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Figure 1: This fgure shows how a user enters “move” via GlanceWriter. (a) The user moves eye-gaze position (the blue dot) 
to the keyboard area from a place above the keyboard, glances over ‘m’, ‘o’, ‘v’ and ‘e’, and moves the gaze position away 
from the keyboard to signal the end of gaze gesture. No dwelling or “reverse crossing” [13] is required during the process. (b) 
GlanceWriter decodes the gaze path and shows the results above the keyboard. The user then dwells on “move” with gaze to 
confrm it. 
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often require users to dwell on letters of a word, or mark the start-
ing and ending positions of a gaze path with extra operations for 
entering a word. In this paper, we propose GlanceWriter, a text 
entry method that allows users to enter text by glancing over keys 
one by one without any need to dwell on any keys or specify the 
starting and ending positions of a gaze path when typing a word. 
To achieve so, GlanceWriter probabilistically determines the letters 
to be typed based on the dynamics of gaze movements and gaze 
locations. Our user studies demonstrate that GlanceWriter signif-
cantly improves the text entry performance over EyeSwipe, a dwell-
free input method using “reverse crossing” to identify the starting 
and ending keys. GlanceWriter also outperforms the dwell-free 
gaze input method of Tobii’s Communicator 5, a commercial eye 
gaze-based communication system. Overall, GlanceWriter achieves 
dwell-free and crossing-free text entry by probabilistically decoding 
gaze paths, ofering a promising gaze-based text entry method. 

CCS CONCEPTS 
• Human-centered computing → Text input; Interaction de-
sign; Interaction devices; User studies. 
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1 INTRODUCTION 
Eye-gaze is an important modality for hands-free text entry in the 
modern Post-PC computing era. It frees users from typing on a 
physical keyboard, which is especially advantageous in scenarios 
where physical keyboards are unavailable such as in virtual or 
augmented reality environments [38]. Eye-gaze text entry is also 
benefcial for individuals with motor disabilities who may not be 
able to speak [19, 46]. A common gaze-based text entry method [21, 
32, 35] is dwell-based: a user dwells on a letter for a certain period of 
time (e.g., 600 ms [26]) to type it. However, frequent dwelling can be 
time-consuming and cumbersome. A sizable amount of research has 
been conducted to enable dwell-free text entry [14, 25, 26, 40]. One 
promising approach is to use gesture typing (or ShapeWriting) [14, 
24, 29], which allows a user to enter a word by glancing over keys 
without deliberately dwelling on them. EyeSwipe [26] is one such 
technique and is demonstrated to be efective. 

One major challenge faced by gaze-based gesture typing is that it 
is hard to determine the starting and ending positions of a gaze path. 
While touch-based gesture typing can rely on the fnger landing 
on or leaving the screen to identify the starting and ending of the 
gesture, gaze-based input does not have these distinct "landing on" 
or "taking of" moments as the gaze trajectory is always active. 
EyeSwipe addressed this challenge by “reverse crossing” [13]: the 
user moves the gaze out of the starting or ending key to an icon 
above the key and returns to the starting or ending key again to 

signal the starting or ending letter of a word. However, this method 
can be time-consuming and requires extra efort. TAGSwipe [25] 
addressed this challenge by using an extra input modality: the 
user needs to use a hand to press on a touchscreen to signal the 
starting or ending position of a gaze path. This method requires 
hand movement and a touchscreen device which is not suited to 
scenarios where gaze is the only available input modality. 

In this paper, we present GlanceWriter, as shown in Figure 1, 
a dwell-free and crossing-free text entry method, which allows 
users to enter words by glancing over letters one by one, without 
any “reverse crossing” or dwelling actions. GlanceWriter employs 
a new decoding algorithm that probabilistically determines which 
letter is entered by examining the dynamics of gaze movements 
and gaze locations. It can also probabilistically determine which 
keys correspond to the starting/ending letters, thus eliminating the 
need for “reverse crossing” actions. 

Our user studies show that GlanceWriter is feasible and easy to 
learn for eye-gaze text input. It improves the text entry performance 
over EyeSwipe, with a speed increase from 6.49 WPM to 10.89 WPM 
and an error rate reduction from 6.85% to 2.71%. We also compared 
GlanceWriter with a commercial gaze-based text entry method 
of Communicator 5 in Tobii Dynavox I-12+ [10]. GlanceWriter 
improves the word-level text entry speed from 7.41 WPM to 9.54 
WPM and reduces the error rate from 16.32% to 12.89%. 

2 RELATED WORK 
Our research is related to eye gaze-based text entry techniques, 
including dwell-based methods, dwell-free methods, gesture typing 
techniques, and eye-gaze techniques. 

2.1 Dwell-based Gaze Text Entry 
Dwell-based gaze text entry is the most common method for gaze 
typing: a user is required to look at a key that they would like to pick 
and fxate on it for a certain duration to select [33, 43]. This duration, 
also called dwell time, is the key factor that slows the text entry 
process and induces eye fatigue. The typical dwell time is between 
400 and 1000 ms. Even though we can use shorter dwell time to 
increase typing speed, it also increases the risk of typing errors or 
unwanted selections due to the Midas Touch problem [22]. Majaranta 
et al. [32] conducted a longitudinal study to learn users’ gaze-based 
typing using an adjustable dwell time. Isomoto et al. [21] presented 
a dwell time reduction technique for gaze-based target acquisition 
by adopting Fitts’ Law and achieved an average dwell time of 86.7 
ms with a 10.0% Midas Touch rate. Mott et al. [35] presented a 
cascading dwell gaze typing to dynamically adjusts the dwell time 
of keys and conducted experiments with ALS patients to show that 
this technique has the potential to improve gaze typing. In general, 
language models such as word prediction can also accelerate the 
dwell-based typing methods [9, 42]. 

2.2 Dwell-free Gaze Text Entry 
To overcome the drawback of dwell-based gaze input, previous 
research has explored using gesture typing [24, 29] to achieve dwell-
free gaze input. However, traditional touch-based gesture typing 
methods cannot be directly used for gaze-based gesture typing. 
A fundamental diference between them is that in touch-based 
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gesture typing, the fnger gesture has well-defned starting and 
ending points (i.e. landing the fnger on the screen to start a gesture 
and lifting the fnger up to end the gesture), while in gaze-based 
gesture typing, it is not clear when is the start and end of the 
gesture. EyeSwipe, a dwell-free gaze typing method proposed by 
Kurauchi et al. [26], requires a user to do a “reverse crossing” [13] 
to mark the starting and ending of the gesture input. The built-in 
keyboard in Communicator 5 of Tobii Dynavox devices [10] also 
supports dwell-free gaze text entry. However, there is no public 
document explaining how to achieve it. It is a “black box” to users 
and outside developers. Nevertheless, we compared GlanceWriter 
with this keyboard in our second user study (Section 5). Some 
works also introduce other modalities to help with faster typing. 
TAGSwipe [25], a touch-assisted gaze swipe method for text entry, 
uses touch to confrm the starting and ending positions of a gaze 
path. HGaze typing [14], proposed by Feng et al., combines the 
simplicity of head movement with the gaze-based gesture input 
where a user could nod or shake her head for common commands 
such as deletion and revision, to provide efcient and comfortable 
dwell-free text entry. 

There are also other solutions for dwell-free gaze-based text en-
try. For example, Sarcar et al. proposed EyeK [40], a gaze-based text 
entry system which types a key by moving the gaze position inside, 
outside and inside the key. Huckauf et al. proposed pEYEWrite [18], 
an expandable pie menu with letter groups. TAGSwipe [25] uses 
a touch press/release on an extra touch surface to signal the start-
ing/ending positions of a gaze path and decodes the gaze path using 
a Dynamic Time Warping algorithm. 

Dasher [47], a gaze-based zooming interface designed by Tuisku 
et al., also showed a higher text entry rate compared to a dwell-
based keyboard [39]. Pedrosa et al. proposed Filteryedping [37], 
a dwell-free technique that can flter out unintentionally selected 
letters from users’ input based on string matching. Kurauchi et 
al. proposed Swipe&Switch [27], a text-entry interface that allows 
users to swipe and switch on diferent keyboard areas to improve 
gaze-based interaction with a better user experience. Swipe&Switch 
removes “reverse crossing”; however, it still requires a clear def-
nition of the starting and ending letter positions by gaze fxation: 
“either the frst fxation or any other fxation longer than a hidden 
dwell-time (set to 700ms during our experiment).” [27] In contrast, 
GlanceWriter does not require any sort of fxation for entering 
letters because any letters near the gaze trajectory are considered 
and assigned probabilities. 

Although many previous works achieved dwell-free gaze in-
put, they either require marking the starting and ending posi-
tions of a gaze path such as “reverse crossing” [26], touching [25], 
fxation [27], or require deterministically looking at all the letters 
that compose the word to be typed [37]. GlanceWriter eliminates 
the need for these actions and achieves dwell-free and crossing-free 
input by probabilistically decoding the gaze path. 

In addition to eliminating the need to specify the starting and 
ending positions of a gaze gesture, the probabilistic decoding algo-
rithm of GlanceWriter is another diferentiator against other dwell-
free gaze input methods (e.g., Filteryedping [37]). GlanceWriter 
represents the probabilities of entering letters with key scores and 
calculates them by examining the dynamic of gaze trajectories 
such as gaze motion stability and distance to keys. In contrast, 

Filteryedping [37] does not introduce probability and decodes a 
gaze gesture based on fltering. It determines letters by examining 
which keys the user looks at and matches the letter sequence with 
words in the dictionary. By introducing the probability in decoding, 
GlanceWriter can quantify the uncertainty of entering a word prior 
to involving the word frequency, which is a principled approach of 
handling noises in text entry. 

2.3 Gesture Typing 
Gesture typing is a text entry technique that has been widely used 
on touchscreen mobile devices [6, 24, 29, 54–56], and it is also 
known as word-gesture typing or shape writing. Users may draw a 
path that passes the letters of a word one by one to input it, instead 
of typing on each individual key, thus improving the input speed. 
The idea of writing words as shapes was introduced in Shorthand 
Aided Rapid Keyboarding (SHARK2) [ˆ 24, 54]. It uses shape and 
location channels to measure the distance between gestures made 
by the user on a virtual keyboard to words in a lexicon, then to 
determine the input word. 

There have been many works that aim at improving gesture 
input. For example, Alsharif et al. proposed to use Long Short Term 
Memory (LSTM) neural network for gesture decoding [1]. Bi et al. 
proposed a bi-manual gesture keyboard extending the gesture input 
from one fnger to multiple fngers [3]. Yu et al. proposed to improve 
gesture typing by incorporating head movement information [53]. 
On the other hand, there are works that extend gesture typing to 
other devices or modalities. For example, tilt-based gesture typ-
ing [51], where the user draws a gesture by tilting the device, and 
others like mid-air gesture input [34], back of device gesture in-
put [7], gesture input on a watch [15] and on a ring [16]. There 
are also some works investigated on gesture typing without visual 
feedback [4, 59]. The present work further extends this paradigm 
to gaze input. 

2.4 Tracking Eye Gaze 
Eye-gaze tracking measures eye movement relative to the head 
or point of gaze, and it enables gaze-based interactions. The gaze-
tracking technology is becoming increasingly available and there 
are a bunch of gaze trackers for us to choose from. For example, 
there are readily commercial products like trackers from Tobii 1, 
SMI REDn 2, Eyelink 1000 plus 3, etc., and they are widely used 
in eye-gaze related research works [11, 20, 25, 41, 44, 45]. These 
gaze trackers are peripheral devices to a computer, and usually 
have good gaze tracking quality, i.e. the accuracy is less than 2◦. 
However, one major disadvantage of them is that they usually cost 
from several thousand dollars up to more than ten thousand dollars. 

To make gaze-tracking more pervasive, researchers have been 
devoted to enabling gaze-tracking on daily devices by using the 
embedded camera. For example, Wood et al. developed EyeTab [50], 
which uses the front-facing RGB camera of a tablet for gaze tracking. 
Huang et al. proposed an in-situ gaze tracking method on smart-

phones based on the glint of the screen on the user’s cornea [17]. 

1
https://gaming.tobii.com/product/eye-tracker-5/, https://www.tobiipro.com/, https: 
//www.tobiidynavox.com/

2
https://imotions.com/hardware/smi-redn-scientifc/ 

3
https://www.sr-research.com/eyelink-1000-plus/ 

https://gaming.tobii.com/product/eye-tracker-5/
https://www.tobiipro.com/
https://www.tobiidynavox.com/
https://www.tobiidynavox.com/
https://imotions.com/hardware/smi-redn-scientific/
https://www.sr-research.com/eyelink-1000-plus/
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Papoutsaki et al. proposed WebGazer [36], a JavaScript library that 
uses webcams to enable gaze tracking for web browsers. Li et al. 
used the ARKit to enable gaze-tracking on an iPad with TrueDepth 
camera [28]. Many works use Deep Learning techniques to support 
gaze-tracking [23, 49, 57]. Even though embedded camera-based 
gaze tracking has been investigated for years, the state-of-the-art 
tracking quality is still lower than those commercial products, be-
cause the tracking quality is limited by the camera. In this paper, 
we used the Tobii Dynavox as our gaze tracker for its high tracking 
accuracy. 

3 GLANCEWRITER DECODING ALGORITHM 
A core component of GlanceWriter is the decoder, which prob-
abilistically maps a gaze path to a word in the dictionary. The 
starting/ending moment of a gaze path is defned by the moment 
the gaze path enters/exits the soft keyboard. In our implementation, 
the gaze path was sampled at 100 Hz. In other words, it consisted 
of a sequence of gaze points sampled at every 0.01 second. Figure 1 
shows how GlanceWriter works for typing the word “move”. 

The challenge of dwell-free and crossing-free gaze input is that it 
is hard to determine the starting (or ending) position on a gaze path 
for entering the frst (or last) letter of a word. A gaze path is defned 
by the movements of the gaze entering and exiting the keyboard 
area. The starting position for entering the frst letter (or the ending 
position for entering the last letter) could be any position on the 
defned gaze path. Therefore, the traditional gesture typing decoder 
such as SHARK2 [24] is unsuitable because it requires knowledge 
of the positions along the gesture corresponding to the starting and 
ending letters of a word. We have created a new decoder to address 
this challenge. It probabilistically determines which letter is typed 
based on gaze dynamics, including the starting and ending letters. 
The gaze dynamics are the characteristics of the motion of the gaze 
point, such as the speed of gaze points and the distances between 
a gaze point and key centers around it. In this section, we explain 
how the decoding algorithm works. 

3.1 Data Structure 
To map a gaze path to a word, it is important to represent and store 
words in the decoder properly. We implemented a trie structure [48] 
(prefx tree) to store all the words in the lexicon as shown in Fig-
ure 2a. The root is associated with an empty character. Each of the 
other nodes is associated with a character. Each node consists of 
at most 26 children, corresponding to 26 letters in English. All the 
children of a node have a common prefx. The prefx is the charac-
ters from their parent to the root in a reversal order. If a node is the 
last letter of a word, we store the word in that node. If the word 
contains consecutive identical letters, these letters are merged into 
the same node. For example, in Figure 2a, “more” and “moore” both 
can be found in node ‘e’ following ‘m’, ‘o’, ‘r’ since “oo” is merged 
at node ‘o’. To optimize the calculation, for each node, we also store 
the key score (explained later) and the sum of scores from current 
nodes backward to root. 

3.2 State of Node (Key) 
In the trie, each node has two states RELEASE and HOLD. RELEASE 
means the gazing point has never reached the node. HOLD means 

the node has been visited by a gaze path. Thus, the initial state 
of a node is set as RELEASE. As the red dot showed in Figure 2b, 
when the gaze path moves into a key � , the decoder frst fnds the 
words which start with � and marks the corresponding starting 
node as HOLD. It also sets the score �� of the key � to the node. 
In the meantime, the decoder also checks all the HOLD nodes. If 
their next nodes are identical to the key � and marked as RELEASE, 
the decoder marks them as HOLD. Same as the initial nodes, the 
decoder also sets �� to these nodes. When the gaze path is moving 
inside the key, as the blue dot showed in Figure 2b, the decoder 
updates the key’s score of all the HOLD nodes identical to the key. 
A key’s score is updated only when it is greater than the previous 
value. 

When the gazing path reaches the last letter (node) of a word 
� , the decoder sets the word as an output candidate. The score 
of the word �� is the sum of its key scores of all its nodes, as 
shown in Figure 2a. After the gazing point moves out of the key 
of a candidate’s last node, the decoder keeps the word in the input 
candidates for a certain duration � ; after that the word is removed 
from the candidates. 

When the gazing point moves out of the upper bound of the key-
board, the decoding process stops. The decoder sorts the candidates 
by their scores in descending order and shows the top 5 candidates 
as the input suggestions. In the above example, the word "move" 
has the highest score, followed by words "more", "mode" and so on. 

3.3 Key Score 
The key score of a key � (denoted by � (�)) represents the possibility 
of a key being the key a user wants to type. It is determined by two 
properties of gaze points on a gaze path: 1) the distance between 
the point and the key center (distance score), and 2) the gazing 
stability (stability score). Our calculation was based on the intuition 
that when the user intends to input a letter of a word, the gazing 
point on that letter is close to its key center and stays still in the 
boundary of a key. 

1. Distance score � (�, �). We assume that the distance (pixel) 
from a gaze point � to the center of the key � follows a Gaussian 
distribution. It means that if the Euclidean distance of a gazing 
point � to a key center is � , the probability of the key being the 
target of the point can be calculated using Gaussian probability 
density function: .

1 −(� −� )2 2�2 
� (�, �) = √ � , (1) 

� 2� 
where � is 0. We empirically set � as 0.4. For a given key, we used 
the gaze point that was closest to the key center to calculate the 
distance score. We used a Gaussian distribution because such a 
distribution ensures that a gaze point near the key center will result 
in a high distance score while the distance score will decrease 
rapidly as the gaze point moves away from the key center. Previous 
research [28] has shown that a Gaussian distribution works well 
for describing the probability of selecting a target based on gaze 
points. We followed the previous work [28] to adopt a Gaussian 
function here. 

2. Gaze stability score � (�, �). It measures to what degree a gaze 
point � stays still inside a key � . We frst calculated the average speed 
of gaze point in a �-size (� = 30 pixels, determined empirically) 
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(a) (b) 

Figure 2: An example of typing the word “move”. (a) The data structure (trie) of GlanceWriter. The Key score of a key i is 
denoted by K(i), while the score of a word, denoted by S(word), is the summation of its key scores from root to itself. (b) States 
and candidates change with eye-gaze points. The gaze points are moving from key ‘K’ to ‘O’, marking the key ‘O’ as HOLD. The 
score is refected by the color intensity for illustration purposes. 

window right before � , which is the average over instant speeds of 
gaze points within the �-size window. We then used the reciprocal 
of this average speed as the stability score. We chose a �-size moving 
window to make sure that moving gaze points were sampled for 
calculating the stability score. It avoids the scenario in which all 
the sampled gaze points were stationary, which could result in a 
very high value for the reciprocal of the average speed. 

The key score � (�, �) for a given gaze point � at key � is the 
product of distance score and stability score: 

� (�, �) = � (�, �) · � (�, �), (2) 

The key score � (�) for a given key � is the maximum of � (�, �)
over all the gaze points within the boundary of the key �: 

� (�) = max � (�, �), (3)

� ∈� 

where � includes all gaze points within the boundaries of key � . The 
max function is implemented to keep the highest score a key can 
get for a given gaze path. 

3.4 Word Score 
The word score � (�) represents how likely a user intends to input 
a word � with a given gaze path. It is the summation of key scores 
for corresponding letters: ∑ 

� (� ) = � (�), (4) 
� ∈� 

where � includes all nodes (letters) in the trie for the word � (e.g., 
Figure 2). 

3.5 Combining Word Score with Language 
Model 

The basic principle of word-gesture decoding [24, 55] is to combine 
the probability of a candidate word estimated from the gazing points 
(a.k.a. spatial probability � (� )) and from the language context (a.k.a. 
language probability � (�)) to obtain the overall probability of a 
word � being the intended input given an input gesture: 

� (� )� (�)
����� (�) = Í , (5) 

� ∈� � (�)� (�)
where � is a lexicon containing � words. We follow the same prin-
ciple (Equation 5) for decoding. 

More specifcally, GlanceWriter approximates the spatial proba-
bility � (�) with word score � (�): 

� (�)
� (�) = Í , (6) 

� ∈� � (�)
where � includes top � (� = 10) words with highest word scores. For 
language probability � (�), we use a bi-gram language model (size: 7 
million bi-grams) which is trained over the Corpus of Contemporary 
American English (COCA) [8] (2012 to 2017). The Corpus contains 
over 5 million sentences. After obtaining � (�) and � (�), the decoder 
calculates ����� (�) according to Equation 5, and outputs the top 
� word according to ����� (�). The decoding process ends here. 
Only words in the corpus will be considered. Algorithm 1 uses 
pseudocode to explain how the decoder calculates key score, word 
score, and combines them with a language model to decode a gaze 
path into a word. 

This decoding algorithm in general should work for a virtual 
keyboard at any scale and with gaze trackers of diferent accuracy. 
That said, the parameters such as the size of �-size window and 
the standard deviation of the Gaussian distribution in Equation 1 
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should be empirically determined to suit keyboards at particular 
scales and for the specifc eye tracker. We determined the values 
for keyboard size and eye tracker used in Experiment I. 

Algorithm 1 GlanceWriter Decoding Algorithm 
1: procedure Get Decoding Result 
2: RN : children of root node 
3: HN : list of trie nodes in HOLD state 
4: WC : list of word candidates with scores 
5: T : time limit to hold a word in WC 
6: input: 
7: � ← key where current eye-gaze point hovering on 
8: �� ← key score where current eye-gaze point hovering on 
9: process: 
10: Trim HN, keep top 50 nodes sorted by their sum of key 
11: scores to the root 
12: for each �� ∈ RN do ⊲ Scan the frst letter of each word 
13: if � is the letter of �� and HN doesn’t contain �� then 
14: add �� to HN 
15: for each �� ∈ HN do ⊲ Scan each node in HOLD list 
16: �ℎ ← key score of �� 
17: �ℎ ← sum of the key scores from �� to its root 
18: if � equals the letter of �� then 
19: if �� > �ℎ then ⊲ Update scores of a current node 
20: �ℎ = �ℎ − �ℎ + �� 
21: �ℎ = �� 
22: NC ← children of �� 
23: for each �� ∈ NC do ⊲ Scan next letters 
24: �� ← key score of �� 
25: �� ← sum of the key scores from �� to its root 
26: if � equals the letter of �� then 
27: �� = �� , �� = �� + �ℎ 
28: add �� to �� ⊲ add a child node to HOLD list 
29: Remove the words which are stored in WC more than � 
30: if �� is the last letter of words then 
31: �ℎ ← list of words in �� 
32: for each w ∈ �ℎ do 
33: if w not in WC then 
34: add w and its sum score to WC 
35: output: 
36: Sort the WC by the sum score of each word and output top 
37: fve word in WC 

4 EXPERIMENT I 
We frst conducted a controlled experiment to compare 
GlanceWriter with EyeSwipe [26] in a text entry task, as 
one of our main goals was to eliminate the “reverse crossing” [13]. 
We aimed to understand whether the use of probabilistic decoding 
of gaze path would improve the text entry performance. 

4.1 Participants and Apparatus 
Fourteen users without disabilities (3 females) between 24 and 
32 years old (average 27.36±2.46) participated in this study. All 
of them were familiar with the QWERTY keyboard layout. Their 
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median familiarity with gesture typing was 4 (1: have never used 
gesture typing; 5: frequently use gesture typing). All participants 
had normal or correct-to-normal vision; 10 of them wore glasses 
and they could choose whether or not to wear glasses during the 
experiment. A Tobii Dynavox I-12+ (12.1-inch screen, Aspect ratio: 
4:3, 1024×768 pixels resolution, Intel Celeron Qual Core Processor 
J1900, 4GB DDR3 RAM, 256GB SSD, Tobii IS4 eye tracking module) 
running Windows 10 was used in the experiment. 

4.2 Design and Procedure 
Experiment I was a text transcription task. We compared 
GlanceWriter with EyeSwipe [26], a dwell-free method. The typing 
interface of experiment is shown in Figure 3. We implemented the 
GlanceWriter decoder following the description in Section 3, and 
designed a keyboard interface as shown in Figure 3(b). The eye-
gaze position was displayed as a blue point. As visual feedback, we 
highlighted the key when the gaze point is hovering on it. After 
drawing the gesture via gaze, a suggestion bar of 5 candidate words 
shows up below the text feld. The user then confrms the intended 
word by focusing on the right candidate. A shrink-down animation 
served as the visual feedback helping the user to confrm the selec-
tion. The user needs to delete and re-enter a word if errors occur. 
Re-input was not counted as an error but was refected in the total 
time cost. To delete the last word on the input feld, the user needs 
to focus on the “<-” (backspace) button same as selecting a word. 
If the user needs to cancel a gaze path, she can move the gazing 
point out of the upper bound of the keyboard and starts to input the 
word once again. We also implemented EyeSwipe following the de-
scription in the previous work [26]. Selections of candidate words, 
enter, and backspace are performed by focusing on the highlighted 
key with shrink-down animation in GlanceWriter and by “reverse 
crossing”, as described in EyeSwipe [26]. Both GlanceWriter and 
EyeSwipe used the same interface, and the same language model 
with 10K unique words as described in Section 3.5. The dwell time 
for word selection is set to 600ms in GlanceWriter. 

EyeSwipe and GlanceWriter used diferent decoders. We re-
implemented EyeSwipe following the description in the original 
paper [26], using a DTW-based decoding algorithm. In contrast, 
GlanceWriter used the probabilistic decoding algorithm described 
in Section 3. We used diferent decoders because our main purpose 
was to investigate whether the newly proposed decoding algorithm 
would outperform the existing dwell-free DTW-based input method. 
It was also necessary to use diferent decoders because the origi-
nal DTW-based decoder [26] did not work for GlanceWriter. The 
DTW-based decoder requires knowledge on the starting and ending 
letters that are unavailable in GlanceWriter. 

We adopted a within-subject design. Participants were asked to 
input the same set of phrases above the text feld using two diferent 
gesture typing methods: EyeSwipe and GlanceWriter. To reduce the 
learning efect, we counter-balanced the order by dividing partici-
pants into two groups: half of the participants used EyeSwipe frst 
while the other half used GlanceWriter frst. We randomly selected 
20 phrases from a subset of the MacKenzie and Soukoref phrase 
set [31, 52]. The same set of phrases was used across two conditions 
and users. There were 4 sessions in each condition (EyeSwipe and 
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GlanceWriter). Each session contained 5 phrases. Participants were 
encouraged to type as fast and accurately as they could. 

To begin with, participants were demonstrated how the Tobii eye 
tracking systems work, how to do calibration and use their eye gaze 
to navigate the program. The participants performed calibration 
before each session. Before starting the formal sessions of each 
method, participants completed a 10-minute warm-up session to 
familiarize themselves with each method. The phrases in the warm-

up session were diferent from those in the formal test. Due to the 
participants’ familiarity with eye gaze input and QWERTY layout, 
they were able to obtain eye-gaze text entry skills during the warm-

up session. In the formal test, participants were allowed to take a 
break between sessions. Re-calibration was allowed during breaks. 
Each participant was able to complete the whole study within 40 
minutes. 

At the end of the study, the participants completed a question-
naire to report their subjective ratings and answered an open-ended 
question, "What’s the most difcult part of the method you’ve just 
tried?" The subjective ratings were about mental demand, physi-
cal demand, comfort, learnability, scaled from 1 to 10, and overall 
preference of each typing method, scaled from 1 to 5. 

In total, the study included: 14 participants × 2 methods × 20 
phrases = 560 trials. 

4.3 Results 
Input Speed. This metric indicates how fast a user could input text 
with each method. It was measured by word per minute (WPM). 
We followed the calculation proposed in the previous work [30]: 

|� − 1| 1 
� �� = × (7)

5

,
� 

where � is the length of the transcribed text in characters with 
space, and � is the elapsed time in minutes from start of the input 
to fnishing the last word in the phrase. Figure 4 shows the average 
input speed in EyeSwipe and GlanceWriter conditions. The means 
(SD) were 6.49(�� = 1.69) for EyeSwipe and 10.89(�� = 2.62)
for GlanceWriter. A dependent t-test showed the diference was 
signifcant (�13 = 8.79, � < 0.001). 

Word Error Rate. In both two conditions, the input was on the 
word level. The error rate was measured using word error rate [2, 
58]: 

� (�,� )
� = × 100%, (8)|� |

where � (�,� ) is the word edit distance between the transcribed 
phrase � and the target phrase � , and |� | is the number of words in 
� . The word edit distance is the minimum number of basic word-
level operations needed to transform the transcribed phrase into 
the target phrase. These basic operations are insertion, replacement, 
and deletion. The means (SD) were 6.85%(�� = 5.49%) for Eye-
Swipe and 2.71%(�� = 3.22) for GlanceWriter. A dependent t-test 
showed the diference was signifcant (�13 = −2.69, � = 0.02). 

Subjective Rating. Participants were asked to provide a numerical 
rating on mental demand, physical demand (1: least demanding, 
10: most demanding), comfort (1: very uncomfortable, 10: very 
comfortable) and learnability (1: very difcult to learn, 10: very 
easy to learn). Mental demand describes how much mental efort 
is required. Physical demand describes how much physical efort 

is required. We also let participants rate each method by their 
overall preference (1: very dislike, 5: very like). As shown in fg. 5, 
participants were in favor of GlanceWriter across all questions. A 
Wilcoxon Signed-Ranks Test indicated that the overall preference 
of GlanceWriter Keyboard was signifcantly higher than that of 
EyeSwipe (Z = 3.18, p = 0.001). 

5 EXPERIMENT II 
We conducted Experiment II to compare GlanceWriter with the 
built-in keyboard in Tobii Communicator 5 [10], which is also a 
dwell-free gaze text entry method. In this experiment, we aimed to 
understand the performance of GlanceWriter in comparison with a 
commercially available product, which represents the status quo 
of gaze-based input technology. As there is no publicly released 
document explaining how Communicator 5 decodes gaze paths, we 
could not reproduce its decoder. We therefore tested it as a “black 
box” as explained later. 

5.1 Participants and Apparatus 
Twelve users without disabilities (3 females) between 23 and 33 
(average 26.92±2.96) participated in this study. All of them were 
familiar with the QWERTY keyboard layout. Their median famil-

iarity with gesture typing was 4. All participants had normal or 
correct-to-normal vision; 7 of them wore glasses, and they could 
choose whether or not to wear glasses during the experiment. The 
participants in study I and II were diferent. A Tobii Dynavox I-13+ 
(13.3-inch screen, Aspect ratio: 16:9, 1920×1080 pixels resolution, 
Intel(R) Core(TM) i5-7300U, 8GB LPDDR4, 256GB SSD, Tobii IS5 eye 
tracking module) running Windows 10 was used for gaze collection 
and text entry. A MacBook Pro (16-inch screen, Aspect ratio: 16:10, 
3072×1920 pixels resolution, 2.6GHz 6-Core Intel Core i7 Processor, 
16GB 2667 MHz DDR4 Memory, AMD Radeon Pro 5300M Graph-
ics) was used to display the text phrases and record time in the 
experiment. 

5.2 Design and Procedure 
Experiment II was a text transcription task. The design of this 
experiment was the same as Experiment I: we adopted a within-
subject design. Participants were asked to type the same set of 
phrases as shown above in the text feld using two diferent gesture 
typing methods: GlanceWriter and a dwell-free typing method in 
Communicator 5. We also did counterbalancing on the orders to 
reduce the learning efect. We randomly selected 20 phrases from 
a subset of the MacKenzie and Soukoref phrase set [31, 52]. The 
same set of phrases was used across two conditions and users. 
There were 4 sessions in each condition (Communicator 5 and 
GlanceWriter). Each session contained 5 phrases. Participants were 
encouraged to type as fast and accurately as they could. Diferent 
from Experiment I, if they felt it was difcult to correct errors, 
they could skip error correction for both conditions. We provided a 
diferent input instruction from Experiment I because the frst-level 
interface in Communicator 5 supported sentence deletion only, 
which made word-level error correction very difcult. To perform 
a single word-level deletion, a user needs to navigate to the second-
level UI of Communicator 5, which includes 1) selecting the “Abc” 
button (Figure 6), 2) picking the word to be deleted, 3) typing the 
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(a) (b) (c) 

Figure 3: (a) A participant is entering a phrase with GlanceWriter. (b) A screenshot of the GlanceWriter interface. (c) A screenshot 
of the EyeSwipe interface, which is identical to the interface for GlanceWriter. The user is confrming the input word "good" 
with “reverse crossing”. 

Figure 4: The Mean (95% �� ) input speed (WPM) by input 
method 

Figure 5: Medians of subjective ratings. For measures 1 and 
2 regarding demand, a lower rating is better. For measures 
3-5, a higher rating is better. GlanceWriter received more 
favorable ratings in all categories. 

word again and correcting it if necessary, and 4) returning to the 
main interface. Each of these steps takes at least one dwell action, 
which would be slow and error-prone, increasing the cognitive load 

and causing eye fatigue. Therefore, we allowed the participants 
to skip error correction if they wanted to in order to reduce the 
negative impact of the cumbersome error correction experience 
of Communicator 5. We did not want the error-correct interface 
design to become the dominant factor determining the text entry 
performance. 

5.2.1 Tobbi Communicator 5. The Tobii Communicator 5 keyboard 
supports both word-level and phrase-level input (as described in 
its manual): a user could enter a word or phrase with a continuous 
gaze path on the keyboard. We compared GlanceWriter with The 
Tobii Communicator 5 for the word-level text input only because 
GlanceWriter was designed as a word-level input method. The 
word-level input is also the most common text entry method as it 
provides confrmation for each word after it is entered. 

The interface of Communicator 5 keyboard is shown in Figure 6b 
and Figure 6c. The interface includes four areas (from top to bottom): 
Suggestion area, Text feld, Keyboard area and Function Area. In the 
Suggestion area, three candidate buttons were shown after every 
word input. In Text feld, there are two buttons to the right of the 
text feld: the button with “Abc” written on it provides alternative 
candidates and the button with a “speaker” icon provides a speaker. 
In the Function area at the bottom, fve buttons are listed (from left 
to right) as 1) Exit keyboard, 2) Switch keyboard, 3) Symbols, 4) 
Clear All, and 5) Clear the last sentence. The space key in the middle 
of the utility bar is part of the keyboard. When a user intends to 
select a target via gaze, a loading icon in red will show up at the 
center of the target, and it takes one dwell time at the icon to select 
the target. There are two diferent modes in which Communicator 
5 keyboard prevents unnecessary controls during typing. When 
a user enters the typing mode, as shown in Figure 6b, only the 
Keyboard area will be highlighted while the other areas are disabled. 
On the contrary, the suggestion, text feld and utility areas will be 
highlighted when a user exits typing mode and enters the edit mode 
as shown in Figure 6c. 

In Communicator 5 keyboard, the switch of typing mode and 
edit mode is done by dwelling at corresponding regions. When a 



GlanceWriter: Writing Text by Glancing Over Leters with Gaze CHI ’23, April 23–28, 2023, Hamburg, Germany 

(a) (b) (c) 

Figure 6: (a) A participant is entering a phrase with Communicator 5. (b) A screenshot of the Communicator 5’s keyboard 
interface. The keyboard is activated after the gaze position enters the keyboard. (c) A screenshot of the Communicator 5’s text 
feld interface. The keyboard is deactivated after the gaze position exits the keyboard. 

user wants to type, she looks at the keyboard region to start typing. 
The key on which her eye gaze hovers is highlighted in blue as 
visual feedback during typing. The user needs to look at the text 
region (including suggestion area, text feld and function area) to 
exit after she fnishes typing. If she wants to cancel a gaze path, 
she can re-enter the typing mode to input the intended word. In 
edit mode, the top candidate word appears in the text region while 
the following three candidates appear in the suggestion region. 
The dwell time of mode switching and candidate selection is set to 
600ms. 

In the Communicator 5 condition, we adopted the default in-
terface and settings of Communicator 5 as shown in Figure 6b 
and Figure 6c. Because the Communicator 5 keyboard was a built-
in keyboard that could not be used to enter text in other applications, 
we presented the phrases and recorded the duration on a separate 
computer (Figure 6a). To keep the condition identical, we hid the 
target phrases in the GlanceWriter interface and displayed them 
on the same separate computer as in Communicator 5. The input 
interface of GlanceWriter (without target phrase) was the same as 
designed in Experiment I. 

5.2.2 Procedure. To begin with, participants were demonstrated 
how the Tobii eye-tracking system works, how to do calibration and 
how to type using the Communicator 5 and GlanceWriter dwell-
free keyboard. The participants performed calibration before the 
experiment. Before starting the formal session, each participant 
completed a 10-minute warm-up session of 10 sentences which was 
diferent from the formal testing. We used a MacBook Pro to display 
the text to be transcribed. As shown in Figure 6a, the MacBook 
Pro was placed behind the Tobii device, where the user could look 
at the text without changing her position. There was a text and a 
“next” button on the monitor. The font size of the text was 80pt. The 
text color was set as white, while the background color was gray. 

A participant clicked the “next” button when she fnished the 
phrase. The elapsed time was the duration for entering the phrase. 
The experimenter also manually copied every phrase a user entered 
after the experiment as it cannot be stored in a computer. The input 
speed was calculated according to the length of transcribed text 
and the elapsed time collected by the timer. The error rate was 

calculated according to the word edit distance from the display and 
transcribed texts. 

At the end of the study, the participants also completed a ques-
tionnaire to report their subjective rating about mental demand, 
physical demand, comfort, learnability, and overall satisfaction with 
each typing method. 

In total, the study included: 12 participants × 2 methods × 20 
phrases = 480 trials. 

5.3 Results 
Figure 7 shows the average input speed in Communicator 5 and 
GlanceWriter conditions. The means (SD) was 7.41(�� = 1.32)
for Communicator 5 and 9.54(�� = 2.10) for GlanceWriter. A 
dependent t-test showed the diference was signifcant (�11 = 
3.64, � = 0.003). For word error rate, the means (SD) were 
16.32%(�� = 7.55%) for Communicator 5 and 12.89%(�� = 9.49)
for GlanceWriter. A dependent t-test showed the diference was 
not signifcant (�11 = −0.89, � = 0.31). 

Figure 7: The Mean (95% �� ) input speed (WPM) by input 
method 

The typing speed of GlanceWriter was close to that in Exper-
iment I, but the error rate of GlanceWriter in Experiment II was 
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higher than the error rate of GlanceWriter in Experiment I. There 
are two reasons. First, the eye-tracking devices were diferent. In 
experiment I, we used a Tobii Dynavox I-12+ (12.1-inch screen with 
Tobii IS4 eye tracker module), while in experiment II we used a 
Tobii Dynavox I-13+ (13.3-inch with Tobii IS5 eye tracker module). 
The diferences in eye-tracking devices could lead to diferent input 
performances. Second, participants were allowed to have some un-
corrected errors in Experiment II, to reduce the negative impact of 
the cumbersome error correction experience in Communicator 5 as 
explained in Section 5.2 Design and Procedure. More specifcally, al-
though participants were instructed to input as fast and accurately 
as they could, they were allowed to skip error correction if they 
felt it was difcult to do so. This instruction was diferent from 
the instruction in Experiment I, where participants were instructed 
to input "as fast and accurately as they could". The diference in 
instruction could result in a higher error rate of GlanceWriter in 
Experiment II. 

Same as Experiment I, participants were asked to provide sub-
jective ratings on mental demand, physical demand, comfort and 
learnability. Participants also rated their overall preference for 
each method. As shown in Figure 8, participants were in favor 
of GlanceWriter across all questions. A Wilcoxon Signed-Ranks 
Test indicated that the overall preference of GlanceWriter Keyboard 
was signifcantly higher than that of Communicator 5 (Z = 1.86, p 
= 0.03). 

Figure 8: Medians of subjective ratings. For measures 1 and 
2, a lower rating is better. For measures 3-5, a higher rating 
is better. GlanceWriter received more favorable ratings in all 
categories. 

6 GENERAL DISCUSSION AND FUTURE 
WORK 

The two user studies showed that GlanceWriter is a promising gaze-
based text entry method. It outperformed EyeSwipe and the built-in 
keyboard of Communicator 5 in speed, error rate reduction and 
subjective ratings. 

6.1 Input Speed 
GlanceWriter has a higher speed than EyeSwipe because it uses a 
probabilistic decoder and does not require signaling the starting 
and ending positions of a gaze path. Our analysis of the study data 
in Experiment I showed that the mean (SD) duration of “reverse 
crossing” were 1.33 ± 0.17 (second) for the starting letter and 1.44 ± 
0.19 (second) for the ending letter, which contributed to the slow 

speed of EyeSwipe. 11 out of 14 participants commented "To start 
entering and confrm a word was hard with EyeSwipe " (because of 
“reverse crossing”) or similar answers to the open-ended question 
"What’s the most difcult part in EyeSwipe?". In contrast, very few 
participants commented on the most difcult part of GlanceWriter. 
The average speed of EyeSwipe in our study was slower than the 
value reported in the previous work about EyeSwipe [26]. It was 
probably because in our study, each user spent only 20 minutes 
typing on EyeSwipe, while in the previous work, a user spent 4 
sessions (10 minutes each) over two days. Additionally, diferent 
users were recruited in diferent studies. They may have diferent 
expertise in gaze input, text input, and diferent ages, which may 
contribute to the discrepancy in input speed between our study 
and the study reported in the previous work [25]. 

GlanceWriter is faster than the built-in keyboard in Communica-

tor 5, which also uses a dwell-free text entry method. Two factors 
may contribute to the slower speed of Communicator 5. First, Com-

municator 5 took around 600 ms (default setting) to activate or 
deactivate the keyboard as the gaze enters or exits the keyboard 
area. These activation and deactivation processes slow users down 
on Communicator 5. One participant answered, “It took too much 
time to select text and keyboard” to the most difcult part of the 
open-end question. In contrast, on GlanceWriter, a user activated 
(or deactivated) the keyboard by entering (or exiting the keyboard) 
with gaze position. Second, it was difcult to correct word-level er-
rors in Communicator 5. The frst-level UI of Communicator 5 only 
supports deleting the entire sentence, not deleting a word within a 
sentence, as previously explained. We also examined the trials in 
which no correction occurred. The input speed was 10.21 WPM for 
GlanceWriter and 7.84 WPM for Communicator 5. GlanceWriter 
was still faster than Communicator 5 for trials where no correction 
occurred, indicating that the decoding algorithm also contributed 
to the superior performance of GlanceWriter. 

6.2 Decoding Accuracy 
The study results showed that the newly proposed decoding algo-
rithm has higher decoding accuracy than the DTW-based algorithm 
in EyeSwipe: the error rate of GlanceWriter was lower than both 
EyeSwipe and Communicator 5. We calculated the total number of 
error correction actions performed by participants in each condi-
tion. Such error-correction actions were regarded as backspace or 
undo. In Experiment I, the number of total corrections was 277 (0.99 
per trial) for EyeSwipe and 69 (0.25 per trial) for GlanceWriter. With 
a smaller number of error correction actions in GlanceWriter, it still 
had a lower error rate than EyeSwipe, indicating that GlanceWriter 
had higher decoding accuracy in EyeSwipe. 

Experiment II showed that the overall error rate of GlanceWriter 
was lower than that of Communicator 5. It may be partially due to 
the smaller number of error correction actions in Communicator 
5. The number of error correction actions was 13 (0.05 per trial) 
for Communicator 5 and 41 (0.17 per trial) for GlanceWriter in 
Experiment II. Users made a smaller number of error corrections in 
Communicator 5 mainly because its top-level interface supported 
sentence-level deletion only and it was difcult to correct word-
level errors in Communicator 5, as previously described. We could 
not draw a defnite conclusion about which algorithm was more 
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accurate because GlanceWriter had a lower error rate but it also 
had a higher number of error correction actions. 

6.3 Subjective Ratings 
The subjective ratings were also in favor of GlanceWriter over 
EyeSwipe and Communicator 5. GlanceWriter had less mental and 
physical demands, was more comfortable to use, and had higher 
learnability than both EyeSwipe and Communicator 5 (Figures 5 
and 8). Users commented that it took extra time to activate and 
deactivate the keyboard on Communicator 5, and the inconvenience 
of correcting word-level errors made Communicator 5 hard to use 
and learn. Especially they commented that not including word-
level error correction on the frst-level UI made the error correction 
difcult to perform. Participants also commented that it required 
eforts to perform “reversal crossing” actions in EyeSwipe, which 
resulted in more mental and physical demands. In contrast, they 
felt GlanceWriter was easy to use and learn. Eliminating the need 
to specify starting and ending letters makes the input experience 
smooth. They could start entering a word by simply moving the gaze 
point into the keyboard and end the entering process by moving 
the gaze point away from the keyboard. 

Gaze input in general requires high mental and physical de-
mands. As shown in Figure 8, the medians of mental and physical 
demands for both GlanceWriter and GlanceWriter were all equal to 
or above 5 on a 1- 10 scale. The gaze position was difcult to control, 
partially due to the limitation of the gaze tracking device and the 
unintentional gaze movement during the interaction. Practicing 
gaze input requires high mental and physical demands, which was 
also the reason we provided sufcient practice time for each method 
before evaluation. Designers and researchers who would deploy 
gaze input methods in the real world should keep in mind that 
gaze input could increase mental and physical demands during the 
interaction. 

6.4 Handling Instability of Gaze Input 
One advantage of the decoding algorithm of GlanceWriter is that 
it uses a probabilistic approach for decoding: it uses probability 
to quantify the uncertainty of entering a letter. For example, if 
a letter is entered with stable gaze input, it should have a high 
stability score (Equation 2) which in turn increases its key score, 
indicating that the corresponding letter has a high probability of 
being included. If the gaze input is unstable (e.g., the gaze focus is 
jumping around), the stability and key scores will be low. 

We also designed the gaze path canceling method in 
GlanceWriter to accommodate the potential instability of gaze in-
put. To cancel a path in GlanceWriter, a user simply moves her gaze 
outside the keyboard. This approach is in contrast to the canceling 
methods in EyeSwipe [26] and Communicator 5, which require 
dwelling or “reverse crossing” actions for canceling a gaze path. 
Dwelling requires a precise selection of a button and reverse cross-
ing requires drawing a specifc gesture with the gaze path, both of 
which are more susceptible to the instability of gaze input than sim-

ply moving the gaze outside the keyboard region (GlanceWriter). 

6.5 Future Work 
We discovered that the stability of gaze input depends on the area 
on the screen. Participants commented that it was easier to glance 
over keys in the center of the screen than over keys near the edges. 
This fnding is consistent with the fnding of previous work [12]. 
It suggests that in the future we may need to take the location-
depended accuracy into consideration in decoding. Additionally, 
we may consider using more powerful language models, such as 
GPT-3 [5], to boost the text entry performance as gaze input tends 
to be noisy. 

As with many other gestural decoding algorithms (e.g., [24]), the 
algorithm of GlanceWriter was designed to decode words within a 
dictionary only. Out-of-vocabulary words (OOV) need to be entered 
by other methods. For example, on a touchscreen gesture keyboard, 
such words are often entered by tap typing. For gaze-based input, a 
user could revert to dwell-based methods for entering OOV words. 
It is worth investigating how to handle OOV words for gaze input 
in future research. 

7 CONCLUSION 
We present GlanceWriter, a gaze-based hands-free text entry 
method that allows entering text by glancing over letters on a 
virtual keyboard. One major advantage of GlanceWriter over ex-
isting gaze-based input methods (e.g., [26]) is that GlanceWriter 
eliminates the need to dwell on letters, or perform “reverse crossing” 
to specify the starting and ending positions of a gaze path for a 
word. Instead, GlanceWriter adopts a novel decoding algorithm to 
probabilistically determine which letter is entered by examining the 
dynamics of gaze movements and gaze locations. Our controlled ex-
periment demonstrates that GlanceWriter achieves a 67% increase 
in typing speed over EyeSwipe with an error rate of only 2.71%. It 
also outperforms a commercially available gaze-based text entry 
method in Tobii Communicator 5, improving the typing speed by 
28.7% and reducing the error rate to 12.89%. Our study suggests 
that glancing over letters for text entry is both feasible and promis-

ing, and our contribution lies in the novel decoding algorithm that 
enables this method. 
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