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Abstract. A dynamic mass-transport method is proposed for approximately solving the Pois-

son–Nernst–Planck (PNP) equations. The semi-discrete scheme based on the JKO type variational

formulation naturally enforces solution positivity and the energy law as for the continuous PNP

system. The fully discrete scheme is further formulated as a constrained minimization problem,

shown to be solvable, and satisfy all three solution properties (mass conservation, positivity and

energy dissipation) independent of time step size or the spatial mesh size. Numerical experiments

are conducted to validate convergence of the computed solutions and verify the structure preserving

property of the proposed scheme.

1. Introduction

In this paper, we consider a time-dependent system of Poisson-Nernst-Planck (PNP) equations.

Such system has been widely used to describe charge transport in diverse applications such as

biological membrane channels [10, 13, 47], electrochemical systems [2], and semiconductor devices

[36, 44].

PNP equations consist of Nernst–Planck (NP) equations that describe the drift and di↵usion of

ion species, and the Poisson equation that describes the electrostatic interaction. Such mean field

approximation of di↵usive ions admits several variants, and in non-dimensional form we consider

the following

@t⇢i = r · [Di(x) (r⇢i + zi⇢ir�)] , x 2 ⌦ ⇢ Rd, t > 0, (1.1a)

�r · (✏(x)r�) = f(x) +
sX

i=1

zi⇢i, (1.1b)

subject to initial data ⇢i(x, 0) = ⇢in
i
(x) � 0 (i = 1, · · · , s) and appropriate boundary conditions to

be specified in section 2. The equations are valid in a bounded domain ⌦ with boundary @⌦ and for

time t � 0. Here ⇢i = ⇢i(x, t) is the charge carrier density for the i-th species, and � = �(x, t) the

electrostatic potential. Di(x) is the di↵usion coe�cient, zi is the rescaled charge. In the Poisson

equation, ✏(x) is the permittivity, f(x) is the permanent (fixed) charge density of the system, s is

the number of species.

Due to the wide variety of devices modeled by the PNP equations, computer simulation for this

system of di↵erential equations is of great interest. However, the PNP system is a strongly coupled

system of nonlinear equations, also, the PNP system as a gradient flow can take very long time
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evolution to reach steady states. Hence, designing e�cient and stable numerical methods for the

PNP system remains an active area of research (see, e.g., [12, 30, 33, 35, 45,46]).

PNP system possesses two immediate properties: it preserves the non-negativity of ⇢i and

conserves total mass. Therefore, we can consider non-negative initial data with mass one, so that

the density is in the set of probability measures P(⌦) on ⌦. The third property is the dissipation

of the total energy, which can be expressed as follows. Given energy

E =

Z

⌦

✓ sX

i=1

⇢i log ⇢i +
1

2
(f +

sX

i=1

zi⇢i)�

◆
dx+B, (1.2)

with boundary correction term B, the NP equation (1.1a) can be written as

@t⇢i = r · (⇢iDi(x)r(�⇢iE)). (1.3)

Di↵erentiating the energy along solutions of the PNP system, one formally obtains the energy

dissipation along the gradient flow

dE

dt
= �

Z

⌦

sX

i=1

Di(x)⇢i|r(log ⇢i + zi�)|2dx  0,

which indicates that the solution evolves in the direction of steepest descent of the energy. This

property entails a characterization of the set of stationary states, and provides a useful tool to

study its stability. Numerical methods for (1.1) are desired to attain all three properties at the

discrete level, which are rather challenging.

1.1. Related work. The most common numerical approach is the direct discretization of (1.1)

using classical finite di↵erence, finite volume, finite element, or discontinuous Galerkin methods

[11, 12, 14–19, 29–33, 35, 39, 45, 46]. Such methods are explicit or semi-implicit in time, so the per

time computation is cheap. But it is often challenging to ensure both unconditional positivity

and discrete energy decay simultaneously. The nonlinearity also complicates the way to obtain

solutions when applying implicit or semi-implicit solvers.

Equation (1.3) with s = 1 and Di(x) = const reduces to the following scalar equation:

@t⇢ = r · (⇢r(�⇢E)). (1.4)

It is now well understood since the pioneering works of Otto [23, 41] that equations of the form

of (1.4) can be interpreted as the gradient flow with respect to the quadratic Wasserstein metric

W2(·, ·). Such flow stems from an initial density and evolves following the steepest decreasing

direction of a prescribed functional E. How to e�ciently solve a gradient flow remains an intriguing

question.

In contrast to the aforementioned direct PDE solvers, the minimizing movement scheme (see [1]

and the references therein) respects the fact that the trajectory aims at optimizing the energy decay.

With such a scheme, solutions of (1.4) are approximated by solving a sequence of minimization

problems,

⇢n+1 = argmin
⇢2K

⇢
1

2⌧
W 2

2 (⇢
n, ⇢) + E(⇢)

�
, ⇢0 = ⇢in(x), (1.5)
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often called Jordan-Kinderlehrer-Otto (JKO) scheme after [23], which defines a sequence {⇢n}
in the probability space K to approximate the solution ⇢(x, n⌧), where ⌧ > 0 is the time step.

Since ⇢n is in the probability space, thus method (1.5) is positivity and mass preserving. The fact

W2(⇢n, ⇢) � 0 ensures the energy dissipation for any ⌧ > 0. In light of the favorable properties of the

JKO scheme, there have been many works devoted to the computation of minimizers for problem

(1.5). The main numerical di�culties arise in approximating the Wasserstein distance, and di↵erent

approaches have been introduced to deal with this term; see, e.g., [7, 8, 24, 25, 38] for using the

Lagrangian numerical methods to approximate the Wasserstein distance, and [4,6,9,27,28,37,42]

for using the Eulerian numerical methods.

In our approach, we consider an Eulerian method based on Benamou-Brenier’s dynamic for-

mulation [3] and a second order spatial discretization. This reframes the problem as a convex

optimization problem with linear PDE constraints. The base formulation we use extends the one

in [26], with the goal here to obtain a faster numerical solver. The authors in [26] constructed the

JKO type scheme for a two species PNP system with constant coe�cient Di(x) = 1 and ✏(x) = 1.

The existence of the unique minimizer to the JKO scheme and convergence of the minimizer to the

weak solution of the PNP system have been established in [26]. There are a few novel ingredients

involved in our base variational formulation beyond that in [26]: (i) multi-species are considered,

and the evolution of their density are strongly coupled; (ii) the di↵usion-coe�cient Di(x) for each

species is varying in space, for which the underlying geodesic curve associated with the Wasser-

stein metric is rather complex, instead of straight lines; and (iii) the general Poisson equation is

dealt with as an additional linear constraint, instead of using the form of a compact expression

in terms of the Newton potential [26]. To use either the classical JKO scheme for (1.4) or our

formulation as a basis for numerical simulations of PNP systems, one must first develop a fully

discrete approximation of the minimization problem at each step of the scheme. The fully discrete

JKO-type scheme for the multi-species variable coe�cient PNP system on a bounded domain has

not been studied yet. This is what we aim to accomplish in this paper.

1.2. Contribution. In the general setting with mixed types of boundary conditions, we identify

a unified form of the total energy functional which is dissipating along the solution trajectories

(see sections 2.1-2.2). We also present (Theorem 2.2) lower energy bounds with coercivity for such

a functional. These provide a solid basis for our approach.

Our main contributions are:

• We construct aWasserstein-type distance and formulate a corresponding variational scheme.

The update at each scheme step reduces to solving a constrained minimization problem, for

which we prove unique solvability (Theorem 2.3). Three solution properties: mass conser-

vation, positivity, and energy dissipation are shown to be preserved in time (Theorem 2.4).

We should point out such beneficial properties from the W2 based approach has already

been recognized for a large class of gradient flows of form (1.4).

• We further convert the variational scheme into a dynamic formulation, which for vari-

able di↵usion coe�cients extends the classical Bennamou-Breiner formulation. To reduce

computational cost, we use a local approximation for the artificial time in the constraint
3



transport equation by a one step di↵erence and the integral in time by a one term quadra-

ture. Such treatment was recently proposed in [28] for the aggregation equation to avoid

the introduction on inner time stepping. Here we prove that the resulting minimization

problem is a first order time consistent scheme for the PNP system (Theorem 2.5), as is

expected.

• We present a fully discrete scheme – by coupling with a 2nd order finite di↵erence method.

The underlying principle for spatial discretization is to preserve the structure of Wasserstein

metric in the discrete sense. We further prove the unique solvability (Theorem 3.1) of the

fully-discrete scheme, exploiting the convexity property of the objective functional in a

constraint fashion.

• We prove that for any fixed time step and spatial meth sizes, density positivity will be prop-

agating over all time steps (Theorem 3.2). Such positivity-preserving property is proven by

taking advantage of the presence of ⇢ log ⇢ in the energy functional. For general aggregation

equations, this is not the case. Indeed, in work [28], Fisher information regularization is

added to enforce solution positivity for an aggregation equation.

• The fully-discrete minimization problem reduces to a convex optimization problem with lin-

ear constraints, and can be solved by e�cient optimization solvers. Our numerical tests are

conducted with a simple projected gradient algorithm. Compared to the usual primal-dual-

interior-penalty (PDIP) algorithm [40], our method is both robust and e�cient– mainly

because positivity is rigorously proven to hold without a restriction on time steps.

• Numerical results are provided to demonstrate the superior performance of the proposed

method.

1.3. Organization. The paper is organized as follows. In the next section, we provide necessary

background on the dynamical formulation of the PNP system, main solution properties and its

relation with Wasserstein gradient flows. We then derive the semi-discrete scheme. In Section 3,

we introduce a fully discrete scheme and study the properties of this scheme. Numerical algorithms

are given in Section 4. Numerical results are provided in Section 5, and the paper is concluded in

Section 6.

Notation. We use [n] to denote {1, 2, · · · , n} for any integer n. For vector � (fully discrete case),

its amplitude is denoted by |�|. For function �, k�k is its L2 norm.

2. Model background and semi-discretization

In this section we briefly review the model setup and the corresponding Wasserstein gradient

flow.

2.1. Boundary conditions. Boundary conditions are a critical component of the PNP model

and determine important qualitative behaviors of the solution. Let ⌦ be a bounded domain with

Lipschitz boundary @⌦. We use the no-flux boundary condition for the NP equations, i.e.,

Di(x) (r⇢i + zi⇢ir�) · n = 0, x 2 @⌦, i = 1, · · · , s. (2.1)

Here, n is the outer unit normal at the boundary point x 2 @⌦.
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The external electrostatic potential � is influenced by applied potential, which can be modeled

by prescribing a boundary condition. Here we consider a general form of boundary conditions:

↵�+ �✏(x)
@�

@n
= �b, x 2 @⌦. (2.2)

Here ↵, � are physical parameters such that ↵ · � � 0, and �b = �b(x, t) is a given function. With

such setup, we are to solve the following initial-boundary value problem:
8
>>>>><

>>>>>:

@t⇢i = r · [Di(x) (r⇢i + zi⇢ir�)] , x 2 ⌦, t > 0, i = 1, · · · , s,
�r · (✏(x)r�) = f(x) +

P
s

i=1 zi⇢i, x 2 ⌦, t > 0,

⇢i(x, 0) = ⇢in
i
(x) � 0, x 2 ⌦, i = 1, · · · , s,

(Di(x) (r⇢i + zi⇢ir�)) · n = 0, x 2 @⌦, t > 0, i = 1, · · · , s,
↵�+ �✏(x) @�

@n = �b, x 2 @⌦, t > 0.

(2.3)

Remark 2.1. (2.2) includes three typical forms: (i) the Robin boundary condition (↵ = 1, � > 0)

models a capacitor [14], (ii) the Dirichlet boundary condition (↵ = 1, � = 0) models an applied

voltage, and (iii) the Neumann boundary condition (↵ = 0, � = 1) models surface changes. The

case of pure Neumann boundary conditions requires the compatibility condition

Z

⌦

 
f(x) +

sX

i=1

zi⇢
in

i

!
dx+

Z

@⌦

✏(x)�bds = 0, (2.4)

and an additional constraint such as
R
⌦ �(x, t)dx = 0 so that � is uniquely defined.

Any combination of these three types can be applied to � on a disjoint partition of the boundary.

In what follows, we set

@⌦ = �D [ �N [ �R,

and on each part, one type of boundary condition is imposed, i.e.,

↵ =

8
>><

>>:

1, on �D,

0, on �N ,

1, on �R,

� =

8
>><

>>:

0, on �D,

1, on �N ,

�R, on �R,

�b =

8
>><

>>:

�b

D
, on �D,

�b

N
, on �N ,

�b

R
, on �R.

The existence and uniqueness of the solution for the nonlinear PNP boundary value problems with

di↵erent boundary conditions have been studied in [22, 34, 43] for the 1D case and in [5, 21] for

multi-dimensions.

2.2. Energy functional: dissipation and coercivity. In the presence of homogeneous bound-

ary conditions on �, i.e., �b = 0, the PNP system is energetically closed in the sense that the free

energy functional associated to (1.1) is of form

E0 =

Z

⌦

✓ sX

i=1

⇢i log ⇢i +
1

2
(f +

sX

i=1

zi⇢i)�

◆
dx, (2.5)

which along solution trajectories is dissipating in time. For general boundary conditions with

�b 6= 0, we need to modify the energy so that it is still dissipating along the solution of the PNP
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system. To this end, we di↵erentiate (2.5) along the solution of (1.1), with integration by parts

using (2.1), we have

d

dt
E0(⇢,�)(t) = �

Z

⌦

sX

i=1

Di(x)⇢i|r(log ⇢i + zi�)|2dx+
1

2

Z

@⌦

✏(x) [�(@n�)t � (@n�)�t] ds.

Assume that �b does not depend on time, then ↵�t + �✏(x)@n�t = 0 on @⌦, this allows us to

express the last term as

1

2

d

dt

Z

�D

✏(x)�b

D
@n�ds�

Z

�N

�b

N
�ds� 1

�R

Z

�R

�b

R
�ds

�
.

Thus the modified total energy functional can be taken as

E = E0 �
1

2

Z

�D

✏(x)�b

D
@n�ds�

Z

�N

�b

N
�ds� 1

�R

Z

�R

�b

R
�ds

�
. (2.6)

Using the Poisson equation, the total energy can be rewritten as

E(⇢,�) =

Z

⌦

✓ sX

i=1

⇢i log ⇢i +
1

2
✏(x)|r�|2

◆
dx�

Z

�D

✏(x)�b

D
@n�ds+

1

2�R

Z

�R

|�|2ds. (2.7)

Proposition 2.1. Assume that �b does not depend on time, then the extended energy functional

(2.7) satisfies

d

dt
E(⇢,�)(t) = �

Z

⌦

sX

i=1

Di(x)⇢i|r(log ⇢i + zi�)|2dx  0, t > 0, (2.8)

along the solution of (1.1).

Recall that on �D, the usual strategy for analysis is to transform it to the case with zero boundary

value for �. This way the modified energy would include an additional term called the external

potential energy. For simplicity, we take �b

D
= 0, so that we have the following result.

Theorem 2.2. (Lower bound and coercivity of E ) Let ⌦ be an open, bounded Lipschitz domain,

and �b be independent of time with �b

D
= 0, �R > 0, and ✏(x) � a > 0. Then the energy of form

E(⇢,�) =

Z

⌦

✓ sX

i=1

⇢i log ⇢i +
1

2
✏(x)|r�|2

◆
dx+

1

2�R

Z

�R

�2ds (2.9)

is bounded from below. Moreover, there exist constants c0, c1 > 0 such that

E(⇢,�) � c0k�k2H1 � c1. (2.10)

Proof. For ⇢i � 0, we have
R
⌦

P
s

i=1 ⇢i log(⇢i) � �s|⌦|/e =: �c1. For the �-dependent part in E,

we argue for all possible cases. For �D 6= ; we have �b

D
= 0; for purely Neumann’s condition we

have the additional condition
R
⌦ �(x)dx = 0, in either case we can apply the Poincaré inequality

or the Poincaré–Wirtinger inequality to conclude

k�k2
L2  c⇤kr�k2

L2

with constant c⇤ depending on the geometry of ⌦, hence

E � �c1 +
a

2
kr�k2

L2 � c0k�k2H1 � c1, c0 =
a

4
min{1, 1

c⇤
}.
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For the case @⌦ = �R [ �N with �R 6= ;, we have

E(⇢,�) � 1

2
min{a, ��1

R
}Ẽ � c1

with Ẽ(�) :=
R
⌦ |r�|2dx+

R
@⌦ |�|2ds. We claim that

Ẽ(�) � ck�k2
H1 for some c > 0,

which can be proved with a contradiction argument. Since otherwise we can assume Ẽ(�n) <
1
n
k�nk2H1 . Set wn = �n/k�nkH1 , then wn 2 H1(⌦) with

kwnkH1 = 1 and krwnk2L2 < 1/n.

By the Rellich-Kondrachov theorem, we can extract a subsequence {wnk
} weakly converging to w

in H1(⌦) with rwnk
! 0 weakly in L2(⌦). This allows us to conclude w 2 H1, and rw = 0.

From
R
�R

|wnk
|2ds < 1/nk and

kwkL2(�R)  kwnk
kL2(�R) + kwnk

� wkL2(�R)  1/
p
nk + Ckw � wnk

kH1 ,

we obtain w = 0 on �R. Hence w = 0 a.e., this is a contradiction. We complete this case by taking

c0 =
c

2 min{a, ��1
R

}. ⇤

2.3. Wasserstein distance and JKO scheme for multi-density. In order to derive a vari-

ational scheme for the PNP system with multi-density, we need to introduce a Wasserstein-type

distance. Motivated by the well-known characterization of the Wasserstein distance in a one-

component fluid obtained by Benamou-Brenier [3], we consider to minimize a joint functional over

the set
K : = {⇢ = (⇢1, · · · , ⇢s), u = (u1, · · · , us) :

@t⇢i +r · (⇢iui) = 0, (⇢iui) · n = 0 on @⌦⇥ [0, 1],

⇢i 2 P(⌦), ⇢i(x, 0) = ⇢0
i
(x), ⇢i(x, 1) = ⇢1

i
(x)}.

(2.11)

For the PNP system of two species s = 2 with Di(x) = 1 and ✏(x) = 1 considered in [26], the

distance inherited from the 2-Wasserstein distance is defined by

d2(⇢0, ⇢1) =
2X

i=1

W 2
2 (⇢

0
i
, ⇢1

i
).

This is equivalent to the minimization of the joint functional:

d2(⇢0, ⇢1) := min
(⇢,u)2K

2X

i=1

Z 1

0

Z

⌦

|ui|2⇢idxdt. (2.12)

Here t is an artificial time and serves to characterize the optimal curve in the density space.

Following [23], the authors in [26] constructed the following JKO scheme: Given a time step ⌧ , the

scheme defines a sequence ⇢n as

⇢0 = ⇢in, ⇢n+1 = arg min
⇢2[P(⌦)]2

⇢
1

2⌧
d2(⇢n, ⇢) + E(⇢)

�
. (2.13)

Here E is the total free energy, d2 is the (squared) distance on the product space as defined in

(2.12). One of the challenges in this program lies in handling the coupling terms, some intrinsic
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di�culties arise due to both the specific Poisson kernel and the system setting. Note that in [26]

with ✏(x) = 1, the electrostatic potential � in E(⇢,�) is replaced by

�[⇢] = N ⇤ (f +
2X

i=1

zi⇢i), x 2 ⌦,

so that E(⇢) = E(⇢,�[⇢]). Here the kernel N ⇠ C/|x|d�2 serves as a counterpart of the Green’s

function for the Newton potential in Rd. Even with this treatment derivation of the corresponding

Euler–Lagrange equations is quite delicate. We refer to [26] for further details.

In order to extend the above JKO-type scheme to the present setting, we face two new di�culties:

(i) Di(x) is no longer a constant, the kinetic energy corresponding to the squared distance cost

needs to be modified; (ii) ✏(x) is a general non-negative function, � cannot be expressed explicitly

in terms of ⇢. As for (i), we follow [20] and consider a modified functional

d2(⇢0, ⇢1) := min
(⇢,u)2K

sX

i=1

Z 1

0

Z

⌦

D�1
i
|ui|2⇢idxdt. (2.14)

As for (ii), the Poisson equation is treated as a constraint in the resulting minimization problem.

For ease of presentation we define

A :=

(
(⇢,�) : �r · (✏(x)r�) = f(x) +

sX

i=1

zi⇢i, ↵�+ �
@�

@n
= �b, x 2 @⌦, ⇢ 2 [P(⌦)]s

)
.

(2.15)

For fixed ⇢⇤ 2 [P(⌦)]s, and time step ⌧ > 0 we set

G⌧ (⇢,�) =
1

2⌧
d2(⇢⇤, ⇢) + E(⇢,�), (⇢,�) 2 A. (2.16)

In order to define a discrete sequence of approximate solutions using the minimizing scheme, we

present a result on the existence of minimizers of G⌧ . To establish the uniqueness, we now prepare

a technical lemma, with (iii) to be used later in the proof of Theorem 3.1.

Lemma 2.1. Given X0, X1, let X(✓) = ✓X0 + (1� ✓)X1 for any ✓ 2 (0, 1).

(i) If X0, X1 are vectors, then

|X(✓)|2 � ✓|X0|2 � (1� ✓)|X1|2 = �✓(1� ✓)|X1 �X0|2. (2.17)

(ii) If X0 > 0, X1 > 0 are scalars, then

X(✓) logX(✓)� ✓X0 logX0 � (1� ✓)X1 logX1 = �✓(1� ✓)(X1 �X0)2g(X0, X1; ✓), (2.18)

for some positive function g depending on X0, X1 and ✓.

(iii) If X0 > 0, X1 > 0, Y 0, Y 1 are scalars, then

(Y (✓))2

X(✓)
� ✓

(Y 0)2

X0
� (1� ✓)

(Y 1)2

X1
= �✓(1� ✓)

(X1Y 0 �X0Y 1)2

X0X1X(✓)
. (2.19)

Proof. We only prove (ii); for (i) and (iii) can be verified by a direct calculation. Note that

X(✓) logX(✓) = ✓X0 log(X(✓)) + (1� ✓)X1 log(X(✓)). (2.20)
8



Taylor’s expansion of log(X(✓) at X0 and X1, respectively, gives

log(✓X0 + (1� ✓)X1) = log(X0) +
1

X0
(1� ✓)(X0 �X1)� (1� ✓)2(X1 �X0)2

(X̃0)2
,

where X̃0 in between X0 and X(✓), and

log(✓X0 + (1� ✓)X1) = log(X1) +
1

X1
+ ✓(X1 �X0)� ✓2(X1 �X0)2

(X̃1)2
,

where X̃1 in between X1 and X(✓). Substituting these into the right hand side of (2.20) leads to

X(✓) logX(✓) =✓X0 logX0 � ✓(1� ✓)2
X0

(X̃0)2
(X1 �X0)2

+ (1� ✓)X1 logX1 � ✓2(1� ✓)
X1

(X̃1)2
(X1 �X0)2,

this completes the proof of (ii) by defining g(X0, X1, ✓) = (1�✓)X0

(X̃0)2
+ ✓X

1

(X̃1)2
> 0. ⇤

Theorem 2.3. (Existence of minimizers) Fix ⌧ > 0, and ⇢⇤ 2 [P(⌦)]s. Then the functional G⌧ (⇢,�)

admits a unique minimizer on A.

Proof. By Theorem 2.2, G⌧ is bounded from below on A, hence there is a minimizing sequence

(⇢k,�k) and ⇢k is tight and uniformly integrable. By the Dunford–Pettis Theorem one may extract a

subsequence such that ⇢k ! ⇢ in L1(⌦), which together with ⇢k 2 [P(⌦)]s ensure that ⇢ 2 [P(⌦)]s.

In addition, E(⇢, ·) is also coercive in � because of (2.10), i.e.,

E(⇢,�) � c0k�k21 � c1.

Hence one may extract a subsequence such that �k ! � weakly in H1(⌦). The weak L1 lower semi-

continuity (l.s.c.) of the squared Wasserstein distance can be easily adapted to the present case.

The lower semicontinuity of E with respect to weak convergence can be seen from the following

inequality

E(⇢k,�k) � E(⇢,�) +

Z

⌦

"
sX

i=1

ln⇢i(⇢
k

i
� ⇢i) + ✏(x)r� · (r�k �r�)

#
dx+

↵

�

Z

@⌦

�(�k � �)ds.

Putting all these together we claim that the limit is a minimizer.

Finally, the uniqueness comes from the fact that the admissible set A is convex w.r.t. linear

interpolation and that the total free energy is jointly strictly convex in (⇢,�) on A. More precisely,

we argue as follows. Let ✓ 2 (0, 1), then ⇢(✓) = ✓⇢0 + (1 � ✓)⇢1 is a convex linear combination

for ⇢0 and ⇢1. Let �0 and �1 be obtained from the Possion equation, corresponding to ⇢0 and

⇢1, respectively. Then �(✓) = ✓�0 + (1 � ✓)�1 must be the solution to the Poisson equation

corresponding to ⇢(✓). For the energy of form (2.9), we evaluate E(⇢(✓),�(✓)) term by term to

determine whether it is strictly convex. Using (2.18) for ⇢l
i
= X l and (2.17) for X l = r�l in ⌦,

and (2.17) for X l = �l on �R, respectively, we obtain

E(⇢(✓),�(✓))� ✓E(⇢0,�0)� (1� ✓)E(⇢1,�1) = �✓(1� ✓)I

9



with

I =

Z

⌦

✓ sX

i=1

(⇢1
i
� ⇢0

i
)2g(⇢0

i
, ⇢1

i
; ✓) +

1

2
✏(x)|r(�1 � �0)|2

◆
dx+

1

2�R

Z

�R

(�1 � �0)2ds.

Convexity of E follows from I � 0. Actually this inequality is strict, unless ⇢0 = ⇢1,�0 = �1, which

can be derived from letting I = 0. Hence E(⇢,�) is strictly convex under two linear constraints. ⇤

We are now ready to present a variational scheme formulation – a JKO-type scheme for (2.3):

given time step ⌧ > 0, recursively we define a sequence {⇢n,�n} by

⇢0 = ⇢in, (⇢n+1,�n+1) = arg min
(⇢,�)2A

⇢
1

2⌧
d2(⇢n, ⇢) + E(⇢,�)

�
. (2.21)

Theorem 2.4. (Solution properties of scheme (2.21) )

(i) (Probability-preserving) If ⇢n 2 [P(⌦)]s, so is ⇢n+1;

(ii) (Unconditionally energy stability) the inequality

E(⇢n+1,�n+1) +
1

2⌧
d2(⇢n, ⇢n+1)  E(⇢n,�n)

holds for any n � 0. Furthermore,
1X

n=0

d2(⇢n, ⇢n+1)  2⌧(E(⇢0,�0)� inf
(⇢,�)2A

E(⇢,�)). (2.22)

Proof. (i) The constraint A ensures that ⇢n 2 [P(⌦)]s which is inherited from initial data; namely

the method is both positivity and mass preserving.

(ii) From the definition of the minimizer, it follows

E(⇢n+1,�n+1) +
1

2⌧
d2(⇢n, ⇢n+1)  E(⇢n,�n).

Here we used d2(⇢, ⇢) = 0 for any ⇢ 2 [P(⌦)]s. Finally, summation over n yields (2.22). ⇤

These properties in Theorem 2.4 are highly desirable for PNP systems, yet quite di�cult to

achieve by other methods without a restriction on time steps. But these properties are quite

natural for W2 based approach, and easy to verify as long as the involved optimization step is

well-posed.

2.4. Semi-discrete JKO scheme. We proceed to obtain a computable formulation. Let mi =

⇢iui, the dynamic formulation of the distance d2(·, ·) in (2.21) can be expressed as: given ⇢n(x),

we have

(⇢n+1,�n+1) = arg min
(⇢,�)2A,m

(
1

2⌧

sX

i=1

Z 1

0

Z

⌦

F (⇢i,mi)D
�1
i
dxdt+ E(⇢(·, 1),�(·, 1))

)
,

s.t. @t⇢i +r · (mi) = 0, mi · n = 0, x 2 @⌦, ⇢(x, 0) = ⇢n.

(2.23)

Here t is an artificial time, and

F (⇢i,mi) =

8
><

>:

|mi|2
⇢i

if ⇢i > 0,

0 if (⇢i,mi) = (0, 0),

+1 otherwise.
10



The use of mi has enhanced the functional convexity in mi and made the transport constraint

linear (see Breiner [3]), yet causing di�culties for solutions near ⇢i = 0. We shall prove for the

fully discrete case positivity of ⇢n
i
is preserved for all n. Another computational overhead with

(2.23) is dealing with the artificial time t 2 [0, 1] which is induced by the optimal transport flow. To

overcome this issue, we follow [28] with a local approximation in the artificial time : approximate

the derivative in t in the constraint transport equation by a one step di↵erence and the integral in

time in the objective function by a one term quadrature. We thus obtain the following scheme:

(⇢n+1,�n+1) = arg min
(⇢,�)2A,m

(
1

2⌧

sX

i=1

Z

⌦

F (⇢i,mi)D
�1
i
dx+ E(⇢,�)

)
,

s.t. ⇢i � ⇢n
i
+r · (mi) = 0, mi · n = 0, x 2 @⌦.

(2.24)

Theorem 2.5. The positive minimizer of the variational problem (2.24) is a first-order time consis-

tent scheme for the PNP system.

Proof. Let (2.24) admit a minimizer with ⇢ > 0. We can derive optimal conditions by the Lagrange

multiplier method. Define the Lagrangian as

L(⇢,�,m, v, ⇠) :=
1

2⌧

sX

i=1

Z

⌦

F (⇢i,mi)D
�1
i
dx+ E(⇢,�) +

Z

@⌦

⇠(↵�+ �@n�� �b)ds

+
sX

i=1

Z

⌦

vi(⇢i � ⇢n
i
+r ·mi)dx+

Z

⌦

vs+1(f +
sX

i=1

zi⇢i +r · (✏(x)r�))dx.

The optimality conditions for x 2 ⌦ are

�L

�⇢i
= 0 implies � 1

2⌧

||mi||2

⇢2
i

D�1
i

+ log(⇢i) + 1 +
1

2
zi�+ vi + zivs+1 = 0, i = 1, · · · , s,

�L

��
= 0 implies

1

2
(f +

sX

i=1

zi⇢i) +r · (✏(x)rvs+1) = 0,

�L

�mi

= 0 implies
1

⌧

mi

⇢i
D�1

i
�r · vi = 0, i = 1, · · · , s,

�L

�vi
= 0 implies ⇢i � ⇢n

i
+r ·mi = 0, i = 1, · · · , s,

�L

�vs+1
= 0 implies f +

sX

i=1

zi⇢i +r · (✏(x)r�) = 0.

For x 2 ⌦, we thus have

vi =
1

2⌧

||mi||2

⇢2
i

D�1
i

� log(⇢i)� 1� 1

2
zi�� zivs+1, mi = ⌧Di⇢irvi

and

r · (✏(x)rvs+1) =
1

2
r · (✏(x)r�).

On @⌦, from integrating by parts in calculating �L there remain the following boundary terms
Z

@⌦

✏(x)�(@n�)vs+1ds�
Z

@⌦

✏(x)��@nvs+1ds+

Z

@⌦

vi�mi · nds,
11



where the last term vanishes due to the constraint mi · n = 0. In addition, we need also consider

terms arising from

�B + �

Z

@⌦

⇠(↵�+ �@n�� �b)ds.

Upon careful regrouping, we have two cases to distinguish:

(i) for � 6= 0, the correction term B in the energy (1.2) is given by

B =
1

2�

Z

@⌦

�b�ds.

We obtain

✏(x)vs+1 + �✏(x)⇠ = 0, �✏(x)@nvs+1 + ↵⇠ +
1

2�
�b = 0, on @⌦;

(ii) For � = 0,

The correction term B in the energy (1.2) is given by

B = � 1

2↵

Z

@⌦

✏(x)�b@n�ds.

from which we have

✏(x)vs+1 �
1

2↵
✏(x)�b + �⇠ = 0, �✏(x)@nvs+1 + ↵⇠ = 0, on @⌦.

These ensure that we always have

↵vs+1 + �@nvs+1 =
1

2
�b on @⌦.

Take  = 1
2�� vs+1 we have

r · (✏(x)r ) = 0, x 2 ⌦;↵ + �@n = 0 on @⌦.

By the uniqueness of the Poisson problem we conclude  ⌘ 0 or  = cost if ↵ = 0, i.e.,

vs+1 ⌘
1

2
�+ cost.

Combing the above we have the following update

⇢i = ⇢n
i
+ ⌧r · (Di⇢ir(log(⇢i) + zi�)) +O(⌧ 2).

This says scheme (2.24) is a first order time discretization of the PNP system (2.3). ⇤

Remark 2.2. A natural question arises: is the discrete transport still preserves positivity of ⇢i. We

shall address this issue for the fully discrete scheme, for which positivity propagation is rigorously

established in Theorem 3.2.

3. Numerical method

In this section, we detail the spatial discretization. The underlying principle for spatial dis-

cretization is to preserve the structure of Wasserstein metric tensor in the discrete sense.
12



3.1. Spatial discretization. We only consider the discretization in one dimensional setting. Let

⌦ = [a, b] be the computational domain partitioned into N cells Ij = [x
j� 1

2
, x

j+ 1
2
], with mesh

size h = (b � a)/N and cell center at xj = x
j� 1

2
+ 1

2h, j 2 {1, 2, · · · , N}. Let numerical solution

be {�j}Nj=1, {⇢ij}Nj=1, and {mi,j+1/2}N�1
j=1 on two grids xj and xj+1/2, respectively. We define the

di↵erence operator by

(Dhv)j+1/2 :=
vj+1 � vj

h
, (dhv)j =

vj+1/2 � vj�1/2

h

and average operator by

v̂j =
vj+1/2 + vj�1/2

2
.

We also use ✏j+1/2 = ✏(xj+1/2), fj = f(xj), and Dij = Di(xj).

The transport constraint is discretized with central di↵erence in space as follows:

⇢ij � ⇢n
ij
+ dh(mi)j = 0, (3.1)

and the zero boundary conditions mi,1/2 = mi,N+1/2 = 0 are applied.

For the Possion equation, we consider the Robin boundary condition at both ends, other types

of boundary conditions can be handled in same fashion. We introduce two ghost values �0 and

�N+1 for conveniently approximating the boundary condition (2.2) with center di↵erences:

�0 + �1

2
� �a✏(a)

�1 � �0

h
= �b(a),

�N+1 + �N

2
+ �b✏(b)

�N+1 � �N

h
= �b(b). (3.2)

This together with the center di↵erence approximation of the Poisson equation gives a coupled

linear system:
(h+ 2�a✏(a))�0 + (h� 2�a✏(a))�1 � 2h�b(a) = 0,

� dh(✏Dh�)j � fj �
sX

i=1

zi⇢ij = 0, j = 1, · · · , N,

(h� 2�b✏(b))�N + (h+ 2�b✏(b))�N+1 � 2h�b(b) = 0.

(3.3)

We denote such linear constraint by Lh(�, ⇢) = 0. The objective function then writes as

Fh(⇢,m,�) =
h

2⌧

NX

j=1

sX

i=1

m̂2
i,j

⇢i,j
D�1

i,j
+ h

NX

j=1

 
sX

i=1

⇢i,j log ⇢i,j +
✏j
8h2

(�j+1 � �j�1)
2

!

+
1

8�a
(�0 + �1)

2 +
1

8�b
(�N + �N+1)

2,

(3.4)

which is a second order spatial approximation of the objective functional in (2.24).

To formulate an admissible set for the discrete minimization problem, let the discrete probability

distribution set be: for � > 0

Ph,� =

(
(⇢1, · · · , ⇢N) : ⇢j � �, h

NX

j=1

⇢j = 1

)
.

Then the constraint set for (⇢,�) becomes

Ah,� = {(⇢,�) : ⇢ 2 [Ph,�]
s, Lh(�, ⇢) = 0}.

13



Thus the admissible set for all (⇢,m,�) collectively can be written as

V n

h,�
= {(⇢,m,�) : ⇢ij � ⇢n

ij
+ dh(mi)j = 0, (⇢,�) 2 Ah,�}

with mi,1/2 = mi,N+1/2 = 0. Thus we have

V n

h,�
⇢ Rs(2N�1)+N+2.

The one time update with the fully discrete scheme is to find

⇢n+1 = arg min
u2V n

h,�

⇢
Fh(u)

�
, u := (⇢,m,�). (3.5)

Theorem 3.1. (Unique solvability) Fix ⌧ > 0, h > 0 and {⇢n
i
2 Ph,�}si=1 for some � > 0. Then the

function Fh(⇢,m,�) admits a unique minimizer in V n

h,�
⇢ Rs(2N�1)+N+2.

Proof. The proof proceeds in two steps:

Step 1 (Admissible set is non-empty and convex) The conservative form of the transport constraint

ensures that we always have

h
NX

j=1

⇢ij = 1 i 2 [s].

For fixed � > 0, take ⇢ij � �, we can uniquely determine m by

mi,j+1/2 =
1

h

jX

l=1

(⇢il � ⇢n
il
), (3.6)

for j = 1, · · · , N�1. From the linear system L(� , ⇢) = 0 we obtain a unique � = (�0, · · · ,�N+1) in

terms of fj and ⇢ij � �, since its coe�cient matrix is tridiagonal, and diagonally dominated. Hence

the admissible set V n

h,�
is non-empty. The fact that both the transport constraint and L(�, ⇢) = 0

are linear implies that the set V n

h,�
is convex in Rs(2N�1)+N+2.

Step 2 (Objective function is strictly convex under constraints)

With u = (⇢,m,�), for any u0, u1 2 Vh,� and ✓ 2 (0, 1), u(✓) = ✓u0 + (1 � ✓)u1 is a convex linear

combination of u0 and u1. In addition, as argued in the proof of Theorem 2.3, we have u(✓) 2 Vh,�.

We now show the convexity of Fh(u) by directly calculating

Fh(u(✓))� ✓Fh(u
0))� (1� ✓)Fh(u

1) = �✓(1� ✓)(I1 + I2 + I3),

where applying Lemma 2.1 to each term Ii, we have

I1 =
h

2⌧

sX

i=1

NX

j=1

(⇢1
i,j
m̂0

i,j
� ⇢0

i,j
m̂1

i,j
)2

⇢0
i,j
⇢1
i,j
⇢(✓)i,j

� 0, by (iii) of Lemma 2.1

I2 =h
sX

i=1

NX

j=1

gi,j(⇢
0
i,j
, ⇢1

i,j
, ✓)(⇢0

i,j
� ⇢1

i,j
)2 � 0, by (ii) of Lemma 2.1

I3 =
1

8h

NX

j=1

✏j[(�
0
j+1 � �0

j�1)� (�1
j+1 � �1

j�1)]
2 by (i) of Lemma 2.1

+
1

8�a
[(�0

0 + �0
1)� (�1

0 + �1
1)]

2 +
1

8�b
[(�0

N
+ �0

N+1)� (�1
N
+ �1

N+1)]
2 � 0.

14



Convexity of Fh follows from I1+ I2+ I3 � 0. To establish strictly convexity we only need to show

I1 + I2 + I3 = 0 must lead to u0 = u1. We argue as follows.

Clearly the equality holds only when I1 = I2 = I3 = 0. From I2 = 0 it follows ⇢0 = ⇢1. This

when combined with I1 = 0 implies m̂0
i,j

= m̂1
i,j
, which together with ml

i,1/2 = ml

i,N+1/2 = 0 yields

m0 = m1. Finally we show �0 = �1 must also hold. Set ⇠j = �0
j
� �1

j
for j = 0, · · · , N + 1, then

I3 = 0 corresponds to the system of linear equations ⇠0+⇠1 = 0, ⇠N +⇠N+1 = 0 and ⇠j+1�⇠j�1 = 0,

for j = 1, · · · , N . This obviously admits non-zero solutions. From the constraint for � near the

boundary we have

�0
0 + �0

1 = 2�b(a) +
�a
h
✏(a)(�0

1 � �0
0), �1

0 + �1
1 = 2�b(a) +

�a
h
✏(a)(�1

1 � �1
0),

this implies ⇠0+ ⇠1 =
�a

h
✏(a)(⇠1� ⇠0). Using also ⇠0+ ⇠1 = 0, we can conclude ⇠0 = · · · = ⇠N+1 = 0,

therefore �0 = �1. Hence Fh(u) is strictly convex on Vh,�. ⇤

The last issue is to find a threshold for � so to ensure that solution positivity for the PNP system

is propagated at all time steps.

Theorem 3.2. (Positivity propagation) There exists �0 > 0 such that the minimizer does not touch

the boundary of V n

h,�
for all 0 < �  �0. This implies that ⇢n > 0 for all n > 0 as long as ⇢0 > 0.

Proof. We use a contradiction argument: suppose there exists a minimizer u⇤ to the optimization

problem (3.5) touching the boundary of V n

h,�
at some grid points j1 < · · · < jk with 1  k  N � 1

for ⇢i, that is

⇢⇤
i,j1

= · · · = ⇢⇤
i,jk

= �.

From h
P

N

j=1 ⇢
⇤
i,j

= 1, we see that � < 1
b�a

. Since Fh is convex and di↵erentiable, we only need to

find u 2 Ah,� such that

rFh(u
⇤) · (u� u⇤) < 0. (3.7)

Note that both m and � can be uniquely determined by ⇢ from the constraints, it su�ces to

first choose ⇢ and then express all components of u in terms of ⇢. Let ⇢⇤
i,jk+1

be the maximum

component in vector ⇢⇤
i
, using h

P
N

j=1 ⇢
⇤
i,j

= 1 we thus have

1

b� a
< ⇢⇤

i,jk+1
<

1

h
=

N

b� a
. (3.8)

Without loss of generality, we assume jk+1 > jk, and

⇢⇤
i,j

� � + rp(h), jp < j < jp+1, p = 1, · · · , k, (3.9)

where rp(0) = 0 and rp(h) > 0 for h > 0 small. This can be justified by approximation for

su�ciently small h. Fix h > 0, we take for 0 < � < 1
k
( 1
b�a

� �),

⇢l,j =

8
><

>:

� + �, l = i, j = j1, · · · , jk,
⇢⇤
i,jk+1

� �k, l = i, j = jk+1,

⇢⇤
l,j
, else.
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Hence ũ = u� u⇤ can be determined by

⇢̃l,j = ⇢l,j � ⇢⇤
lj
=

8
><

>:

�, l = i, j = j1, · · · , jk,
��k, l = i, j = jk+1,

0, else.

Using m̃ = m�m⇤ and formula (3.6) for both m and m⇤, we have

m̃l,j+1/2 =
1

h

jX

p=1

⇢̃l,p =

(
1
h
bj�, l = i, j1  j  jk+1 � 1,

0, else,
(3.10)

for 0  bj  k. Hence

0  ˆ̃mi,j 
k�

h
, j1  j  jk+1.

For �̃ = �� �⇤, using (3.3) for both � and �⇤, we obtain A�̃ = [0, zih2⇢̃i, 0]>, where the coe�cient

matrix A is non-singular, more precisely, �̃ solves

(h+ 2�a✏(a))�̃0 + (h� 2�a✏(a))�̃1 = 0,

� ✏j�1/2�̃j�1 + 2✏̂j�̃j � ✏j+1/2�̃j+1 = h2zi⇢̃i,j j = 1, · · · , N,

(h� 2�b✏(b))�̃N + (h+ 2�b✏(b))�̃N+1 = 0.

The solution of this linear system can be expressed as

�̃l = �h2(cl � kdl)zi, l = 0, 1, · · · , N + 1

for some cl, dl depending on the coe�cients in the above system. The above preparation yields

rFh(u
⇤) · (u� u⇤) = rFh(u

⇤) · ũ

=
sX

l=1

NX

j=1

@⇢l,jFh(u
⇤)⇢̃l,j +

sX

l=1

N�1X

j=1

@ml,j+1/2
Fh(u

⇤)m̃l,j+1/2 +
N+1X

j=0

@�jFh(u
⇤)�̃j

= �

"
kX

p=1

@⇢i,jpFh(u
⇤)� k@⇢i,jk+1

Fh(u
⇤)

#
+

jk+1�1X

j=j1

@mi,j+1/2
Fh(u

⇤)m̃i,j+1/2 +
N+1X

j=0

@�jFh(u
⇤)�̃j

=: I1 + I2 + I3.

In order to estimate I1, I2, I3 we also need to bound u⇤ in terms of ⇢⇤. From (3.6) and (3.8) we

have

|m⇤
i,j+1/2| 

1

h

jX

l=1

⇢⇤
il
 Nj

(b� a)h
) |m̂⇤

i,j
|  N2

(b� a)h
= Nh�2.

For �⇤ satisfying A�⇤ = h[2�b(a), h(f +
P

s

i=1 zi⇢
⇤
i
), 2�b(b)]>, we have

|�⇤|  h|A�1|[2�b(a), h(f +
sX

i=1

zi⇢
⇤
i
), 2�b(b)]>| =: C⇤

�
.

We proceed as follows: from the definition of the objective function

Fh(u) =
h

2⌧

NX

j=1

sX

i=1

m̂2
i,j

⇢i,j
D�1

i,j
+ h

NX

j=1

 
sX

i=1

⇢i,j log ⇢i,j +
✏j
8h2

(�j+1 � �j�1)
2

!
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+
1

8�a
(�0 + �1)

2 +
1

8�b
(�N + �N+1)

2,

given in (3.4) we have

I1 = �
kX

p=1

"
� h

2⌧
·
(m̂⇤

i,jp
)2

(⇢⇤
i,jp

)2
D�1

i,jp
+ h(1 + log ⇢⇤

i,jp
)

#
� �k

"
� h

2⌧
·
(m̂⇤

i,jk+1
)2

(⇢⇤
i,jk+1

)2
D�1

i,jk+1
+ h(1 + log ⇢⇤

i,jk+1
)

#

= � �h

2⌧�2

kX

p=1

(m̂⇤
i,jp

)2D�1
i,jp

+ �hklog� +
�kh

2⌧

(m̂⇤
i,jk+1

)2

(⇢⇤
i,jk+1

)2
D�1

i,jk+1
� �hklog⇢⇤

i,jk+1

 � �h

2⌧�2

kX

p=1

(m̂⇤
i,jp

)2D�1
i,jp

+ �hklog� +
�kN4

2⌧h
D�1

i,jk+1
+ �hklog(b� a)

= � �h

2⌧�2

kX

p=1

(m̂⇤
i,jp

)2D�1
i,jp

+
�kN4

2⌧h
D�1

i,jk+1
+ �hklog�(b� a).

Next, we estimate I2:

I2 =
h

2⌧

jk+1�1X

j=j1

✓
m̂⇤

i,j

⇢⇤
i,j

D�1
i,j

+
m̂⇤

i,j+1

⇢⇤
i,j+1

D�1
i,j+1

◆
m̃i,j+1/2

=
h

⌧

jk+1�1X

j=j1

m̂⇤
i,j

⇢⇤
i,j

D�1
i,j

ˆ̃mi,j +
h

2⌧

 
�
m̂⇤

i,j1

⇢⇤
i,j1

D�1
i,j1

m̃i,j1�1/2 +
m̂⇤

i,jk+1

⇢⇤
i,jk+1

D�1
i,jk+1

m̃i,jk+1�1/2

!

=
h

⌧

kX

p=1

m̂⇤
i,jp

�
D�1

i,jp
ˆ̃mi,jp +

h

⌧

kX

p=1

jp+1�1X

j=jp+1

m̂⇤
i,j

⇢⇤
i,j

D�1
i,j

ˆ̃mi,j +
h

2⌧
·
m̂⇤

i,jk+1

⇢⇤
i,jk+1

D�1
i,jk+1

m̃i,jk+1�1/2

 h

⌧
· k�
h

0

@
kX

p=1

|m̂⇤
i,jp

|
�

D�1
i,jp

+
kX

p=1

jp+1�1X

j=jp+1

D�1
i,j

Nh�2

� + rp(h)
+

N2

h
D�1

i,jk+1

1

A

 k�

⌧

0

@ ⌘

2�2

kX

p=1

(m̂⇤
i,jp

)2D�1
i,jp

+
1

2⌘

kX

p=1

D�1
i,jp

+
N

h2

kX

p=1

jp+1�1X

j=jp+1

D�1
i,j

rp(h)
+

N2

h
D�1

i,jk+1

1

A , 8⌘ > 0.

Take ⌘ so that k⌘ = h, we have

I2 
�h

2⌧�2

kX

p=1

(m̂⇤
i,jp

)2D�1
i,jp

+ C1, C1 :=
k2�

2⌧h

kX

p=1

D�1
i,jp

+
Nk�

⌧h2

kX

p=1

jp+1�1X

j=jp+1

D�1
i,j

rp(h)
+

N2k�

⌧h
D�1

i,jk+1
.

Note that

@�jFh(u
⇤) =

1

4h

⇥
✏j�1(�

⇤
j
� �⇤

j�2) + ✏j+1(�
⇤
j
� �⇤

j+2)
⇤

j = 2, · · · , N � 1,

this together with derivatives involving boundary terms allows us to estimate I3:

I3  |@�Fh(u
⇤)| · |�̃|

 1

h
(|✏|+ ��1

a
+ ��1

b
)C⇤

�
· �|z|(|c|+ k|d|)h2 = C0C

⇤
�
h.
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For � < 1
2(b�a) , we can take �k = 1

2(b�a) such that k� < 1/(b� a)� � still holds. Hence

I1 + I2 + I3  �hklog�(b� a) +
�kN4

2⌧h
D�1

i,jk+1
+ C1 + C0C

⇤
�
h

=
1

2N
log�(b� a) +

N3

4⌧h2
D�1

i,jk+1
+ C1 + C0C

⇤
�
h < 0

provided � < �0 with

�0 :=
1

b� a
min

⇢
exp

✓
� N4

2⌧h2
D�1

i,jk+1
� 2NC1 � 2C0C

⇤
�
Nh

◆
,
1

2

�
.

This gives (3.7) as we intended to show. Such contradiction allows us to conclude that a minimizer

at nth step can only occur in the interior of V n

h,�0
for some �0 > 0. In order to show such solution

positivity can propagate, we start from ⇢0 > 0. Based on the above conclusion we recursively have

⇢n+1 2 V n

h,�
⇢ V n

h,�0
.

This completes the proof. ⇤

4. Optimization algorithms

In this section, we discuss numerical techniques for solving the constrained optimization problem

(3.5). Let u = (⇢,m,�), (3.5) can be written as

min
u

Fh(u), s.t. Au = b, Su � �, (4.1)

Where Fh(u) is defined in (3.4), Au = b is the linear system corresponding to the constraints (3.1)

and (3.3), and S is the selection matrix that only selects ⇢ component in u.

A simple method to solve (4.1) is the following update:

ũn+1 = un � ⌘GruFh(u
n),

with the projection matrix defined by

G = I � A>(AA>)�1A,

which ensues Aũn+1 = b if Aun = b. One then applies another projection

un+1 = ⇧(ũn+1),
18



so that ⇢n+1
ij

� �.

Algorithm 1: PG Algorithm
Input: A, b, un, K = Itermax, and ✏.

Output: un+1

initialization;

G = I � AT (AAT )�1A, u(0) = un.

for k = 1 : K do
• Compute the update direction by

v = �GruFh(u
(k�1))

• Use backtracking to determine step size ⌘;

• Update to get

ũ = u(k�1) + ⌘v

• Projection u(k) = ⇧(ũ);

if ||Au(k) � b||+ ||⌘v||  ✏ then

Stop the iteration;

end

end

un+1 = u(k).
The positivity propagation property stated in Theorem 3.2 ensures that Su � � will be fulfilled

by the scheme as long as ⇢0 � � for � suitably small. Hence in our numerical tests the second

projection ⇧ is not enforced, where we select

� = max{min{h2, ⌧},min{⇢in
i
(xj)}} > 0.

In summary, the numerical solutions ⇢n
i,j

and �n

j
are updated with the following algorithm:

Algorithm 2: Algorithm for the fully discrete scheme

Input: ⇢in
i
(x), final time T , and discretization parameters h, ⌧ , � > 0

Output: ⇢n
i,j
, �n

j
for n = 1, · · · , T/⌧ .

initialization: u0 = (⇢0,m0,�0) with

⇢0
ij
= max{⇢in

i
(xj), �}.

m0
i,j

= 0, and �0
j
is obtained by solving (3.2) with ⇢0

i,j
.

for n = 1 : T/⌧ do

⇢n+1 = argminu2V n
h,�

⇢
Fh(u)

�
with Algorithm 1.

end

Remark 4.1. One may also apply other optimization solvers such as the Primal-Dual Interior-Point

algorithm (PDIP) [40, Chapter 19]) to solve the minimization problem in Algorithm 2, as long as

a positive lower bound for densities can be properly enforced.
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5. Numerical tests

In this section, we present a selected set of numerical tests to demonstrate the convergence and

properties of the proposed scheme. In all tests, the tolerance for PG method is set as 10�6.

Errors are measured in the following discrete l2 norm:

err =

 
X

1jN

h|un

j
� Un

j
|2
!1/2

.

Here un

j
and Un

j
denotes the numerical solutions and reference solutions at (xj, tn). In what follows

we take un

j
= ⇢n

i,j
,or �n

j
at time t = n⌧.

5.1. 1D multiple species. We apply our scheme to solve the 1D two-species PNP system (1.1)

and verify the proven properties.

Example 5.1. (Accuracy test) We consider the following PNP system

@t⇢1 =@x (@x⇢1 + ⇢1@x�) ,

@t⇢2 =@x (@x⇢2 � ⇢2@x�) ,

�@2
x
� =⇢1 � ⇢2,

(5.1)

in [�1, 1] and t > 0. This is (1.1) with D1 = D2 = ✏ = 1, q1 = 1, q2 = �1, and f(x) = 0. The

initial and boundary conditions are chosen as

⇢in1 (x) = 2� x2, ⇢in2 (x) = 2 + sin(⇡x),

�(0, t) = �1, �(1, t) = 1.
(5.2)

In the accuracy test, we consider the numerical solutions obtained by h = 1/320 and ⌧ = 1/10000

as the reference solution. Our scheme is unconditionally energy stable, hence no CFL condition

on the time step is needed. Formally the scheme is first order accurate in time, and second order

accurate in space. Accuracy test is done in the following manner: we set the time step as ⌧ = h

to confirm the first order accuracy in time, and set ⌧ = h2 to confirm the second order accuracy

in space. The errors and orders at t = 0.5 are listed in Table 1 and Table 2, respectively.

Table 1. Accuracy for Example 5.1 with ⌧ = h

h ⇢1 error order ⇢2 error order � error order

1/10 2.67958E-02 - 9.80117E-03 - 1.17890E-03 -

1/20 1.27689E-02 1.06937 4.12484E-03 1.24862 5.46161E-04 1.11004

1/40 6.20098E-03 1.04207 1.91422E-03 1.10758 3.18396E-04 0.77850

1/80 3.04165E-03 1.02764 9.21957E-04 1.05399 1.74525E-04 0.86739

Example 5.2. In this test, still with the initial boundary value problem (5.1)-(5.2), we show the

proven solution properties. We take h = 0.05, ⌧ = 0.01 to compute the numerical solutions up to

T = 2. Solutions at T = 0, 0.05, 0.25, 1.5, 2 are given in Figure 1. In Figure 2 are total mass of ⇢1
20



Table 2. Accuracy for Example 5.1 with ⌧ = h
2

h ⇢1 error order ⇢2 error order � error order

1/10 9.00817E-03 - 3.13854E-03 - 1.42932E-03 -

1/20 2.22285E-03 2.01882 7.47122E-04 2.07068 3.62387E-04 1.97973

1/40 5.36781E-04 2.05001 1.78121E-04 2.06849 9.15204E-05 1.98537

1/80 1.15944E-04 2.21091 3.79348E-05 2.23126 2.35563E-05 1.95798

Figure 1. Solution evolutions for ⇢1, ⇢2, and �.
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and ⇢2 (the right vertical axis), and free energy profile (the left vertical axis). We see from Figure

1 and Figure 2 that the scheme is positivity preserving, mass conservative, and energy dissipating.

Example 5.3. (Positivity propagation) In this test, we consider the PNP system (5.1) with fol-

lowing initial and boundary conditions

⇢in1 (x) =
10

3
�

[�0.5,0.5]
, ⇢in2 (x) = 2 + sin(⇡x),

�(0, t) = �1, �(1, t) = 1.
(5.3)
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Figure 2. Energy dissipation and mass conservation
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We take h = 0.05, ⌧ = 0.01 to compute the numerical solutions up to T = 2. Solutions at

T = 0, 0.015, 0.1, 1, 2 are displayed in Figure 3. In Figure 4 are total mass of ⇢1, ⇢2, and

free energy profile. From these results we see that the scheme is positivity preserving, mass

conservative, and energy dissipating. We also observe that steady state solutions are identical to

those in Example 5.2; this suggests that steady state solutions of the PNP systems with Dirichlet

boundary condition only depends on the total mass and the Dirichlet boundary condition, but not

sensitive to the profile of the initial data.

We attempted at applying the PDIP method to solve the minimization problem (4.1) and found

it slow. To be more precise, let us compare PG with PDIP in terms of the computational cost.

Motivated by perturbed KKT conditions the PDIP algorithm updates both primal and dual vari-

ables by taking one Newton step per iteration. PDIP methods are typically quite e�cient. Under

suitable conditions they have better than linear convergence. However, for numerical tests pre-

sented in this work, we found it much more expensive than the PG method. The PG method

only requires inversion of AA> once, hence more e�cient. In Table 3 we compare CPU times (in

seconds) needed for solving system (5.1) with initial and boundary conditions (5.3) when using

the PDIP method and the PG method. Here we set T = 0.5 and choose di↵erent number of

sub-intervals.

Table 3. CPU times comparison for PDIP method and PG method

h 1/10 1/50 1/100 1/150 1/200 1/20 1/300

PDIP 1.22 2.37 8.38 17.73 31.32 48.97 74.71

PG 0.19 0.39 1.15 2.02 3.12 4.56 6.38

5.2. 2D single and multiple species. We further apply our scheme to solve the 2D PNP system

and verify the proven properties.
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Figure 3. Solution evolutions for ⇢1, ⇢2.
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Figure 4. Energy dissipation and mass conservation
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Example 5.4. 2D single species (Neumann boundary condition). We now apply our scheme to

solve the 2D single-species PNP system

@t⇢ =r · (r⇢+ ⇢r�) ,

��� =⇢+ f(x, y),

on domain ⌦ = [0, 1]⇥ [0, 1]. We consider the initial boundary conditions

⇢in(x, y) = �4(x2 � x)� 8(y2 � y),
@�

@n
|@⌦ = �1.

The permanent charge f(x, y) is

f(x, y) =

8
<

:
32,

5

8
 x  7

8
,

5

8
 y  7

8
,

0, else.
(5.4)
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This problem satisfies the compatibility condition (2.4). We take hx = hy = 0.025, ⌧ = 0.01 to

compute the numerical solutions up to T = 6. Color plot of the solutions at T = 0.01, 0.5, 1, 2, 4, 6

are given in Figure 5. In Figure 6 are total mass of ⇢ and free energy profile.

Figure 5. Solution evolutions for ⇢.
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Figure 6. Energy dissipation and mass conservation
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Example 5.5. 2D multiple species (Mixed boundary conditions). In this test, we solve the 2D

multi-species PNP system

@t⇢1 =r · (r⇢1 + ⇢1r�) ,

@t⇢2 =r · (r⇢2 � ⇢2r�) ,
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��� =⇢1 � ⇢2 + f(x, y),

on domain ⌦ = [0, 1]⇥ [0, 1]. We consider the initial boundary conditions

⇢in1 (x, y) = 4x(1� x) + 8y(1� y),

⇢in2 (x, y) = sin(⇡x) + sin(⇡y),

� = 0 on @⌦D, and
@�

@n
|@⌦ = �1 on @⌦N ,

where @⌦D = {(x, y) 2 ⌦ : x = 0, x = 1} and @⌦N = @⌦ \ @⌦D. The permanent charge f(x, y) is

f(x, y) =

8
<

:
8,

5

8
 x  7

8
,

5

8
 y  7

8
,

0, else.

We take hx = hy = 0.025, ⌧ = 0.001 to compute the numerical solutions up to T = 1. Color plot

of the solutions ⇢1(first row) and ⇢2(second row) at T = 0.1, 0.2, 0.3, 0.5 are given in Figure 7,

showing the density evolution profiles obtained by our proposed numerical scheme. From Figure 7

we see that the positively charged ⇢1 di↵used away from the center of the domain and the lowest

concentration accrued near top right corner (this is where we placed the permanent charge f ).

The negatively charged ⇢2 moved towards the region where we placed the permanent charge.

In addition, we demonstrate the performance of our numerical scheme in preserving physical

properties at a discrete level. With zero-flux boundary conditions, the total mass of concentra-

tions over the computational domain should be conserved for each time step. This is perfectly

confirmed in Figure 8(a) for both ⇢1 and ⇢2. Displayed in this figure is also the discrete free energy

profile, one can observe that it decreases monotonically (energy dissipating), as predicted in our

numerical analysis. The free energy profile also suggests that the solutions approach the steady

state at around t = 0.5. To verify the positivity-preserving property, we focus on the evolution

of the minimum concentration for ⇢1 and ⇢2 over time interval (0, 1]. As shown in Figure 8(b)

the numerical density functions remain positive all the time, even though the concentrations are

initially low near domain boundary.

6. Concluding remarks

In this paper, a dynamic mass transport method for the PNP system is established by drawing

ideas from both the JKO-type scheme [23, 26] and the classical Bennamou-Breiner formulation

[3]. The energy estimate resembles the physical energy law that governs the PNP system in

the continuous case, where the JKO type formulation is an essential component for preserving

intrinsic solution properties. Both mass conservation and the energy stability are shown to hold,

irrespective of the size of time steps. To reduce computational cost, we use a local approximation

for the artificial time in the constraint transport equation by a one step di↵erence and the integral

in time by a one term quadrature.

Furthermore, by imposing a centered finite di↵erence discretization in spatial variables, we

establish the solvability of the constrained optimization problem. This also leads to a remarkable
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Figure 7. Solution evolutions for ⇢1 and ⇢2.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
 at t=0.1

1.6

1.8

2

2.2

2.4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
 at t=0.2

1.8

1.9

2

2.1

2.2

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
 at t=0.3

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1
 at t=0.5

1.85

1.9

1.95

2

2.05

2.1

2.15

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2
 at t=0.1

1

1.1

1.2

1.3

1.4

1.5

1.6

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2
 at t=0.2

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2
 at t=0.3

1.15

1.2

1.25

1.3

1.35

1.4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2
 at t=0.5

1.2

1.25

1.3

1.35

1.4
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result: for any fixed time step and spatial meth size, density positivity will be propagating over

all time steps, which is desired for any discrete version of the PNP system.

In the previous section, some numerical experiments were carried out to demonstrate the proven

properties of a computed solution. The first experiment numerically verified that the variational

scheme yields convergence to the solution of the nonlinear PDE with desired accuracy. Secondly,

with further numerical tests the computed solutions are also shown to satisfy the energy dissipa-

tion law for the PNP system, mass conservation, and positivity propagation. It is a matter of

future work to prove an error estimate for these numerical solutions. This is not a standard error

analysis due to the nonlinearities in these problems, as well as the reformulation as a constrained

optimization problem. This method is expected to be extended to more complex PNP models such

as PNP equations for semiconductor devices and three-dimensional ion channels.
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