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Abstract

Vision-language (VL) pre-training has recently received considerable attention.
However, most existing end-to-end pre-training approaches either only aim to
tackle VL tasks such as image-text retrieval, visual question answering (VQA)
and image captioning that test high-level understanding of images, or only target
region-level understanding for tasks such as phrase grounding and object detection.
We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model
architecture that can seamlessly handle both these types of tasks. Instead of having
dedicated transformer layers for fusion after the uni-modal backbones, FIBER
pushes multimodal fusion deep into the model by inserting cross-attention into the
image and text backbones, bringing gains in terms of memory and performance. In
addition, unlike previous work that is either only pre-trained on image-text data
or on fine-grained data with box-level annotations, we present a two-stage pre-
training strategy that uses both these kinds of data efficiently: (i) coarse-grained
pre-training based on image-text data; followed by (ii) fine-grained pre-training
based on image-text-box data. We conduct comprehensive experiments on a
wide range of VL tasks, ranging from VQA, image captioning, and retrieval,
to phrase grounding, referring expression comprehension, and object detection.
Using deep multimodal fusion coupled with the two-stage pre-training, FIBER
provides consistent performance improvements over strong baselines across all
tasks, often outperforming methods using magnitudes more data. Code is available
at https://github.com/microsoft/FIBER.

1 Introduction
Inspired by the success of language model pre-training [11, 51, 42], coupled with the unification of
architectures used in the NLP and computer vision communities [12, 4], vision-language pre-training
(VLP) [62, 45, 33, 6] has been receiving an increasing amount of attention. It has been proven that
VLP can establish state-of-the-art performance on visual question answering [3], visual reasoning [60],
image captioning, and image-text retrieval [41]. The pre-training objectives commonly used for these
tasks, such as image-text matching, image conditioned masked language modeling and image-text
constrastive learning, require multimodal understanding at the image level. Typically, this means the
pre-training is done using images at lower resolution (e.g., 384×384), making it possible to scale up
training by using large batch sizes.

Recently, it has also been shown that tasks such as image classification and object detection (OD),
which have been traditionally viewed as vision-only tasks, can benefit from being cast as VL
tasks [50, 25, 34, 26]. Inspired by MDETR [26], GLIP [34] reformulates standard classification-
based OD as phrase grounding. This opens up the possibility to leverage VLP for OD, and vice versa,
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Figure 1: The proposed coarse-to-fine pre-training framework for vision-language tasks. We first perform
coarse-grained pre-training with image-text data for VQA, image captioning and retrieval tasks, and then perform
fine-grained pre-training with image-text-box data for phrase grounding and object detection tasks. The same
FIBER architecture is used for both stages. OD: object detection. MLM: masked language modeling. ITM:
image-text matching. ITC: image-text contrastive loss.

and this unification has led to impressive performance on several established OD as well as phrase
grounding benchmarks [49]. Since these tasks involve fine-grained image understanding between
regions in the image and phrases in the text, and also require prediction of precise bounding boxes at
the output, the pre-training typically involves using high resolution input images (e.g., 800×1,333).

Existing multimodal architectures typically do not support both kinds of tasks. Specifically, the fully
end-to-end VLP models such as ALBEF [32], METER [13], and SimVLM [67] can achieve the
state of the art (SoTA) on image-level understanding tasks, but it is non-trivial to extend them for
region-level VL tasks because predicting bounding boxes is typically hard in end-to-end settings.
On the other hand, MDETR [26] and GLIP [34] are designed to predict bounding boxes, but have
not been shown to support tasks such as image captioning and retrieval. Further, fine-grained pre-
training not only requires data with bounding box annotations that are cumbersome to acquire, but
the requirement of high input image resolution makes pre-training very costly, especially when using
standard Transformer architectures [63] that have quadratic complexity in the size of the image. A
natural but challenging question arises: can we have a unified framework for efficient VL pre-training
that benefits both image-level and region-level VL tasks (e.g., both VQA and OD)?

Figure 2: Model architecture for FIBER. Swin trans-
former is used as the image backbone, simplified here
for illustration purposes.

We answer this question by proposing two ideas:
(i) a novel model architecture that can handle
various types of tasks and pre-training strate-
gies (high and low resolution inputs, image and
region level outputs) more efficiently than pre-
vious work (see Section 3.1 and 4), and (ii) a
two-stage pre-training pipeline.

In terms of architecture, we present FIBER,
shown in Figure 2, which performs deep mul-
timodal fusion in the backbone. Specifically,
instead of having a few dedicated transformer
layers on top of the image and text encoders for
fusion (e.g., as is commonly done in previous
work [36, 6, 13, 26, 34]), we propose to directly
insert cross-attention modules into the image
and text backbones. Additionally, we support
the ability to switch between a dual encoder (for
fast image retrieval) and a fusion encoder (for VQA and captioning) readily, by switching on or off
the cross-attention modules. With the same model architecture, by simply adding an object detection
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Figure 3: FIBER can be readily adapted to various downstream VL tasks, ranging from VQA, image captioning
and retrieval, to phrase grounding and object detection (OD).

head (e.g., Dynamic Head [9]) on top, FIBER can be readily extended to visual grounding, referring
expression comprehension and (open-vocabulary) OD tasks as well.

By considering the nature of different VL tasks, FIBER is pre-trained with a coarse-to-fine two-stage
pipeline, as detailed in Figure 1. Specifically,

• During coarse-grained pre-training, FIBER takes low-resolution (384×384) images as input, and is
pre-trained with image-text matching, masked language modeling, and image-text contrastive losses,
as used in previous work [13, 66, 64]. The pre-trained model can then be directly finetuned for
VQA and image captioning tasks (Figure 3a and 3c). By switching off the cross-attention modules,
FIBER also automatically functions as a dual encoder for fast image-text retrieval (Figure 3b).

• During fine-grained pre-training, FIBER uses the coarse pre-trained model as initialization, in
addition to randomly initialized parameters for the OD head. At this stage, the model takes high-
resolution (800×1,333) images as input, and is pre-trained with bounding box localization loss and
word-region alignment loss, as used in GLIP [34]. We use image-text-box data with ground-truth
box annotations for pre-training, and the model can be directly fine-tuned for grounding and
detection tasks (Figure 3d).

Compared to fine-grained pre-training, coarse-grained pre-training is easier to scale up, as it only
requires paired image-text data which can be easily harvested from the web. Crucially, we show that
re-using all the parameters from our coarse-grained pre-trained model for fine-grained pre-training
alleviates the requirement for large amounts of box-level annotated data. In our experiments, we
show that on fine-grained tasks such as Flickr30k Entities, FIBER using coarse-grained pre-training
achieves gains even over previous SoTA (GLIP [34]) that uses 25× more box-level annotated images
during the fine-grained pre-training stage. We also show that our architecture is much more efficient
in terms of training time on OD tasks, as compared to GLIP .

FIBER is the first end-to-end VLP model that can support VL tasks encompassing image-level and
region-level outputs. We conduct experiments on VQAv2 [3], NLVR2 [60], COCO captioning [41],
NoCaps [1], COCO and Flickr30k image-text retrieval [49], as well as on phrase grounding [49],
referring expression comprehension [75], COCO and LVIS detection [17], and a suite of 13 object
detection in the wild datasets [34]. We show that our model can provide consistent performance
improvement over strong baselines (e.g., METER [13] and GLIP [34]) across tasks.

2 Related Work

VLP for Classical VL Tasks. ViLBERT [45] and LXMERT [62] were the first two methods to
introduce using transformers for VLP. Since then, we have witnessed a boom of VLP methods [33, 30,
59, 73, 22, 71, 81, 38, 7, 35]. Early methods mainly focus on the use of pre-trained object detectors to
extract image region features offline, such as UNITER [6], OSCAR [36], VILLA [15] and VinVL [79].
More recently, end-to-end VLP methods that use the image directly as input have become popular. In
these approaches, convolution networks or vision transformers [12] are used as the image backbone,
with additional transformer layers for modeling multimodal fusion [24, 23, 28, 68, 32, 64]. Prominent
examples along this line include ViLT [28], ALBEF [32], SimVLM [67], METER [13], X-VLM [77]
and BLIP [31]. These models have achieved the current SoTA on major VL benchmarks such as
VQA and image captioning. However, they cannot be directly used for tasks such as object detection.

3



Model VQA† O(n+m) Retrieval‡ Captioning Grounding OD End2End

ViLBERT [45], LXMERT [62], UNITER [6] ✓ ✕ ✕ ✓ ✕ ✕
OSCAR [36], VinVL [79] ✓ ✕ ✓ ✓ ✕ ✕

PixelBERT [24], CLIP-ViL [57], ViLT [28] ✓ ✕ ✕ ✕ ✕ ✓
CLIP [50]∗, ALIGN [25] ✕ ✓ ✕ ✕ ✕ ✓

VL-T5 [7] ✓ ✕ ✓ ✕ ✕ ✕
METER [13], SimVLM [67] ✓ ✕ ✓ ✕ ✕ ✓

ALBEF [32], FLAVA [58], VLMo [66] ✓ ✓ ✕ ✕ ✕ ✓
BLIP [31], CoCa [74], Flamingo [2] ✓ ✓ ✓ ✕ ✕ ✓

MDETR [26], GLIP [34] ✓ ✕ ✕ ✓ ✓ ✓
UniTAB [70], X-VLM [77], OFA [65] ✓ ✕ ✓ ✓ ✕ ✓

FIBER ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison among different VLP models. FIBER is the only VLP model that can support all tasks
considered. (†) VQA is used as a representative VL classification task. (‡) O(n+m) retrieval denotes model
backbones process inputs O(n+m) times given n images and m text sentences during image-text retrieval. (∗)
Here, we mainly focus on what tasks CLIP can be directly used for.

VLP for Vision Tasks. Recently, it has been shown that image-text data can be used to learn image
encoders from scratch [10, 54]. By performing large-scale contrastive pre-training, CLIP [50] and
ALIGN [25] display strong zero-shot image classification capabilities. While these models mainly
tackle image-level understanding tasks, MDETR [26] extends the end-to-end OD model DETR [4],
and uses contrastive learning along with an alignment loss to learn correspondences between image
regions and text phrases, opening up the possibility to tackle tasks such as phrase grounding and
long-tailed OD using VL models. This has inspired many follow-up works to further enhance the
pre-training [37, 72, 46, 69], among which GLIP [34] shows that OD can also be cast as a VL task
(i.e., phrase grounding). However, it has not been shown how traditional VL tasks such as VQA,
captioning and retrieval can be well supported in GLIP [34] and MDETR [26].

Unified VL Modeling. There have been a few recent attempts that try to develop unified VL models.
VL-T5 [7] unifies VL tasks as text generation; however, pre-trained object detectors are used for
image feature extraction, so the model cannot be end-to-end pre-trained. UniT [20] proposes a
multimodal multi-task framework with a unified transformer; however, it can only support VQA
and object detection tasks, but not captioning and grounding. GPV [18] proposes a general-purpose
vision system, and FLAVA [58] presents a VL system similar to METER [13]; however, they did
not evaluate on grounding and detection tasks, and their performance on other VL tasks is still far
from SoTA. UniTAB [70] and OFA [65] reformulate grounding as a sequence generation task, by
borrowing ideas from Pix2Seq [5]. However, these approaches have not been demonstrated to work
on standard OD benchmarks, and also cannot be used as dual encoders for fast image retrieval. Our
model is the first work that can support not only VQA, image captioning and O(n+m) retrieval, but
also visual grounding and object detection, with impressive performance across all tasks. A detailed
comparison is provided in Table 1.

3 Method
In this section, we first describe the proposed model architecture in Section 3.1. We then illustrate
our two-stage pre-training paradigm in Section 3.2, followed by fine-tuning strategies for all the tasks
supported by FIBER in Section 3.3.

3.1 Fusion in the Backbone
Feedforward

α

Self-Attention

Cross-Attention

Qx

y

x

Kx Vx

Qx
Ky Vy

Figure 4: Illustration of performing fusion
in the backbone. (x, y) are the (image, text)
or (text, image) representations, and α is a
learnable scalar.

The architecture of FIBER is shown in Figure 2. Different
from models that stack a modality fusion module on top
of the vision or language backbones [6, 13], we insert
multimodal fusion inside the backbones, and include a
gating mechanism for the cross-modal layers (shown in
Figure 4). Specifically, at each encoding layer, we have:

x̃ = SELF-ATT(x),

x = x+ x̃+ α ∗ CROSS-ATT(x̃,y),

x = x+ FFN(x),

(1)
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where α is a learnable parameter initialized to 0. For simplicity, we insert the same number of
cross-attention layers into the vision and language backbones.

By inserting cross-attention layers with the gating mechanism, we enable cross-modal interactions
without affecting the original computational flow of the backbones at the beginning of model training.
Also, we can easily switch off the interactions by setting α to 0, and the backbones can be used in
the dual-encoder setting. In addition, compared to stacking a large number of transformer layers on
top of the backbones, our approach of inserting cross-attention layers is relatively light-weight and
thus more memory-efficient. To illustrate, both GLIP [34] and METER [13] use an additional 110M
modality fusion parameters for a base-size model, while FIBER only adds about 26M parameters.
During training, the fusion module of FIBER only consumes half of the FLOPs needed by METER
(12.35 vs. 24.04 GFLOPs for one instance). We experimented with two other model variants for
fusion in the backbone, the details of which are provided in Appendix.

3.2 Coarse-to-Fine Pre-training

We divide VL tasks into two categories based on whether or not we need to generate region-level
outputs on the image side. While these two kinds of tasks are characteristically different, they both
require fusion between the vision and language modalities, and we hypothesize that sharing as many
parameters as possible between the model used for these two sets of tasks will be beneficial. Based
on this motivation, we propose a two-stage pre-training paradigm, where we first pre-train models
with image-level objectives on images at low resolution, and then perform further pre-training with
region-level objectives where the input images are at a higher resolution. In this way, the coarse-
grained supervision from the first stage can provide good initialization for the second stage for all the
shared parameters. FIBER with the same architecture (Swin Transformer [43] and RoBERTa [42]) is
used as the backbone for both stages of pre-training.

Coarse-grained Pre-training. For tasks like VQA and captioning, it has been demonstrated [32, 13,
66] that masked language modeling (MLM), image-text matching (ITM), and image-text contrastive
(ITC) objectives are helpful for ViT-based VLP models. Following previous work, we use all the
three objectives during pre-training. Specifically,

• For ITC, the inserted cross-attention modules are switched off, so FIBER functions as a dual
encoder. Given a batch of N image-caption pairs, we first compute their representations with
our vision and language encoders independently without modality fusion, and then maximize the
similarities between N positive image-text pairs while minimizing the similarities between the rest
N2 −N negative pairs, via a contrastive loss.

• For MLM and ITM, the inserted cross-attention modules are switched on, so FIBER now functions
as a fusion encoder. For MLM, we randomly mask 15% of the input tokens and the model is trained
to reconstruct the original tokens. For image-text matching, the model is given an image-text pair
and predicts whether they are matched. Following VLMo [66], we sample global hard negatives
based on the similarities computed from the above ITC loss.

Fine-grained Pre-training. Most existing VL architectures [6, 62, 26, 31, 65, 7] use vanilla
transformers both for encoding the vision as well as language inputs. However, in contrast to tokens
in text, the entities of interest in images do not all occur at the same scale. Being able to accurately
model the image at different scales is especially important for tasks such as object detection and phrase
grounding. To handle this, it is typical in object detection literature to use input images at higher
resolutions (800×1333), which becomes problematic when using vanilla transformers that scale
quadratically in the length of the input sequence. As mentioned earlier, we use a Swin Transformer
[43] as our image encoder, which provides hierarchical representations of the image while having
linear complexity in the size of the image. We combine these multi-scale representations using an
FPN [39] for object detection training. For fine-grained pre-training, we switch on the cross-attention
modules, using FIBER as a fusion encoder. This ensures that the image representations that are passed
to the FPN are already text-aware, and is a crucial difference compared to GLIP [34], where the
image-text fusion takes place in the object detection head. Once the text-aware image features are
extracted by the Swin backbone and image-aware text features are extracted using RoBERTa [42], the
image features after the FPN are fed to a DynamicHead [9] which predicts a set of regions. Just as
in [34], we compute the dot product between the image region features RTA and the contextualized
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token representations TIA to compute the grounding score:

ITA,TIA = FIBER(I, T ), RTA = OD-HEAD(ITA), SGROUNDING = RTAT
⊤
IA, (2)

where RTA represents regions that are text aware, produced using the OD-Head that takes as input
ITA, which are image representations that are already text-aware and TIA are the text features that
have already attended to the image features. The typical object detection model has a classification
head that predicts the label of the object, and a localization head that predicts the bounding box.
We follow GLIP [34] by substituting the classification head with the grounding score SGROUNDING.
The localization loss is composed of two parts: a centerness loss and GIoU loss, which are used to
supervise the box prediction. Taken together, FIBER learns the correspondence between regions in the
image and phrases in the text, making it possible to tackle tasks such as phrase grounding and object
detection using the same framework. We use ATSS framework [80] in our paper, but our method can
be combined easily with other object detectors such as Faster-RCNN [52] and RetinaNet [40] as well.

3.3 Adaptation to Downstream Tasks

We now describe how we adapt FIBER to different downstream tasks as depicted in Figure 3.

• For VL classification tasks such as VQA, we use FIBER as a fusion encoder. Specifically, the top
M layers of the vision and language backbones interact with each other and produce multimodal
representations. The final layer representations of the two modalities are concatenated together to
generate the final outputs for tasks such as VQA and visual reasoning.

• For retrieval tasks, we switch off the inserted cross-attention modules to use FIBER as a dual
encoder for fast image-text retrieval.

• For captioning, we adapt FIBER by only keeping the image-to-text cross-attentions and using
causal masks in the decoding side. The representations of the final image encoding layer are fed
into the cross-attention modules. In this way, the model is turned into a seq2seq model [61, 8] and
performs captioning in an auto-regressive way.

• For phrase grounding, object detection and referring expression comprehension, we use
FIBER as a fusion encoder, and the OD-Head introduced during fine-grained pre-training receives
image features that are already language aware due to the multimodal representations extracted by
FIBER. The pre-trained model is directly used without any modifications for these tasks.

4 Experiments

Type of COCO GPU-hours Sec/IterFusion Val2017 V100 (32GB)

No Fuse 53.9 511 1.31
GLIP-B [34] 54.6 840 2.14

FIBER-B 54.5 540 1.38

Table 2: Object detection on COCO [41], without vision-
language pre-training. We initialize the text encoder and
image backbones using a pre-trained RoBERTa and a
Swin transformer pre-trained on ImageNet22k. Our
proposed FIBER model achieves the same performance
as GLIP [34] while taking much less time to train.

Pre-training Datasets. Following previous
work [6, 28, 32, 13, 64, 66], we perform coarse-
grained pre-training on COCO [41], Concep-
tual Captions [56], SBU Captions [47], and Vi-
sual Genome [29]. The four datasets consist of
about 4M images in total. For fine-grained pre-
training, we use two data sources: data curated
by MDETR [26] after removing the COCO im-
ages, and the Objects365 [55] detection dataset,
together consisting of about 0.8M images. We
ensure that we exclude any data that exists in
the validation or test splits of downstream tasks.

Architecture. We adopt Swin-Base [43] and
RoBERTa-Base [42] as our vision and text backbones, which are initialized with weights from
uni-modal pre-training. We insert cross-attention blocks into the top 6 blocks of the vision and text
encoders. The input resolution is 384 × 384 for coarse-grained pre-training and 800 × 1, 333 for
fine-grained pre-training. Using a hierarchical vision transformer enables us to efficiently tackle these
high resolution tasks, which would be expensive in models such as BLIP [31] that rely on the vanilla
transformer architecture. In METER [13], which does explore using a Swin transformer as the image
encoder, the multi-modal fusion occurs in layers specifically designed to align the modalities, only
after the image and text features are extracted from the uni-modal backbones. This is in contrast to
our approach where the hierarchical image features that are used in the FPN for fine-grained training
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Model #Pretrain
Images

VQAv2 NLVR2 Flickr30k COCO

test-dev test-std dev test-P IR@1 TR@1 IR@1 TR@1

Base-size models pre-trained on COCO, VG, SBU, and CC datasets

UNITER-B [6] 4M 72.70 72.91 77.18 77.85 72.5 85.9 50.3 64.4
VILLA-B [15] 4M 73.59 73.67 78.39 79.30 74.7 86.6 - -
UNIMO-B [35] 4M 73.79 74.02 - - - - - -

ViLT-B [28] 4M 71.26 - 75.70 76.13 64.4 83.5 42.7 61.5
ALBEF-B [32] 4M 74.54 74.70 80.24 80.50 82.8† 94.3† 56.8† 73.1†

VLMo-B [66] 4M 76.64 76.89 82.77 83.34 79.3 92.3 57.2 74.8
METER-Swin-B [13] 4M 76.43 76.42 82.23 83.47 79.02 92.4 54.85 72.96

X-VLM [77] 4M 78.22 78.37 84.41 84.76 86.9† 97.0† 63.4† 81.2†

Models pre-trained on more data and/or with larger size

VLMo-L [66] 4M 79.94 79.98 85.64 86.86 84.5 95.3 60.6 78.2
BLIPCapFilt-L [31] 129M 78.25 78.32 82.15 82.24 87.5† 97.2† 64.1† 81.2†

SimVLM-B [67] 1.8B 77.87 78.14 81.72 81.77 - - - -
SimVLM-H [67] 1.8B 80.03 80.34 84.53 85.15 - - - -

FIBER-B 4M 78.55 78.46 84.59 85.52 81.44 92.90 58.01 75.38

Table 3: Results on VL classification and retrieval. We also include models pre-trained on more data and/or
with larger size. FIBER and VLMo use dual encoders for retrieval. (†) ALBEF, X-VLM, and BLIP first use its
dual encoder to obtain top-k candidates, and then use its fusion encoder to re-rank the candidates. Our retrieval
results with re-ranking are provided in Table 4. All the other models use fusion encoders.

are already language aware, due to the multi-modal fusion being in the backbone. This also lets
us avoid adding additional “language-aware deep fusion layers” [34] as part of the OD head as in
GLIP, resulting in 1.5x faster training while maintaining performance as shown in Table 2. While in
principle it would be possible to use the image features extracted by METER’s backbone for object
detection, it would be necessary as in GLIP to add additional layers to make the visual features
“language-aware” for good detection performance, especially on datasets with limited training data
and with rare and infrequent objects.

Implementation Details. We perform coarse-grained pre-training for 100k steps with 4,096 batch
size on 64 A100 GPUs. We use AdamW [44] with the peak learning rates of 1e-4 for the backbones
and 5e-4 for the cross-modal parameters. We use linear warmup over the first 1k steps and linear
decay. For fine-grained pre-training, we train for 800k steps on 64 V100 GPUs, with a batch size of
64. We use a learning rate of 1e-5 for the language backbone, and 1e-4 for the rest of the model with
a weight decay of 0.01. We use a linear warmup over the first 2k steps and then a constant learning
rate, with two learning rate drops by a factor of 10 at 67% and 89% of the total number of steps.

4.1 Results on Downstream Tasks

Vision-Language Classification. We first experiment on two representative VL classification tasks,
including VQAv2 [3] and NLVR2 [60]. As reported in Table 3, we achieve the best performance
compared to other models in the same setting. It is worth noting that FIBER pre-trained with 4M
images can achieve better performance than BLIP trained with 129M images and SimVLM trained
with 1.8B images. The results indicate that introducing fusion modules into the backbone is an
effective alternative to appending them on the top of uni-modal backbones.

Image-Text Retrieval. In Table 3 we report image retrieval performance in the dual encoder setting,
achieving competitive performance on both Flickr30k [49] and COCO [41] retrieval tasks. However,
previous work has shown that fusion encoders obtain superior performance, albeit at the cost of
efficiency as it involves feeding every image-text pair into the model. To illustrate, on the COCO test
data, ranking the similarities between 5K images and 25K captions requires the model to process
each image-caption pair 75M times, whereas the dual encoder model only needs 30K forward passes.
As shown in Table 4, the fusion encoder can indeed surpass the dual encoder on retrieval tasks by a
large margin. In addition, directly ensembling the two models by summing their similarity scores
together for each image-caption pair can bring us huge improvements.
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Model Flickr30k COCO

IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

FIBER-ITC 81.44 96.72 98.48 92.90 99.50 99.90 58.01 83.45 90.11 75.38 94.04 97.36
FIBER-ITM 84.10 97.54 98.88 95.10 99.60 99.90 59.03 84.04 91.03 75.14 93.88 97.36

FIBER-ITC+ITM Ensemble 90.96 98.44 99.14 96.00 99.70 100.00 69.73 90.66 94.59 80.10 95.60 97.98

ALBEF [32] 82.8 96.7 98.4 94.3 99.4 99.8 56.8 81.5 89.2 73.1 91.4 96.0
X-VLM [77] 86.1 97.4 98.7 96.8 99.8 100.0 63.1 85.7 91.6 80.4 95.5 98.2

FIBER-Rerank-10 90.94 98.16 98.48 95.80 99.60 99.90 68.71 87.69 90.09 79.66 95.34 97.36
FIBER-Rerank-20 90.10 98.38 99.14 95.90 99.80 100.00 69.32 89.52 93.33 79.78 95.20 97.66
FIBER-Rerank-50 91.08 98.50 99.37 96.10 99.70 100.00 69.58 90.41 94.35 79.98 95.40 97.76

FIBER-Rerank-100 91.02 98.54 99.34 96.00 99.70 100.00 69.63 90.54 94.47 80.06 95.60 97.96

Table 4: Additional results on image-text retrieval, where (i) the fusion encoder is used for retrieval, or (ii) the
dual encoder is first used to obtain top-k candidates, and then the fusion encoder is used to re-rank the candidates.
We also provide a full set of results on all evaluation metrics.

Model #Pretrain
Images

COCO NoCaps Val NoCaps Test
B@4 M C S C S C S

Models trained without CIDEr optimization

UFO-B [64] 4M 36.0 28.9 122.8 22.2 80.7 12.5 78.8 12.5
ViTCAP [14] 4M 36.3 29.3 125.2 22.6 - - - -

METER-CLIP-B [13] 4M 38.8 30.0 128.2 23.0 - - - -
X-VLM [77] 4M 39.8 - 133.1 - - - - -
VinVL-B [79] 5.7M 38.2 30.3 129.3 23.6 - - - -

BLIPCapFilt-L [31] 129M 39.7 - 133.3 - 109.6 14.7 - -
LEMON-B [21] 200M 40.3 30.2 133.3 23.3 106.8 14.1 - -
SimVLM-B [67] 1.8B 39.0 32.9 134.8 24.0 - - 94.8 13.1

FIBER-B 4M 39.1 30.4 128.4 23.1 88.6 13.0 86.0 12.9
FIBER-GOLD-B 4M 40.3 30.7 133.6 23.6 92.8 13.4 90.6 13.4

Models trained with CIDEr optimization

ViTCAP [14] 4M 41.2 30.1 138.1 24.1 89.2 12.7 - -
X-VLM [77] 4M 41.3 - 140.8 - - - - -
VinVL-B [79] 5.7M 40.9 30.9 140.4 25.1 94.3∗ 13.1∗ 92.5∗ 13.1∗

LEMON-B [21] 200M 41.6 31.0 142.7 25.1 - - - -

FIBER-B 4M 42.8 31.0 142.8 24.3 96.7 13.4 94.1 13.4
FIBER-GOLD-B 4M 43.4 31.3 144.4 24.6 99.2 13.7 97.1 13.8

Table 5: Results of base-size models on image captioning. We grey models pre-trained on larger magnitudes
of data. Numbers with ‘*’ are obtained with constrained beam search during inference and without VLP. The
complete results on all metrics are provided in Appendix. B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE.

Further, we explore combining the strengths of both strategies by performing re-ranking as in [16, 31,
32]. Specifically, we first retrieve the top-k most similar instances using the dual encoder setup, and
then add the similarity scores between the given instance and the top-k candidates provided by the
fusion encoder to the original scores to perform retrieval. From Table 4, we can see that this strategy
provides a balance between efficiency and performance, and that just re-ranking the top-10 instances
can achieve comparable performance with ensembling.

Image Captioning. We also evaluate our models on COCO [41] and NoCaps [1] captioning to
test whether FIBER can be adapted to generation tasks. As in Table 5, FIBER can achieve better
performance than models trained on the same data with and without CIDEr optimization [53]. We find
that integrating GOLD [48] into FIBER can bring significant improvements, outperforming models
trained with hundreds of millions of images. Notably, we establish the absolute state-of-the-art
CIDEr scores on COCO for base-size models. Considering that FIBER is not pre-trained to perform
captioning, the results demonstrate the strong generalization ability of FIBER.

Phrase Grounding. Our fine-grained pre-training stage incorporates Flickr30k entities grounding
data, and we achieve 87.4 on the Recall@1 metric on the test set without any subsequent fine-tuning.
This not only surpasses the current SoTA [34] using a smaller sized model (Swin-B compared to their
Swin-L), but also uses 25x less fine-grained data. Our FIBER model is able to leverage the image-text
coarse-grained pre-training stage better, instead of relying on expensive pseudo-labelling of large
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Model Image
Backbone

#Pretrain Images
(fine-grained)

Flickr30k Val Flickr30k Test
R@1 R@5 R@10 R@1 R@5 R@10

Visual-BERT [33] ResNet-101 120k 70.4 84.5 86.3 71.3 85.0 86.5
MDETR [26] EN-B5 200k 83.6 93.4 95.1 84.3 93.9 95.8

GLIP [34] Swin-B 860k 85.7 95.0 96.2 86.1 95.5 96.4

Models pre-trained on more data and/or with larger size

GLIP [34] Swin-L 27M 86.7 96.4 97.9 87.1 96.9 98.1

FIBER-B Swin-B 860k 87.1 96.1 97.4 87.4 96.4 97.6
w/o C.G. VLP Swin-B 860k 86.2 96.0 97.6 86.5 96.4 97.7

Table 6: Phrase grounding performance on Flickr30k entities dataset. We reproduce GLIP-Base sized results,
and GLIP-Large sized results are taken from [34]. FIBER with Base size outperforms a GLIP-L which is trained
with 25x more fine-grained data on the R@1 metric. Further, FIBER without coarse-grained VL pretraining
outperforms GLIP-B when trained on the same fine-grained data.

Model Pre-training data RefCOCO RefCOCO+ RefCOCOg

Im-Txt Im-Txt-Box val testA testB val testA testB val test

MDETR-B [26] ✓ 87.51 90.40 82.67 81.13 85.52 72.96 83.35 83.31
UNICORN-B [70] ✓ 88.29 90.42 83.06 80.30 85.05 71.88 83.44 83.93

Models pre-trained on more data and/or with larger size

UNITER-L [6] ✓ 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
VILLA-L [15] ✓ 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71

OFA-L [65] ✓ ✓ 90.05 92.93 85.26 84.49 90.10 77.77 84.54 85.20

FIBER-B ✓ ✓ 90.68 92.59 87.26 85.74 90.13 79.38 87.11 87.32

Table 7: Results on referring expression comprehension datasets.

web-scale corpus and subsequent high-resolution training on this generated fine-grained data as in
[34]. We also compare our approach without using any coarse-grained VL training (image encoder
initialized to Swin-B weights from IN22k, and text encoder initialized to pre-trained RoBERTa), and
even in this setting, we are able to outperform a similarly sized GLIP model (GLIP-B), proving that
our fusion in the backbone is better at capturing fine-grained image-text understanding.
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Figure 5: Few-shot results on the aggregated
13 ODinW datasets.

Referring Expression Comprehension (REC). In con-
trast to many previous works [6, 15, 45] that tackle the
REC task by re-ranking object proposals provided by an
off-the-shelf detector, we follow [26] to directly predict
the bounding box for the given referring expression. Us-
ing our proposed two stage pre-training, FIBER achieves
better performance than current SoTA [65] that uses a
Large sized model. Notably, on RefCOCOg [76], which
contains much longer referring expressions than in Ref-
COCO/RefCOCO+ [27], we observe more than 2 points
boost over OFA-L. On the challenging testB split of both
RefCOCO and RefCOCO+, FIBER outperforms current
SoTA, OFA-L.

Object Detection. We report FIBER results on two stan-
dard object detection benchmarks, COCO [41] and LVIS
[17], in zero-shot transfer1 as well as fine-tuned settings in Table 8. The LVIS dataset consists of a
long-tail of object classes, and is a popular test-bed for evaluating models on their generalization
capabilities and robustness to class imbalance. On the APr metric, which is the Average Precision on

1Following [50, 78], we consider zero-shot transfer to mean that during pre-training we may have seen
relevant data but it is not used for training for the task of interest. For instance, our coarse-grained pre-training
includes some images from COCO (without any box information), but we do not have any COCO images in our
fine-grained training that we use to train the object detection head.
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Model COCO Val 2017 LVIS MiniVal ODinW
AP APr APc APf AP

Zero-shot/Fine-tune Zero-shot/Fine-tune Zero-shot/Fine-tune

Mask R-CNN [19] - - /26.3 - /34.0 - /33.9 - /33.3 -
MDETR [26] - - /20.9 - /24.9 - /24.3 - /24.2 -
GLIP-T [34] 46.7/55.1 17.7/ - 19.5/ - 31.0/ - 24.9/ - 44.4/63.9
GLIP-B [34] 48.1/57.0 17.0/31.3 23.9/48.3 35.9/56.9 29.1/51.0 44.8/65.8

Models pre-trained on more data and/or with larger size

GLIP-L [34] 49.8/60.8 28.2/ - 34.3/ - 41.5/ - 37.3/ - 52.1/68.9

FIBER-B 49.3/58.4 29.5/50.0 32.2/56.9 40.1/58.1 35.8/56.9 47.0/65.9

Table 8: Zero-shot transfer and fine-tuning results for object detection on COCO, LVIS and the average over
13 datasets for object detection in the wild. Detailed scores on the 13 datasets are presented in the Appendix.
FIBER achieves better AP across the board compared to similarly sized GLIP-B, trained on the same amount of
fine-grained data. On rare objects in LVIS, FIBER outperforms GLIP-L trained on 25x more fine-grained data.
Results without coarse-grained pre-training are provided in the Appendix.

rare objects, FIBER outperforms GLIP-L which is a bigger model and also trained with 25× more
fine-grained data.

We also report zero-shot and fine-tuned results on a suite of 13 ODinW (object detection in the wild)
datasets, spanning various domains and show consistent performance improvements over previous
SoTA. Additionally, in Figure 5, we report few-shot results aggregated across these 13 datasets and
show better data efficiency over GLIP-B trained with the same fine-grained data.

Ablation Study. In Appendix ?? and ??, we have provided detailed ablations that guided our
architecture design, including ablations on fusion strategies, pre-training objectives, architecture for
captioning, and additional results on open-ended VQA, and detailed few-shot ODinW results. Due
to the space limit, these ablations and additional results are only provided in the Appendix. Some
important observations are summarized below. (i) Co-attention works similarly to merged attention
for fusion in the backbone. (ii) Adding a gating parameter in co-attention allows the addition of fusion
in more layers, and also gives better performance than merged attention. (iii) Adding co-attention in
the last 6 layers provides a balance between performance and efficiency. (iv) MLM, ITM with hard
negative mining, and ITC are all important pre-training objectives for training FIBER-style models.

5 Conclusion

We propose (i) FIBER, a novel architecture and (ii) a coarse-to-fine pre-training pipeline. We perform
extensive experiments and show consistent improvements over strong baselines across a diverse set
of tasks. The results demonstrate the effectiveness of FIBER coupled with our pre-training strategy,
by setting new SoTA scores while at the same time reducing the requirement of expensive box-level
annotations. Future directions include scaling our models and extending our framework to other
modalities.

The approach introduced in our work can potentially inherit undesirable societal biases that exist in
our pre-training data. Careful debiasing and filtering of data should be undertaken before real-life
deployment of our work. Additionally, pre-training can induce environmental costs, and minimizing
these costs is an avenue that we plan to explore further.
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