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Figure 1: This figure shows how a user enters “move” via GlanceWriter. (a) The user moves eye-gaze position (the blue dot)
€.y €_

to the keyboard area from a place above the keyboard, glances over ‘m’, ‘0’, ‘v’ and ‘¢’, and moves the gaze position away
from the keyboard to signal the end of gaze gesture. No dwelling or “reverse crossing” [13] is required during the process. (b)
GlanceWriter decodes the gaze path and shows the results above the keyboard. The user then dwells on “move” with gaze to

confirm it.

ABSTRACT

Writing text with eye gaze only is an appealing hands-free text
Permission to make digital or hard copies of all or part of this work for personal or entry method. However, existing gaze-based text entry methods

classroom use is granted without fee provided that copies are not made or distributed introduce eye fatjgue and are slow in typing speed because they
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
and/or a fee. Request permissions from permissions@acm.org. ACM ISBN 978-1-4503-9421-5/23/04. .. $15.00

CHI ’23, April 23-28, 2023, Hamburg, Germany https://doi.org/10.1145/3544548.3581269

“Co-first authors ordered alphabetically.



https://doi.org/10.1145/3544548.3581269
mailto:permissions@acm.org
mailto:xiaojun@cs.stonybrook.edu
mailto:fusheng.wang@stonybrook.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581269&domain=pdf&date_stamp=2023-04-19

CHI 23, April 23-28, 2023, Hamburg, Germany

often require users to dwell on letters of a word, or mark the start-
ing and ending positions of a gaze path with extra operations for
entering a word. In this paper, we propose GlanceWriter, a text
entry method that allows users to enter text by glancing over keys
one by one without any need to dwell on any keys or specify the
starting and ending positions of a gaze path when typing a word.
To achieve so, GlanceWriter probabilistically determines the letters
to be typed based on the dynamics of gaze movements and gaze
locations. Our user studies demonstrate that GlanceWriter signifi-
cantly improves the text entry performance over EyeSwipe, a dwell-
free input method using “reverse crossing” to identify the starting
and ending keys. GlanceWriter also outperforms the dwell-free
gaze input method of Tobii’s Communicator 5, a commercial eye
gaze-based communication system. Overall, GlanceWriter achieves
dwell-free and crossing-free text entry by probabilistically decoding
gaze paths, offering a promising gaze-based text entry method.
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1 INTRODUCTION

Eye-gaze is an important modality for hands-free text entry in the
modern Post-PC computing era. It frees users from typing on a
physical keyboard, which is especially advantageous in scenarios
where physical keyboards are unavailable such as in virtual or
augmented reality environments [38]. Eye-gaze text entry is also
beneficial for individuals with motor disabilities who may not be
able to speak [19, 46]. A common gaze-based text entry method [21,
32, 35] is dwell-based: a user dwells on a letter for a certain period of
time (e.g., 600 ms [26]) to type it. However, frequent dwelling can be
time-consuming and cumbersome. A sizable amount of research has
been conducted to enable dwell-free text entry [14, 25, 26, 40]. One
promising approach is to use gesture typing (or ShapeWriting) [14,
24, 29], which allows a user to enter a word by glancing over keys
without deliberately dwelling on them. EyeSwipe [26] is one such
technique and is demonstrated to be effective.

One major challenge faced by gaze-based gesture typing is that it
is hard to determine the starting and ending positions of a gaze path.
While touch-based gesture typing can rely on the finger landing
on or leaving the screen to identify the starting and ending of the
gesture, gaze-based input does not have these distinct "landing on"
or "taking off" moments as the gaze trajectory is always active.
EyeSwipe addressed this challenge by “reverse crossing” [13]: the
user moves the gaze out of the starting or ending key to an icon
above the key and returns to the starting or ending key again to
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signal the starting or ending letter of a word. However, this method
can be time-consuming and requires extra effort. TAGSwipe [25]
addressed this challenge by using an extra input modality: the
user needs to use a hand to press on a touchscreen to signal the
starting or ending position of a gaze path. This method requires
hand movement and a touchscreen device which is not suited to
scenarios where gaze is the only available input modality.

In this paper, we present GlanceWriter, as shown in Figure 1,
a dwell-free and crossing-free text entry method, which allows
users to enter words by glancing over letters one by one, without
any “reverse crossing” or dwelling actions. GlanceWriter employs
a new decoding algorithm that probabilistically determines which
letter is entered by examining the dynamics of gaze movements
and gaze locations. It can also probabilistically determine which
keys correspond to the starting/ending letters, thus eliminating the
need for “reverse crossing” actions.

Our user studies show that GlanceWriter is feasible and easy to
learn for eye-gaze text input. It improves the text entry performance
over EyeSwipe, with a speed increase from 6.49 WPM to 10.89 WPM
and an error rate reduction from 6.85% to 2.71%. We also compared
GlanceWriter with a commercial gaze-based text entry method
of Communicator 5 in Tobii Dynavox I-12+ [10]. GlanceWriter
improves the word-level text entry speed from 7.41 WPM to 9.54
WPM and reduces the error rate from 16.32% to 12.89%.

2 RELATED WORK

Our research is related to eye gaze-based text entry techniques,
including dwell-based methods, dwell-free methods, gesture typing
techniques, and eye-gaze techniques.

2.1 Dwell-based Gaze Text Entry

Dwell-based gaze text entry is the most common method for gaze
typing: a user is required to look at a key that they would like to pick
and fixate on it for a certain duration to select [33, 43]. This duration,
also called dwell time, is the key factor that slows the text entry
process and induces eye fatigue. The typical dwell time is between
400 and 1000 ms. Even though we can use shorter dwell time to
increase typing speed, it also increases the risk of typing errors or
unwanted selections due to the Midas Touch problem [22]. Majaranta
et al. [32] conducted a longitudinal study to learn users’ gaze-based
typing using an adjustable dwell time. Isomoto et al. [21] presented
a dwell time reduction technique for gaze-based target acquisition
by adopting Fitts’ Law and achieved an average dwell time of 86.7
ms with a 10.0% Midas Touch rate. Mott et al. [35] presented a
cascading dwell gaze typing to dynamically adjusts the dwell time
of keys and conducted experiments with ALS patients to show that
this technique has the potential to improve gaze typing. In general,
language models such as word prediction can also accelerate the
dwell-based typing methods [9, 42].

2.2 Dwell-free Gaze Text Entry

To overcome the drawback of dwell-based gaze input, previous
research has explored using gesture typing [24, 29] to achieve dwell-
free gaze input. However, traditional touch-based gesture typing
methods cannot be directly used for gaze-based gesture typing.
A fundamental difference between them is that in touch-based
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gesture typing, the finger gesture has well-defined starting and
ending points (i.e. landing the finger on the screen to start a gesture
and lifting the finger up to end the gesture), while in gaze-based
gesture typing, it is not clear when is the start and end of the
gesture. EyeSwipe, a dwell-free gaze typing method proposed by
Kurauchi et al. [26], requires a user to do a “reverse crossing” [13]
to mark the starting and ending of the gesture input. The built-in
keyboard in Communicator 5 of Tobii Dynavox devices [10] also
supports dwell-free gaze text entry. However, there is no public
document explaining how to achieve it. It is a “black box” to users
and outside developers. Nevertheless, we compared GlanceWriter
with this keyboard in our second user study (Section 5). Some
works also introduce other modalities to help with faster typing.
TAGSwipe [25], a touch-assisted gaze swipe method for text entry,
uses touch to confirm the starting and ending positions of a gaze
path. HGaze typing [14], proposed by Feng et al., combines the
simplicity of head movement with the gaze-based gesture input
where a user could nod or shake her head for common commands
such as deletion and revision, to provide efficient and comfortable
dwell-free text entry.

There are also other solutions for dwell-free gaze-based text en-
try. For example, Sarcar et al. proposed EyeK [40], a gaze-based text
entry system which types a key by moving the gaze position inside,
outside and inside the key. Huckauf et al. proposed pEYEWrite [18],
an expandable pie menu with letter groups. TAGSwipe [25] uses
a touch press/release on an extra touch surface to signal the start-
ing/ending positions of a gaze path and decodes the gaze path using
a Dynamic Time Warping algorithm.

Dasher [47], a gaze-based zooming interface designed by Tuisku
et al., also showed a higher text entry rate compared to a dwell-
based keyboard [39]. Pedrosa et al. proposed Filteryedping [37],
a dwell-free technique that can filter out unintentionally selected
letters from users’ input based on string matching. Kurauchi et
al. proposed Swipe&Switch [27], a text-entry interface that allows
users to swipe and switch on different keyboard areas to improve
gaze-based interaction with a better user experience. Swipe&Switch
removes “reverse crossing”; however, it still requires a clear defi-
nition of the starting and ending letter positions by gaze fixation:
“either the first fixation or any other fixation longer than a hidden
dwell-time (set to 700ms during our experiment).” [27] In contrast,
GlanceWriter does not require any sort of fixation for entering
letters because any letters near the gaze trajectory are considered
and assigned probabilities.

Although many previous works achieved dwell-free gaze in-
put, they either require marking the starting and ending posi-
tions of a gaze path such as “reverse crossing” [26], touching [25],
fixation [27], or require deterministically looking at all the letters
that compose the word to be typed [37]. GlanceWriter eliminates
the need for these actions and achieves dwell-free and crossing-free
input by probabilistically decoding the gaze path.

In addition to eliminating the need to specify the starting and
ending positions of a gaze gesture, the probabilistic decoding algo-
rithm of GlanceWriter is another differentiator against other dwell-
free gaze input methods (e.g., Filteryedping [37]). GlanceWriter
represents the probabilities of entering letters with key scores and
calculates them by examining the dynamic of gaze trajectories
such as gaze motion stability and distance to keys. In contrast,
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Filteryedping [37] does not introduce probability and decodes a
gaze gesture based on filtering. It determines letters by examining
which keys the user looks at and matches the letter sequence with
words in the dictionary. By introducing the probability in decoding,
GlanceWriter can quantify the uncertainty of entering a word prior
to involving the word frequency, which is a principled approach of
handling noises in text entry.

2.3 Gesture Typing

Gesture typing is a text entry technique that has been widely used
on touchscreen mobile devices [6, 24, 29, 54-56], and it is also
known as word-gesture typing or shape writing. Users may draw a
path that passes the letters of a word one by one to input it, instead
of typing on each individual key, thus improving the input speed.
The idea of writing words as shapes was introduced in Shorthand
Aided Rapid Keyboarding (SHARK2) [24, 54]. It uses shape and
location channels to measure the distance between gestures made
by the user on a virtual keyboard to words in a lexicon, then to
determine the input word.

There have been many works that aim at improving gesture
input. For example, Alsharif et al. proposed to use Long Short Term
Memory (LSTM) neural network for gesture decoding [1]. Bi et al.
proposed a bi-manual gesture keyboard extending the gesture input
from one finger to multiple fingers [3]. Yu et al. proposed to improve
gesture typing by incorporating head movement information [53].
On the other hand, there are works that extend gesture typing to
other devices or modalities. For example, tilt-based gesture typ-
ing [51], where the user draws a gesture by tilting the device, and
others like mid-air gesture input [34], back of device gesture in-
put [7], gesture input on a watch [15] and on a ring [16]. There
are also some works investigated on gesture typing without visual
feedback [4, 59]. The present work further extends this paradigm
to gaze input.

2.4 Tracking Eye Gaze

Eye-gaze tracking measures eye movement relative to the head
or point of gaze, and it enables gaze-based interactions. The gaze-
tracking technology is becoming increasingly available and there
are a bunch of gaze trackers for us to choose from. For example,
there are readily commercial products like trackers from Tobii !,
SMI REDn 2, Eyelink 1000 plus 3 etc., and they are widely used
in eye-gaze related research works [11, 20, 25, 41, 44, 45]. These
gaze trackers are peripheral devices to a computer, and usually
have good gaze tracking quality, i.e. the accuracy is less than 2°.
However, one major disadvantage of them is that they usually cost
from several thousand dollars up to more than ten thousand dollars.

To make gaze-tracking more pervasive, researchers have been
devoted to enabling gaze-tracking on daily devices by using the
embedded camera. For example, Wood et al. developed EyeTab [50],
which uses the front-facing RGB camera of a tablet for gaze tracking.
Huang et al. proposed an in-situ gaze tracking method on smart-
phones based on the glint of the screen on the user’s cornea [17].

Lhttps://gaming.tobii.com/product/eye-tracker-5/, https://www.tobiipro.com/, https:
//www.tobiidynavox.com/

Zhttps://imotions.com/hardware/smi-redn-scientific/
3https://www.sr-research.com/eyelink- 1000-plus/
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Papoutsaki et al. proposed WebGazer [36], a JavaScript library that
uses webcams to enable gaze tracking for web browsers. Li et al.
used the ARKit to enable gaze-tracking on an iPad with TrueDepth
camera [28]. Many works use Deep Learning techniques to support
gaze-tracking [23, 49, 57]. Even though embedded camera-based
gaze tracking has been investigated for years, the state-of-the-art
tracking quality is still lower than those commercial products, be-
cause the tracking quality is limited by the camera. In this paper,
we used the Tobii Dynavox as our gaze tracker for its high tracking
accuracy.

3 GLANCEWRITER DECODING ALGORITHM

A core component of GlanceWriter is the decoder, which prob-
abilistically maps a gaze path to a word in the dictionary. The
starting/ending moment of a gaze path is defined by the moment
the gaze path enters/exits the soft keyboard. In our implementation,
the gaze path was sampled at 100 Hz. In other words, it consisted
of a sequence of gaze points sampled at every 0.01 second. Figure 1
shows how GlanceWriter works for typing the word “move”.

The challenge of dwell-free and crossing-free gaze input is that it
is hard to determine the starting (or ending) position on a gaze path
for entering the first (or last) letter of a word. A gaze path is defined
by the movements of the gaze entering and exiting the keyboard
area. The starting position for entering the first letter (or the ending
position for entering the last letter) could be any position on the
defined gaze path. Therefore, the traditional gesture typing decoder
such as SHARK? [24] is unsuitable because it requires knowledge
of the positions along the gesture corresponding to the starting and
ending letters of a word. We have created a new decoder to address
this challenge. It probabilistically determines which letter is typed
based on gaze dynamics, including the starting and ending letters.
The gaze dynamics are the characteristics of the motion of the gaze
point, such as the speed of gaze points and the distances between
a gaze point and key centers around it. In this section, we explain
how the decoding algorithm works.

3.1 Data Structure

To map a gaze path to a word, it is important to represent and store
words in the decoder properly. We implemented a trie structure [48]
(prefix tree) to store all the words in the lexicon as shown in Fig-
ure 2a. The root is associated with an empty character. Each of the
other nodes is associated with a character. Each node consists of
at most 26 children, corresponding to 26 letters in English. All the
children of a node have a common prefix. The prefix is the charac-
ters from their parent to the root in a reversal order. If a node is the
last letter of a word, we store the word in that node. If the word
contains consecutive identical letters, these letters are merged into
the same node. For example, in Figure 2a, “more” and “moore” both
can be found in node ‘e’ following ‘m’, ‘0’, ‘r’ since “00” is merged
at node ‘0’. To optimize the calculation, for each node, we also store
the key score (explained later) and the sum of scores from current
nodes backward to root.

3.2 State of Node (Key)

In the trie, each node has two states RELEASE and HOLD. RELEASE
means the gazing point has never reached the node. HOLD means
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the node has been visited by a gaze path. Thus, the initial state
of a node is set as RELEASE. As the red dot showed in Figure 2b,
when the gaze path moves into a key i, the decoder first finds the
words which start with i and marks the corresponding starting
node as HOLD. It also sets the score k; of the key i to the node.
In the meantime, the decoder also checks all the HOLD nodes. If
their next nodes are identical to the key i and marked as RELEASE,
the decoder marks them as HOLD. Same as the initial nodes, the
decoder also sets k; to these nodes. When the gaze path is moving
inside the key, as the blue dot showed in Figure 2b, the decoder
updates the key’s score of all the HOLD nodes identical to the key.
A key’s score is updated only when it is greater than the previous
value.

When the gazing path reaches the last letter (node) of a word
w, the decoder sets the word as an output candidate. The score
of the word S,, is the sum of its key scores of all its nodes, as
shown in Figure 2a. After the gazing point moves out of the key
of a candidate’s last node, the decoder keeps the word in the input
candidates for a certain duration T; after that the word is removed
from the candidates.

When the gazing point moves out of the upper bound of the key-
board, the decoding process stops. The decoder sorts the candidates
by their scores in descending order and shows the top 5 candidates
as the input suggestions. In the above example, the word "move"

has the highest score, followed by words "more", "mode" and so on.

3.3 Key Score

The key score of a key i (denoted by K (i)) represents the possibility
of a key being the key a user wants to type. It is determined by two
properties of gaze points on a gaze path: 1) the distance between
the point and the key center (distance score), and 2) the gazing
stability (stability score). Our calculation was based on the intuition
that when the user intends to input a letter of a word, the gazing
point on that letter is close to its key center and stays still in the
boundary of a key.

1. Distance score D(i, p). We assume that the distance (pixel)

from a gaze point p to the center of the key i follows a Gaussian
distribution. It means that if the Euclidean distance of a gazing
point p to a key center is d, the probability of the key being the
target of the point can be calculated using Gaussian probability
density function:
1 e
oV2r '
where 1 is 0. We empirically set o as 0.4. For a given key, we used
the gaze point that was closest to the key center to calculate the
distance score. We used a Gaussian distribution because such a
distribution ensures that a gaze point near the key center will result
in a high distance score while the distance score will decrease
rapidly as the gaze point moves away from the key center. Previous
research [28] has shown that a Gaussian distribution works well
for describing the probability of selecting a target based on gaze
points. We followed the previous work [28] to adopt a Gaussian
function here.

2. Gaze stability score G(i, p). It measures to what degree a gaze
point p stays still inside a key i. We first calculated the average speed
of gaze point in a L-size (L = 30 pixels, determined empirically)

D(i,p) = o
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v Status: RELEASE > HOLD
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Figure 2: An example of typing the word “move”. (a) The data structure (trie) of GlanceWriter. The Key score of a key i is
denoted by K(i), while the score of a word, denoted by S(word), is the summation of its key scores from root to itself. (b) States
and candidates change with eye-gaze points. The gaze points are moving from key ‘K’ to ‘O’, marking the key ‘O’ as HOLD. The
score is reflected by the color intensity for illustration purposes.

window right before p, which is the average over instant speeds of
gaze points within the L-size window. We then used the reciprocal
of this average speed as the stability score. We chose a L-size moving
window to make sure that moving gaze points were sampled for
calculating the stability score. It avoids the scenario in which all
the sampled gaze points were stationary, which could result in a
very high value for the reciprocal of the average speed.

The key score k(i, p) for a given gaze point p at key i is the
product of distance score and stability score:

k(i,p) = D(i,p) - G(i, p), @

The key score K (i) for a given key i is the maximum of k(i, p)
over all the gaze points within the boundary of the key i:

K(i) = max k(i, p), &)
peEP

where P includes all gaze points within the boundaries of key i. The
max function is implemented to keep the highest score a key can
get for a given gaze path.

3.4 Word Score

The word score S(w) represents how likely a user intends to input
a word w with a given gaze path. It is the summation of key scores
for corresponding letters:

S(w) = Y K(i), @

ieM

where M includes all nodes (letters) in the trie for the word w (e.g.,
Figure 2).

3.5 Combining Word Score with Language
Model

The basic principle of word-gesture decoding [24, 55] is to combine
the probability of a candidate word estimated from the gazing points
(ak.a. spatial probability ¢(w)) and from the language context (a.k.a.
language probability I(w)) to obtain the overall probability of a
word w being the intended input given an input gesture:
[(w)e(w)
Ziew 1(De(@)’
where W is a lexicon containing i words. We follow the same prin-
ciple (Equation 5) for decoding.
More specifically, GlanceWriter approximates the spatial proba-
bility ¢(w) with word score S(w):

®)

Score(w) =

S(w)
Zkec S(k)’
where C includes top t (t = 10) words with highest word scores. For
language probability [(w), we use a bi-gram language model (size: 7
million bi-grams) which is trained over the Corpus of Contemporary
American English (COCA) [8] (2012 to 2017). The Corpus contains
over 5 million sentences. After obtaining c(w) and I(w), the decoder
calculates Score(w) according to Equation 5, and outputs the top
N word according to Score(w). The decoding process ends here.
Only words in the corpus will be considered. Algorithm 1 uses
pseudocode to explain how the decoder calculates key score, word
score, and combines them with a language model to decode a gaze
path into a word.

This decoding algorithm in general should work for a virtual
keyboard at any scale and with gaze trackers of different accuracy.
That said, the parameters such as the size of L-size window and
the standard deviation of the Gaussian distribution in Equation 1

(6)

c(w) =
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should be empirically determined to suit keyboards at particular
scales and for the specific eye tracker. We determined the values
for keyboard size and eye tracker used in Experiment L.

Algorithm 1 GlanceWriter Decoding Algorithm

1: procedure GET DECODING RESULT

2 RN : children of root node

3 HN : list of trie nodes in HOLD state

4 WC : list of word candidates with scores

5 T : time limit to hold a word in WC

6: input:

7 i « key where current eye-gaze point hovering on

8 ki < key score where current eye-gaze point hovering on
9: process:

10: Trim HN, keep top 50 nodes sorted by their sum of key

1t: scores to the root

12: for each N € RN do »> Scan the first letter of each word

13: if i is the letter of Ng and HN doesn’t contain Ng then
14: add Ng to HN

15: for each Ny € HN do > Scan each node in HOLD list
16: kp < key score of Ny

17: Sy, < sum of the key scores from Ny to its root

18: if i equals the letter of Ny then

19: if k; > kj, then > Update scores of a current node
20: Shzsh_kh"'ki

21: kp = ki

22: NC « children of Ny

23: for each N¢o € NC do > Scan next letters
24: ke < key score of N¢

25: S¢ « sum of the key scores from N to its root

26: if i equals the letter of N¢ then

27: kc = ki, Se = ki + Sh

28: add N¢ to HN » add a child node to HOLD list
29: Remove the words which are stored in WC more than T
30: if Ny is the last letter of words then

31: Wy, « list of words in Ny

32: for each w e W), do

33: if wnot in WC then

34: add wand its sum score to WC

35: output:

36: Sort the WC by the sum score of each word and output top
37: five word in WC

4 EXPERIMENTI

We first conducted a controlled experiment to compare
GlanceWriter with EyeSwipe [26] in a text entry task, as
one of our main goals was to eliminate the “reverse crossing” [13].
We aimed to understand whether the use of probabilistic decoding
of gaze path would improve the text entry performance.

4.1 Participants and Apparatus

Fourteen users without disabilities (3 females) between 24 and
32 years old (average 27.36+2.46) participated in this study. All
of them were familiar with the QWERTY keyboard layout. Their
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median familiarity with gesture typing was 4 (1: have never used
gesture typing; 5: frequently use gesture typing). All participants
had normal or correct-to-normal vision; 10 of them wore glasses
and they could choose whether or not to wear glasses during the
experiment. A Tobii Dynavox I-12+ (12.1-inch screen, Aspect ratio:
4:3, 1024X768 pixels resolution, Intel Celeron Qual Core Processor
J1900, 4GB DDR3 RAM, 256GB SSD, Tobii IS4 eye tracking module)
running Windows 10 was used in the experiment.

4.2 Design and Procedure

Experiment I was a text transcription task. We compared
GlanceWriter with EyeSwipe [26], a dwell-free method. The typing
interface of experiment is shown in Figure 3. We implemented the
GlanceWriter decoder following the description in Section 3, and
designed a keyboard interface as shown in Figure 3(b). The eye-
gaze position was displayed as a blue point. As visual feedback, we
highlighted the key when the gaze point is hovering on it. After
drawing the gesture via gaze, a suggestion bar of 5 candidate words
shows up below the text field. The user then confirms the intended
word by focusing on the right candidate. A shrink-down animation
served as the visual feedback helping the user to confirm the selec-
tion. The user needs to delete and re-enter a word if errors occur.
Re-input was not counted as an error but was reflected in the total
time cost. To delete the last word on the input field, the user needs
to focus on the “<-” (backspace) button same as selecting a word.
If the user needs to cancel a gaze path, she can move the gazing
point out of the upper bound of the keyboard and starts to input the
word once again. We also implemented EyeSwipe following the de-
scription in the previous work [26]. Selections of candidate words,
enter, and backspace are performed by focusing on the highlighted
key with shrink-down animation in GlanceWriter and by “reverse
crossing”, as described in EyeSwipe [26]. Both GlanceWriter and
EyeSwipe used the same interface, and the same language model
with 10K unique words as described in Section 3.5. The dwell time
for word selection is set to 600ms in GlanceWriter.

EyeSwipe and GlanceWriter used different decoders. We re-
implemented EyeSwipe following the description in the original
paper [26], using a DTW-based decoding algorithm. In contrast,
GlanceWriter used the probabilistic decoding algorithm described
in Section 3. We used different decoders because our main purpose
was to investigate whether the newly proposed decoding algorithm
would outperform the existing dwell-free DTW-based input method.
It was also necessary to use different decoders because the origi-
nal DTW-based decoder [26] did not work for GlanceWriter. The
DTW-based decoder requires knowledge on the starting and ending
letters that are unavailable in GlanceWriter.

We adopted a within-subject design. Participants were asked to
input the same set of phrases above the text field using two different
gesture typing methods: EyeSwipe and GlanceWriter. To reduce the
learning effect, we counter-balanced the order by dividing partici-
pants into two groups: half of the participants used EyeSwipe first
while the other half used GlanceWriter first. We randomly selected
20 phrases from a subset of the MacKenzie and Soukoreff phrase
set [31, 52]. The same set of phrases was used across two conditions
and users. There were 4 sessions in each condition (EyeSwipe and
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GlanceWriter). Each session contained 5 phrases. Participants were
encouraged to type as fast and accurately as they could.

To begin with, participants were demonstrated how the Tobii eye
tracking systems work, how to do calibration and use their eye gaze
to navigate the program. The participants performed calibration
before each session. Before starting the formal sessions of each
method, participants completed a 10-minute warm-up session to
familiarize themselves with each method. The phrases in the warm-
up session were different from those in the formal test. Due to the
participants’ familiarity with eye gaze input and QWERTY layout,
they were able to obtain eye-gaze text entry skills during the warm-
up session. In the formal test, participants were allowed to take a
break between sessions. Re-calibration was allowed during breaks.
Each participant was able to complete the whole study within 40
minutes.

At the end of the study, the participants completed a question-
naire to report their subjective ratings and answered an open-ended
question, "What’s the most difficult part of the method you’ve just
tried?" The subjective ratings were about mental demand, physi-
cal demand, comfort, learnability, scaled from 1 to 10, and overall
preference of each typing method, scaled from 1 to 5.

In total, the study included: 14 participants X 2 methods x 20
phrases = 560 trials.

4.3 Results

Input Speed. This metric indicates how fast a user could input text
with each method. It was measured by word per minute (WPM).
We followed the calculation proposed in the previous work [30]:
[S—-1] 1
T %® @
where S is the length of the transcribed text in characters with
space, and T is the elapsed time in minutes from start of the input
to finishing the last word in the phrase. Figure 4 shows the average
input speed in EyeSwipe and GlanceWriter conditions. The means
(SD) were 6.49(SD = 1.69) for EyeSwipe and 10.89(SD = 2.62)
for GlanceWriter. A dependent t-test showed the difference was
significant (t13 = 8.79, p < 0.001).

Word Error Rate. In both two conditions, the input was on the
word level. The error rate was measured using word error rate [2,
58]:

WPM =

_ D(E,T)
IT|
where D(E, T) is the word edit distance between the transcribed
phrase E and the target phrase T, and |T| is the number of words in
T. The word edit distance is the minimum number of basic word-
level operations needed to transform the transcribed phrase into
the target phrase. These basic operations are insertion, replacement,
and deletion. The means (SD) were 6.85%(SD = 5.49%) for Eye-
Swipe and 2.71%(SD = 3.22) for GlanceWriter. A dependent t-test
showed the difference was significant (¢13 = —2.69, p = 0.02).
Subjective Rating. Participants were asked to provide a numerical
rating on mental demand, physical demand (1: least demanding,
10: most demanding), comfort (1: very uncomfortable, 10: very
comfortable) and learnability (1: very difficult to learn, 10: very
easy to learn). Mental demand describes how much mental effort
is required. Physical demand describes how much physical effort

X 100%, (8)
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is required. We also let participants rate each method by their
overall preference (1: very dislike, 5: very like). As shown in fig. 5,
participants were in favor of GlanceWriter across all questions. A
Wilcoxon Signed-Ranks Test indicated that the overall preference
of GlanceWriter Keyboard was significantly higher than that of
EyeSwipe (Z = 3.18, p = 0.001).

5 EXPERIMENT II

We conducted Experiment II to compare GlanceWriter with the
built-in keyboard in Tobii Communicator 5 [10], which is also a
dwell-free gaze text entry method. In this experiment, we aimed to
understand the performance of GlanceWriter in comparison with a
commercially available product, which represents the status quo
of gaze-based input technology. As there is no publicly released
document explaining how Communicator 5 decodes gaze paths, we
could not reproduce its decoder. We therefore tested it as a “black
box” as explained later.

5.1 Participants and Apparatus

Twelve users without disabilities (3 females) between 23 and 33
(average 26.92+2.96) participated in this study. All of them were
familiar with the QWERTY keyboard layout. Their median famil-
iarity with gesture typing was 4. All participants had normal or
correct-to-normal vision; 7 of them wore glasses, and they could
choose whether or not to wear glasses during the experiment. The
participants in study I and IT were different. A Tobii Dynavox I-13+
(13.3-inch screen, Aspect ratio: 16:9, 1920x1080 pixels resolution,
Intel(R) Core(TM) i5-7300U, 8GB LPDDR4, 256GB SSD, Tobii IS5 eye
tracking module) running Windows 10 was used for gaze collection
and text entry. A MacBook Pro (16-inch screen, Aspect ratio: 16:10,
3072%1920 pixels resolution, 2.6GHz 6-Core Intel Core i7 Processor,
16GB 2667 MHz DDR4 Memory, AMD Radeon Pro 5300M Graph-
ics) was used to display the text phrases and record time in the
experiment.

5.2 Design and Procedure

Experiment II was a text transcription task. The design of this
experiment was the same as Experiment I: we adopted a within-
subject design. Participants were asked to type the same set of
phrases as shown above in the text field using two different gesture
typing methods: GlanceWriter and a dwell-free typing method in
Communicator 5. We also did counterbalancing on the orders to
reduce the learning effect. We randomly selected 20 phrases from
a subset of the MacKenzie and Soukoreff phrase set [31, 52]. The
same set of phrases was used across two conditions and users.
There were 4 sessions in each condition (Communicator 5 and
GlanceWriter). Each session contained 5 phrases. Participants were
encouraged to type as fast and accurately as they could. Different
from Experiment I, if they felt it was difficult to correct errors,
they could skip error correction for both conditions. We provided a
different input instruction from Experiment I because the first-level
interface in Communicator 5 supported sentence deletion only,
which made word-level error correction very difficult. To perform
a single word-level deletion, a user needs to navigate to the second-
level UI of Communicator 5, which includes 1) selecting the “Abc”
button (Figure 6), 2) picking the word to be deleted, 3) typing the
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Figure 3: (a) A participant is entering a phrase with GlanceWriter. (b) A screenshot of the GlanceWriter interface. (c) A screenshot
of the EyeSwipe interface, which is identical to the interface for GlanceWriter. The user is confirming the input word "good"

with “reverse crossing”.
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Figure 4: The Mean (95% CI) input speed (WPM) by input
method
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Figure 5: Medians of subjective ratings. For measures 1 and
2 regarding demand, a lower rating is better. For measures
3-5, a higher rating is better. GlanceWriter received more
favorable ratings in all categories.

word again and correcting it if necessary, and 4) returning to the
main interface. Each of these steps takes at least one dwell action,
which would be slow and error-prone, increasing the cognitive load

and causing eye fatigue. Therefore, we allowed the participants
to skip error correction if they wanted to in order to reduce the
negative impact of the cumbersome error correction experience
of Communicator 5. We did not want the error-correct interface
design to become the dominant factor determining the text entry
performance.

5.2.1 Tobbi Communicator 5. The Tobii Communicator 5 keyboard
supports both word-level and phrase-level input (as described in
its manual): a user could enter a word or phrase with a continuous
gaze path on the keyboard. We compared GlanceWriter with The
Tobii Communicator 5 for the word-level text input only because
GlanceWriter was designed as a word-level input method. The
word-level input is also the most common text entry method as it
provides confirmation for each word after it is entered.

The interface of Communicator 5 keyboard is shown in Figure 6b
and Figure 6¢. The interface includes four areas (from top to bottom):
Suggestion area, Text field, Keyboard area and Function Area. In the
Suggestion area, three candidate buttons were shown after every
word input. In Text field, there are two buttons to the right of the
text field: the button with “Abc” written on it provides alternative
candidates and the button with a “speaker” icon provides a speaker.
In the Function area at the bottom, five buttons are listed (from left
to right) as 1) Exit keyboard, 2) Switch keyboard, 3) Symbols, 4)
Clear All, and 5) Clear the last sentence. The space key in the middle
of the utility bar is part of the keyboard. When a user intends to
select a target via gaze, a loading icon in red will show up at the
center of the target, and it takes one dwell time at the icon to select
the target. There are two different modes in which Communicator
5 keyboard prevents unnecessary controls during typing. When
a user enters the typing mode, as shown in Figure 6b, only the
Keyboard area will be highlighted while the other areas are disabled.
On the contrary, the suggestion, text field and utility areas will be
highlighted when a user exits typing mode and enters the edit mode
as shown in Figure 6c.

In Communicator 5 keyboard, the switch of typing mode and
edit mode is done by dwelling at corresponding regions. When a
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Thank you for|

Figure 6: (a) A participant is entering a phrase with Communicator 5. (b) A screenshot of the Communicator 5’s keyboard
interface. The keyboard is activated after the gaze position enters the keyboard. (c) A screenshot of the Communicator 5’s text
field interface. The keyboard is deactivated after the gaze position exits the keyboard.

user wants to type, she looks at the keyboard region to start typing.
The key on which her eye gaze hovers is highlighted in blue as
visual feedback during typing. The user needs to look at the text
region (including suggestion area, text field and function area) to
exit after she finishes typing. If she wants to cancel a gaze path,
she can re-enter the typing mode to input the intended word. In
edit mode, the top candidate word appears in the text region while
the following three candidates appear in the suggestion region.
The dwell time of mode switching and candidate selection is set to
600ms.

In the Communicator 5 condition, we adopted the default in-
terface and settings of Communicator 5 as shown in Figure 6b
and Figure 6c. Because the Communicator 5 keyboard was a built-
in keyboard that could not be used to enter text in other applications,
we presented the phrases and recorded the duration on a separate
computer (Figure 6a). To keep the condition identical, we hid the
target phrases in the GlanceWriter interface and displayed them
on the same separate computer as in Communicator 5. The input
interface of GlanceWriter (without target phrase) was the same as
designed in Experiment I.

5.2.2  Procedure. To begin with, participants were demonstrated
how the Tobii eye-tracking system works, how to do calibration and
how to type using the Communicator 5 and GlanceWriter dwell-
free keyboard. The participants performed calibration before the
experiment. Before starting the formal session, each participant
completed a 10-minute warm-up session of 10 sentences which was
different from the formal testing. We used a MacBook Pro to display
the text to be transcribed. As shown in Figure 6a, the MacBook
Pro was placed behind the Tobii device, where the user could look
at the text without changing her position. There was a text and a
“next” button on the monitor. The font size of the text was 80pt. The
text color was set as white, while the background color was gray.
A participant clicked the “next” button when she finished the
phrase. The elapsed time was the duration for entering the phrase.
The experimenter also manually copied every phrase a user entered
after the experiment as it cannot be stored in a computer. The input
speed was calculated according to the length of transcribed text
and the elapsed time collected by the timer. The error rate was

calculated according to the word edit distance from the display and
transcribed texts.

At the end of the study, the participants also completed a ques-
tionnaire to report their subjective rating about mental demand,
physical demand, comfort, learnability, and overall satisfaction with
each typing method.

In total, the study included: 12 participants X 2 methods X 20
phrases = 480 trials.

5.3 Results

Figure 7 shows the average input speed in Communicator 5 and
GlanceWriter conditions. The means (SD) was 7.41(SD = 1.32)
for Communicator 5 and 9.54(SD = 2.10) for GlanceWriter. A
dependent t-test showed the difference was significant (t1; =
3.64,p = 0.003). For word error rate, the means (SD) were
16.32%(SD = 7.55%) for Communicator 5 and 12.89%(SD = 9.49)
for GlanceWriter. A dependent t-test showed the difference was
not significant (t;; = —0.89, p = 0.31).

14
12
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8 :|:7.41

Input Speed(WPM)

Communicator 5 GlanceWriter

Figure 7: The Mean (95% CI) input speed (WPM) by input
method

The typing speed of GlanceWriter was close to that in Exper-
iment I, but the error rate of GlanceWriter in Experiment II was
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higher than the error rate of GlanceWriter in Experiment I. There
are two reasons. First, the eye-tracking devices were different. In
experiment I, we used a Tobii Dynavox I-12+ (12.1-inch screen with
Tobii IS4 eye tracker module), while in experiment II we used a
Tobii Dynavox I-13+ (13.3-inch with Tobii IS5 eye tracker module).
The differences in eye-tracking devices could lead to different input
performances. Second, participants were allowed to have some un-
corrected errors in Experiment II, to reduce the negative impact of
the cumbersome error correction experience in Communicator 5 as
explained in Section 5.2 Design and Procedure. More specifically, al-
though participants were instructed to input as fast and accurately
as they could, they were allowed to skip error correction if they
felt it was difficult to do so. This instruction was different from
the instruction in Experiment I, where participants were instructed
to input "as fast and accurately as they could". The difference in
instruction could result in a higher error rate of GlanceWriter in
Experiment II.

Same as Experiment I, participants were asked to provide sub-
jective ratings on mental demand, physical demand, comfort and
learnability. Participants also rated their overall preference for
each method. As shown in Figure 8, participants were in favor
of GlanceWriter across all questions. A Wilcoxon Signed-Ranks
Test indicated that the overall preference of GlanceWriter Keyboard
was significantly higher than that of Communicator 5 (Z = 1.86, p
= 0.03).

10

Communicator 5 GlanceWriter

Subjective Rating

1.Mental 2.Physical
Demand Demand

3.Comfort 4.Learnability 5.Overall
Preference

Figure 8: Medians of subjective ratings. For measures 1 and
2, a lower rating is better. For measures 3-5, a higher rating
is better. GlanceWriter received more favorable ratings in all
categories.

6 GENERAL DISCUSSION AND FUTURE
WORK

The two user studies showed that GlanceWriter is a promising gaze-
based text entry method. It outperformed EyeSwipe and the built-in
keyboard of Communicator 5 in speed, error rate reduction and
subjective ratings.

6.1 Input Speed

GlanceWriter has a higher speed than EyeSwipe because it uses a
probabilistic decoder and does not require signaling the starting
and ending positions of a gaze path. Our analysis of the study data
in Experiment I showed that the mean (SD) duration of “reverse
crossing” were 1.33 £ 0.17 (second) for the starting letter and 1.44 +
0.19 (second) for the ending letter, which contributed to the slow
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speed of EyeSwipe. 11 out of 14 participants commented "To start
entering and confirm a word was hard with EyeSwipe " (because of
“reverse crossing”) or similar answers to the open-ended question
"What’s the most difficult part in EyeSwipe?". In contrast, very few
participants commented on the most difficult part of GlanceWriter.
The average speed of EyeSwipe in our study was slower than the
value reported in the previous work about EyeSwipe [26]. It was
probably because in our study, each user spent only 20 minutes
typing on EyeSwipe, while in the previous work, a user spent 4
sessions (10 minutes each) over two days. Additionally, different
users were recruited in different studies. They may have different
expertise in gaze input, text input, and different ages, which may
contribute to the discrepancy in input speed between our study
and the study reported in the previous work [25].

GlanceWriter is faster than the built-in keyboard in Communica-
tor 5, which also uses a dwell-free text entry method. Two factors
may contribute to the slower speed of Communicator 5. First, Com-
municator 5 took around 600 ms (default setting) to activate or
deactivate the keyboard as the gaze enters or exits the keyboard
area. These activation and deactivation processes slow users down
on Communicator 5. One participant answered, “It took too much
time to select text and keyboard” to the most difficult part of the
open-end question. In contrast, on GlanceWriter, a user activated
(or deactivated) the keyboard by entering (or exiting the keyboard)
with gaze position. Second, it was difficult to correct word-level er-
rors in Communicator 5. The first-level UI of Communicator 5 only
supports deleting the entire sentence, not deleting a word within a
sentence, as previously explained. We also examined the trials in
which no correction occurred. The input speed was 10.21 WPM for
GlanceWriter and 7.84 WPM for Communicator 5. GlanceWriter
was still faster than Communicator 5 for trials where no correction
occurred, indicating that the decoding algorithm also contributed
to the superior performance of GlanceWriter.

6.2 Decoding Accuracy

The study results showed that the newly proposed decoding algo-
rithm has higher decoding accuracy than the DTW-based algorithm
in EyeSwipe: the error rate of GlanceWriter was lower than both
EyeSwipe and Communicator 5. We calculated the total number of
error correction actions performed by participants in each condi-
tion. Such error-correction actions were regarded as backspace or
undo. In Experiment I, the number of total corrections was 277 (0.99
per trial) for EyeSwipe and 69 (0.25 per trial) for GlanceWriter. With
a smaller number of error correction actions in GlanceWriter, it still
had a lower error rate than EyeSwipe, indicating that GlanceWriter
had higher decoding accuracy in EyeSwipe.

Experiment II showed that the overall error rate of GlanceWriter
was lower than that of Communicator 5. It may be partially due to
the smaller number of error correction actions in Communicator
5. The number of error correction actions was 13 (0.05 per trial)
for Communicator 5 and 41 (0.17 per trial) for GlanceWriter in
Experiment II. Users made a smaller number of error corrections in
Communicator 5 mainly because its top-level interface supported
sentence-level deletion only and it was difficult to correct word-
level errors in Communicator 5, as previously described. We could
not draw a definite conclusion about which algorithm was more
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accurate because GlanceWriter had a lower error rate but it also
had a higher number of error correction actions.

6.3 Subjective Ratings

The subjective ratings were also in favor of GlanceWriter over
EyeSwipe and Communicator 5. GlanceWriter had less mental and
physical demands, was more comfortable to use, and had higher
learnability than both EyeSwipe and Communicator 5 (Figures 5
and 8). Users commented that it took extra time to activate and
deactivate the keyboard on Communicator 5, and the inconvenience
of correcting word-level errors made Communicator 5 hard to use
and learn. Especially they commented that not including word-
level error correction on the first-level Ul made the error correction
difficult to perform. Participants also commented that it required
efforts to perform “reversal crossing” actions in EyeSwipe, which
resulted in more mental and physical demands. In contrast, they
felt GlanceWriter was easy to use and learn. Eliminating the need
to specify starting and ending letters makes the input experience
smooth. They could start entering a word by simply moving the gaze
point into the keyboard and end the entering process by moving
the gaze point away from the keyboard.

Gaze input in general requires high mental and physical de-
mands. As shown in Figure 8, the medians of mental and physical
demands for both GlanceWriter and GlanceWriter were all equal to
or above 5 on a 1- 10 scale. The gaze position was difficult to control,
partially due to the limitation of the gaze tracking device and the
unintentional gaze movement during the interaction. Practicing
gaze input requires high mental and physical demands, which was
also the reason we provided sufficient practice time for each method
before evaluation. Designers and researchers who would deploy
gaze input methods in the real world should keep in mind that
gaze input could increase mental and physical demands during the
interaction.

6.4 Handling Instability of Gaze Input

One advantage of the decoding algorithm of GlanceWriter is that
it uses a probabilistic approach for decoding: it uses probability
to quantify the uncertainty of entering a letter. For example, if
a letter is entered with stable gaze input, it should have a high
stability score (Equation 2) which in turn increases its key score,
indicating that the corresponding letter has a high probability of
being included. If the gaze input is unstable (e.g., the gaze focus is
jumping around), the stability and key scores will be low.

We also designed the gaze path canceling method in
GlanceWriter to accommodate the potential instability of gaze in-
put. To cancel a path in GlanceWriter, a user simply moves her gaze
outside the keyboard. This approach is in contrast to the canceling
methods in EyeSwipe [26] and Communicator 5, which require
dwelling or “reverse crossing” actions for canceling a gaze path.
Dwelling requires a precise selection of a button and reverse cross-
ing requires drawing a specific gesture with the gaze path, both of
which are more susceptible to the instability of gaze input than sim-
ply moving the gaze outside the keyboard region (GlanceWriter).
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6.5 Future Work

We discovered that the stability of gaze input depends on the area
on the screen. Participants commented that it was easier to glance
over keys in the center of the screen than over keys near the edges.
This finding is consistent with the finding of previous work [12].
It suggests that in the future we may need to take the location-
depended accuracy into consideration in decoding. Additionally,
we may consider using more powerful language models, such as
GPT-3 [5], to boost the text entry performance as gaze input tends
to be noisy.

As with many other gestural decoding algorithms (e.g., [24]), the
algorithm of GlanceWriter was designed to decode words within a
dictionary only. Out-of-vocabulary words (OOV) need to be entered
by other methods. For example, on a touchscreen gesture keyboard,
such words are often entered by tap typing. For gaze-based input, a
user could revert to dwell-based methods for entering OOV words.
It is worth investigating how to handle OOV words for gaze input
in future research.

7 CONCLUSION

We present GlanceWriter, a gaze-based hands-free text entry
method that allows entering text by glancing over letters on a
virtual keyboard. One major advantage of GlanceWriter over ex-
isting gaze-based input methods (e.g., [26]) is that GlanceWriter
eliminates the need to dwell on letters, or perform “reverse crossing”
to specify the starting and ending positions of a gaze path for a
word. Instead, GlanceWriter adopts a novel decoding algorithm to
probabilistically determine which letter is entered by examining the
dynamics of gaze movements and gaze locations. Our controlled ex-
periment demonstrates that GlanceWriter achieves a 67% increase
in typing speed over EyeSwipe with an error rate of only 2.71%. It
also outperforms a commercially available gaze-based text entry
method in Tobii Communicator 5, improving the typing speed by
28.7% and reducing the error rate to 12.89%. Our study suggests
that glancing over letters for text entry is both feasible and promis-
ing, and our contribution lies in the novel decoding algorithm that
enables this method.
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