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Abstract. For a class of fourth order gradient flow problems, integration of the scalar auxiliary

variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial dis-

cretization leads to SAV-DG schemes. These schemes are linear and shown unconditionally energy

stable. But the reduced linear systems are rather expensive to solve due to the dense coe�cient

matrices. In this paper, we provide a procedure to pre-evaluate the auxiliary variable in the piece-

wise polynomial space. As a result the computational complexity of O(N 2) reduces to O(N ) when

exploiting the conjugate gradient (CG) solver. This hybrid SAV-DG method is more e�cient and

able to deliver satisfactory results of high accuracy. This was also compared with solving the full

augmented system of the SAV-DG schemes.

1. Introduction

This paper is concerned with e�cient numerical approximations to a class of fourth order gra-

dient flows [5]:

ut = �
⇣
�+

a

2

⌘2
u� �0(u), x 2 ⌦ ⇢ Rd

, t > 0, (1.1)

which governs the evolution of a scalar time-dependent unknown u = u(x, t) in a convex bounded

domain ⌦ ⇢ Rd, � is a nonlinear function and a serves as a physical parameter. The model

equation (1.1) describes important physical processes in nature. Typical application examples

include the Swift-Hohenberg (SH) equation [23] and the extended Fisher–Kolmogorov equation

[3, 18].

It is known that under appropriate boundary conditions, equation (1.1) features a decaying free

energy
d

dt
E(u) = �

Z

⌦

|ut|2dx  0, (1.2)
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where

E(u) =
Z

⌦

1

2
(Lu)2 + �(u)dx, L = �

⇣
�+

a

2

⌘
. (1.3)

This energy dissipation law as a fundamental property of (1.1) is always desirable for numerical

approximations, and often crucial to eliminate numerical results that are not physical.

For the spatial discretization, we follow the penalty free discontinuous Galerkin (DG) method

introduced in [12]. The key idea is to introduce q = Lu so that the resulting semi-discrete DG

scheme becomes

(uht,�) = �A(qh,�)� (�0(uh),�), (1.4a)

(qh, ) = A(uh, ), (1.4b)

for all �,  in the same DG space as for uh, qh. Here A(qh, ·) is the DG discretization of (Lq, ·). This
spatial DG discretization avoids the use of penalty parameters (called penalty-free DG method)

in the numerical flux on interior cell interfaces. It also inherits most of the advantages of the

usual DG methods (see e.g. [10, 19, 20]), such as high order accuracy, flexibility in hp-adaptation,

capacity to handle domains with complex geometry.

In order to formulate an energy dissipative scheme with the time discretization, the linear

terms in (1.4) can be treated implicitly, but nonlinear terms have to be handled with care. The

IEQ-DG method introduced in [13] is to integrate the DG method with the method of invariant

energy quadratization (IEQ) [24, 27]. It boils down to solving an augmented system involving

the dynamics of the auxiliary variable U =
p
�(uh) + B. We remark that the IEQ approach is

remarkable as it allows one to construct linear, unconditionally energy stable schemes for a large

class of gradient flows (see, e.g. [24, 25, 26, 27, 13, 14]). We refer the readers to [13] for more

references to earlier results on both the DG approximation and the time discretization.

As pointed out in [13], one could also integrate the same DG method with the so-called SAV

approach [21] by introducing an auxiliary variable r =
qR

⌦�(u(x, t))dx+B. This transforms

(1.4) into another augmented system. As for the IEQ-DG method, here one can also obtain a

closed linear system for (un+1
h , q

n+1
h ) only. Unfortunately, such systems involve dense coe�cient

matrices and rather expensive to solve.

There are two ways to get around this obstacle: (i) find a path to lower the computational

complexity of solving the reduced linear system; or (ii) return to the full augmented system with

(un+1
h , q

n+1
h , r

n+1) as unknowns. For (i) we introduce a special procedure to pre-compute r
n+1 =

r(tn+1) in the piecewise polynomial space based on a linear DG solver; with such obtained r
n+1,

we solve the SAV-DG schemes with reduced computational cost. This treatment is interesting in

its own sake. We name it the hybrid SAV-DG method. For (ii), the full augmented system indeed

involves only sparse coe�cient matrices. Here the full system contains one more equation since r

does not depend on x. In contrast, the full system with (un+1
h , q

n+1
h , U

n+1) as unknowns for the

IEQ-DG method contains N(k+1) more equations. Here N is the total number of the 1-D meshes,

and k the degree of DG polynomials. The advantage of the IEQ-DG method lies in the simplicity

of its reduced system.
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Comparing the linear systems of the above three SAV-DG type-schemes, we see that the co-

e�cient matrices are all symmetric, but it is time-dependent and dense for the reduced system,

time-dependent and sparse for the full augmented system, and time-independent and sparse for

the hybrid SAV-DG. Indeed, our numerical tests confirm that the hybrid SAV-DG algorithm per-

forms the best. The SAV approach may also be integrated with other DG methods in such hybrid

manner.

Due to recent works (see, e.g., [1, 7, 8, 9]) both IEQ and SAV approaches could also be made ar-

bitrarily high order in time. Though here we only discuss first and second order time discretization

with the SAV approach, an extension to SAV-DG schemes of arbitrary high order (in time) is pos-

sible. For ODE solvers on such extension we refer to [15], where arbitrarily high order IEQ-based

RKDG schemes are constructed to solve equations of form (1.1).

As for the spatial discretization of (1.1), one may also adopt other methods such as the pseudo-

spectral method [11, 28] to capture spatial patterns with high-resolution on structured meshes,

while extra issues are involved when dealing with complex domains or non-periodic boundary

conditions. The main purpose of this work is to show how to integrate the SAV approach with the

DG spatial discretization, in contrast to collocation methods studied in [21, 1, 7, 8, 9] for either

SAV or IEQ schemes.

1.1. Organization. This paper is organized as follows: In Section 2, we formulate a unified

semi-discrete DG method for the fourth order equation (1.1) subject to two di↵erent boundary

conditions. In Section 3, we present SAV-DG schemes, show the energy dissipation law, and

discuss several ways to e�ciently implement the schemes. In Section 4, we provide a procedure

to pre-evaluate the auxiliary variable and then present the according algorithms. In Section 5,

we verify the good performance of the hybrid SAV-DG using several numerical examples. Finally

some concluding remarks are given in Section 6.

Notation: Throughout this paper, we use the notation ⇧ to indicate the usual piecewise L
2

projection in the sense of inner product with 8� 2 Vh,

(⇧w,�) = (w,�), 8� 2 Vh,

where Vh is the discontinuous Galerkin finite element space.

2. Spatial DG discretization

To introduce the hybrid SAV-DG algorithm, we need to first recall some conventions about the

semi-discrete DG discretization introduced in [12]. To be specific, we only consider homogeneous

boundary conditions of form

(i) u is periodic; or (ii) @nu = @n�u = 0, x 2 @⌦, (2.1)

where n stands for the unit outward normal to the boundary @⌦.

For the fourth order PDE (1.1), we set q = Lu so that the model admits the following mixed

form (
ut = �Lq � �0(u),

q = Lu.
(2.2)
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Let the domain ⌦ be a union of shape regular meshes Th = {K}, with the mesh size hK = diam{K}
and h = maxK hK . We denote the set of the interior interfaces by �0, the set of all boundary faces

by �@ , and the discontinuous Galerkin finite element space by

Vh = {v 2 L
2(⌦) : v|K 2 P

k(K), 8K 2 Th},

where P k(K) denotes the set of polynomials of degree no more than k on element K. If the normal

vector on the element interface e 2 @K1 \ @K2 is oriented from K1 to K2, then the average {·}
and the jump [·] operator are defined by

{v} =
1

2
(v|@K1 + v|@K2), [v] = v|@K2 � v|@K1 ,

for any function v 2 Vh, where v|@Ki (i = 1, 2) is the trace of v on e evaluated from element Ki.

Then the DG method for (2.2) is to find (uh(·, t), qh(·, t)) 2 Vh ⇥ Vh such that

(uht,�) = �A(qh,�)� (�0(uh),�), (2.3a)

(qh, ) = A(uh, ), (2.3b)

for all �,  2 Vh. The initial data for uh is taken as the piecewise L
2 projection, denoted by

uh(x, 0) = ⇧u0(x). In the above scheme formulation A(qh,�) is the DG discretization of (Lq,�)
and A(uh, ) is the DG discretizationvof (Lu, ).

The precise form of A(·, ·) depending on the types of boundary conditions is given as follows:

A(w, v) = A
0(w, v) + A

b(w, v)

with

A
0(w, v) =

X

K2Th

Z

K

⇣
rw ·rv � a

2
wv

⌘
dx+

X

e2�0

Z

e

({@⌫w}[v] + [w]{@⌫v}) ds. (2.4)

Here A
b(·, ·) are given below for each respective type of boundary conditions:

for (i) of (2.1) A
b(w, v) =

1

2

Z

�@

({@⌫w}[v] + [w]{@⌫v}) ds, (2.5a)

for (ii) of (2.1) A
b(w, v) = 0. (2.5b)

Note that for periodic case in (2.5a) the left boundary and the right boundary are considered as

same, for which we use the factor 1/2 to avoid recounting.

One can verify that the semi-discrete scheme (2.3) satisfies a discrete energy dissipation law (see

[13])
d

dt
E(uh, qh) = �

Z

⌦

|uht|2dx  0,

where

E(uh, qh) =

Z

⌦

1

2
|qh|2 + �(uh)dx. (2.6)

For non-homogeneous boundary conditions, it only requires a modification by adding some source

terms in the DG formulation. Of course, the energy dissipation also needs to be refined to account

for the boundary e↵ects.
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3. Time discretization

With time discretization using the SAV approach (cf. [21]), we introduce

r = r(t) :=

sZ

⌦

�(uh(x, t))dx+B

where B is so chosen that this quantity is well-defined, and consider the following enlarged system:

find (uh(·, t), qh(·, t)) 2 Vh ⇥ Vh and r = r(t) such that

(uht,�) =� A(qh,�)� r (b(uh),�) , (3.1a)

(qh, ) =A(uh, ), (3.1b)

rt =
1

2

Z

⌦

b(uh)uhtdx, (3.1c)

for all �, 2 Vh. Here we use the notation

b(w(·)) = �0(w(·))qR
⌦�(w(x))dx+B

. (3.2)

The initial data for the above scheme is chosen as

uh(x, 0) = ⇧u0(x), r(0) =

sZ

⌦

�(u0(x))dx+B,

where ⇧ denotes the piecewise L
2 projection into Vh.

One can verify that a modified energy of form

E(uh, qh, r) =
1

2

Z

⌦

q
2
hdx+ r

2 = E(uh, qh) + B (3.3)

satisfies the following dissipation inequality

d

dt
E(uh, qh, r) = �

Z

⌦

|uht|2dx  0.

Using the Euler-forward time discretization, we obtain the first order SAV-DG scheme: find

(un
h, q

n
h) 2 Vh ⇥ Vh and r

n = r(tn) such that for any for �, 2 Vh,

(Dtu
n
h,�) =� A(qn+1

h ,�)� r
n+1 (b(un

h),�) , (3.4a)

(qnh , ) =A(un
h, ), (3.4b)

Dtr
n =

1

2

Z

⌦

b(un
h)Dtu

n
hdx, (3.4c)

The initial data u
0
h = uh(x, 0), r0 = r(0). Here we used Dtv

n = vn+1�vn

�t .

Reformulation (3.1) also allows for even higher order in time discretization. To illustrate this

we only consider a second order SAV-DG scheme: find (un
h, q

n
h) 2 Vh ⇥ Vh such that for for all
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�, 2 Vh,

(Dtu
n
h,�) =� A(qn+1/2

h ,�)� r
n+1/2 (b(un,⇤

h ),�) , (3.5a)

(qnh , ) =A(un
h, ), (3.5b)

Dtr
n =

1

2

Z

⌦

b(un,⇤
h )Dtu

n
hdx, (3.5c)

where v
n+1/2 = (vn + v

n+1)/2 for v = uh, qh, r, and u
n,⇤
h is defined by

u
n,⇤
h =

3

2
u
n
h �

1

2
u
n�1
h . (3.6)

Here instead of un+1/2
h we use u

n,⇤
h to avoid the use of iteration steps in updating the numerical

solution, while still maintaining second order accuracy in time. When n = 0 in (3.6), we simply

take u
�1
h = u

0
h.

Both scheme (3.4) and (3.5) are unconditionally energy stable.

Theorem 3.1. (i) Scheme (3.4) admits a unique solution (un
h, q

n
h), and for En := E(un

h, q
n
h , r

n), we

have

E
n+1 = E

n � kun+1
h � u

n
hk2

�t
� 1

2
kqn+1

h � q
n
hk2 � |rn+1 � r

n|2. (3.7)

for any �t > 0.

(ii) Scheme (3.5) admits a unique solution, and

E
n+1 = E

n � kun+1
h � u

n
hk2

�t
(3.8)

for any �t > 0.

The proof of this result is deferred to Appendix A.

Though SAV-DG schemes are linear and unconditionally energy stable, their numerical imple-

mentations cannot be handled as for the IEQ-DG schemes in [13]. To see this, we follow [13] to

rewrite (3.4) into a closed linear system for (un+1
h , q

n+1
h ) as

�
u
n+1
h ,�

�
+
�t

2
(b(un

h),�)
�
b(un

h), u
n+1
h

�
+�tA(qn+1

h ,�)

= (un
h,�) +

�t

2
(b(un

h),�) (b(u
n
h), u

n
h)� r

n (b(un
h),�) ,

A(un+1
h , )� (qn+1

h , ) = 0.

(3.9)

This linear system with a nonlocal term (b(un
h), u

n+1
h ) has a symmetric yet dense and unstructured

coe�cient matrix, and is rather expensive to solve.

To get around this obstacle, we either return to the augmented system with (un+1
h , q

n+1
h , r

n+1) as

unknowns, or attempt to find a way to reduce the computational complexity of solving the reduced

linear system (3.9). For the former, the linear system for the first order scheme is

(�t)�1
�
u
n+1
h ,�

�
+ A(qn+1

h ,�) + r
n+1 (b(un

h),�) = (�t)�1 (un
h,�) , (3.10a)

A(un+1
h , )� (qn+1

h , ) = 0, (3.10b)
�
u
n+1
h , b(un

h)
�
� 2rn+1 = (un

h, b(u
n
h))� 2rn. (3.10c)
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Though the coe�cient matrix of this linear system is also time-dependent, it is sparse and sym-

metric, hence still suitable for e�cient computing. In fact, we use the conjugate gradient (CG)

solver to solve this system with the computational complexity of order O(N ); while it is of order

O(N 2) when solving the reduced system (3.9); see, e.g., [22].

As for the latter, we introduce a special procedure to pre-compute rn+1 in order to substantially

reduce the total computational complexity. This treatment is interesting in particular within the

DG framework. The details will be presented in the next section. For a class of Cahn-Hillard type

gradient flows, the authors of [21] suggested a procedure for the SAV approach at the semi-discrete

level, which involves in solving two fourth-order elliptic equations sequentially. However, solving

fourth-order equations within the DG framework can be a challenging task. Our pre-evaluation

to be detailed in Section 4 provides novel techniques for actually implementing a fully-discrete

SAV-DG method.

4. Pre-evaluation of the auxiliary variable and algorithms

4.1. Pre-evaluation of the auxiliary variable r
n+1. We introduce an auxiliary linear system:

find (vh, wh) 2 Vh ⇥ Vh such that for 8�, 2 Vh,

⌧A(wh,�) + (vh,�) = (fh,�),

(wh, ) = A(vh, ),
(4.1)

and define operator (Lhv, ) = A(v, ) for any  2 Vh. We have the following.

Lemma 4.1. For any ⌧ > 0 and fh given, system (4.1) admits a unique solution (vh, wh), given by

vh = Bh(⌧)fh, wh = Lhvh = LhBh(⌧)fh. (4.2)

Moreover, the operator Bh(⌧) can be expressed as (I + ⌧L2
h)

�1, with the following bounds:

(fh,Bh(⌧)fh) = kBh(⌧)fhk2 + ⌧kLhBh(⌧)fhk � 0. (4.3)

kBh(⌧)fhk  kfhk.

Proof. Set � = vh and  = wh in (4.1) so that

kvhk2 + ⌧kwhk2 = (fh, vh) 
1

2
(kfhk2 + kvhk2).

Hence

kvhk2 + 2⌧kwhk2  kfhk2. (4.4)

This a priori estimate ensures both existence and uniqueness of the linear system (4.1). Combining

two equations in (4.1) we obtain

(⌧L2
h + I)vh = fh.

This implies that

Bh(⌧) = (I + ⌧L2
h)

�1
,

and (4.3) follows from (4.4), completing the proof. ⇤

Equipped with the above result, we can compute rn+1 in advance for the SAV-DG scheme (3.4).



8 H. LIU, P. YIN

Theorem 4.1. Givn (un
h, q

n
h), scheme (3.4) can be realized in two steps:

(i) Determine r
n+1 by

r
n+1 = r

n � 1

2
(⇧b(un

h), u
n
h) +

1

2
R

n
, (4.5)

where

R
n =

(b(un
h),Bh(�t)⇠n)

1 + �t
2 (⇧b(un

h),Bh(�t)⇧b(un
h))

, (4.6)

⇠
n = u

n
h ��t⇧b(un

h)r
n +

�t

2
⇧b(un

h) (b(u
n
h), u

n
h) ; (4.7)

(ii) with such obtained r
n+1 we solve the following linear system:

(Dtu
n
h,�) =� A(qn+1

h ,�)� (b(un
h),�) r

n+1
,

(qn+1
h , ) =A(un+1

h , ).

Proof. Denote Bh = Bh(�t). From (3.4a) we have

u
n+1
h = u

n
h ��tL2

hu
n+1
h ��t⇧b(un

h)r
n+1 2 Vh, (4.8)

which further gives

u
n+1
h = Bhu

n
h ��tr

n+1Bh⇧b(u
n
h).

Using (3.4c), i.e.,

r
n+1 = r

n +
1

2

�
b(un

h), u
n+1
h � u

n
h

�
, (4.9)

we see that

u
n+1
h = Bh⇠

n � �t

2
Bh⇧b(u

n
h)
�
b(un

h), u
n+1
h

�
,

where ⇠n is given in (4.7). Applying inner product against b(un
h) gives

✓
1 +

�t

2
(b(un

h),Bh⇧b(u
n
h))

◆�
b(un

h), u
n+1
h

�
=(b(un

h),Bh⇠
n) .

Since (Bh⇧b(un
h), b(u

n
h)) = (Bh⇧b(un

h),⇧b(u
n
h)) � 0, hence,

�
b(un

h), u
n+1
h

�
=

(b(un
h),Bh⇠

n)

1 + �t
2 (⇧b(un

h),Bh⇧b(un
h))

.

This when inserted into (4.9) completes the proof. ⇤

We can also compute r
n+1 in advance for the second order SAV-DG scheme (3.5).

Theorem 4.2. Given (un
h, q

n
h), scheme (3.5) can be realized in two steps:

(i) Determine r
n+1/2 by

r
n+1/2 = r

n � 1

2
(⇧b(un,⇤

h ), un
h) +

1

2
R

n,⇤
, (4.10)

where

R
n,⇤ =

(b(un,⇤
h ),Bh(�t/2)⇠n,⇤)

1 + �t
4 (⇧b(un,⇤

h ),Bh(�t/2)⇧b(un,⇤
h ))

, (4.11)

⇠
n,⇤ = u

n
h �

1

2
�tr

n⇧b(un,⇤
h ) +

�t

4
⇧b(un,⇤

h ) (b(un,⇤
h ), un

h) ; (4.12)
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(ii) with such obtained r
n+1/2 we solve the following linear system:

(Dtu
n
h,�) =� A(qn+1/2

h ,�)� (b(un,⇤
h ),�) rn+1/2

,

(qnh , ) =A(un
h, ).

(4.13)

Proof. Scheme (3.5) may be rewritten as
⇣
D̃tu

n+1/2
h ,�

⌘
=� A(qn+1/2

h ,�)� r
n+1/2 (b(un,⇤

h ),�) ,

(qnh , ) =A(un
h, ),

D̃tr
n+1/2 =

1

2

Z

⌦

b(un,⇤
h )D̃tu

n+1/2
h dx,

Here D̃t denotes a forward di↵erence with time step �t/2 so that

D̃tr
n+1/2 = Dtr

n
.

This is the same form as the first order SAV-DG method with b(un
h) replaced by b(un,⇤

h ) and time

step �t replaced by �t/2. Hence the claimed results follow directly from those in Theorem 4.1.

⇤

4.2. Algorithms. The details related to the scheme implementation are summarized in the fol-

lowing algorithms.

Algorithm 4.1. Hybrid algorithm for the first order SAV-DG scheme (3.4).

• Step 1 (Initialization) From the given initial data u0(x)

(1) generate u
0
h = ⇧u0(x) 2 Vh;

(2) generate r
0 =

qR
⌦�(u0(x))dx+B, where B is a priori chosen constant so that

infv(
R
⌦�(v(x))dx+B) > 0.

• Step 2 (Evolution)

(1) solve for ⇧b(un
h) from b(un

h);

(2) obtain Bh(�t)⇧b(un
h) = vh by solving the linear system (4.1) with fh = ⇧b(un

h);

(3) obtain Bh(�t)⇠n = vh by solving the linear system (4.1) with fh = ⇠n in (4.7);

(4) calculate R
n in (4.6);

(5) calculate r
n+1 through (4.5);

(6) solve the following linear system for un+1
h , q

n+1
h ,

�
u
n+1
h ,�

�
+�tA(qn+1

h ,�) = (un
h,�)��t (b(un

h),�) r
n+1

,

A(un+1
h , )� (qn+1

h , ) =0.

Algorithm 4.2. Hybrid algorithm for the second order SAV-DG scheme (3.5).

• Step 1 (Initialization) From the given initial data u0(x)

(1) generate u
0
h = ⇧u0(x) 2 Vh;

(2) solve for q0h from (3.5b) based on u
0
h;

(3) generate r
0 =

qR
⌦�(u0(x))dx+B, where B is a priori chosen constant so that

infv(
R
⌦�(v(x))dx+B) > 0.
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• Step 2 (Evolution)

(1) solve for ⇧b(un,⇤
h ) based on b(un,⇤

h ), where u
n,⇤
h is defined in (3.6);

(2) obtain Bh(�t/2)⇧b(un,⇤
h ) = vh by solving the linear system (4.1) with fh = ⇧b(un,⇤

h );

(3) obtain Bh(�t/2)⇠n,⇤ = vh by solving the linear system (4.1) with fh = ⇠
n,⇤ in (4.12);

(4) calculate R
n,⇤ in (4.11);

(5) calculate r
n+1/2 through (4.10);

(6) solve the following linear system for un+1/2
h , q

n+1/2
h ,

⇣
u
n+1/2
h ,�

⌘
+ (�t/2)A(qn+1/2

h ,�) = (un
h,�)� (�t/2) (b(un,⇤

h ),�) rn+1/2
,

A(un+1/2
h , )� (qn+1/2

h , ) =0;

(7) calculate u
n+1
h = 2un+1/2

h � u
n
h.

Note that each coe�cient matrix of the linear system involved in Algorithm 4.1 and 4.2 is

symmetric, sparse and time-independent. The use of the CG solver for solving these linear systems

induces the computational complexity of only order O(N ).

5. Numerical examples

In this section we numerically test both the spatial and temporal orders of convergence, and apply

the second order fully discrete SAV-DG scheme (3.5) to recover roll patterns and hexagonal patterns

governed by the two dimensional Swift-Hohenberg equation and further verify the unconditional

energy stability of the numerical solutions.

In our numerical tests, we take rectangular meshes. The L1 and L
2 errors between the numerical

solution u
n
h(x, y) and the exact solution u(tn, x, y) evaluated to obtain experimental orders of

convergence (EOC) are defined respectively by

e
n
h = max

i
max

0lk+1
max

0sk+1
|un

h(x̂
i
l, ŷ

i
s)� u(tn, x̂i

l, ŷ
i
s)|

and

e
n
h =

 
X

i

h
i
xh

i
y

4

k+1X

l=1

k+1X

s=1

!l,s|un
h(x̂

i
l, ŷ

i
s)� u(tn, x̂i

l, ŷ
i
s)|2
!1/2

,

where !l,s > 0 are the weights, and (x̂i
l, ŷ

i
s) are the corresponding quadrature points. The EOC

at T = n�t = 2n(�t/2) in terms of mesh size h = maxi{hi
x, h

i
y} and time step �t are calculated

respectively by

EOC = log2

 
e
n
h

enh/2

!
, EOC = log2

✓
e
n
h

e2nh

◆
.

The relative errors in L
1 and L

2 norm are defined respectively by

kun
h(x, y)� u(tn, x, y)kL1(⌦)

ku(tn, x, y)kL1(⌦)
and

kun
h(x, y)� u(tn, x, y)k

ku(tn, x, y)k .

The Swift-Hohenberg equation is a special case of model equation (1.1) with a = 2 and

 (u) =
1� ✏

2
u
2 � g

3
u
3 +

u
4

4
,
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that is,

ut = ��2
u� 2�u+ (✏� 1)u+ gu

2 � u
3
. (5.1)

Here physical parameters are g � 0 and ✏, which together with the size of the domain play an

important role in pattern selection; see, e.g., [2, 17, 16]. Our numerical tests center on this equation

for which

�(u) = � ✏

2
u
2 � g

3
u
3 +

u
4

4
and g � 0 and ✏ > 0. This function has double wells with two local minimal values at u± =
g±
p

g2+4✏

2 such that �0(u±) = 0, and

�(u) � min{�(u±)} = min
v=u±

✓
� 1

12

�
gv(g2 + 4✏) + ✏(g2 + 3✏)

�◆
= �a,

so it su�ces to choose the method parameter B = a|⌦|. In all numerical examples a < 1, so we

simply take B = |⌦| for all cases.

Example 5.1. (Spatial Accuracy Test) Consider the Swift-Hohenberg equation (5.1) with an added

source of form

f(x, y, t) = �"v � gv
2 + v

3
, v := e

�t/4 sin(x/2) sin(y/2),

on ⌦, subject to initial data

u0(x, y) = sin(x/2) sin(y/2), (x, y) 2 ⌦. (5.2)

This problem has an explicit solution

u(x, y, t) = e
�t/4 sin(x/2) sin(y/2), (x, y) 2 ⌦. (5.3)

This example is used to test the spatial accuracy, using polynomials of degree k with k = 1, 2, 3

on 2D rectangular meshes. In the second-order SAV-DG scheme (3.5), we need to add

1

2

�
f(·, tn+1

,�) + f(·, tn,�)
�
,

to the right hand side of (3.5a).

Test case 1. We take " = 0.025, g = 0, and domain ⌦ = [�2⇡, 2⇡]2 with periodic boundary

conditions. Both errors and orders of convergence at T = 0.01 are reported in Table 1. These

results confirm the (k + 1)th orders of accuracy in L
2
, L

1 norms.

Test case 2. We take " = 0.025, g = 0.05, domain ⌦ = [�⇡, 3⇡]2 with boundary condition

@⌫u = @⌫�u = 0, (x, y) 2 @⌦. Both errors and orders of convergence at T = 0.01 are reported in

Table 2. These results also show that (k + 1)th orders of accuracy in both L
2 and L

1 norms are

obtained.

Example 5.2. (Temporal Accuracy Test) Consider the Swift-Hohenberg equation with source

term given as in Example 5.1. We take " = 0.025 and g = 0, and domain ⌦ = [�4⇡, 4⇡]2 with

periodic boundary conditions, subject to initial data

u0(x, y) = sin(x/4) sin(y/4). (5.4)
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Table 1. L
2
, L

1 errors and EOC at T = 0.01 with mesh N ⇥N .

k �t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
ku� uhkL2 3.18621e-01 8.28732e-02 1.94 2.02935e-02 2.03 5.04416e-03 2.01

ku� uhkL1 1.38452e-01 3.83881e-02 1.85 9.61389e-03 2.00 2.40363e-03 2.00

2 1e-4
ku� uhkL2 6.96867e-02 1.49828e-02 2.22 2.01641e-03 2.89 2.56761e-04 2.97

ku� uhkL1 2.41046e-02 2.94730e-03 3.03 4.02470e-04 2.87 5.14111e-05 2.97

3 1e-5
ku� uhkL2 1.19940e-02 1.13110e-03 3.41 7.72013e-05 3.87 5.01113e-06 3.95

ku� uhkL1 3.85634e-03 3.68735e-04 3.39 2.43503e-05 3.92 1.53912e-06 3.98

Table 2. L
2
, L

1 errors and EOC at T = 0.01 with mesh N ⇥N .

k �t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
ku� uhkL2 3.18621e-01 8.28732e-02 1.94 2.02935e-02 2.03 5.04416e-03 2.01

ku� uhkL1 1.38452e-01 3.83886e-02 1.85 9.61391e-03 2.00 2.40363e-03 2.00

2 1e-4
ku� uhkL2 6.96867e-02 1.49828e-02 2.22 2.01641e-03 2.89 2.56762e-04 2.97

ku� uhkL1 2.41054e-02 2.94731e-03 3.03 4.02470e-04 2.87 5.14110e-05 2.97

3 1e-5
ku� uhkL2 1.19940e-02 1.13110e-03 3.41 7.72042e-05 3.87 5.05657e-06 3.93

ku� uhkL1 3.85659e-03 3.68738e-04 3.39 2.43504e-05 3.92 1.53917e-06 3.98

Its exact solution is given by

u(x, y, t) = e
�49t/64 sin(x/4) sin(y/4), (x, y) 2 ⌦.

Test case 1. We compute the numerical solutions using the SAV-DG schemes (3.4) and (3.5)

based on P
2 polynomials with time steps �t = 2�m for 2  m  5 and mesh size 64 ⇥ 64. The

L
2
, L

1 errors and orders of convergence at T = 2 are shown in Table 3, and these results confirm

that DG schemes (3.4) and (3.5) are first order and second order in time, respectively.

Table 3. L
2
, L

1 errors and EOC at T = 2 with time step �t.

Scheme Mesh
�t = 2�2 �t = 2�3 �t = 2�4 �t = 2�5

error error order error order error order

(3.4) 64⇥ 64
ku� uhkL2 3.05892e-01 1.58442e-01 0.95 8.07023e-02 0.97 4.07442e-02 0.99

ku� uhkL1 1.75153e-02 9.09087e-03 0.95 4.64080e-03 0.97 2.34881e-03 0.98

(3.5) 64⇥ 64
ku� uhkL2 4.17744e-02 8.14437e-03 2.36 1.74312e-03 2.22 3.98404e-04 2.13

ku� uhkL1 4.01428e-03 7.92985e-04 2.34 1.46602e-04 2.44 3.60847e-05 2.02

Test case 2. Again, we compute the numerical solutions using the SAV-DG scheme (3.5) based

on P
2 polynomials with time steps �t = 2�m for 2  m  5 and mesh size N⇥N with N = 32 and

N = 64. The evolution of the relative L
2 and L

1 errors of the numerical solution with di↵erent

time steps is shown in Figure 1. We also show the evolution of the di↵erence u
n
h(x, y)� u(tn, x, y)
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Figure 1. Evolution of relative errors with di↵erent time step.

with mesh size 64 ⇥ 64 and di↵erent time steps. For �t = 2�2 and �t = 2�5, the evolution is

shown in Figure 2 and Figure 3, respectively. All these results indicate that the SAV-DG method

is able to keep the desired accuracy of the numerical solution over long time simulation.

Example 5.3. We consider the Swift-Hehenberg equation with the parameters in Example 5.2.

Here we compare the computational complexity of (3.9), (3.10) and Algorithm 4.1 in implementing

the first order SAV-DG scheme (3.4). We use P 1 polynomials with time step �t = 10�2 and meshes

N ⇥N . The total CPU time and the orders of the CPU time relative to the number of unknowns

are presented in Table 4.

Let N = 6N2 + 1 be the total number of unknowns. The results tell us that the computational

complexity of (3.9) is O(N 2), but only O(N ) for (3.10) and Algorithm 4.1. The key for the O(N )

complexity lies in the sparsity of the coe�cient matrix, however, (3.10) solves a larger system,

and Algorithm 4.1 involves a pre-evaluation procedure. Still Algorithm 4.1 appears best among

all three methods.
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Figure 2. Evolution of the di↵erence u
n
h(x, y)� u(tn, x, y) with �t = 2�2 and N = 64.

Figure 3. Evolution of the di↵erence u
n
h(x, y)� u(tn, x, y) with �t = 2�5 and N = 64.

6. Concluding remarks

For a class of fourth order gradient flows, integration of the spatial discretization based on

the penalty-free DG method introduced in [12] with the temporal discretization based on the

SAV approach introduced in [21] to handle nonlinear terms led us to SAV-DG schemes. Such
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Table 4. The CPU time in seconds with respect to meshes N ⇥N at T = 0.1.

method
N=8 N=16 N=32 N=64

CPU time CPU time order CPU time order CPU time order

(3.9) 3.46 16.58 1.13 157.58 1.63 2687.80 2.05

(3.10) 2.70 9.79 0.93 38.10 0.98 155.07 1.01

Algorithm 4.1 2.10 7.39 0.91 28.49 0.97 116.00 1.01

schemes inherit the energy dissipation property of the continuous equation irrespectively of the

mesh and time step sizes. However, the resulting linear system involving unknowns (u, q) only,

where q is an approximation of L = �
�
�+ a

2

�
u, is rather expensive to solve due to the dense

coe�cient matrix. In this paper, we have developed hybrid SAV-DG algorithms in two steps:

we (i) provide a procedure to pre-evaluate the auxiliary variable r
n+1 in the piecewise polynomial

space, and (ii) solve the resulting linear system with the obtained r
n+1. This procedure reduced the

computational complexity of the CG solver to O(N ) from O(N 2); here N is the total number of

unknowns. We also presented several numerical examples to assess the performance of the hybrid

SAV-DG algorithms in terms of accuracy and energy stability. Also the cost of the hybrid SAV-

DG is comparable to that for solving the augmented system involving (u, q, r), with the hybrid

SAV-DG performing better as evidenced by our numerical results.
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Appendix A. Proofs of energy dissipation laws

Proof. (i) We first prove (3.7). From (3.4b), it follows

(Dtq
n
h , ) = A(Dtu

n
h, ). (A.1)

Taking  = q
n+1
h and � = Dtu

n
h in (3.4a), when combined with (3.4c) we have

�kDtu
n
hk2 =(Dtq

n
h , q

n+1
h ) + (b(un

h), Dtu
n
h)r

n+1

=
1

2
Dtkqnhk2 +

�t

2
kDtq

n
hk2 + 2rn+1

Dtr
n

=
1

2
Dtkqnhk2 +

�t

2
kDtq

n
hk2 +Dt|rn|2 +�t|Dtr

n|2,

(A.2)

which leads to the desired equality (3.7).

Next we show the uniqueness of the SAV-DG scheme (3.4). Let (ũ, q̃, r̃) be the di↵erence of two

possible solutions at t = tn+1, then (A.2) is equivalent to

1

�t
kũk2 + kq̃k2 + 2|r̃|2 = 0,

hence we must have (ũ, q̃, r̃) = (0, 0, 0), leading to the uniqueness of the linear system (3.4), hence

its existence since for a linear system in finite dimensional space, existence is equivalent to its

uniqueness.
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(ii) We first prove (3.8). From (3.5b), it follows

(Dtq
n
h , ) = A(Dtu

n
h, ). (A.3)

Taking  = q
n+1/2
h and � = Dtu

n
h in (3.5a), when combined with (3.5c) we have

�kDtu
n
hk2 = (Dtq

n
h , q

n+1/2
h ) + (b(un,⇤

h )rn+1/2
, Dtu

n
h) =

1

2
Dtkqnhk2 +Dt|rn|2.

Multiplying by �t on both sides of this equality leads to (3.8).

Similar to (i), the existence of the SAV-DG scheme (3.5) is equivalent to its uniqueness, we let

(ũ, q̃, r̃) be the di↵erence of two possible solutions at t = tn+1 again, then a similar analysis yields

1

�t
kũk2 + 1

2
kq̃k2 + |r̃|2 = 0,

hence we must also have (ũ, q̃, r̃) = (0, 0, 0), leading to the uniqueness of the scheme (3.5). ⇤
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