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• Turfgrass can sequester C and may influ-

ence emissions stemming from urbaniza-
tion.

• We summarized soil C sequestration rates
from 63 datasets, most in the U.S.

• Initial C sequestration exceeded rates for
many soil conservation practices.

• On average turfgrass stopped accruing soil
C by 50 years after establishment.
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Managed turfgrass is a common component of urban landscapes that is expanding under current land use trends. Previous
studies have reported high rates of soil carbon sequestration in turfgrass, but no systematic review has summarized these
rates nor evaluated how they change as turfgrass ages. Here we conducted a meta-analysis of soil carbon sequestration
rates from 63 studies globally, comprised mostly of C3 grass species in the U.S., including 24 chronosequence studies
that evaluated carbon changes over 75 years or longer. We showed that turfgrass established within the last ten years

had a positive mean soil C sequestration rate of 5.3 Mg CO2 ha − 1  yr − 1  (95% CI =  3.7–6.2), which is higher than rates

reported for several soil conservation practices. Areas converted to turfgrass from forests were an exception, sometimes
lost soil carbon, and had a cross-study mean sequestration rate that did not differ from 0. In some locations, soil C accu-
mulated linearly with turfgrass age over several decades, but the major trend was for soil C accumulation rates to decline
through time, reaching a cross-study mean sequestration rate that was not different from 0 at 50 years. We show that
fitting soil C timeseries with a mechanistically derived function rather than purely empirical functions did not alter

these conclusions, nor did employing equivalent soil mass versus fixed-depth carbon stock accounting. We conducted a

partial greenhouse gas budget that estimated emissions from mowing, N-fertilizer production, and soil N2O emissions.

When N fertilizer was applied, average maintenance emissions offset 32% of C sequestration in recently established turf-
grass. Potential emission removals by turfgrass can be maximized with reduced-input management. Management deci-
sions that avoid losing accrued soil C—both when turfgrass is first established and when it is eventually replaced with

other land-uses—will also help maximize turfgrass C sequestration potential.

Abbreviations: ESM, equivalent soil mass; FD, fixed depth; SOC, soil organic carbon; GHG, greenhouse gas.
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1. Introduction

Turfgrass has been estimated to cover almost 2% of land area in the U.S.
(Milesi et al., 2005) and its extent will likely increase with the growth of
urban, suburban, and exurban land uses. Within developed landscapes, turf-
grass commonly occupies spaces between built structures, where it provides a
surface for recreation, aesthetic value, and a variety of functional compo-
nents. One of these functional components is carbon (C) sequestration (Mor-
gan et al. 2010; Pouyat et al., 2009; Pouyat et al., 2006; Zirkle et al., 2011).
Turfgrass is usually perennial, grows rapidly, and is known for having an
active root system that contributes significantly to accumulation of soil
organic carbon (SOC, Qian et al., 2010). However, maintaining high quality
turfgrass is reliant on repeated cultural practices like mowing, irrigation,
and fertilization. The fossil fuel consumption associated with turfgrass
maintenance and N2O emissions from nitrogen fertilization could offset—at
least partially—the SOC sequestration benefits of turfgrass (Gu et al.,
2015; Selhorst and Lal, 2013; Tidåker et al., 2017; Townsend-Small and
Czimczik, 2010).

Quantifying the greenhouse gas emissions of turfgrass is one important
component of understanding the climate impacts of urbanization, which
are poorly constrained (Moran et al., 2018). A dominant trend over the
last 70 years has been the displacement of agricultural land with suburban
and exurban uses (Brown et al., 2005). In the U.S., about two-thirds of ag-
ricultural lands—broadly defined as croplands, managed forests, and man-
aged rangelands—that were converted to other land uses from 2001 to
2016 were converted to low-density residential development (Freedgood
et al., 2020). This kind of development, also referred to as exurban land
use in the U.S., impacted an area of 7.3 million acres. Turfgrass is particu-
larly prevalent in low-density residential development (Boone et al.,
2010; Currie et al., 2016), and thus agriculture-to-turfgrass land use conver-
sion is one important dynamic that occurs in urbanizing landscapes.

Within the context of emerging C markets and climate legislation, deter-
mining the climate impacts of turfgrass is also relevant for uncovering po-
tential liabilities and opportunities for the turfgrass industry. The U.S.
turfgrass and lawncare industry was estimated to generate $57.9 billion
in income in 2002 (Haydu et al., 2006), an amount equivalent to $92.5 bil-
lion in 2022 dollars. Existing research has shown considerable potential for
residential lawns and golf courses to accumulate SOC (Qian et al., 2010;
Qian and Follett, 2002; Selhorst and Lal, 2011; Selhorst and Lal, 2013).
However, there has not yet been a systematic review of the topic, and signif-
icant knowledge gaps remain around the emissions from turfgrass over its
entire lifecycle. With few exceptions, previous studies have not considered
the emissions from land-use change when turfgrass is newly established
(Selhorst and Lal, 2013), and the extent to which emissions change through
time as turfgrass systems mature (Shi et al., 2012).

Many previous studies have estimated a single rate for SOC sequestra-
tion in turfgrass, and have not addressed the ecological theory of SOC dy-
namics, which predicts that SOC accumulation diminishes over time as
plant inputs and SOC decay reach a dynamic equilibrium (Caruso et al.,
2018; Falloon and Smith, 2009). Despite some exceptions (Carley et al.,
2011; Selhorst and Lal, 2013; Shi et al., 2012), studies that measured SOC
sequestration rates seldomly report the timespan over which potential
SOC sequestration rates could hold. Carbon accounting efforts frequently
neglect the finite nature of SOC accumulation (Poulton et al., 2018) and
the importance of assessing current SOC stocks in relation to historic values
(Sanderman and Baldock, 2010), not only within turfgrass research but
across managed soils more broadly.

However, the turfgrass and urban ecology research communities have
amassed data that allow changes in SOC sequestration to be evaluated
over multiple decades. These communities have conducted a considerable
number of chronosequence studies—sampling unique turfgrass sites,
which were established at different times across a region, and provide a
large range of sample ages within the region. Using these data,
chronosequence studies evaluate SOC stock changes through time by apply-
ing a space-for-time substitution. Despite limitations to the chronosequence
approach (namely that different locations do not have identical
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management and environmental settings) it can be employed rapidly in
one or two field seasons and can be used to evaluate SOC dynamics across
much longer time periods than would typically be possible with repeated
sampling. Turfgrass chronosequences have been evaluated in at least 29 lo-
cations across the United States and New Zealand (Fig. 1), and 80% of these
studies covered age ranges of 75 years or more. This collective dataset is ar-
guably unique in documenting long-term SOC changes for a single vegeta-
tion type across a large range of climatic conditions.

In the present study, we aimed to synthesize these chronosequences and
other repeated measures studies to characterize long-term SOC changes in
turfgrass systems, and to evaluate the factors that caused studies to differ
from each other. We conducted a systematic review and meta-analysis to
answer the question: Is turfgrass, on average, a net source or sink of C
after 10, 30, and 50 years post-establishment? Using meta-regression we
evaluated how prior land-use, climate region, turfgrass photosynthetic
pathway (C4 verses C3), turfgrass use (putting greens, athletic fields,
small research plots, lawns, and roughs), and study methodology
(chronosequence versus repeated-measures) influenced SOC sequestration
rates. Because most authors described SOC changes through time using lin-
ear or polynomial regressions, we also refit these datasets using an expo-
nential rise-to-maximum function that is characteristic of mechanistic
models of SOC dynamics (Caruso et al., 2018). We tested the hypothesis
that fitting timeseries with a mechanistically-derived model would lower
estimates of SOC sequestration in mature turfgrass. Finally, we also esti-
mated emissions (CO2 and N2O) from mowing and N fertilizer use to com-
pute potential net GHG emissions from turfgrass through time.

2. Methods

2.1. Literature search and dataset development

We conducted a systematic review from Nov 2020 to Jan 2021 using
Google Scholar, Web of Science, and the Turfgrass Information File Data-
base. The search terms targeted were “soil carbon”, “carbon sequestration”,
“carbon storage”, or “carbon stock”, with “turf”, “turfgrass”, “lawn”, “urban
ecosystem”, “residential”, “Fescue”, “Zoysia”, “Poa”, “Cynodon”,
“Bouteloua”, “Lolium”, or “Agrostis”. We included only peer-reviewed
studies written in English that measured SOC change over one year or lon-
ger, and where grass was managed as turf (mowed or clipped regularly). We
included studies that sampled to any soil depth, and included several meth-
odologies: small-plot research conducted over a few years (22 datasets from
4 articles, citations detailed in Table S1), chronosequences of golf courses
or residential lawns (39 datasets from 16 articles), and one study that was
a variation on a chronosequence method and compiled long-term soil test
data provided by golf courses of various ages (3 datasets from Qian and
Follett, 2002). In total, 63 datasets from 21 articles met the search criteria.

We excluded 1) duplicate reports of the same data, 2) small plot studies
that did not report baseline SOC stocks, and 3) pure modeling studies. We
included five papers that only measured changes in SOC concentrations,

but not areal stocks (i.e., SOC in Mg ha−1).  For these papers, we converted
from concentrations to stocks using several approaches. For two papers
(Law and Patton, 2017; Qian and Follett, 2002) we used estimated bulk
densities provided by the authors. For the chronosequences reported in
Selhorst and Lal (2011), we used the average bulk density reported by the
author. For the 13 choronosequences reported in Selhorst and Lal (2013),
we estimated bulk density from the average relationship between percent
C and bulk density reported by Selhorst (2011). For Wang et al. (2014),
we used bulk density values from official soil survey descriptions.

The effect sizes summarized in the meta-analysis were the rates of
change in SOC stocks (dSOC/dt, where t is turfgrass age) for three time pe-
riods: 1–10 years, 30 years, and 50 years post-establishment, denoted as
dSOC1–10, dSOC30, and dSOC50, respectively. The dSOC1–10 dataset pooled
results from small-plot studies that all had durations of 4 years or less, and
from chronosequence studies, for which we computed dSOC/dt at t =  10
years. Thus, dSOC1–10 operationally represents recently established turf-
grass, with a range in ages.
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Fig.  1. Map of study locations. Sixty-three datasets from 22 manuscripts met the search criteria (see full citation list in the Supplemental Information).

Small plot studies reported dSOC/dt as a difference between repeated
measurements divided by elapsed time. The chronosequence studies all re-
ported continuous functions fitted to SOC(t) over multiple-decade
timespans (Fig. 2A). The various author teams employed several types of
equations to describe SOC(t), including linear, polynomial, and rational
models (Table S1 and Fig. 2A). All these equation forms were readily differ-
entiated to derive equations for dSOC/dt (Fig. 2B). We evaluated dSOC/dt
at t =  10, 30, and 50 by transforming the author’s reported regression pa-
rameters.

However, most studies did not report standard errors for regression pa-
rameters or provide sufficient information to compute them. Therefore, all
the chronosequences had to be reanalyzed in order to re-calculate the re-
gression parameters and their associated errors, in order to compute uncer-
tainties for dSOC/dt. In most cases, the original data were obtained from
the authors of the studies. If authors did not reply after two inquiries, or
no longer had access to the data, we captured data from published figures
using WebPlotDigitizer (Rohatgi, 2021). We computed standard errors for
the transformed regression parameters by applying a Taylor approximation
with the delta method as implemented by the R ‘msm’ package (Jackson,
2011). We used the standard errors of dSOC/dt as measures of precision to
weight each study in the meta-analysis.

For articles where original data could not be obtained from authors or
figures, missing standard errors were imputed as 10% of the mean value
for dSOC/dt, as proposed by Luo et al. (2006) and employed by others
(Meurer et al., 2018; Nunes et al., 2020). This approach for imputing
error was used for 18 datasets from 4 articles, or 29% of all the datasets.
Most of the studies with missing standard errors (17 of 18) were small-
plot trials; therefore, it is noteworthy that the imputed error estimates pri-
marily impacted results for dSOC1–10.

To assess factors influencing SOC change, we coded each study for prior
land use (cropland, forest, shrubland, unmanaged grassland, managed pas-
ture or turf, and desert), Köppen climate region, photosynthetic pathway
(‘cool season’ =  C3, or ‘warm season’ =  C4), and study methodology
(chronosquence or repeated measurements). Studies were also coded for
turfgrass use (athletic fields, putting greens, fairways, lawns, roughs, and
small research plots). Small research plots were coded as a unique group be-
cause most studies did not indicate the real-world use the plots were man-
aged for. Photosynthetic pathway was determined from the dominant
turfgrass species reported by authors. For studies not providing this infor-
mation, we defined the photosynthetic pathway as C3 for the northern US
climates, C4 for the southern US climates, and an equal prevalence of C3
and C4 in transitional regions. The prevalence of C3/C4 turf species deter-
mined by Trammell et al. (2019) for seven U.S. cities was also used (see
Table S1).

2.2. Re-analysis of chronosequences

The chronosequence datasets were all re-analyzed by: 1) computing
areal stocks for SOC from concentration data, if necessary, 2) fitting regres-
sions to SOC(t) employing the same functional forms employed by the au-
thors, and 3) transforming the regression coefficients to compute dSOC/
dt at t =  10, 30, and 50 years, and to calculate standard errors for dSOC/
dt. In some cases, data extracted from figures produced regression parame-
ters with minor discrepancies from the author’s reported regression param-
eters. In these cases, we used the authors’ parameters as mean values for the
meta-analysis, weighted by the standard errors we computed as a best-we-
can-do estimate.

Steps 2) and 3) were applied first to compute SOC(t) and dSOC/dt for
individual soil layers, and then SOC stocks were summed across all depths
to compute SOC(t) and dSOC/dt for the whole measured profile. In cases
where authors did not report regressions for total SOC(t) we applied the
same equation types they employed for individual soil layers. If the authors
used more than one equation type for different layers, or there was a poor
fit, we followed a model selection process. Outcomes of fitting decisions
for each study are in Table S1. We employed a principle of replicating the
methods employed by the original authors to the extent possible, balanced
by selecting reasonable and parsimonious regression models. We evaluated
linear, quadratic, and third order polynomial fits, and selected the best
model based on Akaike information criterion (AIC) values with a prefer-
ence for lower-order models when AIC values were similar.

All studies originally employed fixed depth (FD) sampling to determine
SOC stocks. However, for studies that provided bulk density and SOC con-
centrations for individual depth intervals (N =  16), we re-analyzed carbon
stocks on an equivalent soil mass (ESM) basis. The ESM accounting ap-
proach considers the fact that bulk density is likely to decrease with time
since turfgrass establishment, due to increases in soil organic matter and
root biomass. Changes in bulk density can have complex effects on SOC
stock computations (Sollins and Gregg, 2017; von Haden et al., 2020;
Xiao et al., 2020). However, one reasonable expectation is that SOC stocks
would be over-estimated by FD sampling in older turfgrass, because cores
collected to a fixed depth intercept more of an aggrading verdure (thatch
layer) or A horizon soil that is enriched in SOC and encounter less subsur-
face soil that is depleted in SOC. We recomputed SOC(t) using the youngest
turfgrass plots as a reference condition. We calculated SOC stocks at all
other timepoints to the same mass of soil encountered in the reference
plot cores. ESM computations were implemented using the method and R
code provided by von Haden et al. (2020), which fits splines to cumulative
SOC stocks versus cumulative soil mass relationships for each soil core. We
allowed extrapolation past the deepest measured depth in cases where less
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Smith, 2009). Caruso et al. (2018) proposed the following equation to
describe SOC(t):

SOC ¼  a−he − c t ð1Þ

where a is the equilibrium SOC stock, and c equals the sum of intrinsic rates
of SOC gains from biomass inputs and losses through decay. Parameter c
controls the velocity with which SOC approaches equilibrium. The param-
eter h reflects rates of SOC gains and losses as well as initial conditions
(baseline SOC stocks relative to the equilibrium SOC stocks). When h is pos-
itive (meaning baseline SOC <  equilibrium SOC) SOC increases through
time. This model is mathematically similar to a one-pool model of SOC
decay, but explicitly avoids assumptions about the number of discrete
pools that SOC is composed from. We fit Eq. (1) to SOC timeseries using
the ‘nls’ function in the R base package (R Core Team, 2020) as demon-
strated by Caruso et al. (2018).

2.3. Meta-analysis

To summarize dSOC1–10, dSOC30, and dSOC50 across studies, we em-
ployed a random effects meta-analysis model. We used a random effects
model because multiple climate regions, turfgrass species, and turfgrass
uses were represented among the studies. We used the inverse variance
method to weight each study (variance =  SE2). We evaluated between-
study heterogeneity by computing heterogeneity variance (τ2), performing a
Q-test, and evaluating Higgins’ I2 (where I2 >  75% was considered high
heterogeneity). We checked for influential cases using Baujat plots and ex-
ternally standardized residuals as influence diagnostics (Harrer et al.,
2022). Where high-influence studies were detected, results are reported
both with and without the studies included.

Sub-group analyses were performed to assess whether studies differed
based on prior land use, climate region, turfgrass photosynthetic pathway,
turfgrass use, and study methodology. Each potential explanatory variable
was evaluated individually as a categorical variable in a mixed-effects
model, and the ability of the variable to explain between-study heterogene-
ity was evaluated by a Q-test (Harrer et al., 2022). Additionally, linear
meta-regression was used to evaluate possible relationships between
dSOC/dt and maximum soil sampling depth.

2.4. Partial GHG budget analysis

Fig .  2. Turfgrass SOC stock changes through time based on authors’ equations.

(A) Total SOC stocks versus turfgrass age for all studies. Line thickness indicates
study sample size and line color indicates turfgrass use. Note that trends for short-
duration, small-plot studies are shown as short segments near t =  0 years. (B)
Annual rate of SOC gain or loss, dSOC/dt, for all studies. (C) Meta-analysis mean
and 95% confidence intervals for dSOC1–10, dSOC30, and dSOC50.

soil was encountered in a core compared to the reference. For meta-analysis
of dSOC1–10, dSOC30, and dSOC50, we pooled ESM-based calculations for
the 16 studies that provided sufficient data, and FD-based calculations for
the remaining studies.

As an additional exercise, we also re-fit all the chronosequence studies
with an exponential rise-to-maximum model that follows from a mechanis-
tic perspective of SOC dynamics (Caruso et al., 2018). The linear, quadratic,
and polynomial regression models originally used are empirical and not
tied to any mechanistic model. Mechanistic SOC models incorporate con-
cepts of C inputs, decay, and selective stabilization that drive changes in
pool sizes over time until a dynamic equilibrium is reached (Falloon and

We constructed partial GHG budgets for each dataset that considered
dSOC/dt, CO2 emissions from mowing, CO2 emissions from the production
and distribution of N-fertilizer, and soil N2O emissions resulting from appli-
cation of N fertilizer. We did not account for CO2 emissions related to irri-
gation. We recognize that irrigation is an important emissions source
(McCarthy et al., 2020; Rothausen and Conway, 2011). However, irrigation
rates and their CO2 emissions are difficult to estimate. Residential irrigation
practices do not correspond well with local climate (Groffman et al., 2016),
few water districts provide GHG accounting (The Climate Registry, 2020),
and representative values for the GHG intensity of irrigation are not readily
available, as the extraction, conveyance, and treatment of irrigation water
are regionally-specific (Bauer et al., 2014; US EIA, 2022). Therefore, a ro-
bust assessment of irrigation-related GHG emissions was considered be-
yond the scope of this study. Emissions associated with herbicides and
pesticides were previously estimated to account for <8% of turfgrass
maintenance-related emissions (Braun and Bremer, 2019; Selhorst and
Lal, 2013), and were not included here.

Two scenarios were considered: 1) an unfertilized scenario, reflecting
the fact that 28–49% of households in 6 major U.S. metropolitan areas re-
port not fertilizing lawns (Groffman et al., 2016), and 2) a N-fertilized sce-
nario, in which N was assumed to be applied in the form of urea, and N-
fertilizer requirements were calculated for each location from a
temperature-based growth potential model used by some professional turf
managers (Gelernter and Stowell, 2005; PACE Turf, 2022; Woods, 2013).
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For each dataset, annual net GHG emissions (GHGnet) were calculated as
follows, with all emissions sources expressed as CO2-equivalents:
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uncertainties in dSOC/dt but not from fertilizer, N2O, or mowing emissions
were propagated to mean GHGnet estimates.

GHGnet ¼  Mowing þ  Nfertilizerproduction þ  N2O emissions–dSOC=dt (2) 3. Results

Both mowing frequency and N-fertilizer rates were estimated using the
temperature-based turfgrass growth potential model, following Soldat et al.
(2020). This model computes the relative growth potential of turfgrass as
(Gelernter and Stowell, 2005):

The datasets meeting the search criteria were located primarily in the
United States, with one study each in New Zealand and Chile (Fig. 1). We
note that research from under-represented areas were found in the search
but did not meet criteria for inclusion, including studies from Australia

Relative growth potential ¼  e  0:5
Tavg  Topt

2

(3)
(Riches et al., 2020; van Delden et al., 2016), Europe (Tidåker et al.,
2017), Russia (Sarzhanov et al., 2015), and Asia (Kong et al., 2014; Ng et
al., 2015; Velasco et al., 2021).

where Tavg is the average monthly temperature (°C), Topt is the optimum
growth temperature (20 °C for C3 turfgrasses and 31.1 °C for C4
turfgrasses), and V is a variance constant (set to 5.5 for C3 and 7 for C4
turfgrasses, Woods, 2013). Tavg was determined for each study location
from monthly average temperature for 1981–2010 (NOAA, 2022). This
modeling approach implicitly assumes that rainfall or irrigation was suffi-
cient, and that turfgrass growth was only limited by temperature.

We applied a calendar mowing schedule, following the minimum mow-
ing frequencies for different turfgrass types during periods of optimum
growth shown by Soldat et al. (2020): once weekly for lawns and roughs,
twice weekly for fairways and warm-season (C4) athletic fields, and three
times weekly for putting greens. We also moderated mowing frequency
by turfgrass growth rate and assumed the suggested mowing frequency
when relative growth potential exceeded 75 %, three-quarters of the sug-
gested frequency when growth potential was between 50 and 75 %, half
the suggested frequency when growth potential was between 20 and 50
%, and no mowing when growth potential was ≤2 0  %.

For athletic fields, putting greens, and roughs, we assumed the same
professional mowing equipment and fuel consumption rates as Soldat et
al. (2020), and converted diesel and gasoline volumes to CO2 emissions
using EPA conversion factors (US EPA, 2022). Mowing equipment emis-
sions for athletic fields were computed based on a Toro Groundmaster

4300D with an emissions factor of 8.32 kg CO2 ha−1 ;  putting greens were
computed based on a Jacobsen Eclipse 322 hybrid gasoline reel mower
with an emissions factor of 3.20 kg CO2 ha − 1 ,  and fairways and small re-
search plots were computed based on a John Deere 7500A fairway
mower with an emissions factor of 2.26 kg CO2 ha − 1  (Soldat et al.,
2020). Because most studies of lawns were of residential lawns, we as-
sumed a gasoline push-mower with an emissions factor of 15.88 kg CO2

ha− 1 ,  based on Velasco et al. (2021) who calculated emissions factors for
5 different models of push mowers.

For the fertilized scenario, we estimated N-fertilizer requirements by
multiplying monthly growth potential by a maximum monthly N use of
1.5 g N m − 2  for Festuca species, 3.5 g N m − 2  for other C3 species, and 4
g N m − 2  for C4 species, based on recommendations by Woods (2013).
Maximum nitrogen use rates are site-specific, and assumed values are
intended to be tailored to local conditions and turf species when employed
as part of a nutrient management program; however, these baseline values
are suggested as a starting point (PACE Turf, 2022; Woods, 2013). Esti-
mated nitrogen requirements based on the growth potential model are
shown in Table S2. We computed the CO2 emissions from the production
of N-fertilizer by applying an emissions factor of 3.781 kg CO2 kg N − 1 ,
which was estimated for North American production of urea (46–0–0) fer-
tilizer (Haxha and Christensen, 2018).

We estimated N2O emissions for the fertilized scenario by assuming an
emissions factor of 1% of fertilizer-N applied was lost as N2O (IPCC, 2019).
N2O emissions for the unfertilized scenario were estimated as 0.15 g N2O-N
m − 2  yr−1, which was the average emissions rate from unfertilized turfgrass
reported in a review of turfgrass studies by Braun and Bremer (2018). We
applied a 100-year sustained global warming potential value of 270 to con-
vert N2O emissions to kg CO2-equivalents (Neubauer and Megonigal,
2015).

We computed cross-study mean GHGnet using a meta-analysis approach,
with the standard error of dSOC/dt as a weighting factor. Thus,

3.1. Meta-analysis of authors’ equations

Relationships between SOC stocks and time since turfgrass establish-
ment showed a general increase over the first 30 to 50 years, with stocks
leveling-off or declining thereafter (Fig. 2A). The regressions shown are au-
thors’ original functions, with the exception that SOC stocks were re-
computed using equivalent soil mass (ESM) accounting where sufficient
data were provided (N =  16 datasets). A notable feature of the datasets is
the large range in baseline SOC stocks that can be observed at t =  0 years
(Fig. 2A). This reflects differences in sampling depth among studies,
which ranged from 5 to 100 cm, although most datasets sampled to 15 or
30 cm depth. It also reflects the large range in climatic regions and various
prior land uses represented.

Also notable was that one-third (14) of the 42 studies that captured
multi-decadal dynamics modeled SOC(t) with linear regression models.
The linear model suggested consistent growth in SOC stocks through time
and a constant SOC sequestration rate, and deviates from mechanistic the-
ory predicting that SOC stocks level off to a steady-state value. Five of these
studies had small sample sizes ( ≤5  locations sampled) and thus authors
may have chosen a linear model for lack of data, but 8 studies with large
sample sizes demonstrated linear increases in SOC stocks over multiple de-
cades.

Among studies that modeled SOC(t) with non-linear regressions, many
authors applied third-order polynomial regressions (Fig. 2A). When these
equations were differentiated to determine annual SOC sequestration
rates they translated to quadratic functions (Fig. 2B). These quadratic func-
tions were inconsistent with SOC dynamic theory because they produced
local minimums midway into time series. They suggested minimum SOC se-
questration rates were reached at 30–50 years and increased thereafter,
rather than staying at a low steady-state value. Because these local mini-
mums were likely artifacts of convenient regression choices, and because
increasing sequestration rates in decades-old, consistently managed, peren-
nial systems have not been reported elsewhere, we conducted meta-
analysis on rates of SOC change only up to 50 years, the point at which se-
questration rates in most studies reached a minimum (Fig. 2C).

The cross-study mean SOC sequestration rate for recently established
turfgrass (dSOC1–10) was 141 g C m − 2  year−1  [95% CI 101; 180], equiva-
lent to an atmospheric CO2 removal of 5.28 Mg CO2 ha − 1  year −1  [3.71;
6.17]. This result was based on 61 datasets, with 2 highly influential
datasets removed (Selhorst 2013-Las Vegas and Acuna 2017-Cochise,
Table S1). (Result with all studies included was 158 g C m − 2  y r − 1  [95%
CI 111; 205].) These results indicate that recently established turfgrass
was on average a net C sink. However, the between-study heterogeneity
variance was very high, estimated at τ2 =  19,027 with an I2 value of 95.3
%, indicating large differences in computed sequestration rates among
studies. The prediction interval ranged from −125  to 407 g C m − 2  yr − 1 ,
indicating that C losses from recently established turfgrass cannot be
ruled out for future studies.

A funnel plot of dSOC1–10 skewed right (Fig. S1), which may indicate
publication bias towards high sequestration rates for young turfgrass sys-
tems, but also likely reflects sub-group differences, described below. In par-
ticular, the funnel plots reflected the systematically lower values found in
repeated-measures studies compared to chronosequence studies. Due to
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the high between-study heterogeneity indicated by I2, no additional mea-
sures were taken to estimate an unbiased mean for dSOC1–10.

Mean sequestration rates declined as turfgrass matured (Fig. 2C), to a
cross-site mean of 93.5 g C m − 2  y r − 1  [63.4; 124] for dSOC30, and to 35.4
[−17.9; 88.8] for dSOC50. Thus, by 50 years, cross-study mean sequestra-
tion rate was not distinguishable from zero. These values are equivalent
to CO2 removal rates of 3.43 Mg CO2 ha − 1  year−1  [95% CI 2.32; 4.55] at
30 years and 1.30 [95% CI −0.66; 3.26] at 50 years. Funnel plots were bal-
anced for dSOC30 and dSOC50 (Fig. S1), suggesting no publication bias or
structure between subgroup responses.
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did not have strong support over the initial 50 years of turfgrass establish-
ment. However, differences between the modeling approaches emerged
after 50 years, when many authors’ original empirical equations, perhaps
dubiously, predicted increases in dSOC/dt (compare Figs. 2B and 4B).
Also notable was that cross-study mean dSOC50 computed with the Caruso

3.2. Equivalent soil mass accounting

We compared the cross-study mean SOC sequestration rates for 16 stud-
ies computed with both FD and ESM accounting approaches. ESM account-
ing increased mean sequestration rates computed at 10, 30, and 50 years
and widened 95% confidence intervals (Fig. 3). The mean increases were
largely driven by three datasets, for which ESM accounting greatly in-
creased computed sequestration rates (Fig. S5). However, for most of the
datasets, ESM accounting had small impacts on computed sequestration
rates, and on a case-by-case basis ESM accounting sometimes increased,
sometimes decreased, and sometimes had no impact on computed rates
(Fig. S5).

3.3. Meta-analysis of Caruso model

The rise-to-maximum ‘Caruso’ model did not fit all datasets. Of the 43
datasets that captured multi-decadal dynamics, 28 of them (65 %) con-
verged on a solution when fitted with the Caruso model. Of the datasets
that failed to converge, visual inspection indicated that 6 (14 %) had no in-
crease in SOC stocks over time, and 8 (19 %) had a linear increase in SOC
stocks through time. The datasets fitted with the Caruso model demon-
strated a wide range in the velocity with which they approached steady
state (Fig. 4A and B), which is controlled by parameter c (Eq. (1)). The
cross-study mean value for c, which represents the sum of SOC input and
decay rates, was 0.038 g C m − 2  y r − 1  [0.027; 0.0489].

Fitting datasets with the Caruso model in contrast to authors’ models
did not alter conclusions about SOC sequestration rates during the initial
50 years following turfgrass establishment. The Caruso model predicted
higher cross-study mean sequestration rates at 10 years and lower means
at 30 and 50 years than authors’ models; however, the 95% confidence in-
tervals for both approaches overlapped (Fig. 4C). Our hypothesis that the
Caruso model would predict lower sequestration rates for mature turfgrass

Fig.  3. Cross-study mean and 95% confidence interval for dSOC1–10, dSOC30, and

dSOC50, based on fixed depth (FD) or equivalent soil mass (ESM) accounting. All
studies originally reported SOC stocks by FD accounting.

Fig.  4. Re-analysis of chronosequences using an ecological equilibrium (Caruso)

model (equation). Note that only 28, or about one-third of datasets, could be fi t
with the Caruso model. (A) Total SOC stocks versus years since turfgrass
establishment. (B) Annual rate of SOC gain or loss, dSOC/dt. (C) Comparison of
cross-study mean and 95% confidence intervals using Caruso versus authors’
models. Note that the error bars for the Caruso model at t =  50 are too small to
be visible.
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model had smaller confidence intervals and lower between-study heteroge-
neity than when computed with the authors’ models, due to the fact that the
Caruso model predicts dSOC/dt approaches 0 through time in all studies.

Because the confidence intervals for both approaches overlapped dur-
ing the initial 50 years of turfgrass establishment, and because no solutions
for the Caruso model were found for one-third of the datasets, subsequent
meta-regressions of dSOC1–10, dSOC30, and dSOC50 were computed only
from the authors' original regression models.

3.4. Meta-regression and sub-group analysis

A meta-regression of dSOC1–10 versus maximum sampling depth pro-
vided no evidence for a relationship between the depth of soil sampled
and SOC accumulation rate (Fig. S6). The continental-scale studies of resi-
dential lawns by Selhorst and Lal (2013, N = 13 U.S. cities, 15 cm sampling
depth) and Trammell et al. (2020, N = 6  U.S. cities, 30 cm sampling depth)
showed considerable heterogeneity among locations sampled to a common
depth. The heterogeneity attributable to geography far exceeded the het-
erogeneity that could be attributed to sampling depth. The lack of relation-
ship provided no basis for normalizing dSOC1–10 values to a common
sampling depth. Therefore, dSOC1–10 computed from different maximum
sampling depths were pooled for subsequent sub-group analysis.

We evaluated whether the variation in SOC sequestration rates across
studies was explained by prior land use, climate region, turfgrass photosyn-
thetic pathway, turfgrass uses, and study methodology. Of these categorical
variables, significant differences in dSOC1–10 were found among different
prior land uses (Q-test p <  0.01), turfgrass uses (Q-test p =  0.02), and
study methodologies (Q-test p =  0.01, Fig. 5).

In locations that were previously forested or converted from shrubland
vegetation, cross-study mean dSOC1–10 was undistinguishable from zero. In
contrast, sites converted from other vegetation types or with unknown his-
tory had positive values for dSOC1–10 (Fig. 5A). Although some previously
forested sites did not lose SOC, all sites with dSOC1–10 significantly less
than zero were previously forested (Fig. S2). The four studies with greatest
SOC losses in the short term were all previously forested (Fig. S2,
Huyler2017_Auburn_PureLawns −346 g C m − 2 yr − 1 ;
Campbell2014_Roanoke −302            g           C           m − 2 yr − 1 ;
Raciti2011_Baltimore_FromForests       −8 2        g       C m − 2 yr − 1 ;
Wang2014_ForestConversion −5 2  g C m − 2  yr − 1) .  When dSOC1–10 was
evaluated by individual soil layers, several previously forested locations
showed losses of SOC throughout the soil profile (Fig. 6). Other vegetation
types showed only SOC gains or rates of change not different from zero
when evaluated on an individual layer basis.

Köppen climate regions did not have detectable differences in dSOC1–10

(Q-test p =  0.11). We note that all the previously forested sites that experi-
enced SOC losses were in the humid subtropical Köppen region (Cfa) in the
mid-Atlantic and southeastern U.S (Table S1). The potential positive im-
pacts of favorable growing conditions in this region may have been offset
by SOC losses due to forest conversion. Similar to climate regions, C3 or
C4 photosynthetic pathways did not have detectable differences in
dSOC1–10.

Turfgrass uses differed in dSOC1–10 (Fig. 5B), with lawns and fairways
having positive SOC sequestration rates and other turfgrass uses having
SOC sequestration rates indistinguishable from zero. Because putting
greens and athletic fields are mowed more often, frequently have clippings
removed, and therefore accumulate less biomass than less-intensively man-
aged roughs and lawns, a negative relationship between dSOC1–10 and
management intensity might be expected. However, the small number of
datasets for putting greens, athletic fields, and roughs did not allow for ro-
bust evaluation of management intensity.

Chronosequences reported a higher average dSOC1–10 than repeated
measures studies. We note that Qian and Follett (2002) was considered a
chronosequence study for this assessment, although it pooled repeated
soil testing data over time for golf courses of different ages. This comparison
of methods also captured differences in turfgrass age. The repeated-
measures studies were all ≤ 4  years in duration, and potentially influenced

Fig.  5. Group analysis for dSOC1–10. SOC changes were computed from authors’
regression models, with the exception that equivalent soil mass accounting was
used for 16 studies providing sufficient information.

by the disturbance effects of plot establishment, whereas chronosequence
studies were assessed at ten years.

While a portion of the between-study heterogeneity could be attributed
to prior land use, turfgrass use, and study methodology, a considerable
amount of between-study heterogeneity was unexplained. When the three
explanatory variables that were individually significant were combined
into a single meta-regression model, they explained 69% of between-
study heterogeneity in dSOC1–10. Residual heterogeneity was still consider-
able (τ2 =  5641) and a Q-test for residual heterogeneity was highly signif-
icant (p <  0.01).

For dSOC30 and dSOC50, a significant portion of between-study hetero-
geneity was explained by maximum sampling depth (Figs. S7 and S8). At 30
years, SOC sequestration rate increased by an average of 14 g C m − 2  y r − 1

[4; 25] for every 10 cm of additional sampling depth, and sampling depth
accounted for 53% of between-study heterogeneity. At 50 years, SOC se-
questration rate increased by an average of 24 g C m − 2  y r − 1  [2; 45] for
every 10 cm of additional sampling depth, and sampling depth accounted
for 32% of between-study heterogeneity. When datasets with different sam-
pling depths were pooled, there was not sufficient evidence to support dif-
ferences in sequestration rate resulting from prior land use, climate, C3/C4
photosynthetic pathway, or turfgrass use at 30 or 50 years. However, when
the datasets were adjusted to a common sampling depth of 30 cm, using the
coefficients reported above, subgroup analysis of depth-adjusted dSOC30

values showed significant differences among Köppen climate regions. The
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Fig.  6. Depth-discrete dSOC1–10, separated by prior land use. Vertical bars indicate the depth range sampled and horizontal bars indicate the standard error of dSOC1–10.

region classified as ‘humid continental, hot summers’ (code Dfa), which en-
compasses the Midwestern U.S., had significantly greater dSOC30 than
other climate regions (Q-test p =  0.02). Depth-adjusted dSOC50 values
did not show differences in sequestration rate at 50 years among sub-
groups.

3.5. Net greenhouse gas emissions

Estimated mowing events ranged from 14 times per year for lawns in
colder climates such as Duluth, Minnesota to 43 times per year for lawns in
warm climates such as Los Angeles, California (Table S2). Putting greens
were mowed an average of 77 times each year, and fairways an average of
34 times each year. While putting greens and fairways were mowed more
frequently than most lawns, ride-on mowers are faster and more efficient
than push mowers, and therefore estimated annual mowing emissions
were highest for residential lawns, averaging 0.35 Mg CO2 ha − 1  year−1

compared to 0.25 for putting greens and 0.08 for fairways.
For the N-fertilized scenario, estimated fertilizer requirements based on

plant growth potential ranged from 55 kg N ha − 1  year−1  for warm season
grasses grown in cooler climates to 327 kg N ha − 1  year−1  for warm season
grasses grown in a well-matched climate in Miami, Florida and 344 for cool
season grasses grown in Los Angeles, California (Table S2). Emissions asso-
ciated with synthetic N-fertilizer production ranged from 0.3 to 1.3 Mg CO2

ha − 1  year−1  to supply turfgrass systems across the climatic gradient, and
soil N2O emissions resulting from fertilizer application had a similar magni-
tude, accounting for an additional 0.3–1.5 Mg CO2 ha − 1  year−1  (Fig. 7B).
Emissions related to the production and use of N-fertilizer far exceeded
mowing-related emissions. On average across all studies, mowing, syn-
thetic N-fertilizer production, and N2O emissions accounted for 14 %, 41
%, and 46% of total maintenance emissions, respectively (Fig. 7B).

GHGnet was highly dependent on assumed N-fertilization rates. In the
unfertilized scenario, mowing and N2O emissions offset 17% of dSOC1–10,
whereas in the N-fertilized scenario, maintenance emissions offset 32% of
dSOC1–10 (Fig. 7). Use of synthetic N-fertilizer therefore reduced the
strength of emissions removal. However, in both scenarios, cross-study
mean GHGnet was significantly less than zero (a net sink) for turfgrass
aged 30 years or less, and undistinguishable from zero for 50 year-old turf-
grass (Fig. 7A). For the N-fertilized scenario, mean GHGnet was −3 .6  Mg
CO2 ha − 1  year−1  [−5.1; −2.1]  over the first decade following establish-
ment, −1 . 8  [−2.8;  −0.8]  at 30 years, and −  0.06 [−1.7;  1.6] at 50
years. For the unfertilized scenario, mean GHGnet was −4 . 3  Mg CO2

ha − 1  year−1  [−5.8; −2.9]  over the first decade following establishment,
−2.6  [−3.6; −1.6]  at 30 years, and −  0.83 [−2.5; 0.87] at 50 years.

4. Discussion

4.1. Key findings and study limitations

The cross-study mean SOC sequestration rate for turfgrass established
within the last 10 years (141 g C m − 2  yr−1 )  substantially exceeded seques-
tration rates that have been reported for numerous soil conservation prac-
tices, including cropland to grassland conversion (87 g C m − 2  yr − 1 ,
Conant et al., 2017), grazing land fertilization (57 g C m − 2  yr −1 ,  Conant et
al., 2017), cover crop adoption (32 g C m − 2  yr − 1 ,  Poeplau and Don,
2015), and adoption of no-till agriculture (6 to 54 g C m − 2  y r − 1 ,  Ogle et
al., 2019). Positive SOC sequestration rates were reported for the major-ity
of turfgrass studies reviewed here (Figs. 2 and 6), and net positive se-
questration persisted in many cases for 30 years or longer (Fig. 2). These
results suggest that turfgrass cultivation may be useful for intentionally
building SOC stocks. Our partial GHG budget suggests that turfgrass
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Fig.  7. Component and net greenhouse gas fluxes at 1–10, 30, and 50 years, with

negative values indicating atmospheric removal. (A) Unfertilized scenario.
(B) Fertilized scenario, with fertilization requirement estimated from a
temperature-based growth potential model. For dSOC/dt, the meta-analysis mean
and 95% CI interval are shown. No uncertainty analysis was conducted for
mowing, fertilizer, and N2O emissions, and these emissions were held constant

through time. For GHGnet, meta-analysis mean and 95% CI were computed using

the standard error of dSOC/dt as a weighting factor.

maintenance practices partially, but not completely, offset SOC sequestra-
tion over the first 30 years following turfgrass establishment. Even in a
high-intensity management scenario that assumed water sufficiency and
N-fertilization rates to match growth potential, we estimated that turfgrass
systems, on average, do not reach a compensation point between emissions
and sequestration until approximately 50 years following establishment.

Human modification of soils through intensive production is often de-
scribed in terms of its degrading impacts that result in SOC losses, and
less often as a process that can drive SOC accumulation. However, elevated
levels of SOC due to landscaping are commonly described in urban settings
in the U.S. compared to native soils (Golubiewski, 2006; Trammell et al.,
2020). Modified, landscaped soils can be viewed as a contemporary exten-
sion of anthropogenic or “cultural” soil layers enriched in SOC that resulted
from ancient settlements, for instance in urban settlements in Russia
(Vasenev and Kuzyakov, 2018), China (He and Zhang, 2009), and from
plaggen farming practices in Northern Europe (Blume and Leinweber,
2004). Through additions of organic materials and intentional cultivation,
humans have historically built lasting reservoirs of SOC in some settings.
However, such intensification of SOC content requires inputs of nutrients
and other resources, and the accumulation of SOC content alone does not
describe the net climate impact of intensification practices. In the case of
turfgrass cultivation, estimated GHGnet suggests that turfgrass cultivation
may be a negative emissions practice (i.e., C sink) for at least 30 years
when moderate N fertilizer rates matching plant demand are used.

However, this meta-analysis was unable to address questions about how
maintenance practices impact carbon sequestration. Few datasets were
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available for high-input maintenance systems (i.e., athletic fields and put-
ting greens), and limited information was provided on the maintenance
practices used in the chronosequence studies, making it difficult to quanti-
tatively evaluate the GHG impacts of management intensity. An accompa-
nying review paper (Wang et al., 2022) discusses findings from individual
studies on the SOC and GHG impacts of turfgrass maintenance practices.
For instance, Qian et al. (2003) estimated from model simulations that
returning mowing clippings could increase SOC sequestration by 28 to 59
%. Increasing the amount of plant material returned to soil is therefore ex-
pected to increase SOC sequestration rates, although it could not be sup-
ported across multiple studies by this meta-analysis.

Another limitation of this study is that we did not address the water re-
quirements of turfgrass, which is a major environmental concern, particu-
larly in semi-arid and arid parts of the U.S. For instance, the State of

California has set a goal of removing 4600 ha−1 of ornamental turfgrass be-
tween 2022 and 2030 (CNRA, 2022). Although many U.S. municipalities
have increased water conservation through time (Gonzales and Ajami,
2017; Huntra and Keener, 2017; Sullivan et al., 2017), and turfgrass re-
search has long focused on improving turf drought performance (Braun
et al., 2022), the high water demands of turfgrass still challenge available
water resources (Cabrera et al., 2013; Kjelgren et al., 2000). Even in non-
arid regions of the U.S., supplemental irrigation is often applied to turfgrass.
For instance, Kjelgren et al. (2000) estimated that 9–13% of municipal
water use was used for landscaping in Atlanta, Georgia and Washington,
D.C., two U.S. cities that are in humid subtropical Köppen climate zones
and receive summer rainfall. Groffman et al. (2016) showed that 85% of
survey respondents in Miami, Florida (tropical monsoon Köppen climate
zone) reported irrigating their lawns, similar to the 89% percent of house-
holds in Phoenix, Arizona (subtropical desert Köppen climate zone). The
potential carbon sequestration benefits of turfgrass therefore comes at the
expense of consuming irrigation water.

Irrigation can also have a considerable carbon footprint, and a complete
GHG budget would need to include irrigation-related emissions. We felt a
robust accounting of irrigation-related emissions was not possible at the na-
tionwide scale of this study, because the extraction, conveyance, and treat-
ment of irrigation water and the energy density of electricity are regionally
specific. However, several past case studies have provided estimates of
irrigated-related emissions. Braun and Bremer (2019) estimated irrigation
pumping was responsible for 0.11–0.15 Mg CO2 ha − 1  y r − 1  for a trial in
Kansas, U.S., accounting for 6.7% to 8.3% of total maintenance emissions.
Tidåker et al. (2017) estimated irrigation pumping accounted for 1% of
maintenance emissions on two Swedish golf courses. Townsend-Small
and Czimczik (2010) employed a 10× higher estimate for the emissions in-
tensity of irrigation pumping (1.93 Mg CO2 h a − 1  yr − 1 )  based on
Schlesinger (1999). They estimated that in Southern California, U.S., irriga-
tion accounted for 24–48% of total maintenance emissions, depending on
fertilization rates. This higher estimate for irrigation-related emissions
would equate to 36% of mean dSOC1–10 and 56% of mean dSOC30 com-
puted here, and would considerably reduce the potential climate benefits
of turfgrass. More research on irrigation-related emissions is urgently
needed to improve sustainability assessments.

4.2. Comparisons of GHGnet with earlier studies

Earlier efforts to compute net emissions from turfgrass systems similarly
concluded that residential lawns (Selhorst and Lal, 2013; Townsend-Small
and Czimczik, 2010) and golf courses (Selhorst and Lal, 2011) were net
CO2 sinks when low to moderate rates of N-fertilizer were applied, even
after accounting for the hidden carbon costs of maintenance. Tidåker
et al. (2017) concluded that golf course roughs in Sweden, but not fairways,
were net CO2 sinks. However, a major factor influencing the strength of the
estimated CO2 sink in different studies is the handling of N emissions. A
major difference between our calculations and those by Selhorst and
Lal (2011, 2013) is that we included N2O emissions. N2O was a large
source that exceeded mowing emissions in our calculations, even in the
unfertilized scenario. In our N-fertilized scenario, we also computed N-
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fertilization rates 4–5 times greater than the rates Selhorst and Lal (2013)
assumed were used on residential lawns. However, our rates were less
than half of the ‘high’ fertilization rates they reported were used by com-
mercial lawn care companies. On the other hand, we used a lower emis-
sions factor for CO2 associated with N-fertilizer production (3.78 kg CO2

k g − 1  N versus 4.77). Based on discussions with turfgrass professionals,
we assumed urea (46–0–0) is the main form of N-fertilizer used in turfgrass
systems, which has a substantially lower emissions factor than formulations
containing ammounium nitrate (Haxha and Christensen, 2018). We also as-
sumed greater mower efficiencies and computed lower mower emissions
than Selhorst and Lal (2013).

Townsend-Small and Czimczik (2010) evaluated emissions associated
with a low N-fertilizer regime (100 kg N ha − 1  yr − 1 )  and a high N-
fertilizer regime (750 kg N ha − 1  yr −1 )  and found that lawns were only a
net sink at the lower N-rate. Using a similar accounting approach as we
did, they determined that emissions associated with fertilizer production
and N2O exceeded turfgrass CO2 removal at the high N-rate. Their high
N-fertilizer rate was considerably higher than N rates we produced in our
scenarios, which may reflect a trend towards lower recommended fertiliza-
tion rates through time (Gelernter et al., 2016). However, they similarly
concluded that turfgrass emissions are highly dependent on N-fertilization
rates.

The emissions associated with N-fertilization are a major source of un-
certainty in assessing the net climate impact of turfgrass. N-fertilization
rates were unknown for the chronosequence studies described here. Esti-
mating N-fertilizer rates for residential lawns is difficult because recom-
mended rates can vary by a factor of 6 or more (Townsend-Small and
Czimczik, 2010), actual application rates among homeowners and
lawncare professionals are highly variable (Campbell et al., 2014;
Selhorst and Lal, 2013), and fertilization practices do not correspond with
soil N supply (Groffman et al., 2016). Methods for estimating the impacts
of fertilizer on N2O production are also imprecise (Braun and Bremer,
2018; Van Groenigen et al., 2010). Here we applied the IPCC protocol for
estimating N2O production as 1% of fertilizer-N applied (IPCC, 2019). How-
ever, Braun and Bremer (2018) estimated the mean emissions factor from a
review of 14 turfgrass datasets to be 1.9 %. When we apply that higher
emissions factor in our calculations, we estimate the additional N2O emis-
sions would increase GHGnet by 1.5 Mg CO2 ha − 1  yr − 1 .  However, the re-
view by Braun and Bremer (2018) also demonstrated that very few
studies have quantified N2O emissions from turfgrass systems, and that a
linear relationship between fertilizer rates and N2O production cannot be
assumed.

In addition to the uncertainties related to predicting N-fertilizer related
emissions, a limitation of the GHGnet calculations was that we did not ac-
count for lower plant growth rates that would be expected in an unfertilized
versus an N-fertilized scenario. Such a reduction in plant growth might also
reduce SOC accumulation rates. Braun and Bremer (2019) tested the im-
pacts of high- and low-input management regimes on zoysiagrass (Zyosia
spp.) turf, following plots for 3 years from establishment. They found simi-
lar SOC accumulation rates between high-input treatments that received
urea fertilizer and medium irrigation, and low-input treatments that were
unfertilized and received low irrigation. However, because low-input turf-
grass required less frequent mowing and had lower fertilizer-related emis-
sions, it had lower maintenance emissions, and thus lower GHGnet than
high-input turf. Their study showed that less intensively managed turfgrass
has lower net emissions, despite having lower plant production. This is the
only study, to our knowledge, that has evaluated the net GHG impacts of
maintenance intensity, and more research on other turfgrass species and
in other climates would be useful.

4.3. Does SOC accumulation level-off?

The decline in mean dSOC/dt to zero over the first 50 years after turf-
grass establishment was a key result from this meta-analysis (Fig. 2). This
result was not altered depending on whether data were fitted by polyno-
mial regression or the Caruso model (Fig. 4C). However, sequestration
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rates after 50 years would be influenced by the model choice. Applying a
rise-to-maximum model to describe long-term trends in SOC is supported
by ample data from large numbers of long-term studies from agricultural
(Caruso et al., 2018; Poulton et al., 2018) and natural systems (Lajtha et
al., 2018). In turfgrass systems, Shi et al. (2012) showed an increase in soil
microbial abundance and enzymatic activity across a turfgrass
chronosequence, suggesting increased SOC decomposition through time
and microbial regulation of soil C accumulation. Such data suggest that in-
creases in dSOC/dt after many decades of consistent management are un-
likely, and therefore that applying polynomial regressions to fit SOC(t)
relationships will give misleading representations of dSOC/dt dynamics.

It is also clear, however, that linear relationships provided the best de-
scription of SOC accumulation in several locations, including: residential
lawns spanning over 100 years in Massachusetts (Trammell et al., 2020),
Maryland (Raciti et al., 2011; Trammell et al., 2020), and New Hampshire
(Contosta et al., 2020), lawns spanning 100 years in Salt Lake City, Utah
(Smith et al., 2018), lawns spanning 81 years in Los Angeles, California
(Townsend-Small and Czimczik, 2010; Trammell et al., 2020), and golf
course fairways spanning 34 years in Saratoga, Wyoming (Qian and
Follett, 2002). These studies suggest turfgrass can maintain high rates of
SOC accumulation without apparent decline for multiple decades in some
settings.

Overall, individual studies demonstrated considerable variation in the
trajectory of SOC sequestration rates. This variation is not surprising,
given that studies varied considerably in their starting SOC content
(Fig. 2A), which may indicate differences in soil carbon deficit and their
ability to accumulate further stocks (Stewart et al., 2007). Studies also var-
ied in climate and soil mineralogy, which have major influences on decom-
position rates (Rasmussen et al., 2018). Decomposition rates, in
combination with plant C input rates, control the velocity with which
SOC stocks approach an ecological equilibrium. The fact that no leveling-
off was detected in some turfgrass chronosequences may be because they
did not cover a long enough period to reveal non-linear dynamics. The in-
herent imprecision of chronosequence studies is also relevant. The small
sample sizes of many of the chronosequences, potential differences in man-
agement and environmental setting among turfgrass of different ages, and
the inherent high variability of SOC stocks (Kravchenko and Robertson,
2011) all add uncertainty to model fitting and interpretation of SOC
dynamics.

4.4. The beginning and end of turfgrass lifespans

Because turfgrass establishment often accompanies land use change, it
is important to consider the emissions stemming from conversion from
prior vegetation types. The meta-analysis showed net accumulation of
SOC following establishment in most settings, but several datasets docu-
mented SOC losses following forest to turfgrass conversion (Figs. 5 & 6,
Campbell et al., 2014; Huyler et al., 2014; Raciti et al., 2011). These forest
conversion datasets provide a cautionary example of how turfgrass cannot
immediately compensate for the C losses associated with land development
in all environmental settings. Raciti et al. (2011) reported that it took 20
years following turfgrass establishment to regain near-surface SOC stocks
to the levels measured in urban forests. Forest removal also has legacy im-
pacts on deep SOC losses that are slow to regain even after many decades
(Billings et al., 2018). Since forests contain much C in aboveground bio-
mass, the emissions from land use conversion are also considerably greater
when accounting for whole-ecosystem C changes.

It is also instructive to consider the end-point of a turfgrass system, and
its eventual replacement with other land uses. As evidenced by the many
long-term chronosequences presented here, turfgrass is a perennial system
that can remain in place for many decades, with renovation events some-
times employed to improve growth and aesthetics (e.g. reseeding, aeration,
dethatching). However, ornamental turfgrass is presently being removed in
several Western U.S. cities over water concerns (Cowan, 2022). Addition-
ally, as SOC accumulation slows in maturing turfgrass and mowing- and
fertilizer-related emissions continue, turfgrass systems will inevitably shift
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from being GHG sinks, or net neutral, to being GHG sources. How should
turfgrass be managed at that time to minimize emissions? How can the se-
questered SOC be protected, to not re-release it back to the atmosphere? Re-
releasing temporarily stored CO2 into an atmosphere with higher CO2 res-
ervoirs can potentially worsen climate change, as biological sink capacity
is diminished (Kirschbaum, 2006).

One option for addressing this transition from net C sink to net source is
to delay reaching this point for as long as possible, by minimizing mainte-
nance emissions. Electric mowers are increasingly available and have
been estimated to reduce CO2 emissions by 49.9% and 32.3 %, respectively,
for push and riding mowers over their lifecycles (Saidani and Kim, 2021).
Using locally available organic materials as N-fertilizer sources, such as
compost and biosolids, avoids the emissions associated with synthetic N-
fertilizer production, and when properly managed can reduce secondary
GHG emissions from excess nitrogen in the environment (Zhao et al.,
2020). In our analysis, production of urea-based fertilizers accounted for
41% of the total maintenance emissions associated with turfgrass manage-
ment (Fig. 7B). Using a locally-available organic N source could therefore,
theoretically, reduce turfgrass management emissions by a substantial
level. As mentioned previously, the study by Braun and Bremer
(2019), also suggested the low-input turfgrass can be an approach to re-
duce GHGnet, despite slower plant growth. If turfgrass can be main-
tained and its period of zero or low net emissions can be extended,
this may be preferable from a GHG perspective than transitioning turf-
grass to other land uses, because of the potential for SOC losses upon re-
moval of turfgrass.

A second option for addressing the transition from net carbon sink to net
source could be to incorporate woody biomass into landscaping—turfgrass
with trees and shrubs—to further increase C accumulation beyond what
can be accomplished by pure lawn. For instance, Huyler et al. (2017)
showed lawns with turfgrass and trees had higher C stocks, and reached
maximum C stocks more quickly, than pure lawns in Alabama, U.S..
Woody biomass develops deeper and more persistent roots than non-
woody biomass, where it can develop into more persistent SOC stocks
(Dijkstra et al., 2021). In addition, woody biomass stores substantial C
aboveground, and where water availability is sufficient, trees help to
build higher urban C stocks than can be stored in soil alone (Contosta et
al., 2020; Golubiewski, 2006).

In situations where turfgrass needs to be replaced with other vegeta-
tion or land uses, applying reduced-tillage principles to replace turfgrass
rather than mechanically removing may help to retain SOC stocks. Her-
bicide application, solarization, or sheet mulching are non-mechanical
techniques to kill turfgrass and prepare it for other plantings. In smaller
areas, sheet mulching with organic materials such as cardboard and
compost is a common way of employing locally available waste mate-
rials to simultaneously smother grass and build a thick layer of organic
material, which new plants are placed into (Barber et al., 2019).
Although gradual SOC losses can be expected if plant productivity is
reduced, burying SOC reduces its decomposition rate (Kirschbaum et
al., 2021; Van Oost et al., 2007).

5. Conclusions

Urbanizing landscapes are believed to be significant contributors to cli-
mate change (Huang et al., 2019; Ürge-Vorsatz et al., 2018), due in part to
being a concentrated source of GHG emissions (Moran et al., 2018). This
meta-analysis suggests that turfed landscapes may provide temporary
GHG reductions in urbanizing landscapes through high SOC sequestration
rates. Cross-study mean SOC sequestration rates for turfgrass ≤1 0  years
post-establishment exceeded sequestration rates reported for a range of
other soil conservation practices. However, SOC sequestration rates also de-
clined to zero over the initial 50 years following turfgrass establishment. Es-
timated net GHG emissions were highly dependent on N-fertilization
practices. However, even with N-fertilizer applied at a rate suggested by a
temperature-based growth potential model, turfgrass systems were esti-
mated to be a net CO2 sink on average, after accounting for mowing,
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fertilizer, and N2O emissions. There is some experimental evidence suggest-
ing that N-fertilization is not necessary to achieve net SOC sequestration in
turf; however, additional research is needed to fully evaluate this.
Irrigation-related emissions were not estimated due to lack of data, and
these emissions, as well as the high water demands of turfgrass, need to
be addressed in arid and semi-arid regions. Additionally, the datasets ana-
lyzed here consisted mostly of C3, ‘cool-season’ grasses in the U.S. Future
research will need to address whether these findings hold for sub-tropical
and tropical regions.

Realizing the full negative emissions potential of turfgrass requires at-
tention to its entire life cycle, including establishing turfgrass in locations
that are not vulnerable to large C losses, continuously managing turfgrass
to minimize mowing and fertilizer-related emissions, and avoiding re-
emission of stored SOC when mature turfgrass is transitioned into other
uses. When turfgrass is removed, as is presently occurring in some
drought-impacted regions of the U.S., employing non-mechanical methods
of turfgrass removal should help to conserve previously-accumulated SOC
stocks.
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