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ABSTRACT

The XRootD system is used to transfer, store, and cache large
datasets from high-energy physics (HEP). In this study we focus on
its capability as distributed on-demand storage cache. Through ex-
ploring a large set of daily log files between 2020 and 2021, we seek
to understand the data access patterns that might inform future
cache design. Our study begins with a set of summary statistics
regarding file read operations, file lifetimes, and file transfers. We
observe that the number of read operations on each file remains
nearly constant, while the average size of a read operation grows
over time. Furthermore, files tend to have a consistent length of
time during which they remain open and are in use. Based on this
comprehensive study of the cache access statistics, we developed a
cache simulator to explore the behavior of caches of different sizes.
Within a certain size range, we find that increasing the XRootD
cache size improves the cache hit rate, yielding faster overall file
access. In particular, we find that increase the cache size from 40TB
to 56TB could increase the hit rate from 0.62 to 0.89, which is a
significant increase in cache effectiveness for modest cost.
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1 INTRODUCTION

Scientific researches are increasingly relying on substantial data
for analysis [7, 10]. In high-energy physics (HEP), a majority of
data is stored, transferred, and cached via the XRootD system [4, 5].
Like many scientific research communities, the HEP community
collectively has generated a very large volume of data that is widely
used by individual researchers around the globe [2, 14]. To effec-
tively distribute the data to the community, there is a hierarchy of
shared sites to replicate the commonly used subsets of data [1, 2].
Alongside of this tiered storage system, there is also a collection of
distributed data caches to further bring the data closer to the end
users [3, 18]. This is a study of one of the regional caches to under-
stand the data access patterns and effectiveness of these distributed
storage caches.

Distributed storage caches is widely used for large-scale scientific
research [16], as well as internet businesses [11, 13, 19]. These
storage cache systems bring remote data content closer to the users,
which reduces the data access time and reduces the demand on the
internet backbone. In scientific research, these distributed caches
allow scientists to access large amounts of community data without
investing in significant storage resources. It is an important strategy
to democratize large-scale data-intensive scientific research.

As many scientific communities are considering installing such
storage caches, it is important to understand how they could be
effectively provisioned [8]. In this work, we study the usage of
currently deployed storage caches in California, USA for the local
HEP community. Based on a study of nearly one-year’s history
of data access through this cache, we propose a cache simulator
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to explore resource provisioning options. More specifically, we
investigate the relationship between cache size and cache hit rate.
The currently deployed cache size is 40TB. Our simulation finds
that increasing the cache size to 56TB could increase the cache hit
rate from 0.62 to about 0.89. This is a significant increase in cache
effectiveness for a relatively modest cost.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide more detailed background information about
the HEP applications and the XRootD software system used for
the distributed storage cache system. This section also provides
an overview of the log file used for our work. In Section 3, we
describe the access patterns from the current installation of the
storage caches. This also provides the basis for our cache simulation
work in Section 4. A concrete objective of the cache simulator is
to explore the resources required for future caches. We provide a
discussion of the statistics and cache simulation results in Section 5.
We conclude this paper with a brief summary in Section 6.

2 BACKGROUND

2.1 High Energy Physics

The High Energy Physics (HEP) community is among the largest
users of global scientific research and engineering networks. This
community depends on unique instruments operated by collabora-
tions across hundreds of institutions around the globe. Instruments
such as ATLAS and CMS at the LHC in Geneva, Switzerland could
be thought as high-speed camera with 100 Million pixels capable of
capturing many millions of pictures per second [7]. With complex
real-time decision logic, implemented via a mix of custom hard-
ware and software, these instruments only retain a small fraction of
the most interesting data records, known as HEP collision events.
Even after this substantial data reduction, the data volume captured
per year is still reaching many petabytes per instrument. The data
volumes are expected to grow by more than an order magnitude by
2028, as a result of detector and collider upgrades for the so-called
"High Luminosity LHC" (HL-LHC) science program [1].

To prepare for this significant increase in data volumes, the LHC
community is driven towards making any and all data placement
much more dynamic. A conceptual design under investigation is to
replicate data to regional "Data Lakes" and use a mixture of remote
access and caching with those lakes [2, 6]. These computing and
storage resources are provided by participating countries, typically
as in-kind contributions to the collaborations. In Europe, these "Data
Lakes" are less than 1000KM away, where the network latency is
low enough that data sharing among the regional institutions is
effective. In the US, "Data Lakes" are under active investigation
to improve application performance. This work is a part of this
exploration.

2.2 XRootD System

The XRootD software suite is a key software in the HEP community
and also contains tools for implementing a "Data Lake" as a feder-
ated storage cache infrastructure [2, 5]. In particular, the StashCache
service based on XCache is used by a number of institutes [3, 8, 18].
It interacts with a tiered data distribution framework, provides stor-
age devices as disk caches, supports distributed data access, and
implements a data discovery protocol for dynamic discovering the
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physical location of objects or files in the logical namespace[8, 9].
Overall, this distributed caching follows a tree-like architecture
where each XCache installation could be thought of as a part of the
tree [3]. An XCache installation may have a distributed set of servers
forming a logical data cache connected to a higher level branch.
Each top level branch of the XCache hierarchy is responsible for
a subset of the federated namespace. Applications are expected to
connect to a "regional” cache via the configuration of their runtime
environment, e.g. the OSG Data Federation [9, 17, 18]. Cache misses
are handled by XCache as XRoot-client calls to the data federation.
Thus, the StashCache service provides relatively low latency data
access to the large data collection located far away. This allows
physicists around the word to conduct their data analyses on "small"
computer clusters with very limited storage resources, as long as
there is a regional XCache nearby.

2.3 Server Logs and Programming Tools Used

In this paper we describe the patterns of the data lifecycle observed
in one of the XCache nodes at ESnet in Sunnyvale, CA from the
Southern California Petabyte Scale Cache [8] for US CMS which
is a part of the Caltech and UCSD Tier-2 center infrastructure.
This XCache node has a total cache size of 40TB. The XCache
node, running xrd version v5.1.1, produces daily server logs, which
contain information regarding various operations on the cache
data. The bulk of the XRootD server logs analyzed in this paper
are from the time period between January 2021 and September
2021. The sizes of the daily server logs vary substantially; some
are a few hundred megabytes, while others are upwards of 60
Gigabytes. The server logs were processed and analyzed using the
NERSC Jupyter system, running on Cori. Using the standard Python
library, we parsed each log, searching for keywords or keyphrases
denoting specific operations. Lines denoting the desired operation
were processed to extract information about the operation, such as
the file being operated upon, the size of the operation, and so-forth.
We used this extracted information to compute summary statistics
regarding file operations and cache behavior. This work provides a
comprehensive descriptive analysis of XCache behavior throughout
2021, and hints at changes to the XRootD caching protocol that can
improve performance.

3 FILE ACCESS PATTERNS AND FILE
LIFECYCLES IN DISTRIBUTED CACHES

This section details our findings with respect to file read operations,
file lifetimes, and file transfers.

3.1 Statistics of File Reads

File read operations are denoted in XRootD server logs by two
keyphrases: fh=0 readV and req=read. The first keyphrase denotes
areadV operation, which extracts a specified number of bytes from
a file, beginning at a specified byte offset. The second keyphrase
denotes a standard read operation. If a server log line contains
either of these keyphrases, then a read operation is being performed
during the corresponding timestamp. By parsing the logs while
searching for these keywords, it is possible to count the total number
of read operations issued in a given time frame. We seek to map
these read operations to specific files.
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Figure 1: Mean number of read operations issued per-file for
Jan 2021-Sep 2021. Global mean = 1562.46

The server logs also indicate the name of the file that each read re-
quest is issued towards. For lines that include the phrase req=read,
the filename can be extracted directly from the same line of the
server log. Lines that include the keyphrase fh=0 readV do not
have the filename included, but we can identify the filename by
extracting the thread ID and user ID from these lines and matching
them with a file open request. File open operations do include the
filename, so we can identify the filename corresponding to readV
operations by examining their file open operations. Thus, it be-
comes possible to count the total number of read operations issued
to each individual file in the span of the analysis time frame.

Our procedure for counting file read operations begins by pars-
ing the XRootD logs corresponding to the analysis time frame. It
matches readV operations with the appropriate file name using the
process outlined above. It then counts the number of read opera-
tions issued to each file, using a dictionary to map file names to
their read request totals. Once the procedure has finished parsing
the server logs, it calculates the mean number of read operations
per file by iterating through the dictionary and computing the mean
of the set of values in the dictionary. The results of running this
procedure for each month in the range January 2021-August 2021
are summarized in Figure 1. We modified the procedure to allow it
to compute and plot the distribution of total monthly read opera-
tions per-file, in addition to the mean. Figure 2 depicts the complete
range of the distribution, and Figure 3 depicts a finer-grained view
of a subset of the distribution. Additionally, the total number of
read operations issued among all files per-month are depicted in
Figure 4.

Read operations and readV operations appear in the server logs
in the form "NNN@MMM", where "NNN" is an integer denoting the
number of bytes the user wishes to read from a file, and "MMM" is
an integer denoting the byte offset where the user wishes to begin
reading bytes from the file. We developed a procedure that parses
XRootD server logs, searching for this pattern where it appears
in the same line as a read operation or a readV operation. When
the procedure locates an instance of this pattern, it extracts the
integer representing the size of the read operation, and it extracts
the integer representing the offset of the read operation, adding each
to a separate running total. This procedure returns the total number
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Figure 2: Distribution of monthly read operations per-file
for Jan 2021-Sep 2021
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Figure 3: Zoomed-in, finer-grained distribution of total
monthly read operations per-file for Jan 2021-Sep 2021. Peaks
are at 25 and 150 read operations.
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Figure 4: Monthly total size of file reads for Jan 2021-Aug
2021.

of bytes read from files, the mean read operation size, and the mean
read operation offset size. The results of running this procedure
for XRootD logs spanning Jan 2021 - Aug 2021 are summarized in
Figures 4, 5, and 6.
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2021. Global mean = 154,632B
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Figure 6: Mean offset size for read operations from Jan 2021-
Aug 2021. Global mean = 1.52GB

3.2 File Lifetimes

It is better for files to remain in the XRootD cache only for as long
as they remain in use by users. If files stay in the cache for too
long, they unnecessarily clog the cache, and if they are evicted from
the cache too soon, they must be transferred back from the data
sources upon further access. Thus, it is beneficial to know how
long files tend to remain open. Knowledge regarding file lifetimes
can enable the development and implementation of cache eviction
policies superior to the Least Recently Used (LRU) policy. [12, 15].

To model file lifetimes, we use a standard Python dictionary
to map filenames to lists of tuples (s, t.);, where ts denotes the
timestamp corresponding to the file’s first open request in lifetime
i, and t, denotes the timestamp corresponding to the file’s latest
close request in lifetime i. Therefore, the length of an arbitrary file
lifetime is t, — t. A file lifetime is defined as a period of time during
which a file is issued an open request at least once every 1.2 days. In
other words, if a file goes more than 1.2 days without being opened,
its lifetime is considered over. If a file is accessed after the 1.2 day
threshold, it is considered the start of a new lifetime. The 1.2 day
threshold was computed by modeling file lifetimes across a range
of different threshold points (1 day to 10 days), taking the mean
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Figure 7: Mean XRootD file lifetimes from Jan 2021-Sep 2021
for threshold points from 1-10 days The global mean of X =
28.78 hours or 1.2 days is used as the threshold for the lifetime
experiment.

< 10 Hours
83.8%

< 5 Hours
78%

< 1 Hour
54.6%

Table 1: Percentages of file lifetimes falling under certain
thresholds

lifetime produced by each threshold, and taking the mean of this
set of resulting means. Figure 7 summarizes these results.

File open requests are denoted in XRootD server logs by the
keyphrase "open rat" or the keyphrase "open r". File close re-
quests are denoted by the keyphrase "prefetch score". Server
log lines that contain these keyphrases also include the timestamp
of the operation and the file name. Thus, these lines provide all
the information needed to populate our dictionary. Our procedure
parses XRootD server logs while searching for these keyphrases,
populates the dictionary with key-value pairs of the form outlined
above, and iterates through these pairs to compute the mean file
lifetime across all measured lifetimes. Figure 8 shows the results of
running this procedure once for each month in the span of January
2021-September 2021. The mean file lifetime across all months in
this span is 0.968 days. Figure 9 shows a histogram summarizing
the distribution of file lifetimes across the same time range. Figure
10 shows a closer view of a subset of the lifetime distribution. This
subset of the distribution roughly follows a power-law distribution,
so Figure 10 also includes the plot of a power law function fitted to
the curve. This equation can be seen in Eq. 1, and the values of its
parameters can be seen in Table 2.

f(x) = ax? + e (1)
3.3 Data Transfer Size

File transfers to the cache are denoted by the keyphrase
"successfuly read size from info file = NNNNN", where
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Table 2: Parameter values for Eq. 1 plotted in Figure 10
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Figure 8: Mean XRootD file lifetimes from Jan 2021-Sep 2021
using a threshold of 1.2 days. Global mean = 23.23 hours.
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Figure 10: Zoomed-in, finer-grained distribution of file life-
times for Jan 2021-Sep 2021.
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Figure 11: Total amount of data transferred to the cache for
Jan 2021-Sep 2021

NNNNN is an integer that denotes the byte-size of the file being trans-
ferred to the cache!. By parsing XRootD server logs while searching
for this keyphrase, it is possible to compute the total amount of data
transferred to the cache during a given time frame. Our procedure
parses each line in a set of XRootD logs while searching for the
keyphrase. Upon finding a line with the keyphrase, it extracts the
size of the file from the line and adds it to a sum s. At the end
of the procedure, s is the total amount of data transferred to the
cache within the specified time frame of analysis. The results of
running this procedure for a timeframe of Jan 2021-Sep 2021 are
summarized in Figure 11.

4 DISTRIBUTED CACHE NODE SIMULATION

The procedures described in Section 3 opened up the possibility of
developing a tool with the ability to simulate the behavior of an
XRootD cache node on an access cycle corresponding to an arbitrary
contiguous set of XRootD server logs. In order to simulate a cache
node, we need to know what files are transferred to the cache, as
well as how large these files are. The first requirement is satisfied
by a procedure described in the following section. The second is
covered by the procedure described in Section 3.3. The ability to
simulate cache behavior opens up a wide range of potential avenues
for exploration. This section describes the various insights gained
from this cache simulator.

4.1 Simulator Design and Implementation

The behavior of an XRootD cache node is simulated by employing
an LRU eviction policy. The core design element of the simulator
is an ordered dictionary with relative paths to a file as keys and
values as objects corresponding to a file instance. These file objects
include the file size, file name, and the timestamp corresponding to
the file’s first access 2.

To simulate cache behavior for a given access cycle, the start and
end date of an access pattern need to be specified along with the

cache’s capacity.

! The misspelling of the world "successfuly" is intentional, and accurately reflects the
contents of the server logs
2The first access timestamp was used only for debugging purposes
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From there, the software retrieves the XRootD logs correspond-
ing to each day in the analysis timeframe. The keyphrase
"successfuly read size from info file = NNNNN" corre-
sponds to a file transfer into the cache where NNNNN is an integer
that denotes the byte-size of the file being transferred. Server log
lines that include this keyphrase contain information regarding the
total number of bytes transferred into the cache for a given file,
as well as the file path3. These lines denote cache misses. Upon
encountering one of these lines, the simulator creates a new file
object instance, and adds it to the front of the ordered dictionary,
using the file path as the key. The simulator then checks to see if
the total size of all the files in the ordered dictionary exceeds the
cache size. If the cache size is exceeded, it evicts the last element
in the ordered dictionary. When the simulator encounters read
operations or readV operations, it uses a similar process as the one
described in 3.1 to match these operations with file paths. If the file
path is contained in the ordered dictionary, then the corresponding
element is moved to the front of the ordered dictionary, and the
operation is counted as a cache hit. Otherwise, the operation is
counted as a cache miss. The total number of file read operations is
also counted. This cache simulator has three modes of operation.
Each are described in their respective subsections below.

4.2 Hit Rate

The first mode of operation calculates what the hit rate h of a
cache with a given capacity would be for a given access cycle. The
procedure described in the previous section is run, and the number
of cache hits is divided by the total number of file read operations,
returning the hit rate. We ran the simulator in this mode on an
access cycle spanning August 1st, 2021-August 31st, 2021. The
results of this run are summarized in Figure 12. We observe that
increasing the cache size from 40TB to about 56TB increase the
cache hit rate from about 0.62 to 0.89. This means the fraction of
file accesses that require data transfer over wide-area network is
reduced from 38% to 15%, a more than 2.5X reduction in the demand
on the wide-area network. Correspondingly, this would also reduce
the data access time for the end users and improve the effectiveness
of the overall storage cache system.

4.3 Cache Content Modeling

The second mode of operation calculates the byte-size of a cache’s
contents and the total size of evicted data as a function of time ¢
and the hit rate h. The pseudo-code for this mode of operation can
be seen in Algorithm 1. The values of the "access_rates" and
"file_size" parameters were both computed using XRootD ac-
cess data. The "size_params" parameter and the "rate_params"
parameter are both arrays of random scalar values ranging from -2.0
to 2.0. The range of [-2.0, +2.0] was chosen to ensure sufficient de-
viation from the values of the "access_rates" and "file_size"
parameters in both directions. At each time step, a random element
sy is extracted from size_params, and a random element r; is ex-
tracted from rate_params. s; and r; are multiplied by file_size
and access_rates respectively, and the products are used to com-
pute the final cache size for the time step. The purpose of the
random parameters is to introduce variances in the file size and file

3This information is elsewhere in a server log line that includes the keyphrase
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Hit Rate
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Cache Size (TB)

Figure 12: Simulated cache hit rates for a range of cache sizes
(40TB-60TB) based on file access patterns of August 2021.
Note that as cache size varies from 40TB to 54TB, the cache
hit rate goes from 0.62 (observed) to 0.89.

access rates, as this more closely models the real-world behavior. In
addition, the "access_rates" and "file_size" parameters are
both constant across timesteps, so variance is necessary to prevent
the simulation from simply depicting linear growth. Once the cache
is filled up, the simulator begins measuring the amount of data
evicted from the cache. It should also be noted that at each time
step, the hit rate h increases by a small amount. We would expect
a cache’s hit rate to improve as the cache fills up, as more data
in a cache means there’s a higher chance of a cache hit. Thus, we
increase h as our simulated cache’s contents grow in size. We ran
the simulator in this mode for a span of 2 months. The results of
this experiment are summarized in Figure 13.

Algorithm 1 Cache Size as a Function of Hit Rate and Time

1: procedure MODELCACHE(start_date, end_date, size_params,
rate_params)

2: access_rates «— 7000

3: file_size « 200, 000, 000

4: t « start_date — end_date

5: hit_rate < 0.1

6: foriin0:tdo

7: size_param « size_params[random_index|

8: rate_param « rate_params|random_index]

9: val « (access_rate * rate_param) * (1 — hit_rate)
(file_size * size_param)

10: if hit_rate < 0.6 then

11: hit_rate « hit_rate + 6 > is a constant

12: end if

13: result.append(val)

14: end for

return result
5: end procedure

—_
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Figure 14: Time it takes to fill caches of sizes 40TB-280TB

4.4 Cache Fill Up Times

The third mode of operation calculates how long it takes to fill up
caches of various sizes. The procedure described previously is run
for a large access cycle. When the total contents of the cache equal
to the cache size, the simulation is terminated, and the time stamp
of the final file transfer is recorded. This time stamp is compared
with the beginning time stamp of the access cycle to compute the
total amount of time it took to fill the cache. We ran this mode of
operation on a range of cache sizes from 40TB to 280TB, processing
an access cycle spanning May 1st, 2021-August 31st, 2021. The
results are summarized in Figure 14.
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5 DISCUSSION
5.1 File Access Patterns

Figure 1 demonstrates that the mean number of file read opera-
tions issued towards a single file varies substantially from month-
to-month. The mean peaks in March 2021 at around 3500 read
operations, and the mean is at its lowest in February 2021, at ap-
proximately 800 read operations. Figure 2 demonstrates that despite
the relatively large global mean of 1562.46, the bulk of files are is-
sued fewer than 500 read operations in a given month. Figure 3
further demonstrates that the majority of files are issued fewer than
200 read operations throughout the course of a month. Note that
Figure 3 roughly follows a bimodal distribution, with peaks at 25
and 150 read operations.

Figures 4, 5, and 6 provide more information regarding file read
operations. Figure 4 shows that the total amount of data read from
files differs greatly from month-to-month. June has the highest
total, at approximately 139 Terabytes, while May has the smallest
total, coming in at around 36.5 Terabytes. There is also a minor
positive trend with respect to the total. Figure 5 demonstrates that
there is a strong positive trend from month-to-month with respect
to the mean size of a file read operation. This indicates that as
the year progresses, read operations become larger. Figure 6 has
the smallest spread of any figure in this paper. There is very little
change in the mean file offset size from month to month, which
indicates that read offsets tend to be consistent.

From Figure 8, the mean file lifetime is 0.968 days, or 23.23 hours.
However, Figure 9 demonstrates that the distribution of file lifetimes
is right-skewed, so this mean is inflated by the small number of
large lifetimes. Figure 10 and Table 1 further support this idea,
as they show that the majority of file lifetimes are less than 10
hours, despite the much higher global mean. Therefore, if using file
lifetimes to inform caching policy, it would be best to look to the
distribution of lifetimes instead of the mean.

5.2 Cache Simulation

Figure 12 shows a clear pattern with respect to cache hit rates as
a function of the cache size. The hit rate h starts at ~ 0.626 for a
cache size of 40TB. h gradually scales with the cache size, with a
slightly larger-than-normal jump between 48TB and 50TB. The rate
at which h increases begins to flatten after 54TB. This indicates
that a cache size of 52TB eliminates the majority of capacity misses,
leaving primarily compulsory and conflict misses. Figure 11 further
supports this argument, as it demonstrates that in August 2021
(the month the simulation was run for), approximately 60 TB were
transferred into the cache due to cache misses, which is close to
the cache size beyond which we no longer see hit rate increases.

The observed cache hit rate for a 40TB XCache node in August
2021 is 59.3. This is lower than the hit rate produced by the simu-
lation for the same cache size. The difference can be explained by
two factors. First, the simulator employs an LRU eviction policy,
which does not necessarily reflect the behavior of the real XCache.
Second, the simulator assumes that the XCache is fully associative.
This assumption in particular could significantly contribute to the
larger hit rate, as fully associative caches tend to have higher hit
rates than n-way associative caches.
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Figure 14 also shows a clear pattern. As one would expect, the
time it takes to fill up a cache scales with respect to the cache
size. From cache sizes of 40TB-240TB, the increase in fill-up time
between cache sizes is more or less consistent, but from 240TB-
280TB, the increase is much more than anything else observed in
Figure 14.

Figure 13 shows what would be expected. As time goes on, the
amount of data in the cache gradually increases, until eventually
the cache fills up entirely. At this point, the amount of data evicted
from the cache begins to grow at an essentially consistent rate.
Additionally, as the hit rate increases, the total amount of data in
the cache increases less between time steps. This is expected, as a
higher hit rate would mean that fewer data accesses bring new data
into the cache. Also of note, the cache fills up after approximately
30 days, which is the same amount of time Figure 14 indicates is
necessary to fill up a cache of 40TB.

6 SUMMARY & NEXT STEPS

To inform the design choices of XRootD caches, we studied the
operational logs to understand the cache usage patterns. This pa-
per provides insights into file read operations, file lifetimes, and
how various changes to a cache node affect its behavior. We find
that increasing the XRootD cache size improves the cache hit rate,
yielding faster overall file access. Additionally, increasing the cache
size nearly linearly increases the time to fill the cache.

This work could be expanded upon in a number different ways.
First, the cache simulator described in Section 4 could be expanded
to model different eviction policies, while the current simulator is
limited to the LRU eviction policy. Additionally, future work will
attempt to refine the cache simulator so that it is able to simulate
hit rates that would be achieved by different file read rates. This
work could also be expanded upon by developing machine learning
models that can predict when a certain file is likely to be evicted
from the cache. Such models have been shown to be effective in
creating more precise and detailed file lifetime data [15]. A more
effective model could inform design choices for better distributed
storage caches.
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