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Abstract. We provide a simple proof for the equality between the nor-

malized volume of a convex polytope with m vertices and the mixed

volume of m simplices and thus show the seemingly restrictive prob-

lem of computing mixed volume of simplices is still at least as hard as

computing volumes of convex polytopes in general.

1. Introduction

Let V and MV denote the normalized volume and mixed volume functions

for convex polytopes respectively. It is well known that for an n-simplex with

vertices p1, . . . ,pn+1 2 Rn
,

V(conv{p1, . . . ,pn+1}) =
���� det


1 · · · 1

p1 · · · pn+1

� ����

= MV({p̂1, en+1}, . . . , {p̂n+1, en+1}),
where the pi’s are expressed as column vectors, each p̂i is the embedding of

pi into Rn+1 ⇥ {0} ⇢ Rm
, and en+1 2 Rn+1

is the (n+ 1)-th standard basis

vector. This equation tells us that the normalized volume of an n-simplex in

Rn
can be turned into the mixed volume of n+1 line segments in Rn+1

. Using

root counting results from algebraic geometry, we provide a simple proof for

the generalization of this observation to the case of convex hull of m points

p1, . . . ,pm in Rn
for m > n:

V(conv{p1, . . . ,pm}) = MV(�(p1), . . . ,�(pm))

where each �(pi) is a simplex of dimension m � n. From the view point of

complexity, this equation shows that the seemingly specialized problem of

computing the mixed volume of only simplices is still at least as hard as the

general problem of computing the volume of a convex polytope.
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DMS-1923099 and Auburn University at Montgomery Grant-In-Aid program.
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2. Notations and preliminaries

C,R,Q,Z are the sets of complex numbers, reals, rationals, and integers re-

spectively. C⇤
= C\{0}. For a ring R, Mm⇥n(R) is the set of m⇥n matrices

with entries in R.

For a set S ✓ Rn
, conv(S) is the convex hull of S, i.e., the smallest

convex set containing S. A convex polytope in Rn
is a subset P such that

P = conv{p1, . . . ,pm} for some p1, . . . ,pm 2 Rn
. Its dimension dim(P ) is

the dimension of the smallest a�ne space containing it, and its normalized
volume V(P ) is n! Voln(P ) where Voln is the Euclidean volume form for Rn

.

Note that this definition is not restricted to lattice polytopes and implies the

convention that V(P ) = 0 if dim(P ) < n.
For A,B ⇢ Rn

, their Minkowski sum is A+B = {a+b | a 2 A, b 2 B}.
For convex polytopes P1, . . . , Pn ⇢ Rn

the volume of the Minkowski sum

�1P1 + · · · + �nPn under the scaling by positive factors �1, . . . ,�n, is a ho-

mogeneous polynomial in �1, . . . ,�n [5]. The coe�cient of the term �1 · · ·�n

is known as the mixed volume of these polytopes, denoted MV(P1, . . . , Pn).

For x = [x1 · · · xn ] and a = [ a1 · · · an ]> 2 Zn
, xa

= xa1
1 · · · xan

n .

For A 2 Mn⇥m(Z) with columns a1, . . . ,am 2 Zn
, xA

=
⇥
xa1 . . . xam

⇤
,

which defines functions over (C⇤
)
n
. A Laurent polynomial is an expression

of the form f(x) =
P

a2S caxa
where each ca 2 C⇤

, S ⇢ Zn
is the support

of f , denoted supp(f), and newt(f) := conv(S) is its Newton polytope. For
a system of Laurent polynomials F = (f1, . . . , fn) in x1, . . . , xn, its set of

common isolated zeros in (C⇤
)
n
is denoted Z⇤

0 (F ), and the following theorems

provide us bound on |Z⇤
0 (F )|.

Theorem 1 (Kushnirenko [4]). If P = newt(fi) for all i, |Z⇤
0 (F )|  V(P ).

Theorem 2 (Bernshtein [1]). |Z⇤
0 (F )|  MV(newt(f1), . . . , newt(fn)).

Moreover, for generic choices of the coe�cients, both bounds are exact.

This exactness can be tested via “initial systems”. For a Laurent polynomial

f(x) =
P

a2S caxa
and ↵ 2 Rn

, init↵(f)(x) =
P

a2(S)↵
caxa

, where (S)↵
is the subset of S on which the linear functional h↵ , ·i is minimized. For a

Laurent polynomial system F = (f1, . . . , fn) in x1, . . . , xn, its initial system
init↵(F ) with respect to a vector ↵ 2 Rn

, is (init↵(f1), . . . , init↵(f1)).

Theorem 3 (Bernshtein [1]). If for all 0 6= ↵ 2 Rn, init↵(F ) has no C⇤-zero,
then all zeros of F in (C⇤

)
n are isolated and their total number (counting

multiplicity) is MV(newt(f1), . . . , newt(fn)). The converse is also true.

Here, a C⇤
-zero is simply a complex zero for which all coordinates are

nonzero. We avoid defining “multiplicity” as only zeros of multiplicity 1 (non-

singular zeros, a.k.a. regular zeros) are considered in this paper.

3. The main result

Using the root counting theorems listed above, collectively known as the

theory of BKK bound [1, 3, 4] we now state and prove the main result.
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Theorem 4. For m distinct points {p1, . . . ,pm} ⇢ Rn, with m > n > 0,

V(conv{p1, . . . ,pm}) = MV(�(p1), . . . ,�(pm))

where

�(p) = conv{ p̂, en+1, . . . , em} and p̂ =


p

0m�n

�
2 Rm.

Here, �(p) is a simplex of dimension m � n. So the equation above

states that the normalized volume of the convex hull of m points in Rn
can

always be expressed as the mixed volume of m simplices in Rm
. Also recall

the convention that V(X) = 0 if and only if X is not full-dimensional.

Proof. In the trivial case where dim(conv{p1, . . . ,pm}) < n, by our conven-

tion, V(conv{p1, . . . ,pm}) = 0. The simplices �(pi) for i = 1, . . . ,m are all

contained in a common a�ne hyperplane in Rm
, and thus MV(�(p1), . . . ,�(pm))

is also zero. Conversely, if MV(�(p1), . . . ,�(pm)) = 0, then there is no

m-tuple of line segments (L1, . . . , Lm) with Li ⇢ �(pi) for i = 1, . . . ,m
that represent linearly independent vectors [6, Theorem 5.1.7]. In that case,

{p1, . . . ,pm} must be a�nely dependent, so V(conv{p1, . . . ,pm}) = 0.

For cases where conv{p1, . . . ,pm} is full-dimensional, we first assume

{p1, . . . ,pm} ⇢ Zn
. Let

P =
⇥
p1 · · · pm

⇤
2 Mn⇥m(Z).

For a point x =
⇥
x1 · · · xn

⇤
2 (C⇤

)
n
, let xP

denotes its image
⇥
xp1 · · · xpm

⇤

under the monomial map determined by p1, . . . ,pm (expressed as a row vec-

tor). For a generic choice of A 2 Mn⇥m(C), we consider the square system F
of n Laurent polynomials in the n variables x1, . . . , xn, given by

F (x1, . . . , xn) = A (xP
)
>,

where x =
⇥
x1 · · · xn

⇤
. By the genericity assumption, the zero set of F in

(C⇤
)
n
consists of nonsingular isolated points, and, by Kushnirenko’s Theorem

(Theorem 1), |Z⇤
0 (F )| = V(conv{p1, . . . ,pm}).

Since m > n, and the choice of A 2 Mn⇥m(C) is generic, the nullity of

A is exactly d := m� n > 0. Let {v1, . . . ,vd} be a basis of the null space of

A and K =
⇥
v1 · · · vd

⇤
2 Mm⇥d(C), then,

F (x1, . . . , xn) = A (xP
)
>
= 0 if and only if (xP

)
>
= K(y)>

for some y =
⇥
y1 · · · yd

⇤
2 Cd

. Moreover, since Z⇤
0 (F ) is finite, without

loss of generality, we can choose the basis {v1, . . . ,vd} so that y 2 (C⇤
)
d

for every corresponding x 2 Z⇤
0 (F ). Define the Laurent polynomial system

G = (g1, . . . , gm) : (C⇤
)
n ⇥ (C⇤

)
d ! Cm

, given by

G(x1, . . . , xn, y1, . . . , yd) = (xP
)
> �K(y)>,

where x =
⇥
x1 · · · xn

⇤
and y =

⇥
y1 · · · yd

⇤
as above. Then G is a sys-

tem ofm nonzero Laurent polynomials in them variables x1, . . . , xn, y1, . . . , yd,
and there is a bijection between Z⇤

0 (F ) and Z⇤
0 (G). Moreover, under the

genericity assumption, this map preserves multiplicity.
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The Newton polytopes ofG are exactly the simplexes (�(p1), . . . ,�(pm)).

Therefore, by Theorem 2,

|Z⇤
0 (G)|  MV(�(p1), . . . ,�(pm)).

To establish equality, we shall show the system G satisfies the conditions in

Theorem 3, even though there are algebraic relations among its coe�cients.

That is, we aim to show that for any nonzero vector ↵̂ 2 Rm
, the initial

system init↵̂(G) = (init↵̂(g1), . . . , init↵̂(gm)) has no common C⇤
-zeros.

Fix a nonzero ↵̂ = (↵1, . . . ,↵m) 2 Rm
. We define ↵ = (↵1, . . . ,↵n),

` = min{↵n+j | j = 1, . . . , d} and L = {j 2 {1, . . . , d} | ↵n+j = `}, then

init↵̂(gi)(x,y) =

8
><

>:

xpi if h↵ , pii < `

xpi �
P

j2L vijyj if h↵ , pii = `

�
P

j2L vijyj if h↵ , pii > `

for i = 1, . . . ,m.

If h↵ , pii < `, i.e., the first case appears, for at least one i 2 {1, . . . ,m},
then init↵̂(G) clearly has no C⇤

-zero. Similarly, if ↵ = 0, the initial system

init↵̂(G) also has no C⇤
-zeros. Therefore, we only need to consider the cases

where ↵ 6= 0 and h↵ , pii � ` for all i.
Since conv{p1, . . . ,pm} is assumed to be full-dimensional, the set {pi |

i 2 {1, . . . ,m}, h↵ , pii = `} cannot equal to {p1, . . . ,pm} itself. Conse-

quently, any (x,y) 2 (C⇤
)
n⇥ (C⇤

)
d
satisfying init↵̂(G)(x,y) = 0 would gives

rise to a C⇤
-zero to init↵(F )(x) = 0, which would contradict the assumption

that |Z⇤
0 (F )| = V(conv{p1, . . . ,pm}), according to Theorem 3. Therefore, we

can conclude that init↵̂(G)(x,y) has no C⇤
-zeros for any nonzero ↵̂ 2 Rn

.

By Theorem 3,

V(conv{p1, . . . ,pm}) = |Z⇤
0 (F )| = |Z⇤

0 (G)| = MV(�(p1), . . . ,�(pm))

for a set {p1, . . . ,pm} of distinct points in Zn
.

Since both V(conv{p1, . . . ,pm}) and MV(�(p1), . . . ,�(pm)) are homo-

geneous of degree n with respect to a uniform scaling pi 7! �pi, the equality

extends to cases where {p1, . . . ,pm} ⇢ Qn
. By continuity with respect to

the Hausdor↵ metric, the result further extends to point sets in Rn
. ⇤

4. Complexity implications

It is well known that the mixed volume of n line segments in Rn
equals to the

determinant of an n ⇥ n matrix and hence can be computed in polynomial

time. Yet, M. Dyer, P. Gritzmann, and A. Hufnagel showed that even the

relatively simple problem of computing the mixed volume of n “boxes”, each

formed as the Minkowski sum of n line segments of nonuniform length along

the axes, is #P-hard [2, Theorem 3]. Indeed, this problem is equivalent to

the problem of permanent computation, which is shown to be #P-hard by L.

Valiant [7]. It is reasonable to speculate that one source of the #P-hardness
is the geometric complexity of the “boxes”, since a d-dimensional box can be

subdivided into d! full-dimensional simplices. This is not the case. Theorem 4

shows that even when the “boxes” are replaced by simplices, the #P-hardness
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persists: Even the much more restrictive problem of computing the mixed

volume of m simplices of dimension d < m is at least as hard as the problem

of computing the volume of the convex hull of m points in Rm�d
, which is

known to be #P-hard [2, Theorem 1] (under a binary Turing machine model

with oracles).

Acknowledgment

The author thanks Frank Sottile, Ivan Soprunov, and anonymous referees for

their insightful comments.

References

[1] D. N. Bernshtein, The number of roots of a system of equations, Functional

Analysis and its Applications, 9 (1975), pp. 183–185.

[2] M. Dyer, P. Gritzmann, and A. Hufnagel, On the complexity of computing

mixed volumes, SIAM Journal on Computing, 27 (1998), pp. 356–400, https:
//doi.org/10.1137/S0097539794278384.

[3] A. G. Khovanskii, Newton polyhedra and the genus of complete intersections,

Functional Analysis and Its Applications, 12 (1978), pp. 38–46, https://doi.
org/10.1007/BF01077562.

[4] A. G. Kushnirenko, A Newton polyhedron and the number of solutions of a

system of k equations in k unknowns, Usp. Math. Nauk, 30 (1975), pp. 266–267.

[5] H. Minkowski, Theorie der konvexen Korper, insbesondere Begrundung ihres

Oberflachenbegri↵s, Gesammelte Abhandlungen von Hermann Minkowski, 2

(1911), pp. 131–229.

[6] R. Schneider, Convex bodies: the Brunn–Minkowski theory, no. 151, Cambridge

university press, 2014.

[7] L. Valiant, The complexity of computing the permanent, Theoretical Computer

Science, 8 (1979), pp. 189–201, https://doi.org/10.1016/0304-3975(79)
90044-6.

Tianran Chen

Department of Mathematics, Auburn University at Montgomery, Montgomery Al-

abama USA

e-mail: ti@nranchen.org

https://doi.org/10.1137/S0097539794278384
https://doi.org/10.1137/S0097539794278384
https://doi.org/10.1007/BF01077562
https://doi.org/10.1007/BF01077562
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6

	1. Introduction
	2. Notations and preliminaries
	3. The main result
	4. Complexity implications
	Acknowledgment

	References

