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Abstract— Zero Trust, as an emerging trend of cybersecurity
paradigms in modern infrastructure (e.g., enterprise, cloud,
edge, IoT, and 5G), is moving security defenses from static
and perimeter-based control systems to focus on users and
resources with no assumption of implicit trust. However, the
current Zero Trust Architecture (ZTA) mainly focuses on the
network security and lacks in-depth considerations on system-
level security policies and abstractions, which leaves the realiza-
tion of the principle incomplete. To bridge the gap, we propose
an innovative programmable system security framework called
SYSFLOW to enable unified, dynamic, and fine-grained Zero Trust
security control for system resources. SYSFLOW introduces a
novel system flow abstraction to model system activities across
the entire infrastructure, and provides a system-level data plane
and control plane separation and abstraction. The new logically
centralized controller accommodates a unified programmable
Policy Decision Point (PDP) that acquires a holistic view of
system behaviors for controlling system resource accesses by
translating programmable security policies into system flow
rules. The SYsFLow data plane, acting as Policy Enforcement
Point (PEP), enforces translated system flow rules, which can
be updated dynamically and facilitate fine-grained responsive
actions. Our extensive evaluations demonstrate the effectiveness
and scalability of SYSFLow, which addresses the security issues
in various scenarios with a minor performance overhead.

Index Terms— Zero trust (ZT), cloud computing security.

I. INTRODUCTION

HE proliferation of personal mobile devices, cloud-native

apps/services, containers, and the Internet of Things (IoT)
has trespassed traditional security boundaries. Modern enter-
prise security must evolve to manage the complex task of
handling continuously changing risks from various locations
in a fine-grained manner. That said, not only are enterprises
responsible for catering secure user access to critical enter-
prise resources regardless of locations and devices but also
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they provide microscopic security measures to protect every
sensitive resource even in a single host system.

Unfortunately, existing perimeter-based network security
has been a criticized part of enterprise security. Considering
the growth of highly dynamic mobile applications, cloud
computing and containers, IoT devices, etc., the traditional
security boundary becomes blurred out. Furthermore, nar-
rowing down to host-level system security, existing security
practices are mainly coarse-grained and static. Security policy
enforced in a host system cannot easily handle the dynamics
of modern applications in a flexible manner. For instance,
dynamic migration/scale-out of virtual machines and contain-
ers spanning across multiple hosts cannot be easily dealt with
the current security tools such as mandatory access control
(MAC), host-based intrusion detection system (HIDS), and
antivirus (AV) due to the lack of global visibility.

To address these emerging security risks, the zero trust
(ZT) [43] security concept has recently been proposed to focus
on resource protection with a guiding principle that trust is
never granted implicitly but must be continually validated.
Under this principle, resources must be secured from malicious
subjects (users, applications, and other non-human entities
that request information from resources) with finer-grained
perimeterization. However, different from the mainstream Zero
Trust Architecture (ZTA) [3], [7], [15], [22] focusing on
network security, in this paper, we scrutinize the issues of
system security to motivate ourselves to come up with a new
system security framework.

Modern computing facilitates microservice creation, termi-
nation, and migration regardless of physical locations, thereby
trespassing the traditional perimeter dynamically. Suppose that
a business microservice (e.g., eShop) is dynamically migrated
to a host system (e.g., a VM in the cloud) where other con-
tainers are running together as depicted in Figure 1. Once the
attacker passes the network security perimeter provided by the
existing ZTA, the next level of security must be system-level
perimeters. By leveraging container vulnerabilities (e.g., CVE-
2019-14271), the attacker may breach the first line of a system-
level perimeter that restricts inter-container views based on
configurations, i.e., namespace isolation. Even though either
a container provides limited functionality and permissions in
an isolated space or a microservice is updated with a new
logic/patch, the vulnerabilities of the container environment
open the gate to enable malicious cross-access between the
container and the system. As a result, all resources in the
host system and other containers are maliciously accessed
by the compromised privileged container. It fails to realize
the ZT principle since there is no easy way to continually
maintain security contexts and analyze/evaluate the risks of
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access either between a container and a system, or across
systems in infrastructure with the existing standalone system
security tools [2], [16].

In this paper, we investigate the Zero Trust principle for
programmable system security to protect sensitive resources
in a host system constantly. We extend ZT principle to
the system level to control, monitor, and verify accesses at
all times and gain a global view of subjects and resources
across networks. Also, to better cope with the dynamics,
we provide the programmability of system security. As a
security posture of a microservice at one location is ephemeral,
the framework should be able to dynamically identify the
changes of contexts and move/install the ZT security policy
accordingly. Furthermore, security logic to verify the risks
of malicious access with flexible system-level visibility with
contexts can be programmed through predefined risk verifica-
tion algorithms or user-defined security algorithms provided
by admins/developers.

However, we encounter several research challenges in
designing our security framework. Regarding the abstraction
of system activities and modeling of system capabilities,
a generalized, global definition should be necessary among
different host platforms from a compatibility perspective. How
to model heterogeneous subjects, such as process and container
as a common abstraction would alleviate confusion to security
application developers. To enable high-level security pro-
grammability for Zero Trust at infrastructure scale, the frame-
work should support expressive APIs that are not restricted
to specific applications, domains, or languages. Moreover, the
security logic should be dynamically enforced and updated in
response to the dynamics but the realization is non-trivial to
maintain consistency. The visibility is of critical importance to
precisely monitor the behavior of the systems; however, how
to provide admins/developers with a system-level visibility
flexibly with sufficient contexts at runtime is challenging as
well. Last but not least, how to achieve minor performance
overhead is also a significant engineering challenge.

To address the aforementioned challenges, we propose a
novel system security framework called SYSFLOW for uni-
fied, infrastructure-wide, dynamic, and fine-grained flow-level
programmable security control of system resources, with the
emerging Zero Trust (ZT) principle in mind. SYSFLOW is
a new programmable Zero Trust system security framework
which enables admins/developers to easily write a security
application using SYSFLOW APIs to realize some key Zero
Trust features such as micro-segmentation (which provides
finer-grained, programmable access control and isolation of
system resources) and risk awareness (which continuously
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maintains and evaluates risks of accesses), as well as general
system security functions. The primary goal of this work is
to revisit the system security policies and abstractions with
respect to modern computing infrastructure. Sitting in the heart
of SYSFLOW is a general system activity abstraction over
existing system security capabilities. In particular, SYSFLOW
introduces a flow-based model, namely system flow, to abstract
system activities. Inspired by the programmable network flow
model [14] in Software Defined Networking (SDN), a system
flow consists of 3 tuples (source, destination, and operation)
to generically and formally reason about the state of diverse
system activities. In addition, based on the system flow model,
system flow rules are introduced to represent system security
intents.

The flow-based model, introduced by SYSFLOW, provides
a system-level data plane and control plane separation and
abstraction. As a result, SYSFLOW embraces a two-layer
architecture, which includes two major components, i.e., SYS-
FLow Data Plane (SDP) and SYSFLoOW Controller (SC).
In the SysFlow control plane, the logically centralized SC
acquires a holistic view of security contexts from the low-
level abstraction of system activities and provides a unified
programming abstraction, even across the entire infrastruc-
ture, to facilitate the flexible implementation and deployment
of diverse SYSFLOW security applications based on system
flows. SDP automatically enforces system flow rules to enable
fine-grained responsive security actions, and to dynamically
update security intents (in the form of system flow rules)
according to the change of contexts. In particular, the flow-
based model treats subjects (users, applications, and other
non-human entities that request information from resources)
as a common entity for generic programmability. Also, it can
enable dynamic reconfiguration of security policies through
our reactive and proactive programming model.

The key contributions of this paper are as follows:

« We introduce a unified programming abstraction for host
systems, namely system flow, which can facilitate the
specification and enforcement of diverse system security
intents for general-purpose system security.

o« We design and implement SYSFLOW, a system secu-
rity development framework for Zero Trust, to provide
admins/developers with expressive programming inter-
faces to easily realize micro-segmentation and risk aware-
ness.

o SYSFLOW provides global, system-level visibility and
logging capability for system activities at runtime, which
can leave a door open for admins/developers to pro-
gram any useful security algorithms that fully leverage
infrastructure-wide visibility.

« Our extensive evaluations show that SYSFLOW is useful
to develop various types of system security apps in
practice and only incurs minor performance overhead.

o We release the source code [19] to benefit future ZT
systems and security research on top of SYSFLOW as
a complementary framework to network-based ZTA.

II. PROBLEM STATEMENT

To realize Zero Trust for system security, resource access
requests and behaviors of subjects should be evaluated contin-
uously in real-time over the actions inside the system. To do
so, a basic step would be to find how to abstract system
information/behavior and identify an interesting common set
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of security primitives/functions at a flexible level of granu-
larity. On one hand, existing system call/log-based solutions
are too fine-grained and expensive with extensive raw and
low-level system information for Zero Trust, which is costly
for the centralized control plane to manage. Furthermore,
handling such unstructured information makes the security
system complicated and less compatible with heterogeneous
systems/platforms. On the other hand, if the abstraction is
too coarse-grained, we may lose granularity and flexibility for
Zero Trust applications. For example, AppArmor [2] abstracts
a system in a less complex and easier way using file paths
instead of the labels of SELinux [16] (an instantiation of
Flask [46]) whose policy complexity is an often criticized
drawback [35]. It would be more usable, practical to propose a
balanced abstraction by modeling system information/behavior
not only with an interesting common set of security primi-
tives/functions for Zero Trust but also with capabilities that
developers can customize.

The Zero Trust Architecture should allow developers to
enforce security policies to cope with a huge amount of system
events with low-level system details and oftentimes change
security algorithms in response to security threats. However,
existing MAC approaches (e.g., SELinux [35], AppArmor [2])
are limited to configure access control in a local view where
a security server (policy decision point) is merely a kernel
subsystem. Not only such access control approaches, per se,
cannot continuously verify the risk of access requests without
additional security tools but also adding any new security
logic/functions is not supported in general. Moreover, the
dynamics of hosts/containers require configurations and label-
ing (SELinux) to change dynamically, which is challenging to
keep consistent with a local security server. In addition, host-
based security tools, e.g., HIDS, Anti Virus (AV), or DIFT
systems [34], [55] also suffer from laborious, manual efforts in
tracking context and reconfiguration which makes it difficult to
cope with dynamic, ephemeral characteristics of cloud-native
computing.

More visibility into the system can typically help detect
the signs of security problems. It is common to use SIEM
systems (that log, send, and analyze at infrastructure scale)
for system security in most Zero Trust Architecture [43].
However, we may face different challenges in terms of security
and performance. Many practices in enterprises reveal that
security analytic tools require a comprehensive collection of
raw system events from all host systems using audit logs
sent to a remote server. 3rd-party tools, then, model the raw
information to their definitions and render a security analysis,
e.g., anomaly detection, causality/correlation analysis, etc.
However, not only this ubiquitous monitoring is not a real-
time tool, but also it introduces significant pressure to storage
systems both in a host and a log server. Also, the capabil-
ities of viewing the system internals from the existing tools
are limited to the general system activities between system
objects (process) and resources. For security applications, it is
significantly useful to precisely investigate which process is
running in what containers and micro-services by which user
to handle the dynamics.

Last but not least, realizing system security for Zero
Trust requires solving the performance degradation. As intro-
duced in ZTA [43], most mainstream ZTAs [3], [7], [15],
[22] follow the centralized policy-decision-point architecture
by decoupling data and control plane to effectively control
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authentication and risk verification. However, this architecture
would be an inherent hurdle when applying to Zero Trust
system security where a large volume of extra system infor-
mation should be monitored and exchanged. In this paper,
we plan to investigate and answer the following research
challenges.

o (C1) How to abstract system activities and model security
capabilities for unified programmability in a generalized
way? (§ 1IV)

e (C2) How to enable unified high-level security pro-
grammability and handle the dynamics accordingly? (§ V)

« (C3) How to provide flexible visibility in order to achieve
context-aware Zero Trust control? (§ V)

« (C4) How to achieve minor performance overhead on a
host system? (§ VI)

III. SYSTEM OVERVIEW AND THREAT MODEL

A. System Architecture

As depicted in Figure 2, SYSFLOW embraces a two-layer
programmable design that includes SYSFLOW Data Plane
(SDP) and SYSFLOW Controller (SC) in line with ZTA [43].
The control plane, as Policy Decision Point (PDP), is used by
various infrastructure components to maintain assets; judge,
grant, or deny access to resources; and perform any necessary
operations to set up communication/access paths between
resources. The data plane acts as Policy Enforcement Point
(PEP) which is responsible for enabling, monitoring, and even-
tually terminating access between a subject and an enterprise
resource.

SDP runs in target host systems. SDP Daemon resides
in the user space of the system that is used to intercept
communications between SC and Flow Table Manager in
the kernel. It talks with SC by using the SYSFLOW control
messages (detailed in Section VII and interacts with Flow
Table Manager to manipulate flow tables accordingly. System
Abstraction Layer (SAL) abstracts low-level system activities
to common definitions to support compatibility among dif-
ferent operating systems. Event Generator generates system
events based on SAL and further inputs those system events
to Flow Table Manager. Flow Table Manager maintains system
flow rules (in a flow table) to match system events and
trigger Action Scheduler to enforce corresponding actions to
control system activities. Context Monitor supports visibility
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with contexts by not only continuously monitoring behavior
and the context of processes/containers based on the flow
model but also capturing application-level context/profile to
associate an application and a user over the access to system
resources. External Security Function offloads part of/the
whole security functions into SDP to reduce the interac-
tions as well as enabling diverse security functions to place
in the data plane for the immediate, expressive response.
Any type of security functions can be installed by security
applications on the fly, e.g., a customized system call pat-
tern analysis, complex container defense code, deep packet
inspection, and redirection to other machines for the in-depth
analysis.

SC works as a logically centralized control and manage-
ment nexus that serves interfaces to collect context informa-
tion from all host systems running SDP and install system
flow rules accordingly. The controller provides a unified
high-level programming abstraction and interface to facil-
itate the development of security applications to enforce
diverse security intents (more design details are described
in Section V). Also, the controller accommodates several
extensible supporting components to help admins configure
a core security policy, such as resource access policy (pre-
defined access control rules by admins), risk profile, identity
management (host/process/container/user identity database and
management), public key infrastructure (key storage for a
secure connection between SC and SDP and for external
functions).

B. General Workflow

To show how SYSFLOW works (Figure 2), suppose that
admins write a security app, File Reflector, for cyber decep-
tion to divert attackers away from sensitive data. Based on
@ SysFLow APIs, ) the admins write the File Reflector app
(written in Java in our implementation). The app contains flow
rules with actions of redirect to divert access to a honey file
and log to observe further system activities, as well as a risk
profile to validate the risk score of the process. Q) SC installs
a set of flow rules converted from the app into SDP. Then,
SYSFLOW monitors the system events specified in the installed
flow rules. @ When a suspicious process determined by the
risk profile attempts to access sensitive resources, the redirect
action will be executed to redirect file operations to the honey
file. To investigate further system activities, the flow rules with
the action, log, will inform the app of system activities from
the process. The details of the SYSFLOW flow model and APIs
are elaborated in Section IV and V.

C. Threat Model

Similar to prior system security approaches [23], [30],
[31], [51], we first assume that the kernel, in which SDP is
running, the communication channels, and the server running
SC are trusted computing base (TCB). Users, applications,
and containers are not trusted as in the Zero Trust model.
We consider that an adversary may attempt to compromise
the availability or privacy of the system resources protected
by SYSFLOW. In this case, the adversary (in the user space),
for instance, may install malware/ransomware, exploit running
processes, or launch denial-of-service (DoS) attacks.

In addition, we make the following assumptions. First,
attacks will happen only after the initiation of SDP and the
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controller. Second, attacks based on hardware and side/covert
channels of shared system resources are beyond the scope
of the paper. Third, SYSFLOW can leverage state-of-the-art
integrity-checking mechanisms [32], [44] to determine if there
are any compromises against SYSFLOW components, espe-
cially SDP Daemon in the user space. Emerging hardware-
assisted protection mechanisms such as SGX [25] could also
be used to further protect user-space SYSFLOW components.
Fourth, changing task_struct to subvert the subject identity is
assumed to be protected [41]. Lastly, we assume that system
admins and security experts who write security applications
are trusted.

IV. SYSTEM FLOW ABSTRACTION
A. System Security Abstraction

Abstracting the system security is a fundamental step to pro-
vide a higher-level security function atop. Although we design
a similar system abstraction to AppArmor based on LSM
(Linux Security Module), our design choices are clearly differ-
ent from AppArmor which focuses only on access control with
binary actions (allow/deny). Given the Zero Trust architecture
that incorporates existing system security tools to manage the
entire infrastructure, the challenges may include the lack of
balance on complexity in expressibility, extensibility among
heterogeneous host systems, and dynamic programmability for
security functions. The goal of our system security abstraction
should be easy to express, yet contain rich security functional-
ities than the prior security tools (i.e., MAC). The host systems
and security services should neither halt nor be delayed due
to the resource labeling or remote log-based analysis. System
security framework should be able to extend the abstraction
and security functionalities. Admins/security experts should
dynamically program their security logic/function.

To this end (C1), SYSFLOW introduces a flow-based model
for system activity abstraction, called system flow. Inspired by
SDN, we define a system flow as an interaction between sub-
jects (e.g., processes) and observation/access points (system
objects), e.g., file, memory, pipe, and socket, in the system dur-
ing a certain time interval. SYSFLOW constructs a flow table
with a flow match in an entry characterized by src/dst system
objects/resource, system operations, and metadata. Note that,
based on this flow definition, SYSFLOW provides system-
oriented aggregated views on the system activities, just as
SDN supplies common low-level network views and building
blocks via APIs upon which admins/security experts can write
arbitrary controller apps, e.g., various security functions such
as stateful firewall and DDoS detection.

1) System Event: In an infrastructure, host systems may
include a variety of critical activities, which should be mon-
itored or controlled according to different security policies.
Hence, we define a general concept of system events to model
such critical system activities for Zero Trust. In this paper,
we particularly adopt system events to cover interactions
between programs/processes and different system resources
(e.g., file, socket, and IPC) to model the continuous obser-
vation of subjects’ resource access request and behaviors. The
key difference from the existing work (i.e., MAC approaches)
is that the system events are extensible through Event Gener-
ator as detailed in Section IV-B.

2) System Flow Rule: SYSFLOW introduces system flow
rules to model system security capabilities upon a sequence
of system events. A system flow rule is formally defined by
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Notations: Integer n, Wildcard *

Match
Source ID
Destination 1D

Resource ID

Operation Type type ::=n

ID id  u={ny, n,, .., n}

Action act :=pa | (act | act) | (act >> act)

Primitive Actions pa ::=allow | deny | report| message |

log | encode(tag) | decode(tag) |
redirect (dst, dst,) | quarantine (pid,, rid,) |
external(id)

Priorities pri :=n
System Flow Rule rule ::=<ma, act, pri>

Fig. 3. Syntax of system flow rule.

the syntax listed in Figure 3. System flow rules are used to
capture system security intents, which include match, action,
and priority. A match is a predicate to match system events
that have the same attributes, i.e., source, destination, or type.
The source of a system flow is the initiator of the flow, such
as processes and users. The destination of a system flow is
the receiver of the flow, such as files, memories and sockets.
The type of system flow is used to classify the different
interactions between system applications and resources, e.g.,
writing a file. Note that a system flow can be used to represent
an exact system event or a group of system events with the
same pattern by using a wildcard notation (*). For example,
a system flow can be specified as {src : *, dst : filey, type :
file_op_write} to match system events representing any
process writes to file;. A system flow rule uses a list of
primitive actions to specify how the system events should be
processed. An innovation over the conventional LSM-based
MAC approaches is that SYSFLOW provides several useful
security primitives beyond the capabilities of LSM as well as
the extensibility of the actions. Whereby, security functionali-
ties can be easily programmed/extended with the flow model,
which is different from single-purpose security tools such as
MAC and SIEM. For example, redirect aims to change the
system flow/operations to a new location (e.g., system objects
and resources) as briefly introduced in File Reflector. However,
the enforcement of redirect action is challenging to design only
with the existing hooks of LSM. To this end, we place an
additional hook to handle the redirect action. Since a process
in the user space manipulates a file through a file descriptor,
we place a hook (fd_bind) before the file descriptor is bound to
a specific inode. By invoking the fd_bind hook, we can enforce
the redirect action by replacing the inode of the original file
with the inode of any other files. encode and decode are
designed to push/check a contextual tag into/from network
packets, which can be used to enforce cross-host information
flow tracking to protect from data leakage. We design this
action with netfilter due to the limitation of LSM hooks
that do not allow packet modification. Moreover, we design
the external action to embed any security logic written by
security application developers to run close to resources in
SDP. However, the challenge is that running codes in a kernel
module (LSM) requires loading the kernel module and is not
safe to run as sand-boxed programs. To address this problem,
any security logic is designed to run in an eBPF (Extended
Berkeley Packet Filter) VM without changing kernel code or
loading a kernel module.

To address the possible conflicts between different flow
rules, an integer-based priority is used to disambiguate rules

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

with overlapping patterns. If a system event matches multi-
ple system flow rules, only the highest-priority rule will be
applied.

B. Flow-Based Programming Abstraction

In this section, we detail how SYSFLOW supports flex-
ible system event generation and how security applica-
tion developers control low-level system objects on their
applications.

1) System Event Generator: The role of the Event Gener-
ator component is to generate system events by intercepting
system-level activities (e.g., system calls) from hooks in host
systems. It also interprets the semantics of system events
by parsing parameters from those hooks if necessary. Dif-
ferent from the existing work, Event Generator provides an
interface, called sysflow_generate_event, to allow admins to
generate their own system events to easily extend security
functionalities and expressibility with the flow model. Event
Generator further inputs system events to Flow Table Manager
to reference system flow rules in the flow table and enforce
corresponding security actions.

2) Resolving Resource Identifier: In many cases, the secu-
rity application developers encounter semantic gaps for system
objects. For example, a security application developer may not
know the identifiers (i.e., UUID and inode number) of personal
tax files in the file system of the victim host when they
want to write security apps to prevent the exfiltration attacks.
Instead, they may be aware of the file name and possibly
the path. To bridge the semantic gap, Flow Table Manager
enables an identifier binding and resolution service for system
objects.

At runtime, Flow Table Manager maintains the profile table
for system objects. For example, Flow Table Manager will
keep the name of a process in addition to the process identifier.
When receiving the requests to update flow rules that include
attributes of system objects instead of identifiers, the Flow
Table Manager will refer to the profile table to retrieve the
identifier of the system object. In this case, we will install
multiple flow rules if the identifier is not unique. Besides, the
binding service will also monitor the change of the mapping
from non-identifier profiles to the identifier (e.g., from name
to UUID and inode number for a file) at runtime and update
the corresponding flow rule accordingly.

V. SYSTEM SECURITY PROGRAMMABILITY

Our approach is to provide developers with high-level and
unified programmability for Zero Trust as well as generic
system security applications. By leveraging the decoupled
architecture, security applications remain less dependent on
the internals of host systems. Integrating separate system
security functionalities such as access control, isolation, mon-
itoring, and behavior analysis is a non-trivial task in practice.
SYSFLOW integrates multiple system security functionali-
ties into a single framework as a unified tool, by allow-
ing users to use Zero Trust APIs to develop their security
applications with their security functions/algorithms with less
hassle.

In this section, we describe how we design SYSFLOW to
provide programmability with finer-grained visibility for Zero
Trust system security to address (C2) and (C3).
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A. Programmable Resource Control With Micro-Segmentation

Micro-segmentation is a term typically used as a method
of creating logical/virtual security zones in network environ-
ments to isolate workloads from one to another and secure
them individually. When we apply this concept to system
security, it is challenging to realize it. As illustrated in our
motivating example (Figure 1), The basic sandboxing mech-
anism of the container (i.e., Docker) is Linux namespaces.
However, namespaces are tied to resources of the host system
that cannot be isolated since file systems (e.g., cgroups and
sysfs) are shared with the host system. Thereby, a compro-
mised host can access the sensitive resources that belong to
other containers and system resources through vulnerabilities.
To restrict access to resources among containers, we might
utilize a separate MAC profile (e.g., AppArmor) per con-
tainer by placing each one in a separate security context.
However, the profile requires the MAC to restart due to
merging into a global profile and starting with the new one.
In addition, the profile is restricted to a single host, thereby
neither being able to build multiple logical segments nor
being installed/updated dynamically upon container migra-
tion. Moreover, upon changes/patches/fixes of app/business
logic/container/microservice, the existing security contexts
(e.g., interaction related to resource access, behaviors of
processes, etc.) cannot be easily maintained with other secu-
rity tools. These highlight why simple updates/patches of
either problematic containers or security profiles for a single
container are difficult to apply to Zero Trust since security
contexts cannot be consistently, persistently maintained/shared
for infrastructure.

To address this problem, we design useful, easy-to-use
micro-segmentation APIs to provide security applications
with convenient programmability as shown in Table I.
The identifier of the micro-segmentation APIs provides
admins/security experts to build their own logically-separate
security zone either by nesting other micro-segmentation or
by including new flow rules, for example, per-user/-container/-
system/micro-service profiles. The APIs, then, are converted
into a list of flow rules for the system to be installed
dynamically without restarting the framework. Furthermore,
the key innovation over the traditional ossified security tools
designed for a dedicated purpose is that different security
applications are easily assigned/interfaced to each micro-
segmentation. For instance, per-container and -system micro-
segmentation may be applied to a default common set of
access control security application but per-micro-service and
-user micro-segmentation can be applied to a system fire-
wall and HIDS security application for specific security pur-
poses. Nevertheless, we face the following technical challenge
when we design the micro-segmentation: how to handle the
micro-segmentation with security contexts upon the dynamic
migration?

Dynamic Policy Programming. To support a dynamic
policy, SYSFLOW provides both reactive and proactive pro-
gramming paradigms.

In a reactive manner, SC first installs monitoring system
flow rules into the data plane, which will report a set of system
events (as contexts) to the controller. Then, the controller
installs corresponding responsive flow rules to react/respond
to the contexts from the reported system events.

The advantage of our reactive programming is that SYS-
FLOW can support tracking the instantiation of containers
dynamically. Unlike the existing security tools that should
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TABLE I

LIST OF MICRO-SEGMENTATION APIS
[ API | Descriptions
ms_create(ms_id)
ms_kill(ms_id)
ms_alloc(ms_id, flow)
ms_free(ms_id, flow)
ms_acl(ms_id, profile)

Create a new micro-segmentation.

Delete a micro-segmentation.

Allocate system flow into micro-segmentation.
Remove system flow from micro-segmentation.
Configure risk profile for a micro-segmentation.

constantly keep the consistency from orchestrators for the
dynamics of containers and manually update security policies
accordingly, SYSFLOW reactively collects container informa-
tion and updates security policies accordingly. For example,
suppose a flow rule is watching if nginx component of an
eShop micro-service attempts to take any action, e.g., {nginx,
* * report, priority}. Once the flow rule hits, SYSFLOW
will inform the security application. Then, the application
will request SDP to retrieve contexts of the process such
as container ID, micro-service name, creation time, etc. Now
that the application recognizes the container is dynamically
instantiated and it can further install a security policy, e.g.,
denying attempts to access tax files, e.g., {nginx, tax_files,
file_open, deny, priority}

Reactive flow installation may add an extra latency during
the communications between the data plane and the controller.
Instead, SYSFLOW also provides a proactive flow installation
to allow a developer to offload system event processing logic
into the SYSFLOW external security function in the SDP,
as detailed in Section VI-B.

B. Risk-Aware Security Response

From the motivating example, a malicious user of the eShop
microservice who is authenticated with valid credentials may
have access to other user’s resources through vulnerabilities
in the same container. The compromised container can also
break into the host system resources with a root privilege
through container vulnerabilities (e.g., runC, a CLI tool that
runs for each container). It is challenging for the existing MAC
approaches to defend against such attacks because no access
control rule/action to investigate the system activities caused
by the authenticated microservice user. Also, not only simply
denying runC would stop low-level container operations but
the lack of continuous assessment of a risk for Zero Trust
cannot handle the problem. The aforementioned problems
highlight why the existing per-container isolation with limited
functionality/permissions cannot be assumed to be protected
reliably, further allowing malicious cross-access due to the
hole/bypass of container security perimeter.

Note that although the example emphasizes on container
security, it applies to generic system security in the context of
risk-awareness. SYSFLOW is a generic system security frame-
work to address such problems that isolation-only approaches
suffer from. Here, we summarize three technical challenges to
address the problem: (1) how to provide programming inter-
faces to evaluate risk?, (2) how to create meaningful security
responses for a further investigation in lieu of making an
allow/deny action?, (3) how to provide finer-grained security
contexts with flexible monitoring points for the precise risk
assessment?.

For the first challenge, to dynamically inspect malicious
access requests and make a reasonable decision based on a
confidence/risk level, SYSFLOW provides risk profile tem-
plates as APIs for different schemes to support risk awareness,
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including privilege-based risk profile, context-based risk pro-
file, and scoring-threshold-based risk profile. On top of that,
SYSFLOW enables security applications to write customized
risk logic/algorithm. The privilege-based risk profile is to
directly grant an action for resource accesses, i.e., allow or
deny. The privilege-based risk profile is designed for two
reasons. First, it provides the compatibility to existing rules,
which means admins can easily migrate from their existing
solutions to SYSFLOW. Second, it allows admins to define
specific rules that cannot be covered by other security appli-
cations in SYSFLOW. Also, the context-based risk profile
is to decide access control actions based on the attributes
of the request, e.g., name, create time, and visit history.
In addition, a developer can choose specific scoring algorithms
(e.g., EigenTrust [48]) to rate each access; if the request is
over the threshold, then the request can be granted. Such
the general risk profile may not be applicable to all the
cases. Specifically, when malicious behaviors are detected by
any security applications, the scoring-threshold-based is more
flexible than the previous two since the threshold can be
dynamically modified based on the global risk level.

To address the second challenge, SYSFLOW facilitates
the programmable action. Suppose that the malicious user
attempts to read a legitimate user’s sensitive file and send it to
a remote location in a network from the motivating example.
When a security application detects an abnormal risk level,
its response logic can be written to generate a honey file to
deceive the attacker for a further investigation thanks to the
SYSFLOW’s redirect action. Furthermore, SYSFLOW allows
security applications to define their own logic as a new action
via the redirect action.

For the third challenge, we design SYSFLOW to provide
security applications with flexible, global visibility with con-
texts for risk awareness. To determine the contexts useful for
security applications, we collect several context attributes of
system objects that could be used to identify malicious behav-
iors. SYSFLOW leverages the components, i.e., PCC: Process
Context Collector, FCC: File Context collector, PFM: Process
File Mapper, and UCC: User Context Collector, to correlate
to contexts. SYSFLOW also utilizes PFM to track and store
the relations between them. PFM correlates the contexts of
processes and files and stores for consistent tracking. Such
mapping information is not always available in existing mon-
itoring systems because suspicious programs mostly access
sensitive resources by invoking another process, which makes
it hard to trace the original process. UCC extracts the user
context (i.e., usernames) by monitoring specific system calls
during login requests. However, the limitation of such visibility
service is that every time a system event is matched, a report
message should be sent to the controller. To provide the
visibility service in such a reactive way will cause significant
performance overhead. Thus, instead of solely relying on
the controller to handle the context information, SYSFLOW
enables a security application to preprocess the context infor-
mation in SDP with external security functions (e.g., extract
the statistics information from a sequence of system events
instead of sending every context to the security application).

Global, Cross-host Visibility. SC envisions system con-
texts (collected from SDP) to develop security apps among
multiple host systems in the infrastructure by design just as
SIEMs do with log collection. A security app can collect
contexts by registering flow report handler functions in SC
to process flow status reports from installed monitoring flow
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rules in a target system. In particular, SYSFLOW supports two
types of (cross-host) context sharing, i.e., reactive controller
updating and proactive packet tagging. In a reactive updating
manner, a security app installs multiple monitoring flow rules
in various systems, registers flow reports to acquire system
contexts from different host systems, and optionally update
flow rules based on monitored contexts. In a proactive packet
tagging manner, a security app can proactively install flow
rules to leverage encode and decode security actions to encap-
sulate system-level contexts to the tags of outgoing packets and
enforce different security actions based on the tags.

VI. PERFORMANCE OPTIMIZATIONS

Without efficient monitoring and managing system events of
interest defined as a flow, SYSFLOW may not be suitable for
the Zero Trust model due to the performance overhead. Also,
the overhead from the interaction between SDP and SC begets
another hurdle. In this section, we introduce how SYSFLOW
minimizes the overhead to address the challenge (C4).

A. Efficient Flow Rule Management

The low-level security intents of SYSFLOW represented
with a list of system flow rules are embedded in the SYSFLOW
flow table. To support both exact match and wildcard match,
a naive solution for the SYSFLOW flow table is to use a bitwise
classification through a bitwise comparison between incoming
system events and all system flow rules. However, the time
complexity of flow table lookups and updates is O(R), such
that R is the number of system flow rules installed in the table.
As a result, flow rule installation will incur a high latency in
the data plane as R increases. To design an efficient flow table
update and query, we adopt the Tuple Space Search (TSS)
classification algorithm [47].

The key insight of TSS classification is to realize a flow
table as a set of hash tables. In each hash table, it stores
the hashed key for each specific system flow rule with the
same mask. Suppose all the flows in a SYSFLOW flow table
matched on the same fields in the same way, e.g., all flows
match the source and destination system object but no other
fields. In such a case, TSS implements a flow table as a
single hash table. If a new flow with a different match is
added, TSS generates another hash table that handles the new
match for the flow. To denote matched fields, we use a 3-bit
mask to specify the range of each hash table. Based on the
TSS algorithm, Flow Table Manager can provide an efficient
flow table management, e.g., flow rule update/lookup, with
time complexity of O(1).! As shown in Section IX-A.2, the
maximum number of flow rules to cover all file operations
from the fresh installation of Linux is less than 100,000 and
we evaluate the efficiency of our flow rule management in the
evaluation.

B. SYSFLOW External Security Function

The insight of SYSFLOW external security functions is
to offload the system event processing functions/code of a
security app into SDP to reduce the interactions between SC
and SDP. For example, based on deny by default, Zero Trust

IThe flow rule lookup with TSS needs 7 hashed memory accesses, where
T is a constant value (i.e., 8 in the paper) of the number of tuples. The flow
rule update with TSS needs 1 hashed memory accesses.
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applications may request missed flows to be sent to SC for
the further decision. If we report each of flow-miss events to
SC for analysis, the round-trip latency will greatly delay the
attack investigation and response. To address this, we design
SYSFLOW external security functions that can run any security
function code written by the SYSFLOW applications in a safe
sandbox (eBPF VM) in the data plane instead of the controller.
Also, SYSFLOW external security functions are designed to
be securely and dynamically installed in SDP. By leveraging
SYSFLOW external security functions, not only SYSFLOW can
move security logic from a security application to SDP but
also can support processing fine-grained context information in
SYSFLOW external security functions on behalf of the security
applications. We showcase how a reactive security application
can be optimized to enhance performance through SYSFLOW
external security functions in Section IX-B.

VII. SYSFLOW IMPLEMENTATION

A prototype of SC has been implemented in Java® with
4,267 lines of code (LoC) by using Non-Blocking 10 (NIO)
APIs to achieve high event processing throughput. Currently,
SYSFLOW security apps can be developed in Java® and instan-
tiated as a module of SC.

We have implemented a prototype of SDP on top of Linux
in C with 7,094 lines of code (LoC). SYSFLOW captures a list
of system events based on the Linux Security Modules (LSM)
framework [52]. LSM hooks are used to generate system
events in the SYSFLOW kernel plugin module. It currently
supports a set of file, inode, memory, and socket operations.
In addition, to support system events in containers, SYSFLOW
checks the namespace of processes to pinpoint the container
that generates the system events. Note that SYSFLOW is
extensible to support more system level events for different
operating systems. We will discuss the extensibility of SYS-
FLOW in more detail in Section X.

A. Built-in User Context Support

UCC enables visibility at the application-level.
In SySFLOW, users can utilize system flow rules and
external functions to program their approaches to extract
customized user context from the data plane. To reduce
the work of users, SYSFLOW provides a general approach
to retrieve regular context with minimal effort. Since most
context information visible in system calls are passed as
parameters, we use a six elements tuple, <process_
name, event_name, parameter_index, context_

index, context_length, condition>, to represent
how we may extract the context information.
process_name represents the name of process.

event_name and parameter_index correspond to
the system event and parameter that will contain the context
information. The context information can be located in the
parameter with context_index and context_length.
condition shows the requirement of system events that
should be handled.

For each tuple, SYSFLOW will generate a flow rule to
redirect the specific system event to the external function.
The external function will check the condition and extract

2We note the design of the controller is programming language agnostic.
3SYsFLow currently supports Java-based security apps due to the user-
friendliness and generality of Java.

2801

the user context. In our current implementation, we only
support the length condition but it is trivial to provide
support for complicated expressions or code snippet written
in C as the condition is a part of the generated external
function. Then another system event will be generated,
which will forward the user context to the controller in
a flow report message. For example, the tuple used in
UC#3 in Section VIII is <’ nginx’, ‘io_getevents’,
4, USERNAME_INDEX, 0, “>1024 && <1596">.
The tuple will be converted to a system flow rule and
an external function. The system flow rule matches all
io_getevents syscalls and the external function will
extract the username and generate another system event with
user-context information.

B. SYSFLOW Control Messages

For communications between SC and SDP, we define three
types of control messages (shown in Table II), i.e., symmetric
messages, control-plane-to-data-plane (CP-to-DP) messages,
and data-plane-to-control-plane (DP-to-CP) messages. The
control messages are exchanged via a secure channel with
SSL/TLS. The details are briefly described in the table.

C. Flow Rule Management

Flow rules are managed in SDP and SC separately. SC can
pro-actively and re-actively install or update flow rules in the
flow table by using flow rule modification messages. A new
flow rule is installed in the flow table upon flow miss after
the lookup of a hashed key and is updated upon flow hit. The
flow rules are stored in the kernel memory for fast lookup.
In the controller side, the management and housekeeping of
flow rules freely depend on how SC apps handle them as most
SDN controllers follow. The normal operations of security
apps are to store flow rules in the internal storage or database
when installing the rules and to update the entries when
updating them via the flow rule modification message. Also,
SC retrieves the status of the flow table and flows and the
list of flow rules from the flow tables in SDP using flow rule
status request.

VIII. SECURITY APP EXAMPLES IN THE REAL WORLD

We demonstrate the usefulness of SYSFLOW in practice.
The key innovations of SYSFLOW are three-fold. We enhance
the existing system security in the context of Zero Trust
by providing admins with easy programmability for system
resource access control and risk validation in both generic and
container-based systems. Also, SYSFLOW can extend security
functionalities flexibly, not limited to the existing capabilities.
In addition, SYSFLOW can easily integrate with the existing
Zero Trust security through global visibility. We have devel-
oped several security apps for real-world security problems
based on SYSFLOW. Table III categorizes each app by the
capabilities of SYSFLOW. To address each aforementioned
innovation, we demonstrate three example apps for container
security and three apps for generic system security to show
how micro-segmentation and risk awareness with visibility can
be implemented using our APIs.

A. UC#I: Risk-Aware Micro-Segmentation for Micro-Services

We first illustrate the SYSFLOW security application that
leverages our micro-segmentation and risk profile APIs for
the motivating example (Figure 1). As we analyze it through
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TABLE II

SYSFLOW CONTROL MESSAGES EXAMPLE (CP: CONTROL PLANE, DP: DATA PLANE)
Control Message Type Description
Host info request CP-to-DP | Request host information
Host info reply DP-to-CP | Reply host information
Flow rule modification CP-to-DP | Insert/remove/update system flow rules
Flow rule status request | CP-to-DP | Request the status of system flow rules
Flow rule status report DP-to-CP | Report the status of system flow rules
Ext. Func. modification | CP-to-DP | Add/delete/update SYSFLOW external security functions
Ext. Func. report DP-to-CP | Report the status of SYSFLOW external security functions

TABLE III
EXAMPLE SYSFLOW APPS. (NOTATIONS: UP (UNIFIED
PROGRAMMABILITY), DR (DYNAMIC RECONFIGURATION),
FV (FLEXIBLE VISIBILITY), GV (GLOBAL VISIBILITY), PC (PROCESS
CONTEXT), UC (USER CONTEXT))

Name (Type) Description Capabilities
RS (Access Control) Risk-aware micro-segmentation for containers UP, PC
FCAC (Access Control) User-context-aware micro-segmentation UP, PC, UC
File Reflector (Cyber Deception) | Reflect suspicious file operations to honeypots | UP, FV
CLDLP (Info Flow Control) System/network information flow based DLP UP; GV; DR
VP (Virtual Patching) Virtual patching for container-based system UP, GV, DR
CFDAC (Access Control) Cross-host, context-aware access control UP, GV, DR
Container
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Fig. 4. Micro-segmentation for microservices.

the paper, the system security perimeter provided by the
namespace isolation is broken when a privileged option is
enabled to grant access to system (and other containers)
resources by exploiting container vulnerabilities. For exam-
ple, in an open-source eShop application, AtSea, app_server
is the container that provides web service to users. If the
app_server container is compromised, attackers can access
“/run/secrets/postgres_password/”, which stores the password
of the database. With the database password, attackers can
access the database and dump the entire database.

To mitigate such threat, we developed a security app to con-
fine file accesses within each container scope and prohibit the
malicious requests from the compromised container to AtSea
containers as depicted in Figure 4. As shown in Listing 1,
the application initiates a micro-segmentation for AtSea with
ms_create and includes all system flows targeting directories
mapped to the AzSea volumes with ms_alloc. In addition, the
application also creates a context-based risk profile to check if
the incoming file access is from a process inside AtSea contain-
ers (based on namespace information). Finally, the application
links the context risk profile to the micro-segmentation with
ms_acl. The application will automatically translate the micro-
segmentation policies to flow rules, which forward all requests
inside the micro-segmentation and reject all requests across
micro-segmentation. This use case showcases how SYSFLoOwW
users can easily write a ZT app with high-level APIs. Our

### Risk-aware Micro-segmentation for Micro-services

1

20 ...

3 Host APP_SERVER_HOST = "10.0.0.1";

4 Container APP_SERVER_CONTAINER; //container id of
app_server

5

6 Void init () {

7 ms_create ("atsea");

8 Match flow_match = [src: %, dst: %, op_type: =];
9 ms_alloc("atsea", flow);

10 profile = context_profile (Microseg.class.

getMethod ("policy", parameterTypes));
11 ms_acl ("atsea", profile);

12 mc_deploy ("atsea", APP_SERVER_HOST) ;
13 }
14
15 Boolean policy(sf_obj src, sf_obj dst, sf_type
op_type) {
16 container_id = read("/proc/" + src + "/cgroup");
17 if (container_id == APP_SERVER_CONTAINER)
18 return true;
19 else
20 return false;
21 }
Listing 1. Micro-segmentation example.

evaluation shows that the installation of the flow rules in the
example took 7.41ms and the average latency of file operations
inside the micro-segmentation was increased by less than 5%.

B. UC#2: Fine-Grained and Context-Aware Access Control
in Web Applications

Access control is an essential security approach to protect
resources in infrastructure. However, existing security systems
mostly enforce access control policies of each application
individually with a coarse- or medium-grained user-based
authorization scheme due to the lack of visibility and high-
level programmability. Also, they are either application-level
oriented or system-level oriented. Figure 5 depicts this case.
A malicious user can access the private data of other users by
exploiting vulnerabilities inside the web application. The threat
is from an application-level user to system-level resources.
When authentication mechanisms in the web application are
broken/bypassed, system-level security mechanisms like role-
based access control are only aware of the web application,
not the application-level user. Hence, they cannot detect illegal
access. We implemented a Fine-grained and Context-aware
Access Control (FCAC) application to provide fine-grained
access control with the awareness of contexts in different
levels. FCAC app in SYSFLOW will install flow rules to restrict
accesses to files based on the user profile contexts in the
web application. In detail, there are three rules: 1) FCAC
authorizes the access if the file belongs to the user; 2) any
access to files that do not belong to the user will be denied;
3) Write requests from normal users to public files will be
denied. To determine the owner of a file, FCAC monitors
file operations to record the creator of the file. The creator

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 02,2023 at 22:38:43 UTC from IEEE Xplore. Restrictions apply.



HONG et al.: SYSFLOW: TOWARD A PROGRAMMABLE ZERO TRUST FRAMEWORK FOR SYSTEM SECURITY

Nginx - SysFlow Data Plane
Web__,| ‘ Login crop_image ‘\ IR RN i
Requests 8! p_imag Context Monitor
-
Event Generator
Attacker File System
Fig. 5. Workflow of FCAC in SYSFLOW dataplane.

Honey f}les

S
Suspicious
Process a o

Fig. 6. High-level idea of file reflector app in SYSFLOW.

Target files

is assumed to be the only user of the file. Public files should
be created either by a specific user or before FCAC is installed.
In our test scenario, we ran WordPress 5.0.3 (CVE-2019-8943
unpatched) with Nginx 1.18.0. To extract the user context
(i.e., usernames), FCAC utilizes several system flow rules by
monitoring system call parameters during login process. The
username will be extracted as a user identifier. We tried to log
in the attacker’s account and exploit the vulnerability to access
a photo uploaded by another user. The access was rejected
by SYSFLOW and Nginx returned 404-File Not Found
error to the attacker. The results showcase the effectiveness of
cross-application access control policies enforced by FCAC
applications in SYSFLOW. We also tested the additional
latency introduced by SYSFLOW when 100 users accessing
the web application at the same time. On average, FCAC only
increases the response time by 4.17%. Listing 2 shows an
abstracted example of SYSFLOW applications for FCAC.

C. UC#3: File Reflector With Flexible Visibility

Cyber deception can be a promising technique to divert
attackers away from enterprise/cloud sensitive data for better
resource protection and further attack investigation/forensics.
Upon SYSFLOW, we implement a security application, namely
file reflector, which can automate the deployment of decoy
resources in the system to lure potential attacks that aim to
steal or modify sensitive data (e.g., tax/payroll/password) from
protected resources. This example showcases how SYSFLOW
is applicable and extensible to more complicated and advanced
security problems of ZTA that require continuous validation of
access to establish trust reliably. Figure 6 demonstrates a high-
level idea of how file reflector can be realized in SYSFLOW.

By using redirect action provided by SYSFLOW as demon-
strated in Listing 3, access attempts (i.e., file_open system
events) to the sensitive file (e.g.,”/etc/passwd”) can be added
as multiple actions to redirect to decoy documents in a
programmable fashion. It enables admins flexibly to either
force the access redirection immediately or analyze activities
on honey files without blocking/confusing normal resource
actions. Based on the deception provided by the SYSFLOW
app, administrators can conduct more analytic/defensive logic,
e.g., through a security application via report, log, and an
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1| ### Fine-grained and Context-aware Access Control in Web App
20 ...

3| Host WEB_SERVER_HOST = "10.0.0.1";

4

5| monitor_action = String(

6 void monitor_action (charx input, int type) {
7 char username[256];

8 char session[256];

9 locate_username (input, username);

10 locate_session (input, session);

11 bind_in_map (username, session);

12 bind_in_map (session, pid);

13 }

14]);

15

16| access_action = String(

17 void access_action(charx file_path, int type) {
18 char username[256];

19 find_in_map (pid, username);

20 if (type == file_read) {

21 if (!is_owner (username, file_path))
22 return false;

23 else return true;

24 } else if (type == file_write) {

25 add_owner (username, file_path)

26 }

27 }

28();

29

30| void fcac () {

31 match_monitor = [src:ANY_SOCKET, dst:x, type:socket_open];

32 action_monitor = [compile_action (monitor_action)];

33 match_file_access = [src:NGINX, dst:WEB_DIR, type:ANY];
34 action_file access = [compile_action(access_action)];
35

36 installSysFlow (WEB_SERVER_HOST, match_monitor,

37 action_monitor, DEFAULT);

38 installSysFlow (WEB_SERVER_HOST, match_file_access,

39 action_file_access, DEFAULT);

40| }

Listing 2. An abstracted example of FCAC.

### File Reflector application

File protected_file = "/etc/passwd"

File decoy_file = "/tmp/decoy/etc/passwd"
target_host = "10.0.0.1"

void file_reflector () {
match = {src:ANY, dst:protected_file, type:file_open};
action = [redirect (decoy_file) | report];

10 #install system flow rule in target host

11 installSysFlow(target_host, match, action, DEFAULT);

Listing 3.  An abstracted example of FileReflector.

external security function via external in a flexible, pro-
grammable manner without depending on the raw system
logs. They may inspect the interactive system events between
the suspicious process that was identified by SYSFLOW Risk
Profile and the decoy document to capture follow-up malicious
behaviors. We have also evaluated the performance overhead
for the deception defense, i.e., the extract latency to redirect
file open attempts from a sensitive file to a decoy one.
We observed the average latency of the deception defense is
2.0 microseconds, which is negligible considering the average
latency of normal file open accesses (2.5 microseconds). In this
case, it can also somehow hide our redirect security primitives
from an adversary side.

D. UC#4: Cross-Layer Data Leakage Prevention (CLDLP)

Many advanced attacks may exhibit multi-stage manner
across various hosts in a modern computing infrastructure for
stealthy and elusive purpose. Unfortunately, it is not an easy
integration for the existing fragmented network/system-only
security tools for ZTA. In Figure 7 as reported by TrapX [12],
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Fig. 7. Infrastructure-wide data leakage investigation realized via SYSFLOW.

suppose that Hostp is less protected by firewalls and other
security tools, for example, a picture and archive communica-
tions system (PACS) designed to easily move medical imagery
(e.g., X-rays) throughout the hospital and offices outside. The
attacker first compromises Hosty and then Hostp that has
less protection, and ultimately infects Hostc (Victim Host) to
exfiltrate sensitive files to outside via Hostp (as a stepping
stone). Likewise, this multi-stage data leakage scenario is in
line with cross-host attacks like GitPwnd [6] when Hostp is
a Git server as a stepping stone. In the use case, we showcase
how SYSFLOW can help mitigate data exfiltration scenario.
To secure sensitive data from ex-filtration, information flow
tracking techniques are widely used at an infrastructure scale.
With the abstraction of system flows, we show a hybrid
SYSFLOW app (as illustrated in Figure 7) that enforces cross-
layer data leakage prevention. The security app installs system
flow rules into the victim host and other hosts in infrastructure
(®). For the victim host, SC installs a system flow rule to
track the system-level information flow from the sensitive file
to any processes. When a sensitive file in the victim host are
accessed by other hosts, a report is sent to SC (@). When
the controller receives the report message from the victim
host, it will reactively install an information flow tracking
flow rule to encode a tag for all outgoing traffic for the
sensitive file. Since the SC has already installed flow rules
on other hosts to instruct SDP to report any observation of
tagged packets received from the socket (® and ®), when SC
receives the report from SDP, it responsively installs flow
rules to propagate the tag for outgoing traffic (® and @).
When attackers in Hosts (e.g., inside a hospital) attempt to
retrieve the data in Hostg, or when attackers from outside
(e.g., offices outside the hospital or the Internet) try to retrieve
the data via Hostp (as a stepping stone), SC will be notified
that the sensitive file is about to leak from Hostg. Besides,
the non-stepping stone host, Hosta, is also applied with the
data leakage prevention rules easily by this infrastructure-wide
mechanism. Listing 4 shows an abstracted example of CLDLP,
which impedes data ex-filtration of a sensitive file (i.e.,
“/usr/data/medical_info) and Section IX-B elaborates how we
optimize performance by replacing the reactive programming
with proactive programming based on external functions.

E. UC#5: Virtual Patching

Virtual patching (VP) [20] is a security policy enforcement
layer which prevents the exploitation of a known vulnerability
in a timely manner without waiting for an actual patch
release. It analyzes suspicious activities and intercepts attacks
in transit so that malicious access/traffic cannot reach the vic-
tim’s resources. The deployment of the vulnerable container,
however, is dynamically decided at run-time by container
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1| ### Cross-Layer Data Leakage Prevention app

2| File sensitive_file = "/usr/data/medical_info"

3| Tag tag = "dlp";

4| matchl = {src:ANY, dst:sensitive_file, type:file_open}
5| match2 = {src:ANY, dst:ANY_SOCKET, type:socket_read}
6| match3 = {src:ANY, dst:ANY_SOCKET, type:socket_write}
7| # action definitions for report, encode, decode, net (info) flow
8| ...

9| netflow_match = {src:ANY, dst:internet, TOS: tag}

10

11| void information_flow_tracking() {

12 #install a system flow rule to monitor processes
13 #trying to the sensitive file

14 installSysFlow (hostl, matchl, report_action,

15 DEFAULT)

16

17 #install a system flow rule to report any process
18 #read from tagged socket

19 installSysFlow (host2, match2, report_action,

20 DEFAULT)

21 installSysFlow (host3, match2, report_action,

22 DEFAULT)

23

24 #install a network flow rule in gateway switch to
25 #block outgoing traffic towards Internet with tag
26 installNetFlow (Gateway, netflow_match, [deny]

27| }

28

29| #register handler to encode tags for outgoing traffic
30| callback handleSysFlowReport (report) {

31 match = report.match

32 host = report.host

33 if match == matchl or match == match2 then

34 #install system flow rule to tag any process
35 #reads the sensitive file or read tagged socket
36 installSysFlow (host, match3, encode_action,
37 DEFAULT)

38| }

Listing 4. An abstracted example of CLDLP.

orchestration tools, e.g., Docker Swarm [4] or Kubernetes [9],
which makes the existing security tools difficult to realize
this technique. In this use case, we showcase how SYSFLOW,
thanks to Dynamic Reconfiguration in particular, easily imple-
ments a virtual patch. Suppose that the vulnerability of a
web server, nginx, in Figure 4 is reported at CVE, admins
need a prompt virtual patch for a server without modifying
nginx. To solve this, SYSFLOW can track nginx using Dynamic
Reconfiguration and a virtual patching application can be
written with a defense code to block the signature payload
of the vulnerability. To this end, VP first installs a flow rule to
identify whether the vulnerable nginx container is running in
the swarm cluster of the host. Upon detecting a process related
to vulnerable nginx, VP dynamically installs virtual patching
rules to block an attack payload containing the discovered path
traversal vulnerability in the corresponding host systems. This
procedure can be done quickly by admins/developers on top of
SYsFLow without disrupting the current operation of nginx,
which emphasizes the benefits of SYSFLOW’s programmabil-
ity, holistic visibility, and dynamic reconfiguration. Listing 5
shows an abstracted example of SYSFLOW applications for
Virtual Patching.

F. UC#6: Cross-Host, Fine-Grained, and Dynamic Access
Control (CFDAC)

Access control is an essential security approach to pro-
tect important resources in infrastructure. However, existing
security systems mostly enforce access control policies in a
single host with a coarse- or medium-grained authorization
scheme, which may break down in the context of dynamic
environments or complex access policies. Instead, SYSFLOW
can enable fine-grained access control applications with the
awareness of cross-host contexts in a dynamic manner. Such
contexts may include host identity, user identity, time, file visit
history, file name, and so on as well as Zero Trust contexts
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1| ### Virtual patching example (for hostl,host2,host3)
2| vulnerable_process = "nginx"
3| legal_path = "/var/www/+"
4] ...
5
6| function vulnerability_monitor{
7 match = {src:vulnerable_process, dst:ANY_FILE,
8 type:ANY}
9 action = [report]
10 # install flow rules for hostl, host2, host3
11 installSysFlowRule (hostl, match, action, DEFAULT)
12 e
13] }
14
15| callback virtual_patch_nginx_path_traversal (report) {
16 target_host = report.host
17 match = {src:vulnerable_process, dst:ANY_FILE,
18 type:file_open}
19 action = [deny]
20 installSysFlowRule (target_host, match, action,
21 DEFAULT)
22
23 match = {src:vulnerable_process, dst:legal_path,
24 type:file_open}
25 action = [allow]
26 installSysFlowRule (target_host, match, action,
27 DEFAULT)
28|}
Listing 5. An abstracted example of Virtual Patching.
1| ### Cross—Host Fine-grained Access Control (for server, client)
2| Process db = "/usr/bin/mysql"
3| matchl = {src:ANY, dst:ANY FILE, type:open}
4| match2 = {src:db, dst:ANY_SOCKET, type:socket_read}
50...
6| # install flow rule to monitor file access
7| installSysFlowRule (client, matchl, report, DEFAULT)
8| .
9
10| callback timer (start_time){ # start at 09:00

# revoke flow rule in server
revokeSysFlowRule (server, match2,

5

DEFAULT)

S

# install flow rule to allow access at 09:00

15 installSysFlowRule (server, match2, allow_act, DEFAULT)
16| }

17

18| callback timer (end_time){ # ends at 17:00

19 # revoke flow rule in server

20 revokeSysFlowRule (server, match2, DEFAULT)

21

22 # install flow rule to deny access after 17:00

23 installSysFlowRule (server, match2, deny_act, DEFAULT)

24|}

Listing 6. An abstracted example of CFDAC.

(e.g., authentication, permission, etc.). We assess such a capa-
bility by defining dynamic access control policies enforced
by a Cross-host, Fine-grained, and Dynamic Access Control
(CFDAC) application. When a running process attempts to
access the DB service remotely, the CFDAC app in SYSFLOW
installs corresponding flow rules to restrict accesses based on
the device and time contexts. First, the CFDAC authorizes the
access if it is within work hours (e.g., from 9:00 am to 5:00
pm) and only loads trust libraries (e.g., in a whitelist). Second,
any access request from processes is denied if it is not within
work hours. Finally, the access is denied if the process loads
uncertainty libraries. Listing 6 shows the simplified example of
CFDAC that utilizes time contexts to restrict database access.

IX. EVALUATION

In this section, we conduct evaluations to (i) measure the
performance overhead of SysFlow to show the minor overhead
on normal system operations, (ii) show the efficient handling
of flow rule updates, and (iii) verify the scalability of the
SysFlow controller. In the following evaluations, by default,
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TABLE IV
LMBENCH RESULTS FOR SDP
. e 7e SysFlow
System Operation I oSt [ yavg [ worst
Latency of system operations in ms (smaller is better)
file read 0.1913 0.1960 0.1991 (+4.08%) 0.2106
file write 0.1879 0.1901 0.2036 (+8.36%) 0.2273
file open/close 0.4875 0.5124 | 0.5482 (+12.45%) | 0.6124
file create (0k) 29717 2.9453 3.0977 (+1.04%) 3.3219
file create (10k) 6.6968 6.8053 7.6874 (+14.79%) | 7.4085
file delete (0k) 4.9388 4.9744 5.2591 (+6.49%) 5.6933
file delete (10k) 3.4770 3.5102 3.5924 (+3.32%) 3.8210
syscall 0.0359 0.0354 0.0361 (+0.56%) 0.0371
mmap latency 3418.0 3677.0 3854.7 (+12.78%) 4164.5
pipe latency 2.0840 2.1017 2.1586 (+3.58%) 2.3658
Socket throughput pps (larger is better)
socket I/O 1 885 [[ 890 [ 874 (-1.24%) [ 842

we hosted the SysFlow controller running on Ubuntu 18.04
with 2 cores of Intel i5 9600K CPU and 16 GB RAM and
for other hosts, we ran Ubuntu 18.04 with 2 cores of Intel i5
9600K and 8 GB RAM.

A. Data Plane Performance Measurement

In this section, we present the performance of SDP for
micro-benchmark tests, macro-benchmark tests, and scalability
tests. In the following evaluations, we leverage baseline to
refer to systems running an unmodified Linux kernel.

1) Benchmark Results: We used LMBench [10] to evaluate
the run-time performance of system operations. Table IV
depicts the comparison between the baseline and SYSFLOwW
with the applications in Section VIII deployed. For two of
the three primary file operations (i.e., read, and write), the
introduced overhead is reasonably low. Our evaluation results
indicate that SYSFLOW mainly impacts the file operations and
mmap. But for other operations SYSFLOW only introduces
negligible overhead.

We tested SDP with macro-benchmarks including web
server performance, file transmission performance, and
database online transaction processing performance. In all of
those tests, we run SDP in both server side and client side
with 1000 system flow rules with default ALLOW actions.
For the web server performance, we used a host running
ApacheBench [1] to test the performance of a Nginx server
by sending 10,000 requests with 500 concurrent connections.
To test the file transmission performance, we used wget bench-
mark [21] in a host to test the transmission of a 1 GB file from
a server. For the database performance, we used sysbench [17]
to test a database server with 1 million records. In addition,
we tested the performance overhead of SYSFLOW upon cloud
native e-shop applications with light-4j [13]. We used ab [1]
on the same machine to simulate 4093 users and recorded the
number of requests per second and latency of the service. The
results (Table V) show SDP introduces negligible overhead on
the operations of real-world applications even across different
hosts.

2) Scalability With Flow Rules: We tested the scalabil-
ity of SDP using different numbers of system flow rules.
We increased the number of system flow rules from 1,000
up to 100,000 in our experiments (the maximum number of
flow rules is set to 100,000 based on the fact that the number
of flow rules to hit every default file operation can be set less
than 100,000). Since most security practice can be realized by
flow rules with specific actions to specific system objects, the
actions of these rules are all allow and most of them will only
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TABLE V
MACRO-BENCHMARK RESULTS FOR SDP
Type Baseline [ SysFlow
[ best | avg [ worst

Web Server (Nginx) Performance
10K total requests with 500 concurrent connections
Requests per second [ 3,533 3502 [ 3478 (-1.56%) [ 3407
Time per request (ms) [[ 141 | 143 | 147 (+426%) | 154
File Transfer (wget) Performance for 1 GB file

Time to Complete (s) 21.8 21.9 [ 22.3 (+2.29%) [ 233
Throughput (MB/s) [ 48.0 H 47.7 [ 46.5 (-3.13%) [ 453
Database (MySQL) Performance with 1M records
Transactions per second H 540.6 H 538.6 [ 535.1 (-1.02%) [ 529.7
E-shop micro-service
Requests per second  [[ 2472 2452 2401(-2.87%) 2397
latency(ms) H 44.54 H 44.87 [ 45.17(+1.41%) [ 45.62

match specific system objects (e.g. specific file). The results
show that the number of system flow rules does not make
significant differences to the performance. Besides the static
flow rules, we also tested SYSFLOW with global file access
control, in which we can get more practical and dynamic rules
as the previous benchmark results show that the file operations
impose the majority of overhead. We deployed an application
to approve file access based on user group, as defined in
Linux. The application has no predefined flow rule. Instead,
all flow rules will be generated at runtime. On a fresh install of
Ubuntu 18.04 with 332,358 files, SYSFLOW installed 74,519
flow rules (designed to lookup all flow entries for each file
with a reduced number of rules using wildcard) in 37.20s after
the system was booted. After that, the delay of file operations
introduced by SYSFLOW is reduced to 4.71% on average. The
results show that SYSFLOW has no significant overhead when
most flow rules have been installed. In addition, we tested
the memory overhead introduced by SDP through the top
Linux command with different numbers of system flow rules as
the memory operation is another major performance overhead
from the previous evaluation. The result shows the memory
usage is about 400 KB for 1,000 flow rules and it grows
linearly with the number of system flow rules inserted. Hence,
SDP is scalable to contain system flow rules for various
system security intents.

B. Efficiency of Flow Rule Update

1) Reactive App vs. Proactive App: SYSFLOW provides
external security functions to reduce the latency during com-
munications between SDP and the SC. We used the external
function to optimize the reactive implementation of the Data
Leakage Prevention (illustrated in Figure 7) that installs the
flow rules only in response to report messages that contain
access information to sensitive files. We optimized this app
in a proactive way by offloading the operations of reactive
flow installation as a SYSFLOW external security function.
For a reactive application, the delay time ¢, of the application
consists of three parts: 1) the communication between the data
plane and the controller, which is 3.903ms in our evaluation,
2) the processing time in the controller for handling a report
and sending a new flow rule to the data plane, which is
0.007ms, and 3) the processing time in the data plane for
installing the new flow rule, which is 2.447ms. In contrast, for
a proactive application, the delay time ¢, of the application
comprises only two parts: 1) the processing time that the
external function handles a report and sends a new flow rule
back to the flow table manager, which is 0.004ms and 2) the
time that the flow table manager installs the new flow rule,
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which is 2.091ms. We implemented both approaches. The
result shows that the latency is reduced by about 60%, which
is approximately the first part of delay time of the reactive
implementation. We found that #,; is smaller than t,5. The
reason is that external security functions are implemented in C,
thereby slightly faster than applications implemented in Java.

2) Dynamic Policy Programming: The comparison of reac-
tive and proactive apps shows that the dynamic policy pro-
gramming of SYSFLOW can significantly reduce the time
cost for dynamic reconfiguration. We measured the overhead
introduced by the dynamic reconfiguration when container
instantiation occurs. We instantiated the identical Ubuntu
18.04 image with Docker on two hosts but only one runs with
SDP. In the evaluation, SC installs one flow rule for each
container to deny any access to file /etc/passwd using a
proactive app. Then, we measured the container starting time
on the two hosts by instantiating the image 100 times. For
the host without SDP, the average starting time is 0.374s.
For the host with SDP, the average starting time is 0.381s.
The results show that the overhead introduced is about 1.9%.
In practice, the overhead could be larger since more flow rules
should be deployed. However, the overhead will not increase
significantly since each additional flow rule will only introduce
about 2ms latency.

3) Sensitivity of Flow Rule Update to Residual Flow Rules:
We added a test code snippet in SDP Daemon that lever-
ages the gettimeofday API with a microsecond timestamp to
measure the latency of inserting/updating/deleting 10,000 flow
rules cumulatively (from 10,000 flow rules to 50,000 flow
rules defined as discussed in Section IX-A.2). We repeated
the measurement five times for each case. Figure 8 shows
the average latencies for Flow Table Manager to handle
flow rule modification messages. We can observe that Flow
Table Manager can efficiently handle all types of flow rule
modification messages, e.g., the average latency is around
1.7 ms for inserting 10,000 flow rules when 10,000 flow rules
have been inserted. Thus, the time of inserting rules is almost
negligible. We also observed that the residual flow rules do
not have negative effects on the flow rule modifications since
the latencies for different scenarios are in a constant trend.
As a conclusion, the design and implementation of the Flow
Table Manager can support a rapid reconfiguration for high-
level security intents.

C. Controller Scalability

We tested the event processing throughput of a single SC.
The SC ran a stateful app that installs a new flow-mod message
to allow the read operation upon receiving a flow report.
For the SDP, we built 3 hosts as event generators. Our
event generators send flow rule status report messages to the
controller as fast as possible, which tried to read every file in
the file system. We measured the observed memory and time
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cost of each flow mod message. In the evaluation, we installed
223,496 flow rules in total to the 3 hosts. The average memory
cost for each flow mod message is 479 KB. It is worth noting
that the memory consumed by the flow mod message will
be released when the message has been sent to the host.
Also, the memory cost is independent between different flow
mod messages, which means the needed memory is increasing
linearly as the number of generated events per second is
increasing. For the time cost, most flow mod messages in
our evaluation are sent within 0.01 ms. The time cost of
handling the flow report is determined by the complexity
of the application. Thus, we also measured the time cost in
complicated applications as shown in Section VIII and the
flow mod messages are all sent within 0.4 ms after the flow
report is received. The results show that the memory cost of
handling each incoming flow report and generating a flow mod
message is about 480 KB and the time cost is at most 0.4 ms.

According to the report from Solarwinds [5], a host system
running SDP generates 5 events per second on average, which
means the average number of flow reports from each host
system will be 5 in most cases. Hence, 1 GB RAM can support
the memory needed for around 5,000 host systems running
SDP with the applications. Since SYSFLOW is mainly limited
by the RAM of the controller, which is the cheapest part for
servers nowadays, SC can be easily scalable in most scenarios.

X. DISCUSSION

A. Diverse Operating System Support

Despite the Linux-based implementation, we consider the
design of SDP is general. This generality comes from our
abstraction of system events from low-level system activities
(i.e., system calls). Our abstraction bridges the semantic gap
between different types and versions of operating systems to
make SYSFLOW a uniform framework for different operating
systems. The clear separation between the low-level system
activities and the security directives, in addition, makes SYS-
FLow easily portable to other operating systems as long
as corresponding plugins are implemented. One meaningful
future work is to extend SYSFLOW to support more operating
systems, e.g, Windows and Mac OSs.

B. Application-Level Event Control

Currently, SYSFLOW monitors and controls the interactions
between processes and system resources (in the kernel). How-
ever, we consider the flow-level control scheme proposed by
SYSFLOW is general, which can be extended to process and
control application-level events (e.g., library calls).

C. System Circumvention

The SysFLow Controller could be a primary target for
attackers since it is a central point of failure. A basic coun-
termeasure is to enforce authentication, authorization, and
access control to prevent unauthorized intrusive activities to
the controller. One may use role-based access policies that
are audited and reviewed consistently and any modification
to them must be audited regularly. Also, the state-of-the-
art security practices could be conducted to harden SC as
part of ZTA control plane components. In addition, the
attacker may attempt to get a root privilege to disable or
bypass SYSFLOW external security functions installed in a

2807

host system. However, SYSFLOW allows only trusted, vetted
code from SYSFLOW Controller to run as external functions in
eBPF VM, which prevents unprivileged users/programs from
modifying or running a JIT compiler with untrusted, unvetted
code by installing system flow rules, which neutralizes the
attack in advance.

D. Future ZT Features to Add

Zero Trust is not a single architecture but a set of ideas
designed to minimize uncertainty without the assumption of
permanent trust [43]. One feature of ZTA is the continuous
authentication of a user, device, applications, etc., which is
not the goal of this paper. Also, ZTA may support a variety
of methods to continuously evaluate and verify trust, such as
statistical analysis, machine learning techniques, which are not
the focus of this paper either. Instead, we provide useful pro-
gramming interfaces to write policies and algorithms. We leave
other ZT features as our future work.

E. Mutual Authentication

Zero Trust advocates mutual authentication, for example,
checking the identity and integrity of devices, access to apps
and services based on the confidence of device identity and
health in combination with user authentication. However,
SysFlow includes only the identity management component for
user/container/process/host now. The reason is that the focus of
our paper is to provide a novel framework for programmable
system security to realize Zero Trust instead of implementing
and integrating all existing Zero Trust components into the
framework. Many mainstream ZTAs have already supported
mutual authentication for user/device/app/service, which is
complementary to our research and could be used/integrated
to work together with Sysflow. One future direction includes
the integration of our framework with the existing ZTA com-
ponents to serve system security for Zero Trust.

F. Formal Verification

The desired behavior of SYSFLOW entirely depends on the
flow rules and security functions issued by applications run-
ning on the controller. This may simplify the formal modeling
and verification of SYSFLOW architecture. The verification
tools for SYSFLOW architecture as a guiding principle to
verify the reference monitor and the whole framework can
be built either on flow control references between the control
plane and the data plane or on each plane just like many SDN
approaches [27], [33]. We leave this as our future work.

XI. RELATED WORK

To date, the increasing number of Zero Trust Architecture
has emerged in the industry, such as Google Beyond Corp [7],
Palo Alto Zero Trust [15], and Zero Trust eXtended [22],
which help organizations better serve a more pragmatic, step-
by-step approach as incremental deployment. However, the
majority of existing ZTAs have mainly focused on network
security and there has been little work to implement a Zero
Trust framework for system security like SYSFLOW. Similar
to network-based approaches, it does not necessarily mean that
there has been no research to implementing some ZT principle.
Many prior works have touched some relevant elements that
could be applied to ZTA for system security.
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A. Information Flow Control Systems

Some previous works, e.g., HiStar [55], Asbestos [26],
and Weir [39], propose to enforce Decentralized Information
Flow Control (DIFC) at the OS level by using labels to
define security/integrity contexts and restrict information flows
between kernel objects. These solutions typically have limited
low-level programmability for protecting information flows
between system objects. They focus on information flow
tracking and reasoning but suffer from insufficient capabil-
ities to handle the dynamics, i.e., visibility with contexts.
Complementing these works, SYSFLOW can provide flexible
programmability based on the system flow model and user’s
algorithm/logic.

B. System Resource Access Control

Existing Unix/Linux systems embed security kernel mod-
ules (e.g., SELinux [16] and AppArmor [2]) to allow users
to write mandatory access control (MAC) policies to pro-
tect system resources. To enable fine-grained access control,
process-level firewall [50], [51] is proposed to prevent system
resource attacks by enforcing more fine-grained access control.
However, compared with SYSFLOW, these approaches have
limited local view and lack the capabilities of dynamic recon-
figuration. Some recent works [36], [38] propose approaches
to overcome limited visibility inside containers. However,
deploying current MAC approaches to container-running sys-
tems is still a burden of manual and static labeling and
configurations [24] in coping with the security over the dynam-
ics of microservices without a programmable framework
like SYSFLOW.

C. Security Monitoring and Correlation Systems

Alert correlation is proposed by many existing works [40],
[49], [54] and Security Information and Event Manage-
ment (SIEM) systems, such as LogRhythm [11] and IBM
QRadar [8], which correlate log events collected from various
sources by using different indicators of compromise. Also,
several studies [29], [37], [45] also target real-time attack
story constructions from system-level logs. Other log-based
approaches particularly for APT [28], [53] exploit the depen-
dency/causality relationships of system events defined from
interactions among system objects (processes, files, network
connections) in audit logs to aggregate and reduce the number
of log entries while preserving forensic analysis. A recent
platform, sysdig [18], captures system events through a small
driver leveraging a kernel facility called tracepoints for con-
tainer monitoring inside a container. Complementing these
works, SYSFLOW can program the entire operations without
log-related burden and enable a realtime response, which fits
to the ZT principle.

XII. CONCLUSION

SYSFLOW presents a novel system security development
framework for programmable ZT security control of host sys-
tem activities at runtime. It offers unprecedented and unified
programmability for users to achieve their dynamic security
needs. The evaluation shows that SYSFLOW is useful to design
diverse Zero Trust system security apps and only introduces
minor run-time overhead.
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