A DYNAMIC MASS TRANSPORT METHOD FOR
POISSON-NERNST-PLANCK EQUATIONS

HAILIANG LIU AND WUMAIER MAIMAITIYIMING

ABSTRACT. A dynamic mass-transport method is proposed for approximately solving the Pois-
son—Nernst—Planck (PNP) equations. The semi-discrete scheme based on the JKO type variational
formulation naturally enforces solution positivity and the energy law as for the continuous PNP
system. The fully discrete scheme is further formulated as a constrained minimization problem,
shown to be solvable, and satisfy all three solution properties (mass conservation, positivity and
energy dissipation) independent of time step size or the spatial mesh size. Numerical experiments
are conducted to validate convergence of the computed solutions and verify the structure preserving
property of the proposed scheme.

1. INTRODUCTION

In this paper, we consider a time-dependent system of Poisson-Nernst-Planck (PNP) equations.
Such system has been widely used to describe charge transport in diverse applications such as
biological membrane channels [10,13,47], electrochemical systems [2], and semiconductor devices
[36,44].

PNP equations consist of Nernst—Planck (NP) equations that describe the drift and diffusion of
ion species, and the Poisson equation that describes the electrostatic interaction. Such mean field
approximation of diffusive ions admits several variants, and in non-dimensional form we consider
the following

8tpz- =V. [DZ<SL’) (sz + lezV¢)] , € QO C Rd, t > O, (11&)
=V (e(x)Ve) = f(z) + Z Zipis (1.1b)
i=1
subject to initial data p;(x,0) = p*(x) >0 (i = 1,--- ,s) and appropriate boundary conditions to

be specified in section 2. The equations are valid in a bounded domain €2 with boundary 02 and for
time t > 0. Here p; = p;(x,t) is the charge carrier density for the i-th species, and ¢ = ¢(x,t) the
electrostatic potential. D;(x) is the diffusion coefficient, z; is the rescaled charge. In the Poisson
equation, €(z) is the permittivity, f(z) is the permanent (fixed) charge density of the system, s is
the number of species.

Due to the wide variety of devices modeled by the PNP equations, computer simulation for this
system of differential equations is of great interest. However, the PNP system is a strongly coupled
system of nonlinear equations, also, the PNP system as a gradient flow can take very long time
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evolution to reach steady states. Hence, designing efficient and stable numerical methods for the
PNP system remains an active area of research (see, e.g., [12,30,33,35,45,46]).

PNP system possesses two immediate properties: it preserves the non-negativity of p; and
conserves total mass. Therefore, we can consider non-negative initial data with mass one, so that
the density is in the set of probability measures P(€2) on €. The third property is the dissipation
of the total energy, which can be expressed as follows. Given energy

S 1 S
E:/Q (ZpiIngi+§<f+zzipi>¢>d$+87 (1.2)
i=1 i=1

with boundary correction term B, the NP equation (1.1a) can be written as
Oupi =V - (p:Di(@)V (5, E)). (1.3)

Differentiating the energy along solutions of the PNP system, one formally obtains the energy

dissipation along the gradient flow
dE > )
W= [ X p@niV gtz <o

which indicates that the solution evolves in the direction of steepest descent of the energy. This
property entails a characterization of the set of stationary states, and provides a useful tool to
study its stability. Numerical methods for (1.1) are desired to attain all three properties at the
discrete level, which are rather challenging.

1.1. Related work. The most common numerical approach is the direct discretization of (1.1)
using classical finite difference, finite volume, finite element, or discontinuous Galerkin methods
[11,12,14-19,29-33, 35,39, 45,46]. Such methods are explicit or semi-implicit in time, so the per
time computation is cheap. But it is often challenging to ensure both unconditional positivity
and discrete energy decay simultaneously. The nonlinearity also complicates the way to obtain
solutions when applying implicit or semi-implicit solvers.

Equation (1.3) with s =1 and D;(x) = const reduces to the following scalar equation:
O = (Y (5,E)). (1.4

It is now well understood since the pioneering works of Otto [23,41] that equations of the form
of (1.4) can be interpreted as the gradient flow with respect to the quadratic Wasserstein metric
Wa(+,+). Such flow stems from an initial density and evolves following the steepest decreasing
direction of a prescribed functional E. How to efficiently solve a gradient flow remains an intriguing
question.

In contrast to the aforementioned direct PDE solvers, the minimizing movement scheme (see [1]
and the references therein) respects the fact that the trajectory aims at optimizing the energy decay.
With such a scheme, solutions of (1.4) are approximated by solving a sequence of minimization

problems,

. 1 n in
p' T = argmin, {ZWf(p .p)+ E(p)} .ot =p" (), (1.5)
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often called Jordan-Kinderlehrer-Otto (JKO) scheme after [23], which defines a sequence {p"}
in the probability space K to approximate the solution p(z,nt), where 7 > 0 is the time step.
Since p" is in the probability space, thus method (1.5) is positivity and mass preserving. The fact
Wy (p™, p) > 0 ensures the energy dissipation for any 7 > 0. In light of the favorable properties of the
JKO scheme, there have been many works devoted to the computation of minimizers for problem
(1.5). The main numerical difficulties arise in approximating the Wasserstein distance, and different
approaches have been introduced to deal with this term; see, e.g., [7, 8,24, 25,38] for using the
Lagrangian numerical methods to approximate the Wasserstein distance, and [4,6,9,27,28,37,42]
for using the Eulerian numerical methods.

In our approach, we consider an Fulerian method based on Benamou-Brenier’s dynamic for-
mulation [3] and a second order spatial discretization. This reframes the problem as a convex
optimization problem with linear PDE constraints. The base formulation we use extends the one
in [26], with the goal here to obtain a faster numerical solver. The authors in [26] constructed the
JKO type scheme for a two species PNP system with constant coefficient D;(z) = 1 and ¢(z) = 1.
The existence of the unique minimizer to the JKO scheme and convergence of the minimizer to the
weak solution of the PNP system have been established in [26]. There are a few novel ingredients
involved in our base variational formulation beyond that in [26]: (i) multi-species are considered,
and the evolution of their density are strongly coupled; (ii) the diffusion-coefficient D;(z) for each
species is varying in space, for which the underlying geodesic curve associated with the Wasser-
stein metric is rather complex, instead of straight lines; and (iii) the general Poisson equation is
dealt with as an additional linear constraint, instead of using the form of a compact expression
in terms of the Newton potential [26]. To use either the classical JKO scheme for (1.4) or our
formulation as a basis for numerical simulations of PNP systems, one must first develop a fully
discrete approximation of the minimization problem at each step of the scheme. The fully discrete
JKO-type scheme for the multi-species variable coefficient PNP system on a bounded domain has
not been studied yet. This is what we aim to accomplish in this paper.

1.2. Contribution. In the general setting with mixed types of boundary conditions, we identify
a unified form of the total energy functional which is dissipating along the solution trajectories
(see sections 2.1-2.2). We also present (Theorem 2.2) lower energy bounds with coercivity for such
a functional. These provide a solid basis for our approach.

Our main contributions are:

e We construct a Wasserstein-type distance and formulate a corresponding variational scheme.
The update at each scheme step reduces to solving a constrained minimization problem, for
which we prove unique solvability (Theorem 2.3). Three solution properties: mass conser-
vation, positivity, and energy dissipation are shown to be preserved in time (Theorem 2.4).
We should point out such beneficial properties from the W5 based approach has already
been recognized for a large class of gradient flows of form (1.4).

e We further convert the variational scheme into a dynamic formulation, which for vari-
able diffusion coefficients extends the classical Bennamou-Breiner formulation. To reduce

computational cost, we use a local approximation for the artificial time in the constraint
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transport equation by a one step difference and the integral in time by a one term quadra-
ture. Such treatment was recently proposed in [28] for the aggregation equation to avoid
the introduction on inner time stepping. Here we prove that the resulting minimization
problem is a first order time consistent scheme for the PNP system (Theorem 2.5), as is
expected.

e We present a fully discrete scheme — by coupling with a 2nd order finite difference method.
The underlying principle for spatial discretization is to preserve the structure of Wasserstein
metric in the discrete sense. We further prove the unique solvability (Theorem 3.1) of the
fully-discrete scheme, exploiting the convexity property of the objective functional in a
constraint fashion.

e We prove that for any fixed time step and spatial meth sizes, density positivity will be prop-
agating over all time steps (Theorem 3.2). Such positivity-preserving property is proven by
taking advantage of the presence of plog p in the energy functional. For general aggregation
equations, this is not the case. Indeed, in work [28], Fisher information regularization is
added to enforce solution positivity for an aggregation equation.

e The fully-discrete minimization problem reduces to a convex optimization problem with lin-
ear constraints, and can be solved by efficient optimization solvers. Our numerical tests are
conducted with a simple projected gradient algorithm. Compared to the usual primal-dual-
interior-penalty (PDIP) algorithm [40], our method is both robust and efficient— mainly
because positivity is rigorously proven to hold without a restriction on time steps.

e Numerical results are provided to demonstrate the superior performance of the proposed
method.

1.3. Organization. The paper is organized as follows. In the next section, we provide necessary
background on the dynamical formulation of the PNP system, main solution properties and its
relation with Wasserstein gradient flows. We then derive the semi-discrete scheme. In Section 3,
we introduce a fully discrete scheme and study the properties of this scheme. Numerical algorithms
are given in Section 4. Numerical results are provided in Section 5, and the paper is concluded in
Section 6.

Notation. We use [n] to denote {1,2,--- ,n} for any integer n. For vector ¢ (fully discrete case),
its amplitude is denoted by |¢|. For function ¢, ||¢|| is its L? norm.

2. MODEL BACKGROUND AND SEMI-DISCRETIZATION

In this section we briefly review the model setup and the corresponding Wasserstein gradient
flow.

2.1. Boundary conditions. Boundary conditions are a critical component of the PNP model
and determine important qualitative behaviors of the solution. Let € be a bounded domain with
Lipschitz boundary 0€2. We use the no-flux boundary condition for the NP equations, i.e.,

Di(x)(Vpi+ zipiVo) n=0, z€0Q, i=1---,s. (2.1)

Here, n is the outer unit normal at the boundary point x € 0f2.
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The external electrostatic potential ¢ is influenced by applied potential, which can be modeled
by prescribing a boundary condition. Here we consider a general form of boundary conditions:

o¢
on
Here «, 3 are physical parameters such that o - 3 > 0, and ¢* = ¢°(x,t) is a given function. With

ap + Be(x)— = ¢*, x € . (2.2)

such setup, we are to solve the following initial-boundary value problem:

( Oipi =V - [Di(x) (Vp; + zipiVe)], 2€Q, t>0,i=1,---,s,

pi(z,0) = pi"(x) >0, reQ, i=1--s, (2.3)
(Di(x) (Vpi + 2ipiV)) -1 =0, red, t>0,i=1---,s,
[ 0o+ Be(x) 52 = ¢, z €00t > 0.

Remark 2.1. (2.2) includes three typical forms: (i) the Robin boundary condition (o« = 1,5 > 0)
models a capacitor [14], (ii) the Dirichlet boundary condition (o = 1, 8 = 0) models an applied
voltage, and (iii) the Neumann boundary condition (v = 0, 5 = 1) models surface changes. The

case of pure Neumann boundary conditions requires the compatibility condition

/Q <f(x) + Z zmﬁ") dx + /39 e(z)p’ds = 0, (2.4)

and an additional constraint such as fQ ¢(z,t)dxr = 0 so that ¢ is uniquely defined.

Any combination of these three types can be applied to ¢ on a disjoint partition of the boundary.

In what follows, we set
N =TpuUl'yUTlkg,
and on each part, one type of boundary condition is imposed, i.e.,
1, onI'p, 0, on ['p, ¢%, onT'p,
a=<20, onTy, B=L1, onTy ¢"=<¢% onTy,
1, on g, Br, on g, ¢II’%, on I'g.

The existence and uniqueness of the solution for the nonlinear PNP boundary value problems with
different boundary conditions have been studied in [22, 34, 43] for the 1D case and in [5,21] for

multi-dimensions.

2.2. Energy functional: dissipation and coercivity. In the presence of homogeneous bound-
ary conditions on ¢, i.e., ¢* = 0, the PNP system is energetically closed in the sense that the free
energy functional associated to (1.1) is of form

Ey = /Q (;Pz log p; + %(f + ; Zipi)¢) dx, (2.5)

which along solution trajectories is dissipating in time. For general boundary conditions with

#® # 0, we need to modify the energy so that it is still dissipating along the solution of the PNP
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system. To this end, we differentiate (2.5) along the solution of (1.1), with integration by parts
using (2.1), we have

d

000 == [ DIV ozt z0)Pda b5 [ @) 0G0~ @ro)ol s

Assume that ¢” does not depend on time, then ag; + Be(z)d,¢; = 0 on 99, this allows us to
express the last term as

1d
S [ / e(w)hdugds = | Ghods - = ¢R¢ds] .
Thus the modified total energy functional can be taken as
1
E::Eb———[/“eﬁw¢%&ﬁds— P pds — — L/ R¢d%. (2.6)
2 LJr, Br

Using the Poisson equation, the total energy can be rewritten as

o= (Zpllogpz Vol )as— [ cwonos+ o1 [ 1oas )

Proposition 2.1. Assume that ¢” does not depend on time, then the extended energy functional
(2.7) satisfies

d

—F D;( 1 < 2.
7l (p, 9)(¢ /Z z)pi|V(log p; + z:¢0)[*dz <0, t>0, (2.8)

along the solution of (1.1).

Recall that on I'p, the usual strategy for analysis is to transform it to the case with zero boundary
value for ¢. This way the modified energy would include an additional term called the external

potential energy. For simplicity, we take ¢4, = 0, so that we have the following result.

Theorem 2.2. (Lower bound and coercivity of £ ) Let Q be an open, bounded Lipschitz domain,
and ¢’ be independent of time with ¢% =0, 8z > 0, and €(z) > a > 0. Then the energy of form

1
/ (sz log p; + —6 )|V¢\2> dx + 57— 5 ¢2d8 (2.9)
is bounded from below. Moreover, there exist constants cg, ¢; > 0 such that

E(p.¢) = coll9llzn — 1. (2.10)

Proof. For p; > 0, we have [,>"7 | p;log(p;) > —s|Q|/e =: —¢;. For the ¢-dependent part in E,
we argue for all possible cases. For I'p # () we have ¢% = 0; for purely Neumann’s condition we
have the additional condition fQ x)dx = 0, in either case we can apply the Poincaré inequality

or the Poincaré-Wirtinger inequality to conclude

lollz2 < Vel

with constant ¢* depending on the geometry of {2, hence

a a . 1
E>—c+ §HV¢H%2 > collollFn — e, o= me{l, g}-
6



For the case 9Q = I'p UT'y with I'g # (), we have
1 . 14 F
B(p,6) > 3 minfo, 5"} —
with E(¢) := Jo IVoPdz + [, |¢]*ds. We claim that

E(¢) > ¢||¢||% for some ¢ >0,

which can be proved with a contradiction argument. Since otherwise we can assume E(qﬁn) <
L dnll3- Set wy = én/||@nllmr, then w, € H'(Q) with

Wyl = 1 and ||Vw,||?. < 1/n.
L

By the Rellich-Kondrachov theorem, we can extract a subsequence {w,, } weakly converging to w
in H*(Q) with Vw,, — 0 weakly in L*(Q). This allows us to conclude w € H', and Vw = 0.
From fFR |wy, |*ds < 1/ny and

lwll2rgy < W llz2@g) + lwn, — w2y < 1/ vk + Cllw — wy, || a1,

we obtain w = 0 on I'g. Hence w = 0 a.e., this is a contradiction. We complete this case by taking
co = £min{a, Bz'}. O

2.3. Wasserstein distance and JKO scheme for multi-density. In order to derive a vari-
ational scheme for the PNP system with multi-density, we need to introduce a Wasserstein-type
distance. Motivated by the well-known characterization of the Wasserstein distance in a one-
component fluid obtained by Benamou-Brenier [3], we consider to minimize a joint functional over
the set
K:={p={(p1,-,ps)yu=(ur, - us):

Owpi + V- (pu;) =0, (pu;)) - n=0 ondQ x [0,1], (2.11)

pi € P(Q),  pile,0) = pj(x), pile,1) = p;(2)}.
For the PNP system of two species s = 2 with D;(z) = 1 and €(x) = 1 considered in [26], the
distance inherited from the 2-Wasserstein distance is defined by

2
=Y W3, p})-
=1

This is equivalent to the minimization of the joint functional:

P ) = p%ngZ / / (s 2 prclzt. (2.12)

Here t is an artificial time and serves to characterize the optimal curve in the density space.
Following [23], the authors in [26] constructed the following JKO scheme: Given a time step 7, the
scheme defines a sequence p" as

| 1
0_ in ntl _ ; d? E 2.13
pr=p" p argpé{g}gm{% (p", p) + ()} (2.13)

Here £ is the total free energy, d* is the (squared) distance on the product space as defined in

(2.12). One of the challenges in this program lies in handling the coupling terms, some intrinsic
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difficulties arise due to both the specific Poisson kernel and the system setting. Note that in [26]
with €(x) = 1, the electrostatic potential ¢ in E(p, ¢) is replaced by

2
Plp] = N * (f+ZZz‘Pz'>a x € (),
i=1

so that £(p) = E(p, ¢[p]). Here the kernel N ~ C/|z|¢"2 serves as a counterpart of the Green’s
function for the Newton potential in R?. Even with this treatment derivation of the corresponding
Euler-Lagrange equations is quite delicate. We refer to [26] for further details.

In order to extend the above JKO-type scheme to the present setting, we face two new difficulties:
(i) D;(z) is no longer a constant, the kinetic energy corresponding to the squared distance cost
needs to be modified; (ii) €(z) is a general non-negative function, ¢ cannot be expressed explicitly

in terms of p. As for (i), we follow [20] and consider a modified functional

d*(p°, p) = prgngZ/ /D Yug|? pidadt. (2.14)

As for (ii), the Poisson equation is treated as a constraint in the resulting minimization problem.
For ease of presentation we define

> 9]
A= {<p, 0): -9 (V) = f@) + Y a6+ B0 = frconpe [P(Q)}S}
- (2.15)
For fixed p* € [P(2)]°, and time step 7 > 0 we set
Gelp,6) = 5- (5" 0) + Bp,6), (p.6) € A (2.16)

In order to define a discrete sequence of approximate solutions using the minimizing scheme, we
present a result on the existence of minimizers of GG.. To establish the uniqueness, we now prepare
a technical lemma, with (iii) to be used later in the proof of Theorem 3.1.

Lemma 2.1. Given X° X' let X(0) = 0X°+ (1 —0)X" for any 6 € (0,1).
(i) If X° X! are vectors, then

[X(0)* = 01X — (1 - 0)| X" = —0(1 — )| X" — X", (2.17)
(i) If X° > 0, X' > 0 are scalars, then
X(0)log X(0) — 60X log X° — (1 —0)X'log X' = —0(1 — 0)(X' — X°)?g(X", X";0), (2.18)

for some positive function g depending on X°, X! and #.
(iii) If X% >0, X! >0, Y° Y! are scalars, then

(Y(9>>2 (Y0)2 (Y1>2 (leo _ X0Y1)2
. —(1—0 il = p1— 2.1
SO G CHi A S <5 ¢S e (2.19)
Proof. We only prove (ii); for (i) and (iii) can be verified by a direct calculation. Note that
X (0)log X(0) = 6X°log(X(0)) + (1 — 0) X log(X (). (2.20)

8



Taylor’s expansion of log(X (#) at X" and X*, respectively, gives
(1 0y (X! - X0

log(0X% + (1 —0)X") = log(X") + i(1 —0)(X° - X1 — X0

XO

I

where X in between X° and X (6), and
92(X1 _ X0)2

(X1
where X' in between X' and X (6). Substituting these into the right hand side of (2.20) leads to

XO
X(0)log X(0) =0X°log X° — 0(1 — ) —— (X' — X°)?
() log X (6) 8 ( )(XO)Z( )
X

+(1-60)X log X' — 0%(1 - 0) (5(1)2()(1 — X%,

1
log(X° + (1 —0)X") = log(X*') + it (X! — X0 —

this completes the proof of (ii) by defining g(X°, X1, 0) = (1(}00)))2(0 + &)f; > 0. O

Theorem 2.3. (Existence of minimizers) Fix 7 > 0, and p* € [P(€)]®. Then the functional G, (p, ¢)

admits a unique minimizer on A.

Proof. By Theorem 2.2, GG, is bounded from below on A, hence there is a minimizing sequence
(p*, ¢%) and p* is tight and uniformly integrable. By the Dunford—Pettis Theorem one may extract a
subsequence such that p* — pin L'(Q), which together with p¥ € [P(£2)]* ensure that p € [P(Q)]*.
In addition, E(p,-) is also coercive in ¢ because of (2.10), i.e.,

E(p.¢) = coll9lli — 1.

Hence one may extract a subsequence such that ¢* — ¢ weakly in H(£2). The weak L' lower semi-
continuity (l.s.c.) of the squared Wasserstein distance can be easily adapted to the present case.
The lower semicontinuity of £ with respect to weak convergence can be seen from the following

inequality

dr+ = | ¢(¢" — ¢)ds.

ko ik
E(Pa@b)ZE(PaCZS)"‘/Q B Jaa

> Inpi(pf — pi) + €()V - (V¢F — V)
=1

Putting all these together we claim that the limit is a minimizer.

Finally, the uniqueness comes from the fact that the admissible set A is convex w.r.t. linear
interpolation and that the total free energy is jointly strictly convex in (p, ¢) on .A. More precisely,
we argue as follows. Let 6 € (0,1), then p(6) = 0p° + (1 — )p' is a convex linear combination
for p° and p'. Let ¢° and ¢! be obtained from the Possion equation, corresponding to p" and
p', respectively. Then ¢(0) = 0¢° + (1 — 0)¢' must be the solution to the Poisson equation
corresponding to p(#). For the energy of form (2.9), we evaluate E(p(0),»(f)) term by term to
determine whether it is strictly convex. Using (2.18) for p! = X! and (2.17) for X! = V¢! in Q,
and (2.17) for X! = ¢' on I'g, respectively, we obtain

E(p(9), (9)) — 0E(p",6°) — (1 = 0)E(p', ¢") = —0(1 — 0)I
9



with

s

1 1
I= /Q (;(pi = 0090l pis0) + e(@)|V (o' — ¢0)|2)dx + QI?R/FRW )2,

Convexity of E follows from I > 0. Actually this inequality is strict, unless p° = pt, ¢* = ¢*, which
can be derived from letting I = 0. Hence E(p, ¢) is strictly convex under two linear constraints. [

We are now ready to present a variational scheme formulation — a JKO-type scheme for (2.3):
given time step 7 > 0, recursively we define a sequence {p", ¢"} by
1

6"+ Blp.o) | (221)

0 in n+1 n+1 :
= p", , —arg min
pr=p" (P, 9" =arg Juin {

Theorem 2.4. (Solution properties of scheme (2.21) )
(i) (Probability-preserving) If p" € [P(Q)]*, so is p"*;
(ii) (Unconditionally energy stability) the inequality

1
—d2(pn,pn+1) S E(pn,qbn)

E n+1 n+1
("o )+ 5o

holds for any n > 0. Furthermore,
SO (o, ) < 20 (B0, %) — inf E(p, ). (2.22)
— (p,p)eA

Proof. (i) The constraint A ensures that p" € [P(€)]* which is inherited from initial data; namely
the method is both positivity and mass preserving.

(ii) From the definition of the minimizer, it follows

1

_d2 n n+l < E(o™. ™).

5 A (" p") < B(p", ¢")

Here we used d?(p, p) = 0 for any p € [P(Q2)]*. Finally, summation over n yields (2.22). O

B(p, 6" +

These properties in Theorem 2.4 are highly desirable for PNP systems, yet quite difficult to
achieve by other methods without a restriction on time steps. But these properties are quite
natural for W5 based approach, and easy to verify as long as the involved optimization step is

well-posed.

2.4. Semi-discrete JKO scheme. We proceed to obtain a computable formulation. Let m; =
pi;, the dynamic formulation of the distance d?(-,-) in (2.21) can be expressed as: given p"(zx),

we have

1< (!
ntl gntl) —arg  min — / /F i mi) Dy dadt + E(p(, 1), (-, 1 5
(P 6" gw)eA’m{QT; | Flpwm)D; (p(-, 1), ¢( 1)) (229

s.t. 8th + V- (mz) = O, m;-1n = 07 VIS aQa P(fﬂ, 0) = pn

Here t is an artificial time, and

|rms|?

- if Pi > O,

+00 otherwise.
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The use of m; has enhanced the functional convexity in m; and made the transport constraint
linear (see Breiner [3]), yet causing difficulties for solutions near p; = 0. We shall prove for the
fully discrete case positivity of p' is preserved for all n. Another computational overhead with
(2.23) is dealing with the artificial time ¢ € [0, 1] which is induced by the optimal transport flow. To
overcome this issue, we follow [28] with a local approximation in the artificial time : approximate
the derivative in t in the constraint transport equation by a one step difference and the integral in
time in the objective function by a one term quadrature. We thus obtain the following scheme:

gt —arg min / i mi) Dy tdx + E(p, ,
(", 9" marg min 35 Z (P (p,9) (2.24)
s.t. pi—pi—l-V-(mi):O, m;-n=0, x¢€ad.

Theorem 2.5. The positive minimizer of the variational problem (2.24) is a first-order time consis-
tent scheme for the PNP system.

Proof. Let (2.24) admit a minimizer with p > 0. We can derive optimal conditions by the Lagrange

multiplier method. Define the Lagrangian as

Lip, ¢, m,0,€) : Z | Foum)piae + Bp.0)+ [ elav+ 50,0 = s

+ Z/ vi(pi — pi + 'V -my)dx + / V1 (f + Zzipi + V- (e(z)Ve))dx
i=1 /9

Q i=1

The optimality conditions for x € {2 are

oL 1 i1 1
= O lmpheS —_ Hm2|’ D,L_l + log(pz) + 1 —|— _Z’L¢ —|— Vi —I— Zi’[)s+1 e 0’ 2 — 1’ e ,S,
0p; 2T p; 2
oL 0 impli 1(f+i: )+ V- (e(z)Vugy1) =0
- = mplu — iPi . s =0,
3¢ ples 5 2 Zip €(2)VUs41
oL 1 m; .
=0 implies —ED— — V., =0, i=1,---,s,
§mi T pi
oL
5—:0 lmpheS pz_p?+V~mZ:()7 ’i:l)...’s’
V4
L f+i: + V- (e(x)Ve) =0
= mmplies ZiPi - (elx = ().
5Us+1 P " P

For x € 2, we thus have
1 HWH2
1

1
=Dt —log(pi) — 1 — 2i¢ — zivey1, my=TD;p;V;
27 p? 2

and .
V- (e(x)Vugyy) = év - (e(x)V o).
On 012, from integrating by parts in calculating 6L there remain the following boundary terms

/ e(x)5(8n¢)vs+1ds—/ e(:c)dqﬁ@nvs“ds—i-/ v;0m; - nds,
80 o0

o0
11



where the last term vanishes due to the constraint m; - n = 0. In addition, we need also consider
terms arising from

§B+6 (p + B0 — ¢")ds.

3
o0
Upon careful regrouping, we have two cases to distinguish:

(i) for B # 0, the correction term B in the energy (1.2) is given by

1

=— | ¢"¢ds.
26 Joq
We obtain
1
e(x)vsyr + Pe(x) =0, —e(x)0pvs1 + € + %qﬁb =0, ond

(i) For 8 =0,

The correction term B in the energy (1.2) is given by

1
B=—— b .

from which we have
€(2)vsy1 — %e(m)qﬁb + =0, —€(x)0pvsy1+a& =0, on .
These ensure that we always have
Vg1 + POpVs11 = %gbb on 0f).

Take ¢ = %gb — Vg4 we have

V (e(x)VY) = 0,2 € Q;arh + S0O,10 = 0 on 0.
By the uniqueness of the Poisson problem we conclude ¥ = 0 or ¢ = cost if o = 0, i.e.,

1
Vgy1 = §gb + cost.

Combing the above we have the following update

pi = P} +7V - (Dip;V (log(ps) + 2i0)) + O(7?).
This says scheme (2.24) is a first order time discretization of the PNP system (2.3). O

Remark 2.2. A natural question arises: is the discrete transport still preserves positivity of p;. We
shall address this issue for the fully discrete scheme, for which positivity propagation is rigorously
established in Theorem 3.2.

3. NUMERICAL METHOD

In this section, we detail the spatial discretization. The underlying principle for spatial dis-

cretization is to preserve the structure of Wasserstein metric tensor in the discrete sense.
12



3.1. Spatial discretization. We only consider the discretization in one dimensional setting. Let
Q2 = [a, b] be the computational domain partitioned into N cells I; = [%’—%7 T +%], with mesh
size h = (b — a)/N and cell center at z; = T o1+ %h, j€{1,2,--- ) N}. Let numerical solution
be {1, {pi}I-,, and {mmH/Q}jy:_ll on two grids x; and x;41/2, respectively. We define the
difference operator by

Ve LT gy Y/ = Uiy

h

and average operator by
. Vjt1/2 T Vj—1/2
Uj = .
2
We also use €j+1/2 = E(ZL']'_H/Q), fj = f(l’j), and Dij = DZ(ZEJ>

The transport constraint is discretized with central difference in space as follows:

pij — Pij + dn(mi); = 0, (3.1)

and the zero boundary conditions m; /2 = m; y41/2 = 0 are applied.

For the Possion equation, we consider the Robin boundary condition at both ends, other types
of boundary conditions can be handled in same fashion. We introduce two ghost values ¢y and
¢n+1 for conveniently approximating the boundary condition (2.2) with center differences:

o ; o1 ﬂae(a)¢1 ; %o _ &(a), ¢N+12+ PN + Byelb )<Z5N+1h N _ _ ). (3.2)
This together with the center difference approximation of the Poisson equation gives a coupled

linear system:

(h + 25a€(a))¢0 + (h - 25a6<a>)¢1 - 2h¢b(a) =0

s

(h — 2Bye(b))pn + (h 4 2Bpe(b))pni1 — 20 (b) =

We denote such linear constraint by Ly (¢, p) = 0. The objective function then writes as

Filpsm, ¢ 2TZZ ”Dw+hz<2pulogpu 8h2(¢”1 i 1))

]111“

(3.4)

85a (g0 + ¢1)*> + @(QﬁN + oni1)’

which is a second order spatial approximation of the objective functional in (2.24).
To formulate an admissible set for the discrete minimization problem, let the discrete probability
distribution set be: for § > 0

N
Ph,éz{(Pla"',pN)Z pj25, thj=1}.
j=1

Then the constraint set for (p, ¢) becomes

Ans ={(p,¢): pe€ l[fh,a]sa Lin(¢, p) = 0}.



Thus the admissible set for all (p, m, ¢) collectively can be written as

Vies = 1(p,m, ¢) 1 py — pis +dn(mi); =0,  (p,¢) € Ans}

with m;1/2 = m; y41/2 = 0. Thus we have

Vh’fl& C RS(QN—I)—FN—FQ'

The one time update with the fully discrete scheme is to find

et =g in LA}, 0= (imo) (35)

uEV}%

Theorem 3.1. (Unique solvability) Fix 7 > 0,h > 0 and {p}" € P s};_; for some § > 0. Then the

function F,(p,m, ¢) admits a unique minimizer in V;?; C REGN-DTNF2

Proof. The proof proceeds in two steps:
Step 1 (Admissible set is non-empty and convex) The conservative form of the transport constraint

ensures that we always have

N
thmzl iG[S].
j=1

For fixed 0 > 0, take p;; > 0, we can uniquely determine m by

1 ]
Mg jy1/2 = 7 Z pit — Piy); (3.6)

forj=1,--- , N—1. From the linear system L(¢ ,p) = 0 we obtain a unique ¢ = (¢, -+ , dn+1) in
terms of f; and p;; > 9, since its coefficient matrix is tridiagonal, and diagonally dominated. Hence
the admissible set Vs is non-empty. The fact that both the transport constraint and L(¢, p) = 0
are linear implies that the set Vs is convex in R¥@GN=D+N+2,

Step 2 (Objective function is strictly convex under constraints)

With u = (p,m, ¢), for any u®,u' € V, 5 and 6 € (0,1), u(f) = 6u® + (1 — #)u' is a convex linear
combination of u® and u!. In addition, as argued in the proof of Theorem 2.3, we have u(6) € V}, 5.
We now show the convexity of Fj,(u) by directly calculating

Frn(w(®)) — 0F,(u®) — (1 — ) Fn(u') = —0(1 — 0)(I, + L + I3),

where applying Lemma 2.1 to each term [;, we have

ZZ pzy w 'OU ) >0, by (iit) of Lemma 2.1
= el e(0)i

N
B =S s ol 0oty — ) > 0. by (i) of Lemma 2.1

i=1 j=1

N
1
:_h Z JH - 1) — ( j1'+1 - }71)]2 by (7) of Lemma 2.1

1
+ 8_51)[(¢9V + O 1) — (D5 + Ongr)]* = 0.

14
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Convexity of Fj, follows from I; + I, + I3 > 0. To establish strictly convexity we only need to show
I + I, + Is = 0 must lead to u° = u'. We argue as follows.

Clearly the equality holds only when I; = I, = I3 = 0. From I, = 0 it follows p® = p'. This
when combined with 7; = 0 implies m;.{j = mz{j, which together with mél j2 = mﬁv Ntz =0 yields
m” = m'. Finally we show ¢” = ¢' must also hold. Set & = ¢ — ¢} for j =0,--- , N + 1, then
I3 = 0 corresponds to the system of linear equations §o+&; = 0, v +&nvy1 = 0and 41 —§-1 =0,
for j = 1,--- , N. This obviously admits non-zero solutions. From the constraint for ¢ near the

boundary we have

Ba Ba
00+ 9 = 2¢"(a) + Se(a)(@1 — 8)),  do + 61 = 26"(a) + Se(a)(é1 — bo),
this implies &y + & = B—;e(a) (&1 —&o). Using also &+ & = 0, we can conclude §y = -+ - =&y = 0,
therefore ¢ = ¢'. Hence Fy,(u) is strictly convex on Vj, 5. O

The last issue is to find a threshold for ¢ so to ensure that solution positivity for the PNP system
is propagated at all time steps.

Theorem 3.2. (Positivity propagation) There exists dp > 0 such that the minimizer does not touch
the boundary of V}s for all 0 < ¢ < dg. This implies that p" > 0 for all n > 0 as long as p° > 0.

Proof. We use a contradiction argument: suppose there exists a minimizer u* to the optimization
problem (3.5) touching the boundary of V;s at some grid points j; < --- < jp with 1 <k <N -1
for p;, that is

Pigi =17 = Pig =0
From h Zjvzl pr; =1, we see that § < 7. Since F}, is convex and differentiable, we only need to

find v € Ay, 5 such that
VFu(u*) - (u—u*) <0. (3.7)
Note that both m and ¢ can be uniquely determined by p from the constraints, it suffices to

first choose p and then express all components of u in terms of p. Let pf; = be the maximum

component in vector p;, using hZL p;; =1 we thus have

1 1 N
< Pijors < 7 = : 3.8
b—a P ST g (3:8)
Without loss of generality, we assume jyy1 > ji, and
pz] 25+Tp(h)7 ]P<] <jp+1; b= ]-7 7k7 (39)

where r,(0) = 0 and ry(h) > 0 for A > 0 small. This can be justified by approximation for
sufficiently small h. Fix h > 0, we take for 0 < v < £(;= — 0),

6+77 l:iaj:jlv"'ajka
pPlLi = p'?,jk_;,_l - 7]{’ [ = Za] = jk’-i—la
Pl js else.

15



Hence @ = u — u* can be determined by

s l:iaj:jla"'ajka
ﬁl,j:pl,j_p;}: _’Yk’ l:iaj:jk-i-la
0, else.

Using m = m — m* and formula (3.6) for both m and m*, we have

myj+1/2 = else
)

?I*—‘

for 0 < b; < k. Hence
0< 7%%] < k%, J1 < J < Jrgr

For ¢ = ¢ — ¢*, using (3.3) for both ¢ and ¢*, we obtain Ap = [0, z:h2p;, 0], where the coefficient
matrix A is non-singular, more precisely, ¢ solves

(B + 2Ba¢(a))do + (h = 2Bae(a)) 1 = 0,

- 6j71/2(;j71 + 285005 — €j+1/2¢5j+1 = Wzipi; j=1,---,N,

(h — 26,(0))n + (h + 26€(b)) P11 = 0.
The solution of this linear system can be expressed as

o= (e; — kd)z, 1=0,1,--- ,N+1

for some ¢, d; depending on the coefficients in the above system. The above preparation yields

VFu(u) - (u—u*)=VF(u")-a

s N s N-1 N+1
S 3) SUNEXIIED 3) SLRNNE I LINIES pr A ter)
=1 j=1 =1 j=1 §=0
Je+1—1 N+1 B
Z i ]p - ]fapi,ijrl]:h(U*) + Z ami,jﬂ/gfh(“*)mi,jﬂ/z + Z aqu]:h(U*)¢j
J=Jj1 Jj=0
_h+5+g

In order to estimate I, I5, I3 we also need to bound «* in terms of p*. From (3.6) and (3.8) we

have .
1< Nj N2
. <= R e — h | < ——— = Nh 2
‘mz,]+1/2’ =1 ;pzl = (b— a)h = ‘mz,]’ — (b— CL)h
For ¢* satisfying A¢* = h[2¢°(a), h(f + >_i_; zip}), 2¢°(b)] ", we have
"] < h|AT[26"(a), h(f + Zzzpz ). 26" (D))" | =: C5.

We proceed as follows: from the definition of the obJectlve function

27—22 zJD”—i-hZ(Zp”logp” 8h2(¢g+1 ¢j— 1))

7j=1 =1
16



(g0 + ¢1)° + —(dn + dni1)’,

Sﬁa

given in (3.4) we have

8&

k - - )
hoo(mg;)° ho (mf. )
I = - blp D h(l+1 . ke | —— Ik =l h(l +1 *
1 7; 27_ (pz‘] ) + ( + Og pl,]p)] P}/ [ 27_ (p::]k 1)2 1, Jk+1 _'_ ( + Og plv]k+1)
p=1 4
k Aok 2
vh ykh (705 )% ) .
sz 2 (i, )P D, + yhklogs + = Dot )7 Dien ~ VhKlogDL,
=1 2,)k+1
k
vh vEN*
< g > (i)’ 5Dk, + Vhklog(b — a)
p=1
Th < YEN'
= _27_52 Z( Z]p) Dz]p+ 297 h Dl]k+1 +”)/hk10g5(b—a)
p=1

Mij ~—12 h My o - LR
= — ID A4+ — | ——ED s 1+ D
TSy T ( I
kA% k Jp+1—1 4 m Ak
h m; ; 12 zj _1 2 h M jiir =1~
= ; 5 pDZ]p + Z Z - D m; ; + Z . —p* ' Di7jk+lmi7jk+1_1/2
p:l p_l ] _] —+1 Zv] L Jk+1
k A k ]p+1 1 2 2
h ky m Nh~ N
S;T Z uﬁZ Z 135_’_7, )+7Di»jk+l
p=1 p=1 j=jp+1 p
k”}/ n k k k Jp+1—1 _ 2
Ak —1
= o 2_(522(7”% Up Z up h2 wk+1 , V> 0.
p=1 = p=1 J—Jp+1
Take n so that kn = h, we have
k 2 k kE Jp+1—1 71
Yh ~x \27)—1 _ Kk 4, Nky j N k’Y
I < 9752 Z(mi,jp) Di,jp +C, Gr= 27h ZDi,Jp h2 Z Dmkﬂ'
p=1 p=1 p=1 j=jp+1 ol
Note that

1 * * * * -
a¢jfh(u ) 4h [EJ 1(¢j ¢j72) + €j+1(¢j - ¢j+2)} J = 27 T 7N - 17
this together with derivatives involving boundary terms allows us to estimate I3:
Iy < |93 Fn(u")] - 9|

1
< (el + 8,1+ B, )C5 vzl + kldh® = CoCih.

17



For § < ﬁ, we can take vk = 2((;—17(1) such that ky < 1/(b — a) — 0 still holds. Hence

7k3N4D—1
orh bk

1 N ]
= 5 08d(b—a) + =5 D, + G+ CoCih < 0

Il + IQ + ]3 S whklogé(b - (l) +

+ Oy + CoClh

provided § < §y with

1 N4 1
50 — mln {exp (— _D._1 — 2N01 - QCOquNh) ) 5} .

27—h2 Z7jk+l

This gives (3.7) as we intended to show. Such contradiction allows us to conclude that a minimizer
at nth step can only occur in the interior of Vs for some 9y > 0. In order to show such solution
positivity can propagate, we start from p° > 0. Based on the above conclusion we recursively have

ptt e Virs € Vilso-

This completes the proof. 0

4. OPTIMIZATION ALGORITHMS

In this section, we discuss numerical techniques for solving the constrained optimization problem
(3.5). Let u = (p,m, ®), (3.5) can be written as

min F,(u),s.t. Au=b, Su>9, (4.1)
Where F,(u) is defined in (3.4), Au = b is the linear system corresponding to the constraints (3.1)
and (3.3), and S is the selection matrix that only selects p component in .

A simple method to solve (4.1) is the following update:
a"t = u" — nGV,F(u"),
with the projection matrix defined by
G=1-AT(AAT) A,

which ensues A" = b if Au™ = b. One then applies another projection

un—f—l — H(an-i-l)
)
18



so that pft! > 6.

Algorithm 1: PG Algorithm
Input: A, b, u", K = Iter,,.., and €.
Output: u"*!
initialization;
G=1—AT(AAT)'A,  uO® =qyn,
for k=1: K do
e Compute the update direction by

v = —Gvu}"h(u(k_l))

e Use backtracking to determine step size n;
e Update to get
i = u* N ¢ nv
e Projection u® = II(%);
if [|Au® — b]| + ||nv|] < € then
Stop the iteration;

end

end
™t = u(k) )

The positivity propagation property stated in Theorem 3.2 ensures that Su > ¢ will be fulfilled
by the scheme as long as p® > ¢ for § suitably small. Hence in our numerical tests the second

projection II is not enforced, where we select
§ = max{min{h* 7}, min{p!"(z;)}} > 0.

In summary, the numerical solutions pi’; and ¢} are updated with the following algorithm:

Algorithm 2: Algorithm for the fully discrete scheme

Input: pi"(z), final time T', and discretization parameters h, 7, § > 0
Output: p};, ¢7 forn=1,--- ,T/7.

initialization: u® = (p°, m°, ¢°) with

oty = ma{pi"(z,).}.

mg; =0, and ¢} is obtained by solving (3.2) with pf .
forn=1:T/7 do

P = arg min,eyn, {fh(u)} with Algorithm 1.

end

Remark 4.1. One may also apply other optimization solvers such as the Primal-Dual Interior-Point
algorithm (PDIP) [40, Chapter 19]) to solve the minimization problem in Algorithm 2, as long as

a positive lower bound for densities can be properly enforced.
19



5. NUMERICAL TESTS

In this section, we present a selected set of numerical tests to demonstrate the convergence and
properties of the proposed scheme. In all tests, the tolerance for PG method is set as 1076,
Errors are measured in the following discrete ls norm:

1/2
err = ( Z hluj — Uj"\2> .
1<j<N

Here u} and U} denotes the numerical solutions and reference solutions at (;,t,). In what follows
we take uj = pj';,or @7 at time ¢ = nr.

5.1. 1D multiple species. We apply our scheme to solve the 1D two-species PNP system (1.1)
and verify the proven properties.

Example 5.1. (Accuracy test) We consider the following PNP system

Opr =0 (Oup1 + p10:9) ,
Oip2 =0y (Opp2 — p20:9)
—@%gb =pP1 — P2,
in [-1, 1] and ¢ > 0. This is (1.1) with Dy = Dy = e =1, ¢ = 1, ¢o = —1, and f(x) = 0. The
initial and boundary conditions are chosen as

(5.1)

pi(x) =2—2%  py(x) =2+ sin(rz),
6(0,8) = -1, $(1,4) = 1.

In the accuracy test, we consider the numerical solutions obtained by h = 1/320 and 7 = 1/10000

(5.2)

as the reference solution. Our scheme is unconditionally energy stable, hence no CFL condition
on the time step is needed. Formally the scheme is first order accurate in time, and second order
accurate in space. Accuracy test is done in the following manner: we set the time step as 7 = h
to confirm the first order accuracy in time, and set 7 = h? to confirm the second order accuracy

in space. The errors and orders at ¢ = 0.5 are listed in Table 1 and Table 2, respectively.

TABLE 1. Accuracy for Example 5.1 with 7 = h

h

p1 €rror

order

P2 €rTor

order

¢ error

order

1/10
1/20
1/40
1/80

2.67958E-02
1.27689E-02
6.20098E-03
3.04165E-03

1.06937
1.04207
1.02764

9.80117E-03
4.12484E-03
1.91422E-03
9.21957E-04

1.24862
1.10758
1.05399

1.17890E-03
5.46161E-04
3.18396E-04
1.74525E-04

1.11004
0.77850
0.86739

Example 5.2. In this test, still with the initial boundary value problem (5.1)-(5.2), we show the
proven solution properties. We take h = 0.05, 7 = 0.01 to compute the numerical solutions up to

T = 2. Solutions at T'= 0, 0.05, 0.25, 1.5, 2 are given in Figure 1. In Figure 2 are total mass of p;
20



TABLE 2. Accuracy for Example 5.1 with 7 = h2

p1 error

order

p2 €rror

order

¢ error

order

1/10
1/20
1/40
1/80

9.00817E-03
2.22285E-03
5.36781E-04
1.15944E-04

2.01882
2.05001
2.21091

3.13854E-03
7.47122E-04
1.78121E-04
3.79348E-05

2.07068
2.06849
2.23126

1.42932E-03
3.62387E-04
9.15204E-05
2.35563E-05

1.97973
1.98537
1.95798

—— —t=0
| ¢ =005
351 1=0.25
t=1.5
¢ t=2

Py

FI1GURE 1. Solution evolutions for pi, p2, and ¢.

5

45

4t

3.5

3t

251

0.8

P

— ——t0
- 1=0.05

0.4] V3
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0.6

and py (the right vertical axis), and free energy profile (the left vertical axis). We see from Figure

1 and Figure 2 that the scheme is positivity preserving, mass conservative, and energy dissipating.

Example 5.3. (Positivity propagation) In this test, we consider the PNP system (5.1) with fol-

lowing initial and boundary conditions

10

pzln(x) = ?X[,O,&Q.s]? p%n(x) =2+ Sin(’ﬂ'l’),
6(0,) = -1, ¢(1,8) = 1,

21
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F1GURE 2. Energy dissipation and mass conservation
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We take h = 0.05,7 = 0.01 to compute the numerical solutions up to 7" = 2. Solutions at
T = 0, 0.015, 0.1, 1, 2 are displayed in Figure 3. In Figure 4 are total mass of p;, ps, and
free energy profile. From these results we see that the scheme is positivity preserving, mass
conservative, and energy dissipating. We also observe that steady state solutions are identical to
those in Example 5.2; this suggests that steady state solutions of the PNP systems with Dirichlet
boundary condition only depends on the total mass and the Dirichlet boundary condition, but not
sensitive to the profile of the initial data.

We attempted at applying the PDIP method to solve the minimization problem (4.1) and found
it slow. To be more precise, let us compare PG with PDIP in terms of the computational cost.
Motivated by perturbed KKT conditions the PDIP algorithm updates both primal and dual vari-
ables by taking one Newton step per iteration. PDIP methods are typically quite efficient. Under
suitable conditions they have better than linear convergence. However, for numerical tests pre-
sented in this work, we found it much more expensive than the PG method. The PG method
only requires inversion of AA" once, hence more efficient. In Table 3 we compare CPU times (in
seconds) needed for solving system (5.1) with initial and boundary conditions (5.3) when using
the PDIP method and the PG method. Here we set T = 0.5 and choose different number of

sub-intervals.

TABLE 3. CPU times comparison for PDIP method and PG method

h [1/10]1/50 ] 1/100] 1/150 [ 1/200 1/20 | 1/300

PDIP | 1.22 | 2.37 | 838 | 17.73 | 31.32 | 48.97 | 74.71
PG 1019039 | 1.15 | 2.02 | 3.12 | 4.56 | 6.38

5.2. 2D single and multiple species. We further apply our scheme to solve the 2D PNP system

and verify the proven properties.
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F1GURE 3. Solution evolutions for py, ps.
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FIGURE 4. Energy dissipation and mass conservation
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Example 5.4. 2D single species (Neumann boundary condition). We now apply our scheme to

solve the 2D single-species PNP system
Op =V -(Vp+pV9),
on domain §2 = [0, 1] x [0, 1]. We consider the initial boundary conditions

9¢

o = —4(2® — ) — 8(y* — — o = —1.
p"(z,y) (¢ —2) =8(y" ~v), 7 lon
The permanent charge f(z,vy) is
32, §§$§z, §§y§Z,
f(z,y) = 8 8 8 8 (5.4)
0, else.



This problem satisfies the compatibility condition (2.4). We take h, = h, = 0.025,7 = 0.01 to
compute the numerical solutions up to T' = 6. Color plot of the solutions at "= 0.01,0.5,1,2,4,6
are given in Figure 5. In Figure 6 are total mass of p and free energy profile.

FIGURE 5. Solution evolutions for p.
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FIGURE 6. Energy dissipation and mass conservation
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Example 5.5. 2D multiple species (Mixed boundary conditions). In this test, we solve the 2D
multi-species PNP system

opr =V - (Vp1 +p1 Vo),

Oip2 =V - (Vpg — p2V o),
24



—A¢p =p1 — pa + f(z,y),

on domain 2 = [0, 1] x [0, 1]. We consider the initial boundary conditions

P (@,y) = da(l — x) + 8y (1 — y),
Py (z,y) = sin(rx) + sin(ry),
99
¢ =0 on 0p, and a—]aﬂ = —1 on 09y,
n

where 0Qp = {(z,y) € Q:2 =0,z = 1} and Iy = IN \ 0Qp. The permanent charge f(z,y) is

) 7 5 7

87 *Sl’é*, 7§y§77

fay)={" 85738 §3Y=3
0, else

We take h, = h, = 0.025,7 = 0.001 to compute the numerical solutions up to 7" = 1. Color plot
of the solutions p;(first row) and ps(second row) at 7' = 0.1,0.2,0.3,0.5 are given in Figure 7,
showing the density evolution profiles obtained by our proposed numerical scheme. From Figure 7
we see that the positively charged p; diffused away from the center of the domain and the lowest
concentration accrued near top right corner (this is where we placed the permanent charge f ).
The negatively charged ps moved towards the region where we placed the permanent charge.

In addition, we demonstrate the performance of our numerical scheme in preserving physical
properties at a discrete level. With zero-flux boundary conditions, the total mass of concentra-
tions over the computational domain should be conserved for each time step. This is perfectly
confirmed in Figure 8(a) for both p; and p,. Displayed in this figure is also the discrete free energy
profile, one can observe that it decreases monotonically (energy dissipating), as predicted in our
numerical analysis. The free energy profile also suggests that the solutions approach the steady
state at around t = 0.5. To verify the positivity-preserving property, we focus on the evolution
of the minimum concentration for p; and ps over time interval (0,1]. As shown in Figure 8(b)
the numerical density functions remain positive all the time, even though the concentrations are

initially low near domain boundary.

6. CONCLUDING REMARKS

In this paper, a dynamic mass transport method for the PNP system is established by drawing
ideas from both the JKO-type scheme [23,26] and the classical Bennamou-Breiner formulation
[3]. The energy estimate resembles the physical energy law that governs the PNP system in
the continuous case, where the JKO type formulation is an essential component for preserving
intrinsic solution properties. Both mass conservation and the energy stability are shown to hold,
irrespective of the size of time steps. To reduce computational cost, we use a local approximation
for the artificial time in the constraint transport equation by a one step difference and the integral
in time by a one term quadrature.

Furthermore, by imposing a centered finite difference discretization in spatial variables, we

establish the solvability of the constrained optimization problem. This also leads to a remarkable
25



FIGURE 7. Solution evolutions for p; and ps.
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result: for any fixed time step and spatial meth size, density positivity will be propagating over
all time steps, which is desired for any discrete version of the PNP system.

In the previous section, some numerical experiments were carried out to demonstrate the proven
properties of a computed solution. The first experiment numerically verified that the variational
scheme yields convergence to the solution of the nonlinear PDE with desired accuracy. Secondly,
with further numerical tests the computed solutions are also shown to satisfy the energy dissipa-
tion law for the PNP system, mass conservation, and positivity propagation. It is a matter of
future work to prove an error estimate for these numerical solutions. This is not a standard error
analysis due to the nonlinearities in these problems, as well as the reformulation as a constrained
optimization problem. This method is expected to be extended to more complex PNP models such

as PNP equations for semiconductor devices and three-dimensional ion channels.
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