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Abstract

In this note we show that the Riemann moduli spaces
Mγ,n equipped with the Weil–Petersson metric are quantum
ergodic for 3γ + n ≥ 4. We also provide other examples of
singular spaces with ergodic geodesic flow for which quantum
ergodicity holds.

1. Introduction

The aim of this note is to establish quantum ergodicity on a class
of singular spaces; the main examples we address are the Riemann
moduli spaces Mγ,n of Riemann surfaces of genus γ with n marked
points equipped with the Weil-Petersson metric gWP. We work
in the stable range 3γ + n ≥ 4, so Mγ,n is a complex orbifold of
complex dimension 3γ−3+n with smooth top dimensional stratum
Mγ,n,reg. In this setting, we prove the following theorem:

Theorem 1.1 (Quantum ergodicity on Riemann moduli spaces).
Let 3γ + n ≥ 4 and ∆gWP

be the positive Laplacian with respect to
the Weil-Petersson metric gWP on M = Mγ,n,reg. Suppose that
{ϕj} is an orthonormal basis of eigenfunctions of ∆gWP

on M for
the natural self-adjoint extension of ∆gWP

studied by Ji–Mazzeo–
Müller–Vasy [JMMV14]. Then there is a density one subsequence
{ϕjk} ⊂ {ϕj} such that

⟨Aϕjk , ϕjk⟩ →
∫

S∗M

σ0(A) dµ as k → ∞

for all zero order pseudodifferential operators A with Schwartz ker-
nel compactly supported in the interior of M ×M and σ0(A) is the
principal symbol of A. Here, dµ is the Liouville measure on the
cosphere bundle S∗M which is normalized such that µ(S∗M) = 1.

In Theorem 4.1 below we prove a stronger result which allows for
pseudodifferential operators A which are supported at the orbifold
singularities.
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In particular, the above theorem asserts the equidistribution of
“almost all” eigenfunctions on the Riemann moduli spaces. An im-
mediate consequence of taking A = a(x) ∈ C∞

c (M) to approximate
a characteristic function from above and below is that

∫

Ω

|ϕjk |2 →
Vol(Ω)

Vol(M)
as k → ∞

for all smooth domains Ω ⋐M .
The ergodicity of the Weil-Petersson geodesic flow on Riemann

moduli spaces is a celebrated result of Burns–Masur–Wilkinson
[BMW12]. (See Section 4 for more background.) Therefore, the
quantum ergodicity in Theorem 1.1 establishes the correspondence
of the geodesic flow and Laplacian eigenfunctions (which are the
stationary states of the quantized operator of the geodesic flow).

Quantum ergodicity on boundary-less compact manifolds with
ergodic geodesic flow was first proved independently by Šnirel’man
[Šm74], Zelditch [Zel87], and Colin de Verdière [CdV85]; on man-
ifolds with boundary, if billiard flow (i.e., generalized geodesic flow
that reflects on the boundary) is ergodic, then the corresponding
quantum ergodicity was proved by Gérard-Leichtnam [GL93] and
by Zelditch–Zworski [ZZ96].
Comparing with the boundary-less case [Šm74, Zel87,CdV85],

the Riemann moduli spaces are incomplete and the Weil-Petersson
geodesic flow is not defined everywhere. This difference is reflected
in the structure assumptions (S1)-(S3) that we make later. Com-
paring with the manifolds with boundary [GL93, ZZ96], the re-
quired analysis for the proof of quantum ergodicity, e.g., the Egorov
theorem in Theorem 2.5, is not available in the literature. We be-
lieve this formulation of Egorov’s theorem may be of independent
interest. (See also the analytic assumptions (A1)-(A5).)

In fact, we prove Theorem 1.1 for a more general class of singular
spaces satisfying a number of structural and analytic hypotheses;
in Section 4 we observe that the Riemann moduli spaces Mγ,n

satisfies these hypotheses.
Let Φt denote the flow generated by the Hamilton vector field of

the homogeneous degree 1 function (x, ξ) 7→ |ξ|g(x). This function is

(for now, formally) the principal symbol of the operator P =
√
∆.

The asymptotic behavior of Laplacian eigenfunctions is closely
related to the dynamical properties of Φt. Notice that in our setting
of singular spaces, the flow Φt(x, ξ) is not generally defined for all
(x, ξ) ∈ T ∗M \ 0, the cotangent space of M (removing the zero
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section). To clarify the notion of distance from the singular locus, it
is convenient to assumeM has a compactification. (In the examples
considered in this paper, compactifications are readily available.)

In particular, we assume the following structural properties of
M :

(S1). There is a compact metric measure space M such that M ⊃
M and the closure ofM isM . For x ∈M and neighborhoods
U of x sufficiently small, the measure and distance function
correspond with the Riemannian measure of (M, g).

(S2). The “singular locus” P =M \M is closed. Moreover, P has
measure zero.

(S3). The distance function on M × M extends to a metric on
M ×M . That is, the following function d on M ×M is a
metric:

d(x, y) = inf

{∫ 1

0

|γ′(t)|g(γ(t)) dt
}
,

in which the infimum is taken from all smooth curve γ :
[0, 1] → M such that γ(0) = x, γ(1) = y, and γ−1(P) has
measure zero.

In practice, many of the compactifications used are larger than
required by our hypotheses and the distance function is degener-
ate on the boundary of M , but assumption (S3) is satisfied after
passing to the quotient by the equivalence relation defined by d.

We may therefore define, for ϵ > 0, the spaces cut away from the
singular locus P :

Mϵ = {x ∈M : d(x,P) > ϵ}.

Observe that for (x, ξ) ∈ T ∗M \ 0, Φt(x, ξ) is defined a priori only
for t ∈ R for which d(π(Φt(x, ξ)),P) > ϵ with some ϵ > 0. Here,
π : T ∗M → M is the projection map. Note that our assumptions
above imply that Mϵ ⋐M , since it is obviously compact in M and
its closure (the points of distance at least ϵ from P) is contained
in M .

Due to the homogeneity of the geodesic flow, we need only study
its restriction on the cosphere bundle S∗M = {(x, ξ) ∈ T ∗M :
|ξ|g(x) = 1}. We define, for each q = (x, ξ) ∈ S∗M , the maximum
lifespan Tq of the flow, i.e.,

Tq = sup {T ′ ∈ [0,∞] : π(Φt(q)) ∈M for all |t| ≤ T ′} .



4 DEAN BASKIN, JESSE GELL-REDMAN & XIAOLONG HAN

As in Zelditch-Zworski [ZZ96, Equation 2.5], we also define the
permissible sets XT and exceptional set Y :

(1.1) XT = {q ∈ S∗M : Tq ≥ T}, Y = S∗M \


 ⋂

T∈(0,∞)

XT


 .

The exceptional set Y can be thought of (in the cases considered
below, quite concretely) as the flowout of the singular locus. If
(x, ξ) /∈ Y , then Φt(x, ξ) exists for all t ∈ R.
Now we make the following analytic assumptions about the man-

ifold (M, g), which are verified for the examples of moduli spaces
and manifolds with conic singularities in Sections 4 and 5.

(A1). Vol(M) < ∞, where Vol is the volume with respect to the
metric g.

(A2). For the (positive) Laplacian ∆ = ∆g a self-adjoint extension
(∆g,D) (which we fix and denote below also by ∆g) with
core domain the C∞

0 (M) is chosen so that ∆g has compact
resolvent, i.e. there is an operator G : L2 −→ D such that
∆G − Id is compact and G is compact on L2(M). (As a
result, its spectrum is discrete and consists only of eigenvalues
λ2j → ∞ as j → ∞.)

(A3). The eigenvalues of ∆ obey a Weyl law, i.e.,

N(Λ) = #{λj : λj ≤ Λ} =
Vol(M) Vol(Bn)

(2π)n
Λn + o(Λn),

in which Vol(Bn) denotes the volume of the unit ball in Rn

with respect to the Euclidean metric.
(A4). The set Y has Liouville measure zero in S∗M .
(A5). The geodesic flow on X∞ = Yc =M \ Y is ergodic.

We remark that Assumptions (A1), (A2), and (A3) are enough
to ensure that the heat operator e−t∆ can be built via the functional
calculus; this is useful to show that

√
∆ is a pseudodifferential op-

erator in the region of interest. See Section 2 for details. We also
point out that assuming the Weyl law is only for notational con-
venience; it has already been verified for Riemann moduli spaces
and is straightforward to verify (with current technology of heat
kernels) on manifolds with conic singularities. We instead could
impose an assumption on the small time behavior of the heat ker-
nel; though this hypothesis implies the Weyl law, in practice it is
sometimes easier to verify the Weyl law directly.

We may thus state our main theorem:
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Theorem 1.2. Suppose (M, g) satisfies the structural (S) and
analytic (A) assumptions above. If {ϕj} is an orthonormal basis of
eigenfunctions of ∆ on M , then there is a density one subsequence
{ϕjk} ⊂ {ϕj} so that

⟨Aϕjk , ϕjk⟩ →
∫

S∗M

σ0(A) dµ as k → ∞

for all order zero pseudodifferential operators A with Schwartz ker-
nel compactly supported in M ×M .
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2. Preliminaries

Let M be a manifold that satisfies the structural and analytic
assumptions defined in the introduction. In this section, we gather
the facts about the microlocal analysis on such manifolds that are
required to prove quantum ergodicity in Theorem 1.2. Because the
singular structure on M (i.e., the presence of the singular locus
P) may be quite complicated, working near P in principle would
require a specialized pseudodifferential calculus for each example
(e.g., the b-calculus in the case of conic singularities; see Hillairet–
Wunsch [HW17]). However, in Theorems 1.1 and 1.2, we restrict
our analysis to pseudodifferential operators supported away from
P . Analysis in this region requires knowing little about the precise
structure of the singularities.

We use the correspondence of the pseudodifferential operators
A ∈ Ψm(M) of order m and their principal symbols σm(A) ∈
Sm(M)/Sm−1(M). We assume that the symbols have classical ex-
pansion at fiber infinity and therefore can be identified by func-
tions in C∞(S∗M) (so called the “classical symbols”). See, e.g.,
Hörmander [Hör07, Section 18.1] for detailed background.
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As in Zelditch–Zworski [ZZ96, Lemma 4], we have a local Weyl
law:

Lemma 2.1 (Local Weyl law). Let K ⋐M be a smooth manifold
with boundary compactly contained in M so that K \∂K is an open
domain, and let A ∈ Ψ0(K) have compactly supported Schwartz
kernel. Then

1

N(Λ)

∑

λj≤Λ

⟨Aϕj, ϕj⟩ →
∫

S∗M

σ0(a) dµ as Λ → ∞.

Proof. This is a standard proof based on the short time estimate
of the wave kernel cos(t

√
∆). See Sogge [Sog14, Theorem 5.2.3]

and also Hörmander [Hör09, Theorems 29.3.2 and 29.3.3] (for a
proof of the Weyl law). Since the Schwartz kernel of A is compactly

supported, finite speed of propagation implies that A cos(t
√
∆)A⋆

still has compactly supported Schwartz kernel (i.e., support away
from the singular locus P) when |t| is small enough. Therefore, the
result of Sogge [Sog14, Theorem 5.2.3] applies. q.e.d.

As a corollary, we have the following spatial version of the local
Weyl law.

Corollary 2.2. For every f ∈ C∞
c (M), we have

1

N(Λ)

∑

λj≤Λ

∫

M

f(x)|ϕj(x)|2 dV →
∫

M

f(x) dV as Λ → ∞,

where dV is the volume measure associated to the metric g.

Remark. On compact manifolds, the Weyl law readily follows
by taking f = 1 in the above corollary, c.f. Sogge [Sog14, Section
5.3]. However, in our case of manifolds with singular locus P ,
f ∈ C∞

c (M) has to stay away from P . Hence, the local Weyl law
in Lemma 2.2 does not immediately imply the Weyl law, explaining
its presence as assumption (A3).

We next provide a supplement of Egorov’s theorem in Theorem
2.5, which is sufficient for the proof of quantum ergodicity. We first
require the following lemma establishing an analogue of the off-
diagonal smoothing property of pseudodifferential operators. The
statement and proof of the lemma are essentially from Hillairet–
Wunsch [HW17, Appendix A]. There the authors assume that the
Friedrichs extension for the Laplacian is chosen, and we include the
proof here to clarify to the reader that the lemma holds for other
extensions (under our analytic and structural assumptions.)



RIEMANN MODULI SPACES ARE QUANTUM ERGODIC 7

Lemma 2.3. Recall that P is the singular locus and Mϵ = {x ∈
M : d(x,P) > ϵ}, i.e., the regular part of M with distance at least
ϵ from P.

1) Suppose 0 < ϵ′ < ϵ and set U = Mϵ. For V ⊂ M open with

V ∩Mϵ′ = ∅, ∆N
√
∆ is a bounded operator L2(V ) → L2(U)

and L2(U) → L2(V ) for any N ∈ N.

2) For χ ∈ C∞
c (Mϵ), χ

√
∆χ ∈ Ψ1(M).

Proof. As in Hillairet–Wunsch [HW17, Appendix A], both re-
sults follow from an understanding of the smoothing properties of
the heat kernel and using the relationship1 between the heat kernel
and

√
∆:

√
∆ =

∆

Γ(1
2
)

∫ ∞

0

e−t∆t−
1

2 dt.

Take ρ ∈ C∞
c ([0,∞)) so that ρ ≡ 1 on [0, 2t0] for some t0 > 0

and write ψ = 1 − ρ. The contribution near infinity is smoothing
because

∫ ∞

0

e−t∆ψ(t)t−
1

2 dt = e−t0∆
∫ ∞

0

e−(t−t0)∆ψ(t)t−
1

2 dt.

The boundedness of this term (and, indeed, its composition with
any power of ∆) follows from the functional calculus.

We must thus show the results with
√
∆ replaced by

∆

∫ ∞

0

e−t∆ρ(t)t−
1

2 dt.

As multiplication by ∆ does not change the first result (and changes
the second statement in a straightforward way), it suffices to study

(2.1)

∫ ∞

0

e−t∆ρ(t)t−
1

2 dt.

We now consider the first statement. Take a ∈ L2(U) and define
the distribution Ta ∈ D′(R× V ) by

(Ta, ϕ(t)b(y))D′×D =

∫ ∞

0

⟨a, e−t∆b⟩L2ϕ(t) dt.

1If ∆ has finitely many non-postive eigenvalues (as may be the case for
extensions other than the Friedrichs one), then one should project off of the
non-positive eigenspaces. These projections satisfy the conclusions of the the-
orem and the rest of the argument carries through.
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Take b ∈ L2(V ). Since the supports of a and b are disjoint,
limt↓0⟨a, e−t∆b⟩ = 0 and therefore

(∂t +∆y)Ta = 0 in D′(R× V ).

We may thus conclude that Ta is smooth.
As Ta ≡ 0 for t < 0, for any a ∈ L2(U) and b ∈ L2(V ), the

function

t 7→ ⟨e−t∆a, b⟩
is smooth on [0,∞) and vanishes to infinite order at 0. In partic-
ular, for each N and k, the quantity

t−k⟨∆Ne−t∆a, b⟩
is bounded on (0, 1]. By the principle of uniform boundedness, we
therefore know

∥∥∆Ne−t∆
∥∥
L2(U)→L2(V )

= O(tk)

as t ↓ 0 with a similar statement holding as a map L2(V ) → L2(U).
Substituting this bound into the integral above yields the first re-
sult.

For the second result, we fix a smooth Riemannian manifold
(M̃, g̃) so that Mϵ embeds isometrically as an open subset of M̃ .
Let e be the heat kernel on M and ẽ be the heat kernel on M̃ . Let
r denote the distribution on R×Mϵ ×Mϵ defined by

(r, ϕ) =

∫ ∞

0

∫

Mϵ

∫

Mϵ

(e(t, x, y)− ẽ(t, x, y))ϕ(t, x, y) dy dx dt.

For any ϕ ∈ C∞
c (R×Mϵ ×Mϵ), we have

lim
t↓0

∫

Mϵ

∫

Mϵ

(e(t, x, y)− ẽ(t, x, y))ϕ(t, x, y) dx dy = 0,

so, in D′(R×Mϵ ×Mϵ), we have

(2∂t +∆x +∆y) r = 0

and therefore r is smooth on R ×Mϵ ×Mϵ. We may thus replace
e−t∆ with the heat kernel ẽ in (2.1) and incur only an error of the
form ∫ ∞

0

ρ(t)r(t, x, y)t−
1

2 dt.

As r is smooth and vanishing to infinite order at t = 0, this integral
is smoothing. It therefore follows that χ

√
∆χ ∈ Ψ1(Mϵ) ⊂ Ψ1(M).

q.e.d.
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Because ∆ has compact resolvent by the analytic assumption
(A2), we obtain the following corollary.

Corollary 2.4. Fix ϵ > 0 and let χ1 ∈ C∞
c (Mϵ) and χ2 ∈

C∞
c (M) be such that χ2 ≡ 1 on Mϵ. The compositions (1−χ2)Pχ1

and χ1P (1− χ2) are compact operators L2(M) → L2(M).

We now discuss the crucial Egorov’s theorem. In general, this
theorem connects the quantum evolution e−itPAeitP and the clas-
sical evolution σm(A)◦Φt, where A ∈ Ψm and recall that P =

√
∆.

Indeed, e−itPAeitP ∈ Ψm and σm(e
−itPAeitP ) = σm(A)◦Φt on com-

pact manifolds, see e.g. Sogge [Sog14, Theorem 4.3.6].
In our setting of the singular space M , assume that A has com-

pactly supported Schwartz kernel in M × M . Observe that the
conjugated operator e−itPAeitP may not have compactly supported
Schwartz kernel (so can potentially be close to the singular locus).
We provide the following supplement to Egorov’s theorem to rem-
edy this issue. It is also of independent interest in the context of
singular spaces.

As is standard, we let WF(A) denote the microsupport of A
(or equivalently, the essential support of its symbol) and κA be
the Schwartz kernel of A. (See [Hör07, Section 18.1] for more
background.) We also note that if a ∈ C∞

c (S∗M), then there is
Ã ∈ Ψ0(M) such that σ0(Ã) = a and κÃ has compact support in
M × M . In fact, let A ∈ Ψ0(M) such that σ0(A) = a. Take
Ã = χAχ such that χ = 1 on π(supp(a)). Then Ã − A is a
smoothing operator.

Theorem 2.5. Let ϵ > 0 and T > 0. Suppose that A ∈ Ψ0(M)
has suppκA ⊂ Mϵ × Mϵ and WF(A) ⊂ XT+ϵ defined in 1.1.
Let Ã(t) ∈ Ψ0(M) have compactly supported Schwartz kernel and
σ0(Ã(t)) = a ◦ Φt for |t| ≤ T + ϵ.
Then for all |t| ≤ T ,

eitPAe−itP − Ã(t) : L2(M) → L2(M)

is compact.

Proof. Let δ > 0 be such that the Schwartz kernels of A and
Ã(t) lie in Mδ ×Mδ for all |t| ≤ T + ϵ. Fix 0 < δ′ < δ and take
χ1 ∈ C∞

c (Mδ′) be so that χ1 ≡ 1 onMδ. We also take χ2 ∈ C∞
c (M)

so that χ2 ≡ 1 on Mδ′ .
Consider the difference

E(t) = e−itP Ã(t)eitP − A.
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It is then obvious that E(0) : L2(M) → L2(M) is smoothing.
Because (1− χ2)Ã(t) = Ã(t)(1− χ2) = 0, we write

E ′(t) = e−itP
(
Ã′(t)− i

[
P, Ã(t)

])
eitP

= e−itPχ2

(
Ã′(t)− i

[
P, Ã(t)

])
χ2e

itP

− ie−itP (1− χ2)PÃ(t)χ2e
itP

+ ie−itPχ2Ã(t)P (1− χ2)e
itP .

Because the principal symbol of the inner part of the first term
vanishes, we can write it as e−itPχ2R1(t)χ2e

itP , where R1(t) ∈
Ψ−1(M).

As χ1χ2 = χ1 and Ã(t) is supported where χ1(x)χ1(y) ≡ 1, the
last two terms can be written

−ie−itP (1− χ2)Pχ1Ã(t)χ2e
itP + ie−itPχ2Ã(t)χ1P (1− χ2)e

itP .

We may therefore write the difference of interest as

eitPAe−itP − Ã(t)

=

∫ s

0

χ2R1(s)χ2 ds

− i

∫ t

0

(1− χ2)Pχ1Ã(s)χ2 ds+ i

∫ t

0

χ2Ã(s)χ1P (1− χ2) ds.

The first term lies in Ψ−1(M) and has compactly supported
Schwartz kernel; it is therefore compact on L2. The second two
terms are both compact by Corollary 2.4. q.e.d.

Remark. From the proof above, we observe that the compact
operator eitPAe−itP−Ã(t) is uniformly controlled for all |t| ≤ T+ϵ.

3. Proof of the main theorem

We now show that under our assumptions, a modified version
of the argument of Zelditch–Zworski [ZZ96, Section 3] still holds.

Recall that P =
√
∆.

We first establish some notation: For B ∈ Ψ0(M) with com-
pactly supported Schwartz kernel and T > 0, set

ρj(B) = ⟨Bϕj, ϕj⟩ and ⟨B⟩T =
1

2T

∫ T

−T
e−itPBeitP dt.

Note that by Lemma 2.5, if B has compactly supported Schwartz
kernel and WF(B) is microsupported in X2T+ϵ, then with B̃(t) as
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in Lemma 2.5 and

(3.1) ⟨̃B⟩T =
1

2T

∫ T

−T
B̃(t) dt,

we have that ⟨B⟩T − ⟨̃B⟩T : L2(M) → L2(M) is compact.
Let A ∈ Ψ0(M) and write a = σ(A), a ∈ C∞

c (S∗M). We further
assume that κA is compactly supported in M ×M . Set

α =

∫

S∗M

a and ⟨a⟩T =
1

2T

∫ T

−T
a ◦ Φt dt,

where we are careful to use the second notation only for a supported
in XT+ϵ. The theorem then follows from a standard extraction
procedure (see e.g. Zelditch-Zworski [ZZ96]) if we can show that

(3.2)
1

N(Λ)

∑

λj≤Λ

|⟨Aϕj, ϕj⟩ − α|2 → 0,

as Λ → ∞.
In the case where α = 0, the proof essentially proceeds by a

series of approximations (the general case is proved fully below):

1) We replace A by a family Aϵ,T that have microsupport in
the set X2T+ϵ. The difference of (3.2) for A and Aϵ,T can be
estimated using the local Weyl law in Lemma 2.1.

2) We then replace Aϵ,T by an averaged operator ⟨̃Aϵ,T ⟩T (as
in in (3.1)) with compactly supported Schwartz kernel. By

Egorov’s theorem in Theorem 2.5, ⟨̃Aϵ,T ⟩T is (modulo a com-
pact operator) a pseudodifferential operator with principal
symbol ⟨σ0(Aϵ,T )⟩T .

3) We finally use the dynamical condition of ergodicity in M to
show that ⟨σ0(Aϵ,T )⟩T → 0 when T → ∞.

We now let T > 0, which later is chosen large enough. Write
Uϵ = Uϵ(T ) as

Uϵ = {(x, ξ) ∈ X2T+ϵ : d(π(Φt(x, ξ)),P) > ϵ for all |t| < 2T + ϵ}.

Observe that if ϵ < ϵ′, then Uϵ′ ⋐ Uϵ. Moreover,
⋂
ϵ>0 Uϵ = X2T ,

which is defined in (1.1).
Because the Uϵ have compact closure away from P , we can find

microlocal cutoffs to the Uϵ. Namely, take Eϵ ∈ Ψ0(M) with com-
pactly supported Schwartz kernels such that σ(Eϵ) = 1 on Uϵ. Then
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limϵ→0 σ0(Eϵ) = 1 on X2T . Let

Aϵ = EϵA, αϵ =

∫

S∗M

σ0(Aϵ), Rϵ = I − Eϵ.

We now compare (3.2) for A and Aϵ. Write
(3.3)

C(ϵ,Λ) =
1

N(Λ)

∑

λj≤Λ

|ρj(A)− α|2 − 1

N(Λ)

∑

λj≤Λ

|ρj(Aϵ)− αϵ|2 .

Note that A = Aϵ + RϵA. Letting βϵ =
∫
S∗M

σ0(RϵA), we have by
the Cauchy–Schwarz inequality,

C(ϵ,Λ)

≤ 2

N(Λ)


∑

λj≤Λ

|ρj(Aϵ)− αϵ|2



1/2 
∑

λj≤Λ

|ρj(RϵA)− βϵ)|2



1/2

+
1

N(Λ)

∑

λj≤Λ

|ρj(RϵA)− βϵ|2

≤ 2


 1

N(Λ)

∑

λj≤Λ

ρj((Aϵ − αϵ)
∗(Aϵ − αϵ))




1/2

×


 1

N(Λ)

∑

λj≤Λ

ρj((RϵA− βϵ)
∗(RϵA− βϵ))




1/2

+
1

N(Λ)

∑

λj≤Λ

ρj((RϵA− βϵ)
∗(RϵA− βϵ)).

Because the Schwartz kernels of the products RϵA are compactly
supported (since A has the same property), the local Weyl law of
Lemma 2.1 shows that, as Λ → ∞,

1

N(Λ)

∑

λj≤Λ

ρj((RϵA− βϵ)
∗(RϵA− βϵ)) → |σ0(RϵA)− βϵ|2 .

Therefore, using the trivial bound that ρj((Aϵ−αϵ)∗(Aϵ−αϵ)) ≤ 1,
we have that

(3.4) C(T, ϵ,Λ) = hT (ϵ) + rT,ϵ(Λ),

where rT,ϵ(Λ) → 0 as Λ → ∞. Because α(RϵA) → 0 and βϵ → 0
as ϵ→ 0, we also know hT (ϵ) → 0 as ϵ→ 0.



RIEMANN MODULI SPACES ARE QUANTUM ERGODIC 13

We now turn our attention to the estimation of (3.2) involving
Aϵ and αϵ:

1

N(Λ)

∑

λj≤Λ

|⟨Aϵϕj, ϕj⟩ − αϵ|2

≤ 1

N(Λ)

∑

λj≤Λ

ρj (⟨Aϵ − αϵ⟩∗T ⟨Aϵ − αϵ⟩T )

=
1

N(Λ)

∑

λj≤Λ

ρj(Bϵ,T ).(3.5)

Observe that because Aϵ is microsupported in X2T+ϵ, Lemma 2.5
allows us to replace Bϵ,T with

B̃ϵ,T = ˜⟨Aϵ − αϵ⟩
∗

T
˜⟨Aϵ − αϵ⟩T ,

whose principal symbol is
∣∣∣∣
1

2T

∫ T

−T
(σ0(Aϵ) ◦ Φt − αϵ) dt

∣∣∣∣
2

,

moreover, Bϵ,T−B̃ϵ,T : L2(M) → L2(M) is compact. It then follows
that

(3.6)
1

N(Λ)

∑

λj≤Λ

ρj(Bϵ,T ) ≤
1

N(Λ)

∑

λj≤Λ

ρj(B̃ϵ,T ) + fϵ,T (Λ),

where fϵ,T (Λ) → 0 as Λ → ∞.

Since B̃ϵ,T has compactly supported Schwartz kernel, the local
Weyl law in Lemma 2.1 implies that the difference

1

N(Λ)

∑

λj≤Λ

ρj(B̃ϵ,T )−
∫

S∗M

∣∣∣∣
1

2T

∫ T

−T
(σ0(Aϵ) ◦ Φt − αϵ) dt

∣∣∣∣
2

dµ

is o(1) as Λ → ∞. Putting together with (3.3), (3.4), (3.5), and
(3.6), we arrive at

1

N(Λ)

∑

λj≤Λ

|ρj(A)− α|2

≤
∫

S∗M

∣∣∣∣
1

2T

∫ T

−T
(σ0(Aϵ) ◦ Φt − αϵ) dt

∣∣∣∣
2

dµ+ Fϵ,T (Λ) + hT (ϵ),

in which Fϵ,T (Λ) = rϵ,T (Λ)+fϵ,T (Λ) → 0 as Λ → ∞ and hT (ϵ) → 0
and ϵ→ 0. To control the first time on the right-hand-side, notice
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that

gT (ϵ) =
∣∣∣
∫

S∗M

∣∣∣∣
1

2T

∫ T

−T
(a ◦ Φt − α) dt

∣∣∣∣
2

dµ

−
∫

S∗M

∣∣∣∣
1

2T

∫ T

−T
(σ0(Aϵ) ◦ Φt − αϵ) dt

∣∣∣∣
2

dµ
∣∣∣ → 0

as ϵ→ 0 by dominated convergence theorem, since σ0(Aϵ) → a and
αϵ → α as ϵ → 0. We then use the ergodicity of the geodesic flow
to conclude

e(T ) =

∫

S∗M

∣∣∣∣
1

2T

∫ T

−T
(σ0(A)− α) dt

∣∣∣∣
2

dµ→ 0 as T → ∞.

In total,

1

N(Λ)

∑

λj≤Λ

|ρj(A)− α|2 ≤ e(T ) + gT (ϵ) + Fϵ,T (Λ) + hT (ϵ).

Taking T large, ϵ small, and Λ large successively, we complete the
proof.

4. Riemann moduli spaces with the Weil–Petersson

metric

We now recall the definition and relevant properties of the Rie-
mann moduli spaces and their Weil-Petersson metrics; in particu-
lar, we show that they satisfy assumptions (S) and (A) from the
introduction, and thus, from Theorem 1.2, we conclude that The-
orem 1.1 holds.

As in the introduction, let Mγ,n denote the space of equivalence
classes of complex structures on a fixed, closed surface Σ of genus
γ with n marked points C = {p1, . . . , pn} ⊂ Σ, where two complex
structures on Σ are equivalent if one is the pullback of the other via
a diffeomorphism Σ which fixes C. The set Mγ,n admits a natu-
ral compactification Mγ,n, the Deligne–Mumford compactification,
which includes, in addition to complex structures on Σ, the nodal
curves which can be obtained by degenerations of complex struc-
tures Σ. Then Mγ,n is a compact, complex orbifold of complex di-
mension 3γ−3+n. Within Mγ,n there is a finite family of complex
codimension 1 “normally crossing” divisors, i.e. complex codimen-
sion 1 sub-orbifolds, D1, . . . , Dκ, such that

⋃κ
i=1Di = Mγ,n\Mγ,n,

and any finite intersection ∩i∈JDi with J ⊂ {1, . . . , κ}, there is a
neighborhood U of this intersection and a finite-to-one ramified
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holomorphic resolution V −→ U with V an open complex mani-
fold such the inverse image of ∩i∈JDi is defined by the vanishing of
|J | non-degenerate holomorphic functions zi with linearly indepen-
dent differentials on the intersection. For further background on
the definition of Mγ,n and its Deligne–Mumford compactification
see for example the expository paper of Vakil [Vak03].
Let M = Mγ,n,reg be the top dimensional stratum of Mγ,n, i.e.

the set Mγ,n minus the orbifold points. This is a dense open set
in Mγ,n. Recall our assumption 3γ + n ≥ 4, which in the case
n = 0 assures that γ ≥ 2. The Weil-Petersson metric gWP, typi-
cally defined initially on the Teichmüller space and descending to
a smooth metric on M , is the Riemannian metric given locally by
identification of the cotangent bundle ofM at a point inM (i.e. an
equivalence class of Riemann surfaces [(Σ, c)]), with the space of
transverse-traceless holomorphic quadratic differentials on the uni-
formizing complete, hyperbolic metric g on (Σ\C, c) with cusp-type
singularities at C; the inner product on this cotangent space is then
given by the L2-pairing defined by g. This metric has a well-known
decomposition near the divisors; at the intersection ∩i∈JDi, for ap-
propriately chosen (holomorphic) defining functions zi = |zi|e

√
−1θi

as in the previous paragraph and setting s2i = 1/ log(1/|zi|), we
have

(4.1) gWP =
∑

i∈J

cds2i + c′s6i dθ
2
i + h∩ +O(s2)

where c, c′ > 0 are constants, h∩ is an (orbifold) metric on ∩i∈JDi

and s2 =
∑

i∈J s
2
i . This expansion was originally suggested by the

work of Masur [Mas76] and established in the work of a number
of authors, including by Liu–Sun–Yau [LSY08] Wolpert [Wol85,
Wol03, Wol08, Wol10] and Yamada [Yam04]. The full polyho-
mogeneous regularity of the Weil-Petersson metric at the divisors
is proven in Mazzeo–Swoboda [MS17] and Melrose–Zhu [MZ17].
We can now begin to address the structural and analytic as-

sumptions. Indeed, for (S1) and (S2), M = Mγ,n, so M −M is a
closed measure zero subset of M , and (S3) and (A1) follow from
the local form of the metric. Skipping ahead to (A4) and (A5),
consider the geodesic flow of for the Weil-Petersson metric, which
is defined locally on M . A result of Wolpert [Wol03] implies (see
[BMW12]) that the set X∞ ⊂ S∗M of points in the cosphere
bundle on which the geodesic flow is defined for all times is full
measure, so its complement Y is measure zero, i.e. (A4) holds, and
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as mentioned in the introduction, that (A5) holds is the well-known
result of Burns–Masur–Wilkinson [BMW12].
It remains to discuss (A2) and (A3). Recall that, as is shown

in [Loo94, PdJ95], Mγ,n is in fact a “good” orbifold, meaning

there is a complex manifold M
′
and a finite group S acting on M

′

by biholomorphic maps (possibly with fixed points) such that the

quotient if Mγ,n =M
′
/S and the projection

(4.2) π : M
′ −→ Mγ,n

is a smooth (ramified) holomorphic map. The pullback of the Weil-

Petersson metric π∗gWP to M
′
is a smooth Riemannian metric on

M ′ := π−1(Mγ,n), and elements of S are automatically isometries
of this pullback metric. For γ fixed and n large, one can take

M
′
= Mγ,n as there are no fixed points of the action of the mapping

class group on Teichmüller space, see [Vak03, JMMV14].
Ji–Mazzeo–Müller–Vasy [JMMV14] study the general class of

complex orbifolds M which have “crossing cusp-edge” singulari-
ties in the metric. These are exactly those complex Riemannian
orbifolds whose metrics take the form described in the above para-
graphs near a fixed set of normally intersecting complex codimen-
sion one divisors. In particular, they prove that Laplacian on Mγ,n

is self-adjoint with core domain C∞
0,orb(Mγ,n), the Frechet space of

smooth functions ϕ such that, with π the resolving map from the
previous paragraph, ϕ◦π ∈ C∞

0 (M ′). In words, these are the func-
tions which are compactly supported in Mγ,n, smooth away from
all orbifold singularities, and lift via the local resolutions of the
orbifold singularities to smooth functions. They prove (see Theo-
rem 3) that with this core domain, ∆gWP

is essentially self-adjoint,
that the domain of this self-adjoint extension is compactly con-
tained in L2 (see below Theorem 3), and that Weyl asymptotics
hold for the (necessarily discrete) spectrum (see Theorem 1). (We
remark again that in [JMMV14] all the statements are for the
non-pointed moduli spaces Mγ but all of the theorems in the body
of the paper are for the general class of singular Riemannian space
which include Mγ,n.) In particular, assumptions (A2) and (A3)
hold for this extension.

Thus the assumptions (S) and (A) hold for ∆gWP
onMγ,n with its

unique self-adjoint extension with core domain C∞
0,orb, i.e. Theorem

1.1 follows from Theorem 1.2.
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4.1. Orbifold regular PsiDO’s on Mγ,n. We now consider the
Riemann moduli space and prove a stronger theorem. We con-
tinue with the notation of the previous section, in particular M =
Mγ,n,reg, consider pseudodifferential operators A ∈ Ψ0

0,orb(Mγ,n)
which, by definition, are operators A : C∞

0 (M) −→ D′(M) which
have compactly supported Schwartz kernel in M and are regular
under local orbifold resolutions; concretely, for the resolving map π
in (4.2), π∗A ∈ Ψ0(M ′) (and π∗A is compactly supported in M ′.)
Equivalently, working on the resolved space M ′, these are pseu-
dodifferential operators A ∈ Ψ0(M ′) with compactly supported
Schwartz kernels which are invariant under the action of S on M ′.
This family of pseudodifferential operators is defined independently
of a choice of resolution M ′ as it is a equivalent to smoothness of
the pullback of the A via any local resolution, but below we use a
particular convenient choice of resolution, specifically the one used
in [BMW12, Sec. 6],

M ′ = T /MCG[k],

where T is the Teichmüller space and

MCG[k] = {ψ ∈ MCG(Σ) : ψ∗ ≡ 0 acting on H1(Σ;Z/kZ)},
is a finite index subgroup of the mapping class group MCG(Σ)
which is obviously normal. In [BMW12, Thm. 6.4], the authors
prove that the Weil-Petersson geodesic flow is ergodic on this re-
solved space, so since the flow is defined for infinite times on the
pullback of a full measure set, both assumptions (A4) and (A5) hold
on M ′ with the Weil-Petersson metric. The moduli space is then
the quotient of M ′ by the set of biholomorphic maps parametrized
by (and identified with representatives of the set of) the group
S = MCG(Σ)/MCG[k]. This will be useful to prove the following.

Theorem 4.1. With the same assumptions as in Theorem 1.1,
there is a density one subsequence {ϕjk} ⊂ {ϕj} such that for all
A ∈ Ψ0

0,orb(Mγ,n),

⟨Aϕjk , ϕjk⟩ →
∫

S∗M

σ0(A) dµ as k → ∞.

Proof. Since (M ′, π∗gWP) is a smooth crossing cusp-edge space,
the results of [JMMV14] show that ∆π∗gWP

is essentially self-
adjoint with core domain C∞

0 (M ′), and that assumptions (A2)–
(A3) hold for this self-adjoint extension. The rest of the assump-
tions (S) and (A) also follow. Indeed, the assumptions (S) assump-
tions and (A1) hold automatically, and assumptions (A4) and (A5)



18 DEAN BASKIN, JESSE GELL-REDMAN & XIAOLONG HAN

follow as discussed prior to the statement of the theorem. Thus all
the hypotheses are satisfied and the conclusion of Theorem 1.2 ap-
plies to ∆π∗gWP

.
The theorem now follows easily from considering the identifica-

tion of the eigenspaces Eλ of ∆gWP
on Mγ,n for the unique self-

adjoint extension from C∞
0,orb with the S-invariant eigenspaces of

∆π∗gWP
. Indeed, let Ẽλ denote an eigenspace of ∆π∗gWP

, and note
that since S acts on (M ′, π∗gWP) by isometries, it acts by pull-
back on Ẽλ. Letting ϕ ∈ Ẽλ, then ϕS = |S|−1

∑
ψ∈S ψ

∗ϕ is an
S-invariant function on M ′ and thus descends to a function on
Mγ,n which it is easy to see lies in the domain under considera-
tion. The other direction of identification is automatic. Thus for
all λ ∈ spec(∆π∗gWP

),

ẼS
λ := {ϕ ∈ Ẽλ : ψ

∗ϕ = ϕ} ⊂ Ẽλ

satisfies ẼS
λ = Eλ gives an identification of Eλ with a subset of Ẽλ.

In particular, we may choose an orthonormal basis of eigenfunctions
ϕ̃j of (M

′, π∗gWP) which contains a subsequence of an orthonormal

basis of ẼS
λ .

On the other hand, the Weyl asymptotic formulas implies that,
if Ñ(λ) is the eigenvalue counting function for (M ′, π∗gWP) and
N(λ) the counting function for (Mγ,n, gWP),

(4.3)
Ñ(λ)

N(λ)
=

Vol(M ′, π∗gWP)

Vol(Mγ,n, gWP)
+ o(1) = |S|+ o(1) as λ→ ∞.

Hence any full density subsequence of eigenfunctions of (M ′, π∗gWP)
contains a full density subsequence of eigenfunctions coming from
the ẼS

λ . Now there is a full density subsequence of eigenfunctions

(ϕ̃jk) which satisfy the conclusion of Theorem 1.1. It contains a

subsequence of invariant eigenfunctions (ϕ̃Sℓ ) = (ϕ̃jk) ∩ L2
S(M

′
)

that also satisfy the conclusion fo Theorem 1.1 and in addition
each ϕ̃Sℓ = π∗ϕℓ for some eigenfunction on Mγ,n. Thus for any
B ∈ Ψ0(M ′) with compact support, we have

⟨Bϕ̃Sℓ , ϕ̃Sℓ ⟩ →
∫

S∗M ′

σ0(B) dµ as ℓ→ ∞.

Taking B = π∗A and dividing by the area gives the result. q.e.d.



RIEMANN MODULI SPACES ARE QUANTUM ERGODIC 19

5. Hyperbolic surfaces with conic singularities

We consider the example of hyperbolic surfaces with conic sin-
gularities.2 Concretely, consider a compact Riemann surface M of
genus γ, a finite set of points P . Suppose M is equipped with a
Riemannian metric g smooth on the complement M =M \ P and
so that

1) for each p ∈ P there are conformal coordinates z̃ with z̃(p) =
0,

2) in the (non-smooth) coordinates z = α−1z̃α, we have

g = dr2 + α2 sinh2 r dθ2,

where z = reiθ, and
3) g is hyperbolic on M \ P .

Here α = 1 corresponds to a “phantom singularity”; in other words,
when α = 1, the metric extends to be smooth at the point p.

Given a finite set of points P = {p1, ..., pk} and numbers α1,
· · · , αk ∈ (0,∞), McOwen [McO88] showed the existence (and
uniqueness) of a hyperbolic metric on M with conic singularities
of the form above at the points pj with constants αj.
The spectral theory and heat kernel asymptotics of various self-

adjoint extensions of the Laplacian ∆g (and the Laplace operator
on more general Riemannian spaces with conic singularities) were
studied originally by Cheeger [Che83], with later works including
Lesch [Les97], Mooers [Moo99], and Gil–Mendoza [GM03]. In
particular, the first three analytic assumptions are well-known; see,
for example, the book of Lesch [Les97, Page 72].
We verify assumption (A4) directly; assumption (A5) follows

from the hyperbolicity of the metric (one can treat M =M \ P as
an open hyperbolic system). See e.g. Brin [Bal95, Appendix] for
a short and nice proof for ergodicity of Anosov geodesic flows.

Lemma 5.1. The set

Y = {(x, ξ) ∈ S∗M : π(Φt(x, ξ)) ∈ P for some t ∈ R}
has measure zero.

Proof. For T > 0, let

Y±,T = {(x, ξ) ∈ S∗M : π(Φt(x, ξ)) ∈ P for some t,±t ∈ (0, T )}.
2We consider only surfaces for the sake of brevity; the same method likely

extends to hyperbolic cone manifolds of arbitrary dimension as described by
McMullen [McM17].
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For T sufficiently small, Y±,T has measure zero by the model form
of the metric. We now realize Y as the countable union of flowouts
of Y±,T and so it has measure zero. q.e.d.

As (M, g) satisfies the structural and analytic hypotheses, we
have the following corollary:

Corollary 5.2. If (M, g) is a hyperbolic surface with conic sin-
gularities, then it is quantum ergodic as in Theorem 1.2.
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