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Abstract

The adversarial vulnerability of neural nets, and subsequent techniques to create
robust models have attracted significant attention; yet we still lack a full understand-
ing of this phenomenon. Here, we study adversarial examples of trained neural
networks through analytical tools afforded by recent theory advances connecting
neural networks and kernel methods, namely the Neural Tangent Kernel (NTK),
following a growing body of work that leverages the NT K  approximation to suc-
cessfully analyze important deep learning phenomena and design algorithms for
new applications. We show how NTKs allow to generate adversarial examples
in a “training-free” fashion, and demonstrate that they transfer to fool their finite-
width neural net counterparts in the “lazy” regime. We leverage this connection
to provide an alternative view on robust and non-robust features, which have been
suggested to underlie the adversarial brittleness of neural nets. Specifically, we
define and study features induced by the eigendecomposition of the kernel to better
understand the role of robust and non-robust features, the reliance on both for
standard classification and the robustness-accuracy trade-off. We find that such
features are surprisingly consistent across architectures, and that robust features
tend to correspond to the largest eigenvalues of the model, and thus are learned
early during training. Our framework allows us to identify and visualize non-robust
yet useful features. Finally, we shed light on the robustness mechanism underlying
adversarial training of neural nets used in practice: quantifying the evolution of
the associated empirical NTK, we demonstrate that its dynamics falls much earlier
into the “lazy” regime and manifests a much stronger form of the well known bias
to prioritize learning features within the top eigenspaces of the kernel, compared to
standard training.

1 Introduction

Despite the tremendous success of deep neural networks in many computer vision and language
modeling tasks, as well as in scientific discoveries, their properties and the reasons for their success
are still poorly understood. Focusing on computer vision, a particularly surprising phenomenon
evidencing that those machines drift away from how humans perform image recognition is the
presence of adversarial examples, images that are almost identical to the original ones, yet are
misclassified by otherwise accurate models.

Since their discovery (Szegedy et al., 2014), a vast amount of work has been devoted to understanding the
sources of adversarial examples and explanations include, but are not limited to, the close to linear
operating mode of neural nets (Goodfellow et al., 2015), the curse of dimensionality carried by the
input space (Goodfellow et al., 2015, Simon-Gabriel et al., 2019), insufficient model capacity (Tsipras et
al., 2019, Nakkiran, 2019) or spurious correlations found in common datasets (Ilyas et al., 2019).
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Figure 1: Top. Standard setup of an adversarial attack, where a barely perceivable perturbation is
added to an image to confuse an accurate classifier. Bottom. The correspondence between neural
networks and kernel machines allows to visualize a decomposition of this perturbation, each part
attributed to a different feature of the model. The first few features tend to be robust.

In particular, one widespread viewpoint is that adversarial vulnerability is the result of a model’s
sensitivity to imperceptible yet well-generalizing features in the data, so called useful non-robust
features, giving rise to a trade-off between accuracy and robustness (Tsipras et al., 2019, Zhang et
al., 2019). This gradual understanding has enabled the design of training algorithms, that provide
convincing, yet partial, remedies to the problem; the most prominent of them being adversarial
training and its many variants (Goodfellow et al., 2015, Madry et al., 2018, Croce et al., 2021). Yet we
are far from a mature, unified theory of robustness that is powerful enough to universally guide
engineering choices or defense mechanisms.

In this work, we aim to get a deeper understanding of adversarial robustness (or lack thereof) by
focusing on the recently established connection of neural networks with kernel machines. Infinitely
wide neural networks, trained via gradient descent with infinitesimal learning rate, provably become
kernel machines with a data-independent, but architecture dependent kernel - its Neural Tangent
Kernel (NTK) - that remains constant during training (Jacot et al., 2018, Lee et al., 2019, Arora et al.,
2019b, Liu et al., 2020). The analytical tools afforded by the rich theory of kernels have resulted in
progress in understanding the optimization landscape and generalization capabilities of neural
networks (Du et al., 2019, Arora et al., 2019a), together with the discovery of interesting deep learning
phenomena (Fort et al., 2020, Ortiz-Jiménez et al., 2021), while also inspiring practical advances in
diverse areas of applications such as the design of better classifiers (Shankar et al., 2020), efficient
neural architecture search (Chen et al., 2021), low-dimensional tasks in graphics (Tancik et al., 2020)
and dataset distillation (Nguyen et al., 2021). While the NTK approximation is increasingly utlilized,
even for finite width neural nets, little is known about the adversarial robustness properties of these
infinitely wide models.

Our contribution: Our work inscribes itself into the quest to leverage analytical tools afforded by
kernel methods, in particular spectral analysis, to track properties of interest in the associated neural
nets, in this case as they pertain to robustness. To this end, we first demonstrate that adversarial
perturbations generated analytically with the NTK can successfully lead the associated trained wide
neural networks (in the kernel-regime) to misclassify, thus allowing kernels to faithfully predict the
lack of robustness of those trained neural networks. In other words, adversarial (non-) robustness
transfers from kernels to networks; and adversarial perturbations generated via kernels resemble
those generated by the corresponding trained networks. One implication of this transferability is that
we can analytically devise adversarial examples that do not require access to the trained model and in
particular its weights; instead these “blind spots” may be calculated a-priori, before training starts.

A  perhaps even more crucial implication of the NTK approach to robustness relates to the understand-
ing of adversarial examples. Indeed, we show how the spectrum of the NTK provides an alternative
way to define features of the model, to classify them according to their robustness and usefulness for
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Figure 2: Left: Top 5 features for 7 different kernel architectures for a car image extracted from
the CIFAR10 dataset when trained on car and plane images. Right: Features according to their
robustness (x-axis) and usefulness (y-axis). Larger/darker bullets correspond to larger eigenvalues.
Useful features have >  0.5-usefulness; shaded boxes are meant to help visualize useful-robust regions.

correct predictions and visually inspect them via their contribution to the adversarial perturbation
(see Fig. 1). This in turn allows us to verify previously conjectured properties of standard classifiers;
dependence on both robust and non-robust features in the data (Tsipras et al., 2019), and tradeoff of
accuracy and robustness during training. In particular we observe that features tend to be rather
invariable across architectures, and that robust features tend to correspond to the top of the eigenspec-
trum (see Fig. 2), and as such are learned first by the corresponding wide nets (Arora et al., 2019a,
Jacot et al., 2018). Moreover, we are able to visualize useful non-robust features of standard models
(Fig. 4). While this conceptual feature distinction has been highly influential in recent works that
study the robustness of deep neural networks (see for example (Allen-Zhu and Li, 2022, Kim et al.,
2021, Springer et al., 2021)), to the best of our knowledge, none of them has explicitly demonstrated
the dependence of networks on such feature functions (except for simple linear models (Goh, 2019)).
Rather, these works either reveal such features in some indirect fashion, or accept their existence as
an assumption. Here, we show that Neural Tangent Kernel theory endows us with a natural definition
of features through its eigen-decomposition and provides a way to visualise and inspect robust and
non-robust features directly on the function space of trained neural networks.

Interestingly, this connection also enables us to empirically demonstrate that robust features of
standard models alone are not enough for robust classification. Aiming to understand, then, what
makes robust models robust, we track the evolution of the data-dependent empirical NT K  during
adversarial training of neural networks used in practice. Prior experimental work has found that
networks with non-trivial width to depth ratio which are trained with large learning rates, depart from
the NTK regime and fall in the so-called “rich feature” regime, where the NTK changes substantially
during training (Geiger et al., 2020, Fort et al., 2020, Baratin et al., 2021, Ortiz-Jiménez et al., 2021).
In our work, which to the best of our knowledge is the first to provide insights on how the kernel
behaves during adversarial training, we find that the NTK evolves much faster compared to standard
training, simultaneously both changing its features and assigning more importance to the more robust
ones, giving direct insight into the mechanism at play during adversarial training (see Fig. 6). In
summary, the contributions of our work are the following:

• We discuss how to generate adversarial examples for infinitely-wide neural networks via the
NTK, and show that they transfer to fool their associated (finite width) nets in the appropriate
regime, yielding a "training-free" attack without need to access model weights (Sec. 3).

• Using the spectrum of the NTK, we give an alternative definition of features, providing a
natural decomposition or perturbations into robust and non-robust parts (Tsipras et al., 2019,
Ilyas et al., 2019) (Fig. 1). We confirm that robust features overwhelmingly correspond to
the top part of the eigenspectrum; hence they are learned early on in training. We bolster
previously conjectured hypotheses that prediction relies on both robust and non-robust
features and that robustness is traded for accuracy during standard training. Further, we
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show that only utilizing the robust features of standard models is not sufficient for robust
classification (Sec. 4).

• We turn to finite-width neural nets with standard parameters to study the dynamics of their
empirical NT K  during adversarial training. We show that the kernel rotates in a way that
enables both new (robust) feature learning and that drastically increases of the importance
(relative weight) of the robust features over the non-robust ones. We further highlight
the structural differences of the kernel change during adversarial training versus standard
training and observe that the kernel seems to enter the “lazy” regime much faster (Sec. 5).

Collectively, our findings may help explain many phenomena present in the adversarial ML literature
and further elucidate both the vulnerability of standard models and the robustness of adversarially
trained ones. We provide code to visualize features induced by kernels, giving a unique and principled
way to inspect features induced by standardly trained nets (available at https://github.com/
Tsi l i42/adv- ntk) .

Related work: To the best of our knowledge the only prior work that leverages NTK theory to derive
perturbations in some adversarial setting is due to Yuan and Wu (2021), yet with entirely different
focus. It deals with what is coined generalization attacks: the process of altering the training data
distribution to prevent models to generalise on clean data. Bai et al. (2021) study aspects of robust
models through their linearized sub-networks, but do not leverage NTKs.

2 Preliminaries

We introduce background material and definitions important to our analysis. Here, we restrict
ourselves to binary classification, to keep notation light. We defer the multiclass case, complete
definitions and a more detailed discussion of prior work to the Appendix.

2.1     Adversarial Examples

Let f  be a classifier, x  be an input (e.g. a natural image) and y its label (e.g. the image class). Then,
given that f  is an accurate classifier on x,  x  is an adversarial example (Szegedy et al., 2014) for f  if

i) the distance d(x, x) is small. Common choices in computer vision are the ℓ norms,
especially the ℓ∞  norm on which we focus henceforth, and

ii) f ( x )  =  y. That is, the perturbed input is being misclassified.

Given a loss function L ,  such as cross-entropy, one can construct an adversarial example x  =  x  +  η
by finding the perturbation η that produces the maximal increase of the loss, solving

η =  arg max L ( f ( x  +  η), y), (1)
�η�∞ ≤ϵ

for some ϵ >  0 that quantifies the dissimilarity between the two examples. In general, this is a
non-convex problem and one can resort to first order methods (Goodfellow et al., 2015)

x  =  x  +  ϵ · sign (�x L(f (x), y )) , (2)
or iterative versions for solving it (Kurakin et al., 2017, Madry et al., 2018). The former method is
usually called Fast Gradient Sign Method (FGSM) and the latter Projected Gradient Descent
(PGD). These methods are able to produce examples that are being misclassified by common neural
networks with a probability that approaches 1 (Carlini and Wagner, 2017). Even more surprisingly, it
has been observed that adversarial examples crafted to “fool” one machine learning model are
consistently capable of “fooling” others (Papernot et al., 2016, 2017), a phenomenon that is known as
the transferability of adversarial examples. Finally, adversarial training refers to the alteration of the
training procedure to include adversarial samples for teaching the model to be robust (Goodfellow et
al., 2015, Madry et al., 2018) and empirically holds as the strongest defense against adversarial
examples (Madry et al., 2018, Zhang et al., 2019).

2.2     Robust and Non-Robust Features

Despite a vast amount of research, the reasons behind the existence of adversarial examples are
not perfectly clear. A  line of work has argued that a central reason is the presence of robust and
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non-robust features in the data that standard models learn to rely upon (Tsipras et al., 2019, Ilyas
et al., 2019). In particular it is conjectured that reliance on useful but non-robust features during

training is responsible for the brittleness of neural nets. Here, we slightly adapt the feature definitions
of (Ilyas et al., 2019)1, and extend them to multi-class problems (see Appendix A).

Let D  be the data generating distribution with x  � X  and y � { ± 1 } .  We define a feature as a function
ϕ : X  → R  and distinguish how they perform as classifiers. Fix ρ, γ ≥  0:

1. ρ-Useful feature: A  feature ϕ is called ρ-useful if
E x , y �D  1{ s ig n [ϕ ( x ) ]= y }      =  ρ (3)

2. γ-Robust feature: A  feature ϕ is called γ-robust if it remains useful under any perturbation
inside a bounded “ball” B, that is if

E x , y �D      inf 1{ s i g n [ϕ ( x +δ ) ] = y }      =  γ (4)

In general, a feature adds predictive value if it gives an advantage above guessing the most likely
label, i.e. ρ >  max ′ E [1 ′ }], and we will speak of “useful” features in this case,
omitting the ρ. We will call such a feature useful, non-robust if it is useful, but γ-robust only for γ
=  0 or very close to 0, depending on context.

The vast majority of works imagines features as being induced by the activations of neurons in the
net, most commonly those of the penultimate layer (representation-layer features), but the previous
formal definitions are in no way restricted to activations, and we will show how to exploit them using the
eigenspectrum of the NTK. In particular, in Sec. 4, we demonstrate that the above framework agrees
perfectly with features induced by the eigenspectrum of the NT K  of a network, providing a natural
way to decompose the predictions of the NT K  into such feature functions. In particular we can
identify robust, useful, and, indeed, useful non-robust features.

2.3     Neural Tangent Kernel

Let f  : Rd  → R  be a (scalar) neural network with a linear final layer parameterized by a set of
weights w � Rp  and { X , Y }  be a dataset of size n, with X  � R n × d  and Y  � { ± 1 } n .  Linearized
training methods study the first order approximation

f (x; wt + 1 )  =  f (x; wt ) +  �w f (x; wt )�(wt+1 −  wt). (5)
The network gradient � f (x; w ) induces a kernel function Θ : Rd  ×  Rd  → R,  usually referred as
the Neural Tangent Kernel (NTK) of the model

Θ t (x, x ′ ) =  �w f (x; wt )��w f (x ′ ; wt ). (6)
This kernel describes the dynamics with infinitesimal learning rate (gradient flow). In general, the
tangent space spanned by the � f (x; w ) twists substantially during training, and learning with the
Gram matrix of Eq. (6) (empirical NTK) corresponds to training along an intermediate tangent plane.
Remarkably, however, in the infinite width limit with appropriate initialization and low learning
rate, it has been shown that f  becomes a linear function of the parameters (Jacot et al., 2018, Liu
et al., 2020), and the NT K  remains constant (Θ =  Θ = :  Θ). Then, for learning with ℓ loss the
training dynamics of infinitely wide networks admits a closed form solution corresponding to kernel
regression (Jacot et al., 2018, Lee et al., 2019, Arora et al., 2019b)

f t ( x )  =  Θ (x, X )�Θ−1 (X , X )( I  −  e − λΘ ( X , X ) t ) Y , (7)
where x  � Rd  is any input (training or testing), t denotes the time evolution of gradient descent,
λ  is the (small) learning rate and, slightly abusing notation, Θ(X , X )  � R n × n  denotes the matrix
containing the pairwise training values of the NTK, Θ(X , X ) =  Θ(x , x ), and similarly for
Θ(x, X )  � R n .  To be precise, Eq. (7) gives the mean output of the network using a weight-
independent kernel with variance depending on the initialization2.

1We distinguish useful and robust features based on their accuracy as classifiers, not in terms of correlation
with the labels as in Ilyas et al. (2019), allowing a natural extension to the multi-class setting. For robustness, we
consider any accuracy bounded away from zero as robust, quantifying that an adversary cannot drive accuracy to
zero entirely.

2For that reason, in the experiments, we often compare this with the centered prediction of the actual neural
network, f  −  f0 ,  as is commonly done in similar studies (Chizat et al., 2019).
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3 Transfer Results in the Kernel Regime

In this section, we show how to generate adversarial examples from NTKs and discuss their similarity to
the ones generated by the actual networks. Note that for network results, we restrict ourselves to wide
networks initialized in the “lazy” regime with small learning rates (the “kernel regime”).

3.1     Generation of Adversarial Examples for Infinitely Wide Neural Networks

Adversarial examples arise in the context of classification, while the NT K  learning process is
described by a regression as in Eq. (7). The arguably simplest way to align with the framework
presented in Eq. (1) is to treat the outputs of the kernel similar to logits of a neural net, mapping them to
a probability distribution via the sigmoid/softmax function and apply cross-entropy loss.

A  simple calculation (see Appendix B, together with the generalization to the multi-class case) gives:

The optimal one step adversarial example of a scalar, infinitely wide, neural network is given by

x  =  x  −  yϵ · sign (�x ft (x)) , (8)

for �x −  x�∞  ≤  ε, where �x f t ( x )  =  �xΘ (x, X )�Θ−1 (X , X )( I  −  e − λΘ ( X , X ) t ) Y .
One can conceive other ways to generate adversarial perturbations for the kernel, either by changing
the loss function (as previously done in neural networks (e.g. (Carlini and Wagner, 2017))) or through
a Taylor expansion around the test input, and we present such alternative derivations in Appendix B.
However, in practice we observe little difference between that approach and the one presented here.

3.2     Transfer Results and Kernel Attacks

Predictions from NTK theory for infinitely wide neural networks have been used successfully for their
large finite width counterparts, so it seems reasonable to conjecture that adversarial perturbations
generated via the kernel as in Eq. (8) resemble those directly computed for the corresponding neural
net as per Eq. (2). In particular, this would imply that adversarial perturbations derived from the
NT K  should not only fool the kernel machine itself, but also lead wide neural nets to misclassify.
While similar transfer results in different contexts have been ob-
served indirectly, via the effects of the perturbation on metrics like Cosine similarity of loss gradients

accuracy (Yuan and Wu, 2021, Nguyen et al., 2021), we aim to look      0.96                                                                                                

width 103

deeper to compare perturbations directly. High similarity would      0.94

imply that any gradient based white-box attack on the neural net can      0.92

be successfully mimicked by a “black-box” kernel derived attack.         0.90

Setting. To this end, we train multiple two-layer neural networks on
image classifications tasks extracted from MNIST and CIFAR-10
and compare adversarial examples generated by Eqs. (2) (attacking
the neural network) and (8) (attacking the kernel). The networks are
trained with small learning rate and are sufficiently large, so lie close
to the NTK regime.

We track cosine similarity between the gradients of the loss from
the NTK predictions and the gradients from the actual neural net as
training evolves. Then, we generate adversarial perturbations from
both the neural net and the kernel machine, and test whether those
produced by the latter can fool the former. Full experimental details
can be found in Appendix C.

Results. Our experiments confirm a very strong alignment of loss
gradients from the neural nets and the NTK across the whole duration
of training, as can be seen in Fig. 3 (top). Then, as expected, kernel-
generated attacks produce a similar drop in accuracy throughout
training as the networks “own” white-box attacks, eventually driving
robust accuracy to 0%, as seen in Fig. 3 (bottom). We reproduce
these plots for MNIST in Appendix C, leading to similar conclusions.

When concerned with security aspects of neural nets, adversarial
attacks are mainly characterised as either white-box or black-box

0.88

0.86 

Robust accuracy

60 NTK width 103

FGSM width 103

50 NTK width 104

FGSM width 104

40

30

20

10

0
102 103 104 105

epochs

Figure 3: Top. Cosine simi-
larity between the loss gradi-
ent of the neural net and of
the NT K  prediction for the
same time point. Bottom. Ro-
bust accuracy of neural net
against its own adversarial ex-
amples (solid) and correspond-
ing NT K  examples (dashed).
CIFAR10, car vs plane.
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attacks (Papernot et al., 2017). White box attacks assume full access to the neural network and in
particular its weights; prominent examples include FGSM/PGD attacks. Black box attacks, on the
other hand, can only query the model to try to infer the loss gradient, either through training separate
surrogate models (Papernot et al., 2016) or through carefully crafted input-output pairs fed to the
target model (Chen et al., 2017, Ilyas et al., 2018, Andriushchenko et al., 2020). NTK theory and the
experiments of this section suggest a threat model in which the attacker does not require access to the
model or its weights, nor training of a substitute model. For fixed architecture and training data, all the
information required for the computation of Eq. (8) is available at initialization, making the “NTK-
attack” akin to a “training free” substitution attack, and, at least in the kernel-regime for wide nets
considered here, as effective as white-box attacks.

4 N T K  Eigenvectors Induce Robust and Non-Robust Features

This close connection between adversarial perturbations from the kernel and the corresponding neural
net gives us the opportunity to bring to bear kernel tools on the study of adversarial robustness and its
relation to features in a more direct fashion. Several recent works leverage properties of the NTK,
and specifically its spectrum, to study aspects of approximation and generalization in neural networks
(Arora et al., 2019a, Basri et al., 2019, Bietti and Mairal, 2019, Basri et al., 2020). Here we show
how the spectrum relates to robustness and helps to clarify the notion of robust/non-robust features.

We define features induced by the eigendecomposition of the Gram matrix Θ(X , X )  = n λ  v  v�.
We will be most interested in the end of training, when the model has access to all the features it
can extract from the training data X .  As t → ∞, Eq. (7) becomes f  ( x )  =  Θ (x, X )�Θ (X , X )−1 Y
and can be decomposed as f∞ ( x )  =  Θ(x, X )� i = 1  λ

− 1 v i v�Y  = i = 1  f ( i ) ( x ) ,  where

f ( i )  : Rd  → Rk ,  f ( i ) ( x )  : =  λ−1Θ (x, X )�v i v�Y . (9)

Each f ( i )  can be seen as a unique feature captured from the (training) data. Note that these functions
map the input to the output space, thus matching the definitions of Sec. 2.2. Also observe that all
f ( i ) ’s  jointly recover the original prediction of the model, while each one, intuitively, should
contribute something different to it.

Importantly, these features induce a decomposition of the gradient of the loss into parts, each
representing gradients of a unique feature as already advertised in Fig. 1. The binary case is
particularly elegant as it gives rise to a linear decomposition of the gradient as

�x L ( f∞ (x ) , y )  =  
X
α i �x L ( f ( i ) ( x ) , y ) , (10)

i = 1

for some α depending on x  and y (see Appendix D). But if f ( i ) ’s  are features, how do they look
like?

Feature properties of common architectures:     With these
definitions in place, we can now analyze the characteristics
of features for commonly used architectures, leveraging their
associated NTK. To be consistent with the previous section, we
consider classification problems from MNIST (10 classes) and
CIFAR-10 (car vs airplane). We compose the Gram matrices
from the whole training dataset (50000 and 10000, respec-
tively), and compute the different feature functions f ( i )  using
the eigendecomposition of the matrix. We estimate the useful-
ness of a feature f ( i )  by measuring its accuracy on a hold-out
validation set, and its robustness by perturbing each input of
this set, using an FGSM attack on feature f ( i ) .  We consider
several different Fully Connected and Convolutional Kernels,
whose expressions are available through the Neural Tangents
library (Novak et al., 2020), built on top of JA X  (Bradbury
et al., 2018). We summarize our findings on how these features
behave:

Car features Plane features

index: 1018, class acc: 67.9 index: 1081, class acc: 68.1

index: 8018, class acc: 67.9 index: 8085, class acc: 72.3

Figure 4: Non-robust, useful fea-
tures earlier and later in the spec-
trum, for CIFAR10 car and plane.
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Functions f ( i )  represent visually distinct features. We visualise each feature f ( i )  by plotting its
gradient with respect to x.  Fig. 2 shows the gradient of the first 5 features for various architectures for
a specific image from the CIFAR-10 dataset. We observe that features are fairly consistent across
models, and they are interpretable: for example the 4th feature seems to represent the dominant color of
an image, while the 5th one seems to be capturing horizontal edges.

Networks use both robust and non-robust features for prediction. It has been speculated that neural
networks trained in a standard (non adversarial) fashion rely on both robust and non-robust features.
Our feature definition in Eq. (9) shows that this is indeed the case. The NT K  of common neural
networks consists of both robust features that match human expectations, such as the ones depicted in
Fig. 2, but also on features that are predictive of the true label, while not being robust to adversarial
perturbations of the input (Fig. 4). Fig. 2 depicts the first 100 features of a fully connected and a
convolutional tangent kernel in Usefulness-Robustness space. The upper left region of the plots shows
a large amount of useful, yet non-robust features. These features seem random to human observers.

Robustness lies at the top. We observe in Fig. 2 that features corresponding to the top eigenvectors
tend to be robust. This is consistent among different models and between the two datasets (see
Appendix D). Since these eigenvectors are the ones fitted first during training (Arora et al., 2019a,
Jacot et al., 2018), it is no wonder that the loss gradient evolves from coherence to noise, as observed
in Fig. 1b (in the Appendix). This also explains the apparent trade-off between robustness and
accuracy of neural networks as training progresses: useful, robust features are fitted first, followed by
useful, but non-robust ones. This ties in well with both empirical findings (Rahaman et al., 2019) and
theoretical case studies (Basri et al., 2019, Bietti and Mairal, 2019, Basri et al., 2020) that demonstrate
that low frequency functions are fitted first during training and provide favorable generalization
properties and we would associate robust features with these low-frequency parts (in function space).

Robust features alone are not enough. In light of these findings, it might be reasonable to conjecture
that we could obtain robust models by retaining the robust features of the prediction, while discarding
the non-robust ones. The spectral approach gives a principled way to disentangle features and create
kernel machines keeping only the robust ones. Our results show that in general it is not possible to
obtain non-trivial performance without compromising robustness in this fashion, strengthening the
case for the necessity of data augmentation in the form of adversarial training (see Appendix D.3).

5 Kernel Dynamics during Adversarial Training

Given the apparent necessity for adversarial training to produce robust models, how does it achieve
this goal? To shed some light on this fundamental question, we depart from the “lazy” NTK regime
and study the evolution of the NT K  of adversarially trained models. For a neural network trained
with gradient descent, as the learning rate η → 0, the continuous time dynamics can be written as

∂t 
=  −η�w L  =  −η�w f � 

∂ f
and

∂t 
=  −η  �w f�w f }  ∂ f  

. (11)

Θ t

In the NT K  regime, this kernel Θ remains fixed at its initial value. However, outside this regime, it
has been demonstrated, both empirically (Geiger et al., 2020, Fort et al., 2020, Baratin et al., 2021,
Ortiz-Jiménez et al., 2021) and theoretically (Atanasov et al., 2022), that Θ is not constant during
training, and is changing as the weights move. In adversarial training, moreover, there is the
additional effect that at each weight update, the data changes as well. For that reason, understanding
the dynamics of adversarial training requires tracking the evolution of a kernel Θ ( X  , X ), where X
denotes the current (mini) batch of training data. Notice that the tangent vector � f ( X  ) is still
describing the instantaneous change of f  on the current batch of data, thus Θ ( X  , X )  is informative of
the local geometry of the function space, justifying its value as a quantity to be measured during
adversarial training.

We train a deep convolutional architecture on CIFAR-10 (multiclass) with standard (SGD) and
adversarial training using PGD with an ℓ constraint. Full implementations details and accuracy
curves can be found in Appendix E, together with the reproduction of the same experiment on MNIST,
where the observations are similar. We track the following quantities during training:

Kernel distance. We compare two kernels using a scale invariant distance, which quantifies the
relative rotation between them, as used in other works studying NT K  dynamics (e.g. Fort et al.
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(2020)):

d(Θ ,Θ )  =  1 −
Tr(Θ iΘ j  )

. (12)
Tr(Θ iΘ i  )      Tr(Θ jΘ j  )

Polar dynamics. Zooming in on the change that the initial kernel undergoes, we define a polar space
on which we measure the movement of the kernel:

�Θt −  Θ0�F
t �Θf  −  Θ0�F

θt =  arccos (1 −  d(Θt ,Θ0)) , (13)

where Θ ,Θ are the initial and final kernel, respectively. Fig. 6 presents a heatmap of kernel
distances at different time steps for both standard and adversarial training, as well as both training
trajectories in polar space.

Concentration on subspaces. To quantify weight concentration on the top region of the spectrum,
we track the (normalized) Frobenius norm of subspaces as λ2 / λ2, for various cut-offs p,
where we have indexed the eigenvalues from largest to smallest. Fig. 5 depicts concentration on the
top 20 eigenvalues during training.

Our findings show that similar to what has been reported in prior work (Fort et al., 2020), the kernel
rotates significantly in the beginning of training and then slows down for both standard and adversarial
training. However, in the latter case, this second phase begins a lot earlier. As Fig. 6 illuminates, the
kernel moves a greater distance than when performing standard training, but after a few epochs it
stops both rotating and expanding; note that this is not the case for standard training where the
kernel increases its magnitude substantially later in training, and in fact grows to have a norm orders of
magnitude larger than during adversarial training (see Fig. 5). In hindsight, this behavior is
perhaps not surprising, as each element of the kernel measures similarity between data points, and a
robust machine should be more conservative when estimating similarity. The observation that
during adversarial training the kernel becomes relatively static relatively fast might indicate that
linear dynamics govern the later phase of adversarial training. It has been observed in previous
works (Geiger et al., 2020, Fort et al., 2020, Ortiz-Jiménez et al., 2021) that linearization after a
few initial epochs of rapid rotation often closely matches performance of full network training. Our
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results indicate that a similar phenomenon occurs even under the data shift of adversarial training
(see Appendix E.1 for a study of linearized adversarial training), opening avenues to design robust
machines more efficiently.

Moreover, endowed with the knowledge that at least for kernels trained with static data robust features lie
at the top, we study polar dynamics of the top space only (see Fig. 8 in the Appendix) to observe that
there is substantial rotation in this space, suggesting that robust features are learned early on not only
during standard, but in particular during adversarial training. Even more interestingly, Fig. 5
demonstrates that not only the robust features change, but their relative weight as measured by the
concentration on the top-20 space is increasing simultaneously relative to standard training as well,
and remains large; in fact, significantly larger than during standard training. As each eigenvalue
weights the importance of the corresponding feature on the final prediction, this implies that the
kernel “learns” to depend more on the most robust features.

Put together, these findings reveal different kernel dynamics during standard and adversarial training:
the kernel rotates much faster, expands much less and becomes “lazy” much earlier than during
standard training. Fully understanding the properties of converged adversarial kernels remains an
important avenue for future work, that might allow to design faster algorithms for robust classification.

6 Final Remarks

We have studied adversarial robustness through the lens of the NT K  across multiple architectures
and data sets both in the idealized NTK regime and the “rich feature” regime. When connecting the
spectrum of the kernel with fundamental properties characterizing robustness our phenomenological
study reveals a universal picture of the emergence of robust and non-robust features and their role
during training. There are certain limitations and unexplored themes in our work; Sec. 3 argues that
transferable attacks from the NT K  may be as effective as white-box attacks, but this warrants an in-
depth study across architectures, kernels and data sets (which has not been the main focus of this
work). Sec. 4 visualises features for fairly simple models, since the computation of kernel derivatives
is a costly procedure. It would be interesting to use our framework to visualise features from more
complicated architectures. Finally, our work in Sec. 5 invites more research on the kernel at the end of
adversarial training, similar to what has been done for standard models (Long, 2021).

We hope that our viewpoint can motivate further theoretical understanding of adversarial phenomena
(such as transferability) and the design of better and/or faster adversarial learning algorithms, by
further analyzing the kernels from robust deep neural networks.
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