Volume of convex polytopes equals mixed
volume of simplices

Tianran Chen

Abstract. We provide a simple proof for the equality between the nor-
malized volume of a convex polytope with m vertices and the mixed
volume of m simplices and thus show the seemingly restrictive prob-
lem of computing mixed volume of simplices is still at least as hard as
computing volumes of convex polytopes in general.

1. Introduction

Let V and MV denote the normalized volume and mixed volume functions
for convex polytopes respectively. It is well known that for an n-simplex with
vertices py,...,pP,11 € R",
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= MV({ﬁla en+1}a sy {ﬁn+17 en+1})7

where the p,’s are expressed as column vectors, each p; is the embedding of
p; into R"™! x {0} € R™, and e,,+1 € R""! is the (n + 1)-th standard basis
vector. This equation tells us that the normalized volume of an n-simplex in
R™ can be turned into the mixed volume of n+1 line segments in R™*!. Using
root counting results from algebraic geometry, we provide a simple proof for
the generalization of this observation to the case of convex hull of m points
D1y Dy in R™ for m > n:

V(CODV{ Dy, apm}) = MV(A(pl)v ] A(pm))

where each A(p,) is a simplex of dimension m — n. From the view point of
complexity, this equation shows that the seemingly specialized problem of
computing the mixed volume of only simplices is still at least as hard as the
general problem of computing the volume of a convex polytope.

The author’s research is supported, in part, by National Science Foundation under grant
DMS-1923099 and Auburn University at Montgomery Grant-In-Aid program.



2 Tianran Chen

2. Notations and preliminaries

C,R,Q,Z are the sets of complex numbers, reals, rationals, and integers re-
spectively. C* = C\ {0}. For a ring R, M,,,«»(R) is the set of m X n matrices
with entries in R.

For a set S C R"™, conv(S) is the convex hull of S, i.e., the smallest
convex set containing S. A convex polytope in R™ is a subset P such that
P = conv{py,...,p,,} for some py,...,p,, € R". Its dimension dim(P) is
the dimension of the smallest affine space containing it, and its normalized
volume V(P) is n! Vol,,(P) where Vol, is the Euclidean volume form for R™.
Note that this definition is not restricted to lattice polytopes and implies the
convention that V(P) =0 if dim(P) < n.

For A, B C R", their Minkowski sum is A+ B ={a+b|a € A,b € B}.
For convex polytopes Pi,..., P, C R" the volume of the Minkowski sum
AP+ -+ 4+ A\, P, under the scaling by positive factors A1,...,\,, is a ho-
mogeneous polynomial in Aq, ..., A, [5]. The coefficient of the term A; - - A,
is known as the mized volume of these polytopes, denoted MV (P, ..., P,).

For x = [21 -+ 2,] and @ = [a1 -+ a,]" € Z", x* = z{' -+ 2.
For A € M, xm(Z) with columns a1, ...,a,, € Z", x4 = [xal xaﬂ,
which defines functions over (C*)"®. A Laurent polynomial is an expression
of the form f(x) = >, caX® where each cq € C*, S C Z" is the support
of f, denoted supp(f), and newt(f) := conv(S) is its Newton polytope. For
a system of Laurent polynomials F = (fi,..., f,) in z1,...,2,, its set of
common isolated zeros in (C*)™ is denoted Z;(F), and the following theorems
provide us bound on | Zj(F)|.

Theorem 1 (Kushnirenko [4]). If P = newt(f;) for all i, |Z5(F)| < V(P).
Theorem 2 (Bernshtein [1]). |Z5(F)| < MV(newt(f1),...,newt(fy,)).

Moreover, for generic choices of the coefficients, both bounds are exact.
This exactness can be tested via “initial systems”. For a Laurent polynomial
f(X) = 2 qesax® and a € R, inite(f)(x) = Zae(S)a cax®, where (9)q
is the subset of S on which the linear functional (e, -) is minimized. For a
Laurent polynomial system F' = (f1,..., fn) in 1, ..., 2y, its initial system
initq (F') with respect to a vector o € R, is (inita (f1), ..., inite (f1)).

Theorem 3 (Bernshtein [1]). If for all 0 # o € R™, inito (F') has no C*-zero,
then all zeros of F in (C*)™ are isolated and their total number (counting
multiplicity) is MV (newt(f1),...,newt(f,)). The converse is also true.

Here, a C*-zero is simply a complex zero for which all coordinates are
nonzero. We avoid defining “multiplicity” as only zeros of multiplicity 1 (non-
singular zeros, a.k.a. regular zeros) are considered in this paper.

3. The main result

Using the root counting theorems listed above, collectively known as the
theory of BKK bound [I} [l [4] we now state and prove the main result.
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Theorem 4. For m distinct points {py,...,p,,} C R™, withm >n >0,
Viconv{py,....pp}) = MV(A(p),.. -, A(Pr))

where

A(p) = conv{ P, €,41,...,€m} and p= { p ] e R™.
Om—n
Here, A(p) is a simplex of dimension m — n. So the equation above
states that the normalized volume of the convex hull of m points in R™ can
always be expressed as the mixed volume of m simplices in R™. Also recall
the convention that V(X) = 0 if and only if X is not full-dimensional.

Proof. In the trivial case where dim(conv{p,,...,p,,}) < n, by our conven-
tion, V(conv{p,,...,p,,}) = 0. The simplices A(p,) for i =1,...,m are all
contained in a common affine hyperplane in R™, and thus MV(A(p,),..., A(p,,))
is also zero. Conversely, if MV(A(p;),...,A(p,,)) = 0, then there is no
m-tuple of line segments (L1,...,L,) with L; C A(p;) for i = 1,...,m
that represent linearly independent vectors [6, Theorem 5.1.7]. In that case,
{p1,--- P, must be affinely dependent, so V(conv{p,,...,p,,}) =0.

For cases where conv{ py,...,p,,} is full-dimensional, we first assume

{p1,-- P} CZ". Let

Forapointx = [z -+ a,] € (C*)" let x” denotes its image [xP1 - xPm |
under the monomial map determined by p,...,p,, (expressed as a row vec-

tor). For a generic choice of A € M, (C), we consider the square system F'

of n Laurent polynomials in the n variables x1, ..., x,, given by

F(x1,...,2,) :A(XP)T,

where x = [xl R ] By the genericity assumption, the zero set of F in
(C*)™ consists of nonsingular isolated points, and, by Kushnirenko’s Theorem
(Theorem [1)), | Z3(F)| = V(conv{py,...,pp}).

Since m > n, and the choice of A € M, (C) is generic, the nullity of
A is exactly d :=m —n > 0. Let {vy,...,v4} be a basis of the null space of
Aand K = [vl vd} € M, xq(C), then,

F(xy,...,2,) = AxP)T =0 ifandonlyif (xF)T =K(y)"

for somey = [y1 --- wa| € C% Moreover, since Z;(F) is finite, without
loss of generality, we can choose the basis {v1,...,v4} so that y € (C*)¢
for every corresponding x € Z;(F'). Define the Laurent polynomial system
G =191, ,gm) : (C*)" x (C*)? — C™, given by

G($17~-~»Inay17~-~»yd) = (XP)T _K(Y)Ta

wherex = [21 -+ xp]andy=[y1 -+ ua] asabove. Then G is a sys-
tem of m nonzero Laurent polynomials in the m variables x1, ..., 2y, Y1, .., Yd,
and there is a bijection between Zj(F) and Zj(G). Moreover, under the
genericity assumption, this map preserves multiplicity.
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The Newton polytopes of G are exactly the simplexes (A(p,), ..., A(D,,))-
Therefore, by Theorem

126 (G) < MV(A(py), .-, AP))-

To establish equality, we shall show the system G satisfies the conditions in
Theorem |3 even though there are algebraic relations among its coefficients.
That is, we aim to show that for any nonzero vector & € R™, the initial
system initg (G) = (initg(g1), . - ., inita (gm)) has no common C*-zeros.
Fix a nonzero & = (aq,...,qy,) € R™. We define o« = (aq,...,a5),
C=min{a,y; |j=1,...,d} and L={j € {1,...,d} | apt+; = ¢}, then
xPi if (a, p;) </t
inita (g:)(x,y) = ¢ xPi =3, cpviyy; if (e, py) =0 fori=1,....m.
—Yjervigys i (o, py) >4
If (e, p;) < ¢, i.e., the first case appears, for at least one i € {1,...,m},
then initg (G) clearly has no C*-zero. Similarly, if e = 0, the initial system
initg (G) also has no C*-zeros. Therefore, we only need to consider the cases
where o # 0 and (o, p;) > ¢ for all 3.
Since conv{ py,...,p,,} is assumed to be full-dimensional, the set {p; |
i € {1,...,m}{a, p;) = £} cannot equal to {p;,...,p,,} itself. Conse-
quently, any (x,y) € (C*)" x (C*)? satisfying inita (G)(x,y) = 0 would gives
rise to a C*-zero to init (F)(x) = 0, which would contradict the assumption
that | Z3(F)| = V(conv{ py,...,p,,}), according to Theorem|[3] Therefore, we

can conclude that inits (G)(x,y) has no C*-zeros for any nonzero & € R™.
By Theorem

V(conv{p,....pn}) = |25 ()| = |Z5(G) = MV(A(p,), ... A(p,,))
for a set {py,...,p,,} of distinct points in Z".

Since both V(conv{ py,...,p,,}) and MV(A(p,),...,A(p,,)) are homo-
geneous of degree n with respect to a uniform scaling p, — Ap;, the equality
extends to cases where {p;,...,p,,} C Q™. By continuity with respect to
the Hausdorff metric, the result further extends to point sets in R™. (I

4. Complexity implications

It is well known that the mixed volume of n line segments in R™ equals to the
determinant of an n X n matrix and hence can be computed in polynomial
time. Yet, M. Dyer, P. Gritzmann, and A. Hufnagel showed that even the
relatively simple problem of computing the mixed volume of n “boxes”, each
formed as the Minkowski sum of n line segments of nonuniform length along
the axes, is #P-hard [2, Theorem 3]. Indeed, this problem is equivalent to
the problem of permanent computation, which is shown to be #P-hard by L.
Valiant [7]. It is reasonable to speculate that one source of the #P-hardness
is the geometric complexity of the “boxes”, since a d-dimensional box can be
subdivided into d! full-dimensional simplices. This is not the case. Theorem [4]
shows that even when the “boxes” are replaced by simplices, the #P-hardness
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persists: Even the much more restrictive problem of computing the mixed
volume of m simplices of dimension d < m is at least as hard as the problem
of computing the volume of the convex hull of m points in R™~¢, which is
known to be #P-hard [2| Theorem 1] (under a binary Turing machine model
with oracles).

Acknowledgment

The author thanks Frank Sottile, Ivan Soprunov, and anonymous referees for
their insightful comments.

References

[1] D. N. BERNSHTEIN, The number of roots of a system of equations, Functional
Analysis and its Applications, 9 (1975), pp. 183-185.

[2] M. DYER, P. GRITZMANN, AND A. HUFNAGEL, On the complezity of computing
mized volumes, SIAM Journal on Computing, 27 (1998), pp. 356—400, https:
//doi.org/10.1137/50097539794278384!

[3] A. G. KHOVANSKII, Newton polyhedra and the genus of complete intersections,
Functional Analysis and Its Applications, 12 (1978), pp. 38-46, https://doi.
org/10.1007/BF01077562.

[4] A. G. KUSHNIRENKO, A Newton polyhedron and the number of solutions of a
system of k equations in k unknowns, Usp. Math. Nauk, 30 (1975), pp. 266—267.

[6] H. MINKOWSKI, Theorie der konvexen Korper, insbesondere Begrundung ihres
Oberflachenbegriffs, Gesammelte Abhandlungen von Hermann Minkowski, 2
(1911), pp. 131-229.

[6] R. SCHNEIDER, Convez bodies: the Brunn—Minkowski theory, no. 151, Cambridge
university press, 2014.

[7] L. VALIANT, The complezity of computing the permanent, Theoretical Computer
Science, 8 (1979), pp. 189-201, https://doi.org/10.1016/0304-3975(79)
90044-6.

Tianran Chen

Department of Mathematics, Auburn University at Montgomery, Montgomery Al-
abama USA

e-mail: ti@nranchen.org


https://doi.org/10.1137/S0097539794278384
https://doi.org/10.1137/S0097539794278384
https://doi.org/10.1007/BF01077562
https://doi.org/10.1007/BF01077562
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6

	1. Introduction
	2. Notations and preliminaries
	3. The main result
	4. Complexity implications
	Acknowledgment

	References

