-matter abundance. Of
course, this also means that while observables such as NSH
and NC are sensitive to the detailed shape of gvðvÞ, they are
not capable of distinguishing between single-particle and
multiparticle dark-matter scenarios which yield the same
gvðvÞ distribution.
We also note that we have assumed throughout this paper

that the dark matter has negligible self-interactions. Indeed,
if dark-matter self-interactions were sufficiently strong, the
shape of gvðvÞ would continue to evolve at times t > tMRE.
It would be interesting to explore how the presence of
appreciable dark-matter self-interactions would affect our
results.
Whilewe have focused in this paper primarily on the halo-

mass function dN=d logM, we also note that the subhalo-
mass function—i.e., the differential number of subhalos
dNSH=d logM within a host halo of mass M0—also pro-
vides an observational handle on the detailed shape of gvðvÞ.
Indeed, we have already seen in Sec. VA that even the
integral number of subhalos NSH within a given host halo
can provide such a handle. Strong gravitational lensing
provides a toolwhich can be used to probe this subhalo-mass
function on mass scales M ∼ 106–108 M⊙. Analyses of
small existing samples of strongly lensed objects have
already yielded meaningful constraints on the subhalo-mass
function [50–52]. Moreover, a significant number of addi-
tional strong-lensing candidates have been identified within
SDSS data [53]. It would be interesting to consider how
dNSH=d logM depends on gvðvÞ for differentM0. It would
also be interesting to consider whether a procedure could
be developed for reconstructing gMðMÞ from the shape of
dNSH=d logM at scales M ≲ 1010 M⊙.
As noted in Sec. VI, the reconstruction conjecture we

have formulated in Eq. (6.2) has two distinct components:
first, the assertion that the hot-fraction function FðkÞ is
connected to the slope of the structure-suppression function
and, second, that this relation takes the explicit form in
Eq. (4.1). Indeed, these two assertions together yield our
final conjecture in Eq. (6.2). As evident in Fig. 10, our
conjecture is remarkably successful in reproducing the
salient features of gMðMÞ. However, just as with the
conjecture presented in Ref. [5], we regard this conjecture
as at best purely empirical. It is therefore possible that one
or both aspects of this conjecture might be further refined.
For example, it is possible that the hot-fraction function
FðMÞ might also carry a weak dependence on other
(higher) derivatives of the structure-suppression function
or on the value of the structure-suppression function itself.
Likewise, even with this assumption, it is possible that the
relation in Eq. (4.1) might carry higher-order corrections.
Although it is not possible to rigorously invert the
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mathematical procedure discussed in Sec. III through
which a given dark-matter velocity distribution gvðvÞ
produces a corresponding structure-suppression function
SðMÞ, it may be possible to trace through such a calculation
analytically to leading order and thereby determine which
features of gvðvÞ might dominate the resulting S2ðMÞ and
vice versa. In this way, one might hope to eventually derive
our conjecture analytically, along with possible correc-
tion terms.
On the surface, the problem of reconstructing of gMðMÞ

from S2ðMÞ bears similarity to another well-known inverse
problem in kinetic theory, namely, the determination of the
phase-space distribution fðpÞ of a gas of particles from
quantities which depend on fðpÞ only through the
moments of this distribution. While it is generally possible
to solve this inverse problem, the procedure for doing so
typically yields a significant number of mathematically
consistent solutions—solutions which may or may not be
physically sensible. The reason why our reconstruction
conjecture does not give rise to a similarly large multiplicity
of solutions is ultimately that the relationship between the
gMðMÞ and S2ðMÞ is local in the sense that the value of
gMðMÞ at any particular value of M depends only on the
value of S2ðMÞ and its derivatives at that same value of M.
As a result of this locality, our reconstruction conjecture
gives us access to gMðMÞ directly, rather than requiring us
to infer the shape of this distribution from its moments.
Our reconstruction conjecture in principle provides a

method of obtaining information about the dark-matter
velocity distribution from the shape of the halo-mass
function. Of course, the practical utility of this procedure
depends on our ability to determine the shape of the halo-
mass function, which is itself not a directly measurable
quantity. Doing this presents its own set of challenges.
Significant theoretical uncertainties exist in the relationship
between the relevant astrophysical observables and halo
mass. Moreover, statistical fluctuations in the measured
values of these observables can introduce a so-called
Eddington bias [54]. Furthermore, the accuracy to which
the mass of an individual halo can be measured is limited
both by the number density of background source images
and by uncertainties in the shapes of foreground halos.
Nevertheless, despite these challenges, strides have been

made toward extracting information about the halo-mass
function from observation. In particular, methods have been
proposed for obtaining information about dn=d logM from
cosmic microwave background (CMB) data [55], galaxy-
cluster number counts [11], weak lensing of the CMB [56]
and other background sources [12,13], the linewidths
of neutral hydrogen emitted by galaxies [14], and the
foreground-background galaxy angular cross-correlation

function in conjunction with with background samples
of submillimeter galaxies [15]. Such methods make no
assumptions about the primordial dark-matter velocity
distribution fðvÞ, which it is the aim of our conjecture
to extract. Moreover, while many of these methods yield
information about dn=d logM only at scales M≳1013M⊙,
others are in principle capable of probing the halo-mass
function down toM ∼ 1010 M⊙. Empirical models relating
the luminosities of galaxies to the masses of their host halos
[57–60] can also potentially be used in conjunction with
observation in order to provide meaningful information
about dn=d logM. However, since these models are predi-
cated on the assumption that the dark-matter velocity
distribution takes a particular, simple form, significant
numerical work would be required in order to assess their
applicability to scenarios with significantly more compli-
cated gvðvÞ distributions. Thus, despite the challenges
involved in determining the halo-mass function from
observation, larger datasets and an improved understanding
of the theoretical relationship between astrophysical
observables and halo mass could significantly reduce the
uncertainties in dn=d logM in the near future. As such, a
calculational tool of the sort we have proposed in this paper
could potentially be a valuable addition to the toolbox of
the dark-matter cosmologist.
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