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Abstract

The transport of waves and turbulence beyond the photosphere is central to the coronal heating problem.
Turbulence in the quiet solar corona has been modeled on the basis of the nearly incompressible
magnetohydrodynamic (NI MHD) theory to describe the transport of low-frequency turbulence in open
magnetic field regions. It describes the evolution of the coupled majority quasi-2D and minority slab component,
driven by the magnetic carpet and advected by a subsonic, sub-Alfvénic flow from the lower corona. In this paper,
we couple the NI MHD turbulence transport model with an MHD model of the solar corona to study the heating
problem in a coronal loop. In a realistic benchmark coronal loop problem, we find that a loop can be heated to ∼1.5
million K by transport and dissipation of MHD turbulence described by the NI MHD model. We also find that the
majority 2D component is as important as the minority slab component in the heating of the coronal loop. We
compare our coupled MHD/NI MHD model results with a reduced MHD (RMHD) model. An important
distinction between these models is that RMHD solves for small-scale velocity and magnetic field fluctuations and
obtains the actual viscous/resistive dissipation associated with their evolution whereas NI MHD evolves scalar
moments of the fluctuating velocity and magnetic fields and approximates dissipation using an MHD turbulence
phenomenology. Despite the basic differences between the models, their simulation results match remarkably well,
yielding almost identical heating rates inside the corona.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar coronal loops (1485);
Interplanetary turbulence (830)

1. Introduction

The plasma temperature from the photosphere to corona
increases from ∼5000 to ∼1 million K over a distance of only
∼10,000 km from the chromosphere and the transition region
(TR) to the corona. Understanding the mechanism underlying
coronal heating is a fundamental problem in the solar physics
community. The transport of waves and turbulence beyond the
photosphere is central to the coronal heating problem (Matthaeus
et al. 1999; Oughton et al. 2001; Cranmer & van Ballegooi-
jen 2010; van Ballegooijen et al. 2011; Cranmer et al. 2015; van
Ballegooijen & Asgari-Targhi 2016, 2017; Zank et al.
2018, 2021).

In a coronal loop, Alfvén waves are generated along the loop
by dynamic transverse twisting and braiding motions in its
footpoints on the photosphere where magnetic flux tubes are
distorted by convective flows in intergranular lanes (van
Ballegooijen et al. 2011). These Alfvén waves then propagate
outward along the magnetic field lines and dissipate their
energy in the chromosphere and corona. During this process,
due to the gradients in the outward-propagating Alfvén wave
velocities, inward-propagating modes are generated resulting in
complex counter-propagating interactions between these Alf-
vén waves. A key insight introduced by Matthaeus et al. (1999)
is that the outward-propagating and reflected inward-propagat-
ing Alfvén waves couple nonlinearly through the production of
2D fluctuations (Shebalin et al. 1983), i.e., zero-frequency non-

propagating fluctuations that undergo a rapid 2D (k⊥,
perpendicular to the mean magnetic field B0) turbulent cascade
(successive reconnection of quasi-2D or poloidal magnetic flux
structures) that transfers energy to progressively smaller
perpendicular scales until it dissipates at presumably ion
inertial/gyrofrequency scales (Matthaeus et al. 1999; Oughton
et al. 2001; Cranmer & van Ballegooijen 2010; Cranmer et al.
2015; Zank et al. 2018).
Many previous studies involving numerical simulations

describe the loop heating mechanism by turbulent relaxation
of braided/tangled magnetic field structures whether initially
present or built up in the course of the simulation (e.g.,
Dahlburg et al. 2012; Rappazzo & Parker 2013; Pontin &
Hornig 2015; Wilmot-Smith 2015; Pontin et al. 2017, 2020)
without actually solving the turbulence transport equations. In
particular, Rappazzo & Parker (2013) investigate the formation
of current sheets in tangled magnetic field structures following
the coronal heating mechanism due to nanoflares (Parker 1988).
The Rappazzo & Parker (2013) simulation, however, offers a
quite different perspective on the heating problem in coronal
loops compared to the counter-propagating Alfvén wave
picture described above. Instead, Rappazzo & Parker use
randomized 2D magnetic potential to initialize the simulation
that results in (their Figure 5) 2D islands, interspersed by
rapidly developing current sheets. Not surprisingly, in the
presence of a strong guide magnetic field, the fluctuating fields
are dominated by 2D structures rather than counter-propagating
Alfvén waves. Such a mechanism for loop heating closely
resembles the model introduced to heat open coronal holes by
Cranmer & van Ballegooijen (2010), Zank et al. (2018, 2021).
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In this paper, we describe the heating mechanism in coronal
loops by the nearly incompressible magnetohydrodynamic (NI
MHD) turbulence transport model (Zank et al. 2017). In the NI
MHD turbulence transport model, we do not explicitly
introduce any transverse small-scale fields or braiding of
magnetic field lines as they are already accounted for by the
turbulence transport equations. The magnetic field in the
immediate vicinity of the photosphere has been called the
magnetic carpet (Title & Schrijver 1998). In the low plasma
beta environment, transverse photospheric convective fluid
motions drive predominantly 2D (non-propagating) turbulence
in the mixed-polarity magnetic carpet, together with a minority
slab (Alfvénic) component (Zank et al. 2018) along the strong,
uniform axial guide field inside the loop. The NI MHD model
has been used in developing a turbulence-driven solar wind
model for a fast solar wind flow in a coronal hole (Adhikari
et al. 2020) and a solar wind model that includes electron
pressure and heat flux (Adhikari et al. 2021). In this paper, we
focus on the coronal loop heating problem by solving the NI
MHD turbulence transport model and MHD coronal model
(Yalim et al. 2017; Singh et al. 2018) equations simultaneously
in a time-dependent fashion. The MHD coronal model is
utilized to solve for the background plasma in the loop. These
two systems of equations are coupled via the turbulent coronal
heating term in the MHD energy equation.

We compare our coupled MHD/NI MHD model results with
model results from the reduced MHD (RMHD) approximation
(van Ballegooijen et al. 2011; Asgari-Targhi & van
Ballegooijen 2012).

The RMHD equations for a uniform background field were
first derived by Kadomtsev & Pogutse (1974) and Strauss
(1976), and studied by Montgomery (1982) and Hazeltine
(1983), among others. Zank & Matthaeus (1992) extensively
studied the relationships between compressible MHD, incom-
pressible MHD, and RMHD. In the RMHD approximation, the
magnetic and velocity fluctuations are assumed to be small
compared to the background field and Alfvén speed,
respectively.

The RMHD (or Alfvén wave turbulence) model describes
the generation, propagation, and dissipation of Alfvén waves in
a coronal loop represented by a thin flux tube surrounding the
axial guide magnetic field line. To model the coronal loop
plasma, the RMHD approximation retains only the long
wavelength Alfvén wave modes, filtering out all fast/slow
modes and the high-frequency/short wavelength Alfvén
waves. Furthermore, the magnetic and velocity fluctuations
are simulated but their effects on temperature and density are
ignored. Besides coronal loop heating, RMHD models have
been used to model the heating of open field coronal regions,
e.g., Oughton et al. (2001), van Ballegooijen & Asgari-Targhi
(2016, 2017), and Asgari-Targhi et al. (2021).

Section 2 presents the two systems of governing equations
that are coupled, namely, the NI MHD turbulence transport
equations to compute the coronal heating and the ideal MHD
equations to calculate the background coronal plasma in the
loop. Moreover, an overview of the RMHD model is also
presented in this section. Section 3 presents and discusses the
results obtained by the NI MHD turbulence transport model
and the RMHD model. In particular, we consider a realistic
benchmark coronal loop heating problem where the loop is
heated to ∼1.5 million K from an initial uniform temperature of
8.25× 105 K. Finally, Section 4 presents our conclusions.

2. Governing Equations

In this section, we first present the systems of governing
equations that we solved simultaneously in a time-dependent
fashion: the NI MHD turbulence transport equations and the
ideal MHD equations for the MHD coronal model. We also
give an overview of the RMHD model and its equations.

2.1. NI MHD Turbulence Transport Model

The system of NI MHD turbulence transport equations
consists of 12 equations: seven to describe the majority quasi-
2D turbulence and the remaining five to describe the minority
slab component. The transport variables corresponding to 2D
turbulence and slab turbulence are indicated by the superscripts
∞ and *, respectively. In addition, the transport variables
corresponding to forward (outward) propagating and backward
(inward) propagating modes are labeled by the superscripts +
and −, respectively, or sometimes by the superscripts± or m as
a compact notation to write the transport variables with the
superscripts + and − under a single term.
We write the 3D NI MHD model equations in differential

form as a system of advection equations as follows:

U
F

t
RHS, 1· ( )¶

¶
+ =

where U is the vector of turbulence transport variables which
are the solution variables, F is the flux vector, and RHS is the
vector of source terms which is located on the right-hand-side
(RHS) of Equation (1).
U is given as follows:

2
U z E L L z E L L ,D D D D

T2 2 2

( )
( )r= < > < > < >¥ ¥

¥
 ¥ ¥ * * * *

where <z∞±2>, which includes <z∞+2> and <z∞−2>, and
<z*±2>, which includes <z*+2> and <z*−2>, are the
ensemble-averaged quasi-2D and slab Elsässer variables for
backward/forward propagating modes, ED

¥ and ED* are 2D and
slab residual energy components, L¥

, which includes L¥
+ and

L¥
-, and L* are 2D and slab energy-weighted correlation

lengths corresponding to backward/forward propagating
modes, LD

¥ and LD* are 2D and slab energy-weighted
correlation lengths corresponding to residual energy, respec-
tively, and <ρ∞2> is the variance of the advected density
(entropic) fluctuations. We assume L +

* = L -
* = L* (Dosch

et al. 2013) to reduce the complexity of the transport equations
for slab energy-weighted correlation lengths corresponding to
backward/forward propagating modes.
We write F as follows:

F v v v v v
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z E L L

z E L L , 3
D D

D D
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(
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¥
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where v and v B
A 4
=

pr
are the bulk (i.e., background) plasma

and Alfvén wave velocities with ρ and B as the bulk plasma
density and magnetic field, respectively. We would like to note
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where ρ is the plasma density, n̂ is an orthonormal vector
orthogonal to the local large-scale mean magnetic field B0, and
a denotes a structural similarity parameter associated specifi-
cally with relating the cross-correlations of the velocity
fluctuations to the 1-point velocity correlation (Zank et al.
2012), which we take as a= 1/2;
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and lu
¥ is the corresponding correlation length of the 2D

velocity fluctuations given by Zank et al. (2017)
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where b is a structural similarity parameter associated
specifically with relating the cross-correlations of the magnetic
field fluctuations to the 1-point magnetic field correlation (Zank
et al. 2012), which we take as b= 0.3, and S is the slab
direction defined by the mean magnetic field B0;
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2 2( )= < > + < >+ -* * * is the total energy in

slab fluctuations, and E z z 2C
2 2( )= < > - < >+ -* * * is the
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slab cross helicity;
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For the derivation of the NI MHD model equations, the
interested reader can refer to Zank et al. (2017).

2.2. MHD Coronal Model

The governing equations that we solve to model the
background coronal plasma in the loop are the system of ideal
MHD equations. We write this system in differential,
conservative form as follows:
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where I is the 3× 3 identity matrix, ρ, v, B, p, and E are the
density, velocity, magnetic field, thermal pressure, and specific
total energy of the plasma, respectively.

The specific total energy of the plasma, E, is given as
follows:
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where γ is the ratio of specific heats, which we take as γ= 5/3.
The plasma is assumed to obey the ideal gas law and to be
calorically perfect, which is a very good approximation for
most space and solar plasmas. The ideal gas law together with
Equation (16) are necessary constitutive relations to close the
set of ideal MHD equations. Finally, there is the solenoidal
constraint (∇ ·B= 0) that should be satisfied, which can be
recovered analytically from Equation (15) by taking the
divergence of the magnetic induction equation, supposing
divergence-free initial conditions.

SE is the coronal heating term due to MHD turbulence
transported by the NI MHD turbulence transport model:
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where αKT is von Kármán–Taylor constant (Matthaeus et al.
1996), which we take as αKT= 0.3.
The NI MHD and ideal MHD systems of equations are

coupled through the coronal heating term given in
Equation (17) and solved simultaneously at each iteration in
a time-dependent fashion.
For more detailed information about our MHD coronal

model, we refer the interested reader to Yalim et al. (2017) and
Singh et al. (2018).

2.3. RMHD Model

The RMHD model describes the generation, propagation,
and dissipation of Alfvén waves in a thin flux tube surrounding
the axial guide magnetic field line. The tube has a circular cross
section with radius R(s) and starts from the base of the
photosphere at one end, stretches through the chromosphere
into the corona, and ends at the photosphere at the other end.
The tube has a length L and we use a straightened tube, as is
commonly done, e.g., (Rappazzo & Parker 2013), i.e., the
overall curvature of the tube is neglected. We use the
coordinate system x, y, s, where s is the coordinate along the
flux tube axis 0� s� L, and x and y are perpendicular to the
loop axis.
The expansion factor of the field line is B BTR minG º ,

where Bmin is the minimum field strength in the corona and BTR

is the average of the field strengths at the two TRs. The tube
extends from the base of the photosphere at one end to the
photosphere at the other end of the coronal loop.
The background magnetic field strength B0(s) and plasma

density ρ0(s) are functions of position s only and are considered
to be constant over the cross section of the loop. Therefore, the
Alfvén speed vA(s) ( B 4prº ) is also constant over the cross
section of the loop. The mass flows along the flux tube are
neglected. The temperature T0(s) is a function of height and is
based on a model of the lower atmosphere developed by
Fontenla et al. (1999, 2006). It is computed from

T s T u s1 0.8 , 180 max
2 2 7( ) [ ( )] ( )= -

where u s s z L1 2 TR cor( ) ( )º - + - , which lies in the range
of −1� u�+ 1, zTR is the TR height, and Tmax is the peak
temperature in the loop (in Kelvin) as predicted by the RTV
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scaling law (Rosner et al. 1978),

T p L

p
L
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1 3
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1 3
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» ´
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⎝

⎞
⎠

with pcor the coronal plasma pressure (in dyne cm−2), and Lcor
the coronal loop length (in centimeters or megameters).

In the photosphere, at the two ends of the flux tube (s= 0
and s= L), we impose random footpoint motions. These
footpoint motions consist of two counter-rotating cells with
arbitrary orientation, and create transverse motions in the
plasma along the magnetic field line. The Alfvén waves
produced as a result of these motions travel upward and
propagate along the flux tube. The waves reflect due to the
spatial variations of Alfvén speed vA(s). The reflection of the
waves at different heights produces counter-propagating waves
that interact with each other nonlinearly and produce Alfvén
wave turbulence. In our numerical calculation, we start by
assuming an rms velocity of 1.48 km s−1 for the footpoint
motions and a correlation time of 60 2 24 sct p= = .

In the RMHD model, the magnetic and velocity fluctuations
are simulated but their effects on temperature and density are
ignored. The magnetic field fluctuations B1 are considered to be
small compared to the background field (|B1|= B0) and are
computed as B Bh1 0̂=  ´^ , where h(x, y, s, t) is the
magnetic flux function and t is the time. The velocity
fluctuations are assumed to be small compared to the Alfvén
speed vA(s). The velocity fluctuations are approximated by
v Bf1 0̂=  ´^ , where f (x, y, s, t) is the velocity stream
function and B x y s, ,0

ˆ ( ) is the unit vector along the background
field, and t is the time. The flows along the background field are
neglected. The functions f (x, y, s, t) and h(x, y, s, t) satisfy the
following equations:

B

B B
t

f

v h D , 20v

0

A
2

0 0

ˆ · ( )

[ ˆ · ˆ · ( )] ( )

w
w

a a

¶
¶

+  ´ 

=  +  ´  +

^ ^

^ ^

B B
h

t
f

f

H
f h D , 21

B
m0 0ˆ · ˆ · ( ) ( )¶

¶
=  + +  ´  +^ ^

where ω ( f2º-^ ) is the parallel component of vorticity, α
( h2º-^ ) is the magnetic torsion parameter, and
HB(s)≡ B0/(dB0/ds) is the magnetic scale length defined in
Equation (24). The terms Dv and Dm correspond to the effects
of viscosity and resistivity on the high wavenumber modes.

The kinetic and magnetic heating rates are defined as

Q s t
R

a f, , 22
k

N

k k kkin
0
2

1

2 2( ) ( )å
r

nº
=

and

Q s t
B

R
a h,

4
, 23

k

N

k k kmag
0

2
1

2 2( ) ( )åp
nº

=

where B0 is the background magnetic field strength, ρ0 is the
background density, ak is the perpendicular wavenumber, and
νk is the damping rate. The waves are described in terms of
their transverse nature using a spectral method presented in
Appendix B of van Ballegooijen et al. (2011).

The total dissipation rate is Q(s, t)≡Qkin+Qmag. Deriva-
tions of the above equations and the detailed descriptions of
their numerical implementation are given in van Ballegooijen
et al. (2011).

3. Results

In this section, we present and discuss our results related to
the numerical simulations that we performed to solve a realistic
benchmark coronal loop heating problem by using the coupled
MHD/NI MHD and RMHD models.

3.1. MHD/NI MHD Model Simulation Setup and Results

We consider the loop geometry as a rectangular box (i.e., a
straightened loop) in Cartesian coordinates where the loop axis
coincides with the z-axis. Hence, the z boundaries of the
computational domain correspond to the footpoints of the loop
which are located in the lower corona. The length of the loop
is 48Mm.
At t= 0, the plasma inside the loop domain has a velocity of

±30 km s−1 on both sides of the apex with a uniform axial
guide magnetic field of B k1000

ˆ= G where k̂ is the unit
vector along the z-axis and constant density and temperature of
ρ0= 4.487× 10−15 g cm−3 and T0= 8.25× 105 K that yield a
thermal pressure of p0= 0.61 dyne cm−2. The initial conditions
for the turbulence transport variables are uniform throughout
the domain with values assigned from Table 1.
At the z boundaries, we impose an axial speed of 30 km s−1

into the loop at both boundary surfaces for the turbulence
fluctuations that are constantly imposed at the z boundaries to
be able to penetrate into the loop. Moreover, the gradients in
the magnetic field, density, and specific total energy of the
plasma are zero. The boundary values for the turbulence
transport variables are tabulated again in Table 1. The x and y
boundaries are periodic.
The simulation was performed using the MS-FLUKSS

code (Pogorelov et al. 2014). We utilize a cell-centered upwind
finite volume method with ghost cells at the boundaries to
spatially discretize the ideal MHD and NI MHD systems of
equations. These equations are discretized in time using explicit
schemes. More specifically, we apply the total variation
diminishing (TVD) Roe’s scheme and Hancock scheme to
discretize the ideal MHD equations in space and time, and a
TVD Courant–Isaacson–Rees scheme and Hancock scheme to
discretize the NI MHD equations in space and time,
respectively (Kryukov et al. 2012). Finally, the solenoidal
constraint is satisfied using Powell’s source term
method (Powell et al. 1999).
Figure 1 shows the variations of the quasi-2D and slab

Elsässer variables and energy-weighted correlation lengths for
backward/forward propagating modes, namely, <z∞±2>,
<z*±2>, L¥

, and L*, respectively, along the loop in the final
solution at steady state. These turbulence transport variables are
used together with the density, obtained from the corona
model, to calculate the coronal heating term given in
Equation (17). All these transport variables, especially the 2D
and slab Elsässer variables, decrease significantly from their
initial values given in Table 1 (i.e., both by three orders of
magnitude) resulting in the largest heating rate occurring at the
starting time which decreases with time. This result shows that
the majority 2D component plays a role as important as that of
the minority slab component in heating the coronal loop.
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Results related to the plasma variables and magnetic field
together with the heating rate are shown in Figure 6 in
Section 3.3.

3.2. RMHD Model Simulation Setup and Results

We construct a model with coronal field strength Bcor= 100
G, expansion factor Γ= 1, and coronal loop length of Lcor= 48

Mm, and the TR height z 1.8TR = Mm. The coronal loop
footpoints are on the photosphere as shown in Figure 2 and
their motions have a correlation time τ0= 60 s, each of the
driver modes has a vorticity ω0= 0.04 s−1, and the rms velocity
is Δvrms= 1.48 km s−1. The TR height corresponds to a
coronal pressure pcor= 0.61 dyne cm−2, which is typical for
some of the warm loops found in active regions, and yields a
peak temperature T 1.59max = MK.

Table 1
Initial and Boundary Conditions for the NI MHD Turbulence Transport Variables

Quasi-2D Variable Value Slab Variable Value

〈z∞±2〉 2 × 104 km2 s−2 〈z*+2〉 2.22222 × 103 km2 s−2

ED
¥ −2.2 × 103 km2 s−2 〈z*−2〉 5 × 103 km2 s−2

L¥
 1 × 109 km3 s−2 ED* −1.1579 × 102 km2 s−2

LD
¥ −1.1 × 108 km3 s−2 L* 1.92 × 106km3 s−2

〈ρ∞2〉 1.6 × 1045 km−6 LD* −2.89 × 106 km3 s−2

Figure 1. Variations of the quasi-2D and slab Elsässer variables (〈z∞±2〉 and 〈z*±2〉) and energy-weighted correlation lengths (L¥
 and L*) for backward/forward

propagating modes (− and +) along the straightened coronal loop in the final solution at steady state.
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The background field B0 is nonuniform and varies on a
spatial scale HB, which is defined by

BH B B , 24B 0 0 0
1( ˆ · ) ( )º  -

where B0(r) is the background field strength, and B r0
ˆ ( ) is the

unit vector along the background field. Figure 3 shows the
magnetic field strength B0, the flux tube radius R (full curve),
and the magnetic scale height |HB| (dashed curve).

Figure 4 shows various quantities plotted as a function of
position along the flux tube for this model. Positions are given
in terms of the Alfvén wave travel time from the left footpoint
(s= 0). Figure 4(a) shows the relationship between s and τ.
The photospheric footpoints are located at τ(0)= 0 and τ
(L)= 52.0 s, and the corona is located in the region
38.1 s < τ < 47.7 s. The other panels in the figure show the
Alfvén speed vA, temperature T0, and density ρ0.

The length of the simulation is t 3000 smax = , which is much
longer than the Alfvén wave travel time along the entire loop
(∼200 s).

Figure 5 shows the heating rates as a function of position
along the flux tube, averaged over the cross section of the flux
tube (x and y) and over the time interval t= [800, 3000] s. The
position is given in terms of the Alfvén travel time τ(s) in
seconds. The figure shows the kinetic and magnetic heating
rates, Qkin(s) and Qmag(s), and their sum Q(s). These quantities
are discontinuous at the TR. Between the photospheric
footpoints and the transition region (τ< 38.1 s and τ> 47.7
s) and in the corona (38.1< τ< 47.7 s) the magnetic heating
dominates, but in the chromosphere Qkin>Qmag.

3.3. Comparison of MHD/NI MHD and RMHD Model
Simulation Results

Based on the benchmark coronal loop heating problem that
we simulated above using the coupled MHD corona/NI MHD
turbulence transport model and the RMHD model, we compare
here the corresponding model results.
Figure 6 shows the variations of density, magnetic field

strength, temperature, Alfvén wave speed, and the coronal loop
heating rate along the loop for both models. The density,
magnetic field strength, temperature, and Alfvén wave speed
are initial conditions for the RMHD model. These quantities
are spatially averaged over the cross section. The heating rate is
calculated from the time-dependent RMHD model simulation
which is also time averaged in addition to being spatially
averaged over the cross section. For the NI MHD model
results, all quantities are calculated from the time-dependent
MHD/NI MHD model simulation and the heating rate is also
time averaged similar to the heating rate result from the RMHD
model. Both model results show remarkably good agreement
despite the basic differences in the approach which we will
discuss below even if, at a very fundamental level, they derive
from related physics.
The mechanism of how MHD turbulence is generated in

both models is different. Within the confines of the RMHD
model, itself containing certain assumptions that are elaborated
above, the small-scale velocity and magnetic field fluctuations
emerge directly from the simulation itself and are then
dissipated via viscous and resistive dissipation. By contrast,
the NI MHD model uses a mean-field decomposition of the

Figure 2. Model for Alfvén wave turbulence in coronal loops. The Alfvén
waves are driven by footpoint motions inside the tube. Note that in the RMHD
approximation, the coronal loop is approximated with a straightened magnetic
flux tube.

Figure 3. (a) The magnetic field strength B0, (b) the flux tube radius R (full curve), and the magnetic scale height |HB| (dashed curve).
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basic 3D time-dependent MHD equations and then certain
closures for the fluctuations based on 1-point correlations to
derive a set of evolution equations that describe the evolving
energy-weighted correlation lengths. The energy-weighted
correlation lengths can be interpreted in terms of total energy,
residual energy, and cross helicity, and the system is closed by
assuming that cross-correlations can be approximated by
1-point correlations via parameters a and b. The dissipation
of the fluctuations is based on the idea that the turbulence is
fully developed and is described by a Kolmogorov (or if one
wished an Iroshnikov–Kraichnan) phenomenology. Such a
phenomenology allows one to short circuit the details of the
dissipation process, recognizing instead that the balancing of
the energy input and the dissipation rate determines the (self-
similar) cascade rate. Thus, the simulation in the NI MHD
model solves two coupled systems of equations, one describing
the large-scale background MHD flow (the MHD equations
that have a heating term associated with the dissipation of
turbulence) and the other being a turbulence transport model
that includes the dissipation of the turbulence energy, described
phenomenologically by the Kolmogorov model, as the
turbulence is advected through the loop. Hence, in the NI

Figure 4. Various quantities are plotted as a function of the Alfvén wave travel time τ: (a) position s(τ) along the loop measured from the left footpoint, (b) Alfvén
speed vA; (c) temperature T0; and (d) mass density ρ0. The two chromosphere-corona TRs are located at τ = 38.1 and 47.7 s.

Figure 5. Kinetic and magnetic heating rates, and their sum Q(s) as a function
of Alfvén travel time.
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Figure 6. NI MHD and RMHD model simulation results for the benchmark coronal loop heating problem: (Top row) (left) Density and (right) magnetic field strength
along the loop; (Middle row) (left) temperature and (right) Alfvén wave speed along the loop; (Bottom row) coronal loop heating rate. The RMHD model simulation
computational domain boundary is at the photosphere whereas it is at the lower corona for the NI MHD model simulation.
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MHD model, no small-scale fluctuations are introduced via the
simulation, unlike the RMHD model.

The computational domain boundary for the RMHD model
simulation starts at the photosphere. In this model, Alfvén
waves are generated by the footpoint motions of the coronal
loop. While propagating along the loop, the generated waves
travel forward and backward along the loop and interact with
each other due to the flow gradients generating counter-
propagating Alfvén waves that couple nonlinearly to produce
turbulence. As shown in Figure 4(b), the Alfvén wave speeds
are two orders of magnitude smaller in the denser chromo-
sphere and TR in comparison with their values in the corona,
which can also be seen in the position along the loop versus
Alfvén wave travel time graph presented in Figure 4(a).
Additionally, braiding of magnetic field lines as well as small-
scale variations in transverse magnetic field and velocity inside
the loop exist in the initial solution of the RMHD model. The
turbulent relaxation of braided magnetic field structures plays a
fundamental role in the loop heating mechanism described by
the RMHD model.

In the NI MHD turbulence transport model, turbulence
transport and evolution are solved directly from the model
equations (derived from the MHD equations themselves via
mean-field theory, suitable closures, and scale separation) and
coronal heating, approximated using a phenomenological
dissipation model of MHD turbulence, is expressed in terms
of the transport variables. For the NI MHD turbulence transport
model simulation, we simulated only the coronal part of the
loop and did not impose any braiding. However, small-scale
velocity or magnetic field fluctuations are present and evolved
using the turbulence transport equations.

To compare the results between the NI MHD and RMHD
results, since we cannot impose the loop footpoint boundary
conditions at the same location for both models, we impose an
initial solution based on the boundary conditions on the
photosphere for the RMHD model simulation in a way that we
can match the solution at the coronal footpoint boundaries of
the NI MHD model.

At this point, we focus specifically on our comparison
corresponding to the coronal loop heating rate presented in the
bottom panel of Figure 6 since this quantity is calculated from
the time-dependent MHD/NI MHD and RMHD model
simulation results. For the RMHD model, the heating rate is
calculated from Q, which is the sum of Qkin and Qmag (see
Equations (22) and (23)). Qkin is the rate of kinetic energy loss
due to damping and Qmag is the rate of magnetic energy loss.
For the NI MHD model, the heating rate is calculated from the
heating/decay phenomenology given by Equation (17), which
is a function of the turbulence transport variables corresp-
onding to quasi-2D and slab Elsässer variables and energy-
weighted correlation lengths for backward/forward propagat-
ing modes. Despite the fundamental differences in the way the
heating rate is calculated by both models, we obtain very good
agreement between the time-averaged heating rates along the
loop, which results in very similar temperature profiles with
almost identical maximum temperature values at the apex of
the loop (i.e., T 1.54 10max

6= ´ K from the NI MHD model
versus T 1.59 10max

6= ´ K from the RMHD model). We
would like to emphasize here that the density, magnetic field
strength, temperature, and Alfvén wave speed distributions
given in Figure 6 are part of the initial solution for the RMHD
model while they were solved in a time-dependent fashion by

the coupled MHD/NI MHD model simulation and correspond
to the MHD/NI MHD model simulation results at the steady
state.

4. Conclusions

In this paper, we used a benchmark problem to compare
results from two different coronal heating models that are based
on the transport of MHD turbulence within a realistic coronal
loop setting. For our NI MHD turbulence transport model
simulation, we simulated only the coronal part of the loop and
did not impose any braiding. However, small-scale velocity or
magnetic field fluctuations are present and evolved using the NI
MHD model equations. The transport and dissipation of MHD
turbulence were solved directly from the NI MHD model
transport equations and coronal heating was expressed in terms
of the transport variables. We found that the majority 2D
component is as important as the minority slab component in
the heating of the coronal loop. Our RMHD model simulation
started from the photosphere. Alfvén wave turbulence was
imposed by the footpoint motions of the loop in the presence of
braiding. We imposed boundary conditions on the photosphere
in a way that allowed us to match the solution at the coronal
footpoints for both models. We also imposed the density,
magnetic field strength, temperature, and Alfvén wave speed as
initial conditions for the RMHD model. We set these initial
values according to the background coronal plasma solution of
the coupled MHD/NI MHD model at the steady state. Despite
the basic differences between the two models, the two sets of
simulation results matched remarkably well, yielding almost
identical heating rates inside the corona. This agreement
between the NI MHD and RMHD model results is a very
encouraging outcome of this work for the solar atmosphere
modeling and coronal heating communities and demonstrates
the importance of studies involving model comparisons. In
future work, we will include model comparisons within coronal
loops and in open magnetic field line regions based on solar
observations.
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