ON THE SAV-DG METHOD FOR A CLASS OF FOURTH ORDER
GRADIENT FLOWS *
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ABSTRACT. For a class of fourth order gradient flow problems, integration of the scalar auxiliary
variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial dis-
cretization leads to SAV-DG schemes. These schemes are linear and shown unconditionally energy
stable. But the reduced linear systems are rather expensive to solve due to the dense coefficient
matrices. In this paper, we provide a procedure to pre-evaluate the auxiliary variable in the piece-
wise polynomial space. As a result the computational complexity of O(N?) reduces to O(N') when
exploiting the conjugate gradient (CG) solver. This hybrid SAV-DG method is more efficient and
able to deliver satisfactory results of high accuracy. This was also compared with solving the full
augmented system of the SAV-DG schemes.

1. INTRODUCTION

This paper is concerned with efficient numerical approximations to a class of fourth order gra-
dient flows [5]:

2
ut:—<A+g> uw—®'(u), z€ QC R >0, (1.1)

which governs the evolution of a scalar time-dependent unknown u = u(x,t) in a convex bounded
domain Q C R? & is a nonlinear function and a serves as a physical parameter. The model
equation (1.1) describes important physical processes in nature. Typical application examples
include the Swift-Hohenberg (SH) equation [23] and the extended Fisher-Kolmogorov equation
3, 18].

It is known that under appropriate boundary conditions, equation (1.1) features a decaying free

energy
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where

E(u) = /Q % () + Bz, £=—(A+9). (1.3)

This energy dissipation law as a fundamental property of (1.1) is always desirable for numerical
approximations, and often crucial to eliminate numerical results that are not physical.

For the spatial discretization, we follow the penalty free discontinuous Galerkin (DG) method
introduced in [12]. The key idea is to introduce ¢ = Lu so that the resulting semi-discrete DG
scheme becomes

(unt, @) = —A(qn, ) — (P'(un), @), (1.4a)
(qn, ¥) = A(un, ), (1.4Db)

for all ¢, 1 in the same DG space as for uy, g,. Here A(qy, -) is the DG discretization of (Lq, -). This
spatial DG discretization avoids the use of penalty parameters (called penalty-free DG method)
in the numerical flux on interior cell interfaces. It also inherits most of the advantages of the
usual DG methods (see e.g. [10, 19, 20]), such as high order accuracy, flexibility in hp-adaptation,
capacity to handle domains with complex geometry.

In order to formulate an energy dissipative scheme with the time discretization, the linear
terms in (1.4) can be treated implicitly, but nonlinear terms have to be handled with care. The
IEQ-DG method introduced in [13] is to integrate the DG method with the method of invariant
energy quadratization (IEQ) [24, 27]. It boils down to solving an augmented system involving
the dynamics of the auxiliary variable U = \/W We remark that the IEQ approach is
remarkable as it allows one to construct linear, unconditionally energy stable schemes for a large
class of gradient flows (see, e.g. [24, 25, 26, 27, 13, 14]). We refer the readers to [13] for more
references to earlier results on both the DG approximation and the time discretization.

As pointed out in [13], one could also integrate the same DG method with the so-called SAV

approach [21] by introducing an auxiliary variable r = \/ Jo @(u(z,t))dz + B. This transforms
(1.4) into another augmented system. As for the IEQ-DG method, here one can also obtain a
closed linear system for (uzﬂ, q}f“) only. Unfortunately, such systems involve dense coefficient
matrices and rather expensive to solve.

There are two ways to get around this obstacle: (i) find a path to lower the computational
complexity of solving the reduced linear system; or (ii) return to the full augmented system with
(uptt, gt rntl) as unknowns. For (i) we introduce a special procedure to pre-compute r"*! =
r(t"*1) in the piecewise polynomial space based on a linear DG solver; with such obtained r"*1,
we solve the SAV-DG schemes with reduced computational cost. This treatment is interesting in
its own sake. We name it the hybrid SAV-DG method. For (ii), the full augmented system indeed
involves only sparse coefficient matrices. Here the full system contains one more equation since r
does not depend on x. In contrast, the full system with (u}™!, ¢'*', U"*1) as unknowns for the
IEQ-DG method contains N (k4 1) more equations. Here NN is the total number of the 1-D meshes,
and k the degree of DG polynomials. The advantage of the IEQ-DG method lies in the simplicity

of its reduced system.
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Comparing the linear systems of the above three SAV-DG type-schemes, we see that the co-
efficient matrices are all symmetric, but it is time-dependent and dense for the reduced system,
time-dependent and sparse for the full augmented system, and time-independent and sparse for
the hybrid SAV-DG. Indeed, our numerical tests confirm that the hybrid SAV-DG algorithm per-
forms the best. The SAV approach may also be integrated with other DG methods in such hybrid
manner.

Due to recent works (see, e.g., [1, 7, 8, 9]) both IEQ and SAV approaches could also be made ar-
bitrarily high order in time. Though here we only discuss first and second order time discretization
with the SAV approach, an extension to SAV-DG schemes of arbitrary high order (in time) is pos-
sible. For ODE solvers on such extension we refer to [15], where arbitrarily high order IEQ-based
RKDG schemes are constructed to solve equations of form (1.1).

As for the spatial discretization of (1.1), one may also adopt other methods such as the pseudo-
spectral method [11, 28] to capture spatial patterns with high-resolution on structured meshes,
while extra issues are involved when dealing with complex domains or non-periodic boundary
conditions. The main purpose of this work is to show how to integrate the SAV approach with the
DG spatial discretization, in contrast to collocation methods studied in [21, 1, 7, 8, 9] for either

SAV or TEQ schemes.

1.1. Organization. This paper is organized as follows: In Section 2, we formulate a unified
semi-discrete DG method for the fourth order equation (1.1) subject to two different boundary
conditions. In Section 3, we present SAV-DG schemes, show the energy dissipation law, and
discuss several ways to efficiently implement the schemes. In Section 4, we provide a procedure
to pre-evaluate the auxiliary variable and then present the according algorithms. In Section 5,
we verify the good performance of the hybrid SAV-DG using several numerical examples. Finally
some concluding remarks are given in Section 6.

Notation: Throughout this paper, we use the notation II to indicate the usual piecewise L?
projection in the sense of inner product with V¢ € V},,

(Hwa ¢) = (w7 ¢)a VQZ) € Vha

where V}, is the discontinuous Galerkin finite element space.

2. SPATIAL DG DISCRETIZATION

To introduce the hybrid SAV-DG algorithm, we need to first recall some conventions about the
semi-discrete DG discretization introduced in [12]. To be specific, we only consider homogeneous
boundary conditions of form

(i) w is periodic; or (ii) Opu = OnAu =10, x € 09, (2.1)

where n stands for the unit outward normal to the boundary 0f2.
For the fourth order PDE (1.1), we set ¢ = Lu so that the model admits the following mixed

form
Uy = _Eq - @’(U), (2 2)
qg= Lu. '
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Let the domain €2 be a union of shape regular meshes 7, = { K}, with the mesh size hx = diam{ K}
and h = maxg hx. We denote the set of the interior interfaces by I'’, the set of all boundary faces
by I'?, and the discontinuous Galerkin finite element space by

VhI{’UELQ(Q) : UIKGP’“(K), VKGIEL},

where P¥(K') denotes the set of polynomials of degree no more than k on element K. If the normal
vector on the element interface e € dK; N 0K is oriented from K; to K, then the average {-}
and the jump [-] operator are defined by

{U} = ( |3K1 + U|3K2) [U] = U|3K2 - U|3K1v

for any function v € V3, where v|sk, (i = 1,2) is the trace of v on e evaluated from element K.

Then the DG method for (2.2) is to find (uy(-,t), qn(-,t)) € Vi, X V}, such that

(uhta ¢) = _A(in ¢) - ((I),<uh)v ¢)7 (238’)
(qn, ¥) = Alun, V), (2.3b)

for all ¢, 1 € Vj,. The initial data for w, is taken as the piecewise L? projection, denoted by
up(x,0) = Hug(z). In the above scheme formulation A(gy, ¢) is the DG discretization of (Lg, ¢)
and A(up, ) is the DG discretizationvof (Lu, ).

The precise form of A(,-) depending on the types of boundary conditions is given as follows:

Alw,v) = A%(w,v) + AP (w,v)

with

(w,v) Z/ Vw Vv——wv da:—l—Z/ {0, w}v] + [w]{0,v}) ds. (2.4)

KeTy, el

Here A°(-,-) are given below for each respective type of boundary conditions:

for (i) of (2.1) Ab(w,v) = / ({0, w}v] + [w|{0,v})ds, (2.5a)
for (ii) of (2.1) Ab(w,v) = 0. (2.5b)
Note that for periodic case in (2.5a) the left boundary and the right boundary are considered as

same, for which we use the factor 1/2 to avoid recounting.

One can verify that the semi-discrete scheme (2.3) satisfies a discrete energy dissipation law (see

[13])
—5 (un, qn) / |upe|*dz <0,
where
1
Elunar) = [ Slan + Bl (2.6)
Q

For non-homogeneous boundary conditions, it only requires a modification by adding some source
terms in the DG formulation. Of course, the energy dissipation also needs to be refined to account
for the boundary effects.
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3. TIME DISCRETIZATION

With time discretization using the SAV approach (cf. [21]), we introduce

_ \//Qq>(uh(x,t))dx+3

where B is so chosen that this quantity is well-defined, and consider the following enlarged system:
find (up(-,t), qn(-,t)) € Vi x Vj, and r = r(t) such that

(une, @) = — Algn, @) — r (b(un), 9), (3.1a)

(Qha w) :A(Uh, ¢)a (31b)
1

Tt 25 /Q b(up)upde, (3.1¢)

for all ¢,v € V},. Here we use the notation

‘I>’( ()

(3.2)
\/ Jo @(w(z))dz + B
The initial data for the above scheme is chosen as
up(x,0) = Hug(x \// (uo(x))dx + B,
where II denotes the piecewise L? projection into V.
One can verify that a modified energy of form
1
E(up, qn,r) = 5/ qidr +1° = E(up, qn) + B (3.3)
Q

satisfies the following dissipation inequality

d

EE(uhtha ) [2|Uht|2d$ S 0.

Using the Euler-forward time discretization, we obtain the first order SAV-DG scheme: find
(up,qy) € Vi, x Vi, and r™ = r(t") such that for any for ¢, € Vj,

(Dtu27¢) == ( n+17¢) it ( (UZ)»@» (3.4&)
(qn,¥) =Aluy, ¥), (3.4Db)

" —1 u) Dyurrdx c

Dyr _Q/Qb( ) Dyuydx, (3.4¢)

vn+17vn
At
Reformulation (3.1) also allows for even higher order in time discretization. To illustrate this

The initial data u) = up(z,0), r° = r(0). Here we used D;v" =

we only consider a second order SAV-DG scheme: find (u},q}) € Vi x V3 such that for for all
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¢7¢ € Vh7
(Duy, 6) = — Algy ™72, 0) — "2 (b(up™), 6) (3.5a)
(qr, ¥) =Alup, ), (3.5Db)
Dyr" ! b(u,"")Dwulrd 3.5
7 —5/9 (up”™) Dyuyd, (3.5¢)

where v" /2 = (v 4+ "1 /2 for v = uy, qu, 7, and )" is defined by
e 3.1

up” =5 U~ §u2 (3.6)
Here instead of u”Jr /2 we use uy”™ to avoid the use of iteration steps in updating the numerical
solution, while still maintaining second order accuracy in time. When n = 0 in (3.6), we simply
take u; ' = uy.

Both scheme (3.4) and (3.5) are unconditionally energy stable.

Theorem 3.1. (i) Scheme (3.4) admits a unique solution (u},qy), and for E™ := E(u}, g}, "), we

have
unJrl —u? 2
En+1 — En _ H At hH ||qn+1 qZ”Z _ |,r,n+1 _ rn|2‘ (37)
for any At > 0.
(ii) Scheme (3.5) admits a unique solution, and
n+1 nl|2

for any At > 0.

The proof of this result is deferred to Appendix A.
Though SAV-DG schemes are linear and unconditionally energy stable, their numerical imple-
mentations cannot be handled as for the IEQ-DG schemes in [13]. To see this, we follow [13] to

rewrite (3.4) into a closed linear system for (u}™" ¢') as
A
(a1, 0) + 5 (), 6) (), ™) + ALA(G, 0)
At
= (uh,6) + 5 (b(u7), &) (b{up), up) — 1" (b(up). ). (3.9)
Al ™) = (g3 v) = 0.

This linear system with a nonlocal term (b(u}), u}"") has a symmetric yet dense and unstructured

coefficient matrix, and is rather expensive to solve.
To get around this obstacle, we either return to the augmented system with (u ”+1, q,’f“, r"*1) as
unknowns, or attempt to find a way to reduce the computational complexity of solving the reduced

linear system (3.9). For the former, the linear system for the first order scheme is

(A (upt, ) + Algr™, @) + " (b(uf), @) = (A) ! (uf, 8), (3.10a)
A(up ™ 9) = (g™ 9) = 0, (3.10b)
(up™ b(up)) — 27"+t = (uft, b(up)) — 20", (3.10c)
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Though the coefficient matrix of this linear system is also time-dependent, it is sparse and sym-
metric, hence still suitable for efficient computing. In fact, we use the conjugate gradient (CG)
solver to solve this system with the computational complexity of order O(N'); while it is of order
O(N?) when solving the reduced system (3.9); see, e.g., [22].

As for the latter, we introduce a special procedure to pre-compute r"+!

in order to substantially
reduce the total computational complexity. This treatment is interesting in particular within the
DG framework. The details will be presented in the next section. For a class of Cahn-Hillard type
gradient flows, the authors of [21] suggested a procedure for the SAV approach at the semi-discrete
level, which involves in solving two fourth-order elliptic equations sequentially. However, solving
fourth-order equations within the DG framework can be a challenging task. Our pre-evaluation
to be detailed in Section 4 provides novel techniques for actually implementing a fully-discrete

SAV-DG method.

4. PRE-EVALUATION OF THE AUXILIARY VARIABLE AND ALGORITHMS

4.1. Pre-evaluation of the auxiliary variable r"*!. We introduce an auxiliary linear system:
find (v, wy) € Vi, X Vj, such that for Vo, v € V,,

TA<wh7 ¢) + (U}m ¢) - (fh7 Qb),
(wh7 1/)) = A(vha ¢)7
and define operator (L,v,v) = A(v, 1) for any ¢ € V},. We have the following.

(4.1)

Lemma 4.1. For any 7 > 0 and f, given, system (4.1) admits a unique solution (v, wy), given by

Oh = Bp(7) fr.  wn = Lavy, = LpBi(T) fn- (4.2)
Moreover, the operator By (7) can be expressed as (I + 7£2)~!, with the following bounds:
(fn: Bu(7) f) = IBu(7) full* + 71 LaBu(7) fill = 0. (4.3)

1Bn(7) full < [ fall-
Proof. Set ¢ = v, and 1) = wy, in (4.1) so that

lonll® + Tllwnl* = (fn, vn) < %(Hth2 + [lonl).

Hence

lonll® + 27 lwall* < [ £all*. (4.4)
This a priori estimate ensures both existence and uniqueness of the linear system (4.1). Combining
two equations in (4.1) we obtain

(L5 + Do = f.
This implies that
Bu(r) = (I+71L;)"",

and (4.3) follows from (4.4), completing the proof. O

Equipped with the above result, we can compute r"™! in advance for the SAV-DG scheme (3.4).
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Theorem 4.1. Givn (uj, qp), scheme (3.4) can be realized in two steps:
(i) Determine r"*! by

Pt =t — %( b(u}), uy) + %R", (4.5)
e bug). Bu(ADE")
=17 %((nb&m, By (At)IIb(up))’ (4.6)
" = wuy — AtIIb(up )r™ + %Hb(uﬁ) (b(up),up); (4.7)
(ii) with such obtained r"*! we solve the following linear system:
(Deuy, ¢) = = Algy ™, ) — (b(uy), ¢) 7",
(qn ™ ¥) =A(up ™ ).
Proof. Denote B, = By (At). From (3.4a) we have
uptt = — AtLouptt — AHIb(uf)r™t € Vi, (4.8)
which further gives
uptt = Byl — Atr" M By ITb(uy).
Using (3.4c), i.e.,
it = % (b(up), up™ —up), (4.9)
we see that
Ut = By — 2B ) (b(up), ).
where " is given in (4.7). Applying inner product against b(u}}) gives
(145 0t BTG ) () 7) = 0. Bie?)
Since (BpIIb(u}), b(uy)) = (Bpllb(u}), Ib(u})) > 0, hence,
) — (OB
1+ 5 (I1b(uy), Bpllb(uy))
This when inserted into (4.9) completes the proof. O
We can also compute r"*! in advance for the second order SAV-DG scheme (3.5).
Theorem 4.2. Given (uj, qp), scheme (3.5) can be realized in two steps:
(i) Determine r"+1/2 by
P2 = %(Hb(u’,;"*), up) + %R”’*, (4.10)
where
e ("), Bu(At/2)€™) o

T 1+ AL (Tb(u), Bu(At/2)TIb(up))

* n 1 n % At % T, % n
€ = — SAWTIO(u) + ST (b(uy), ) (4.12)
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(ii) with such obtained r"*/2 we solve the following linear system:

(Dyuy, ) = — A(gy ™2, 0) — (b(up™), ¢) 1" 1/2,
(Qh7w) :A(uh7w>

Proof. Scheme (3.5) may be rewritten as
(Dr12,0) = = Algr ™2, 6) = 7512 (b(up "), 6)
(a5, ) =A(uj, ),
Dy t1/? :% /Q b(ul*) Dyu P da,

(4.13)

Here D, denotes a forward difference with time step At/2 so that
Dtrn+1/2 = Dtrn.

This is the same form as the first order SAV-DG method with b(u}) replaced by b(u;"") and time
step At replaced by At/2. Hence the claimed results follow directly from those in Theorem 4.1.
O

4.2. Algorithms. The details related to the scheme implementation are summarized in the fol-
lowing algorithms.

Algorithm 4.1. Hybrid algorithm for the first order SAV-DG scheme (3.4).

e Step 1 (Initialization) From the given initial data ug(z)
(1) generate u) = Hug(x) € Vh;

(2) generate 7"0 = \/ Jo @(uo(x))dz + B, where B is a priori chosen constant so that
inf,( [, ®(v(x))dz + B) > O
e Step 2 (Evolutlon)
(1) solve for IIb(uj}) from b(uj);
(2) obtain Bj,(At)IIb(u}) = vy, by solving the linear system (4.1) with f;, = IIb(u});
(3) obtain Bj,(At)¢™ = vy, by solving the linear system (4.1) with f, = &, in (4.7);
(4) calculate R" in (4.6);
(5) calculate r™™! through (4.5);
(6)

6) solve the following linear system for u}*!, g +!

h )
(up ™, 0) + AtA(gy ™, ¢) = (uh, ) — At (b(uy), ¢) ™,
Ay ™ 0) = (g7 ¢) =
Algorithm 4.2. Hybrid algorithm for the second order SAV-DG scheme (3.5).

e Step 1 (Initialization) From the given initial data ug(x)
(1) generate u% = Mug(z) € Vi;
(2) solve for ¢) from (3.5b) based on u);

(3) generate rY \/ Jo ®(uo(z))dx + B, where B is a priori chosen constant so that
inf, ([, ®(v(z))dz + B) > 0.
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e Step 2 (Evolution)
solve for TIb(u; ™) based on b(u; ™), where u,”" is defined in (3.6);
1) solve for Ib(u"*) based on b(u"*), where u"* is defined in (3.6
(2) obtain Bj,(At/2)IIb(u,™) = v, by solving the linear system (4.1) with f;, = IIb(u;");
obtain by (A " = vy by solving the linear system (4.1) with f, = ™" 1n (4.12);
3) obtain By (At/2)£™* by solvi he i 4.1) with ™*in (4.12
(4) calculate R™* in (4.11);
(5) calculate r"1/2 through (4.10);
(6) solve the following linear system for uZH/ 2 qzﬂ/ 2,

(“}:“/ ?, ¢) +(At/2)A(gp 2, 0) = (uf, ¢) — (At/2) (b(up™™), ¢) "1/,
Al 0) = (g2 ) =0;

(7) calculate u)t! = 2u2+1/2 —uy.

Note that each coefficient matrix of the linear system involved in Algorithm 4.1 and 4.2 is
symmetric, sparse and time-independent. The use of the CG solver for solving these linear systems
induces the computational complexity of only order O(N).

5. NUMERICAL EXAMPLES

In this section we numerically test both the spatial and temporal orders of convergence, and apply
the second order fully discrete SAV-DG scheme (3.5) to recover roll patterns and hexagonal patterns
governed by the two dimensional Swift-Hohenberg equation and further verify the unconditional
energy stability of the numerical solutions.

In our numerical tests, we take rectangular meshes. The L> and L? errors between the numerical
solution w}(x,y) and the exact solution u(t",x,y) evaluated to obtain experimental orders of
convergence (EOC) are defined respectively by

ch =max max omax |up(@]5;) - u(", 3, 95)
and
pi i Bl o o 1/2
GZ = (Z%ZZ%J%@%@;) _u(tnvi'fltvg;)|2> )
i =1 s=1
where w;; > 0 are the weights, and (&}, ¢!) are the corresponding quadrature points. The EOC
at T = nAt = 2n(At/2) in terms of mesh size h = max;{h’, h!} and time step At are calculated

zr 'y

EOC = log, (e‘fﬁ ) ., EOC = log, (%) .
h/2 h

The relative errors in L> and L? norm are defined respectively by

[uh(,y) — ut", =, y)|| =) luh (2, y) — @, =, y)|

respectively by

and

[u(t™, 2, y) || L) Ju(t™, 2, y)||
The Swift-Hohenberg equation is a special case of model equation (1.1) with a = 2 and
1—e¢ 4

g u
uw? —Zu + —,

W) = —3 3 4
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that is,
uy = —A*u — 2Au + (e — Du + gu® — u®. (5.1)

Here physical parameters are ¢ > 0 and e, which together with the size of the domain play an
important role in pattern selection; see, e.g., [2, 17, 16]. Our numerical tests center on this equation

for which .

€ g 5 u
du) = —Su2 I+ L
(u) = —gu” = 3w+

and ¢ > 0 and € > 0. This function has double wells with two local minimal values at uy =
IEVIHIE Gich that P’ (ug) =0, and

®(u) > min{P(uy)} = 5121}3[ (—% (gv(g® + 4e) + (g + 36))) = —a,

so it suffices to choose the method parameter B = a|Q2|. In all numerical examples a < 1, so we
simply take B = |Q2| for all cases.

Example 5.1. (Spatial Accuracy Test) Consider the Swift-Hohenberg equation (5.1) with an added
source of form
fx,y,t) = —ev — gv® + 03, v:=e Y*sin(z/2)sin(y/2),

on (), subject to initial data
uo(z,y) = sin(x/2)sin(y/2), (z,y) € Q. (5.2)
This problem has an explicit solution
w(z,y,t) = e Y*sin(z/2) sin(y/2), (z,y) € Q. (5.3)

This example is used to test the spatial accuracy, using polynomials of degree k with k =1, 2, 3
on 2D rectangular meshes. In the second-order SAV-DG scheme (3.5), we need to add

1 n n

5 (f(7t +17¢) + f(7t 7¢)) ’

to the right hand side of (3.5a).

Test case 1. We take ¢ = 0.025,¢g = 0, and domain Q = [—2,27]|? with periodic boundary
conditions. Both errors and orders of convergence at T = 0.01 are reported in Table 1. These
results confirm the (k + 1)th orders of accuracy in L? ) L> norms.

Test case 2. We take ¢ = 0.025,¢9 = 0.05, domain Q = [—7,3n]?> with boundary condition
Oyu = 0,Au =0, (x,y) € 9. Both errors and orders of convergence at T'= 0.01 are reported in
Table 2. These results also show that (k + 1)th orders of accuracy in both L? and L* norms are
obtained.

Example 5.2. (Temporal Accuracy Test) Consider the Swift-Hohenberg equation with source
term given as in Example 5.1. We take ¢ = 0.025 and g = 0, and domain Q = [—4n,47]? with
periodic boundary conditions, subject to initial data

uo(z,y) = sin(x/4) sin(y/4). (5.4)
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TABLE 1. L2, L* errors and EOC at T = 0.01 with mesh N x N.

At

N=8

N=16

N=32

N=64

error

error

order

error

order

error

order

1{1e-3

lu = w2

3.18621e-01

8.28732e-02

1.94

2.02935e-02

2.03

5.04416e-03

2.01

|u — | Lo

1.38452¢-01

3.83881e-02

1.85

9.61389¢-03

2.00

2.40363e-03

2.00

le-4

lu — unll 2

6.96867¢e-02

1.49828e-02

2.22

2.01641e-03

2.89

2.56761e-04

2.97

[ — unl|

2.41046e-02

2.94730e-03

3.03

4.02470e-04

2.87

5.14111e-05

297

le-5

lu = w2

1.19940e-02

1.13110e-03

3.41

7.72013e-05

3.87

5.01113e-06

3.95

|u — | Lo

3.85634e-03

3.68735e-04

3.39

2.43503e-05

3.92

1.53912e-06

3.98

TABLE 2. L% L™ errors and EOC at T = 0.01 with mesh N x N.

At

N=8

N=16

N=32

N=64

error

error

order

error

order

error

order

1|1e-3

lv = unl| 2

3.18621e-01

8.28732e-02

1.94

2.02935e-02

2.03

5.04416e-03

2.01

[l — un |z

1.38452¢-01

3.83886e-02

1.85

9.61391e-03

2.00

2.40363e-03

2.00

le-4

lu — |2

6.96867e-02

1.49828e-02

2.22

2.01641e-03

2.89

2.56762e-04

297

|u — wpl| Lo

2.41054e-02

2.94731e-03

3.03

4.02470e-04

2.87

5.14110e-05

2.97

le-5

v — w2

1.19940e-02

1.13110e-03

3.41

7.72042e-05

3.87

2.05657e-06

3.93

[ — un |z

3.85659¢-03

3.68738e-04

3.39

2.43504e-05

3.92

1.53917e-06

3.98

Its exact solution is given by

u(w,y,t) = e~ sin(z/4) sin(y/4),

(x,y) € Q.

Test case 1. We compute the numerical solutions using the SAV-DG schemes (3.4) and (3.5)
based on P? polynomials with time steps At = 27 for 2 < m < 5 and mesh size 64 x 64. The

L?, L™ errors and orders of convergence at 7' = 2 are shown in Table 3, and these results confirm

that DG schemes (3.4) and (3.5) are first order and second order in time, respectively.

TABLE 3. L% L™ errors and EOC at T = 2 with time step At.

Scheme| Mesh At =272 At =273 At =2 At =27°
error error order error order error order
(3.4) |64 x 64 |u — upl| L2 |3.05892e-01|1.58442¢-01| 0.95 |8.07023e-02| 0.97 |4.07442¢-02| 0.99
lu — upl| L [1.75153e-02|9.09087e-03| 0.95 |4.64080e-03| 0.97 |2.34881e-03| 0.98
(35) |64 x 64 |u — wpl| g2 |4.17744e-02(8.14437e-03| 2.36 |1.74312e-03| 2.22 |3.98404e-04| 2.13
||u — up|| Lo |4.01428e-03|7.92985e-04| 2.34 |1.46602e-04| 2.44 |3.60847¢e-05| 2.02

Test case 2. Again, we compute the numerical solutions using the SAV-DG scheme (3.5) based
on P? polynomials with time steps At = 27™ for 2 < m < 5 and mesh size N x N with N = 32 and
N = 64. The evolution of the relative L? and L* errors of the numerical solution with different

time steps is shown in Figure 1. We also show the evolution of the difference uf (x,y) — u(t", z,y)
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Evolution of relative errors with At=2"2
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F1GURE 1. Evolution of relative errors with different time step.

with mesh size 64 x 64 and different time steps. For At = 272 and At = 275, the evolution is
shown in Figure 2 and Figure 3, respectively. All these results indicate that the SAV-DG method

is able to keep the desired accuracy of the numerical solution over long time simulation.

Example 5.3. We consider the Swift-Hehenberg equation with the parameters in Example 5.2.
Here we compare the computational complexity of (3.9), (3.10) and Algorithm 4.1 in implementing
the first order SAV-DG scheme (3.4). We use P! polynomials with time step At = 1072 and meshes
N x N. The total CPU time and the orders of the CPU time relative to the number of unknowns
are presented in Table 4.

Let NV = 6N? + 1 be the total number of unknowns. The results tell us that the computational
complexity of (3.9) is O(N?), but only O(N) for (3.10) and Algorithm 4.1. The key for the O(N)
complexity lies in the sparsity of the coefficient matrix, however, (3.10) solves a larger system,
and Algorithm 4.1 involves a pre-evaluation procedure. Still Algorithm 4.1 appears best among

all three methods.
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6. CONCLUDING REMARKS

o

-1

0 5

t=2

u(t", z,y) with At =272 and N = 64.

u(t™, x,y) with At =275 and N = 64.

For a class of fourth order gradient flows, integration of the spatial discretization based on
the penalty-free DG method introduced in [12] with the temporal discretization based on the

SAV approach introduced in [21] to handle nonlinear terms led us to SAV-DG schemes.

Such
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TABLE 4. The CPU time in seconds with respect to meshes N x N at T'=0.1.

method N=8 N=16 N=32 N=64
CPU time|CPU time|order| CPU time|order|CPU time order
(3.9) 3.46 16.58 | 1.13 | 157.58 | 1.63 | 2687.80 |2.05
(3.10) 2.70 9.79 0.93| 38.10 |0.98| 155.07 |1.01
Algorithm 4.1]  2.10 7.39 091 2849 |0.97| 116.00 |1.01

schemes inherit the energy dissipation property of the continuous equation irrespectively of the
mesh and time step sizes. However, the resulting linear system involving unknowns (u,q) only,
where ¢ is an approximation of £L = — (A + %) u, is rather expensive to solve due to the dense
coefficient matrix. In this paper, we have developed hybrid SAV-DG algorithms in two steps:
we (i) provide a procedure to pre-evaluate the auxiliary variable r"™! in the piecewise polynomial
space, and (ii) solve the resulting linear system with the obtained r"*!. This procedure reduced the
computational complexity of the CG solver to O(N) from O(N?); here A is the total number of
unknowns. We also presented several numerical examples to assess the performance of the hybrid
SAV-DG algorithms in terms of accuracy and energy stability. Also the cost of the hybrid SAV-
DG is comparable to that for solving the augmented system involving (u, g, r), with the hybrid

SAV-DG performing better as evidenced by our numerical results.
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APPENDIX A. PROOFS OF ENERGY DISSIPATION LAWS
Proof. (i) We first prove (3.7). From (3.4b), it follows

Taking ¢ = ¢} and ¢ = D;u} in (3.4a), when combined with (3.4c) we have
~Deupl* =(Degys 4y ™) + (b(up), Dyugy)r™*
1

At
=5 Dl + 51D + 207+ Dy (A2)

=2 DG + SNDRI? + Dalr? 4+ At| Do,
which leads to the desired equality (3.7).

Next we show the uniqueness of the SAV-DG scheme (3.4). Let (4, g, 7) be the difference of two
possible solutions at ¢ = t,,41, then (A.2) is equivalent to

1
Sl + gl + 207 = o,

hence we must have (@, q,7) = (0,0,0), leading to the uniqueness of the linear system (3.4), hence
its existence since for a linear system in finite dimensional space, existence is equivalent to its

uniqueness.
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(ii) We first prove (3.8). From (3.5b), it follows

(Dian, ) = A(Dyuy, ). (A.3)
Taking 1) = qZ+1/2 and ¢ = Dyu} in (3.5a), when combined with (3.5¢) we have

n n n n,*\ .n n 1 n n
1D * = (Degit, ") + (b )r™ Y2, D) = S Dgi|* + Delr

Multiplying by At on both sides of this equality leads to (3.8).
Similar to (i), the existence of the SAV-DG scheme (3.5) is equivalent to its uniqueness, we let

(U, G, 7) be the difference of two possible solutions at ¢ = t,,,1 again, then a similar analysis yields

1 ~ 12 1 ~112 ~12
_ Z =0
Nl + S al? + 17 =0,

hence we must also have (@, q,7) = (0,0,0), leading to the uniqueness of the scheme (3.5). O
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