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I. I N T R O D U C TI O N

Ultr as o u n d- dir e ct e d s elf- ass e m bl y ( D S A) r eli es o n t h e
a c o usti c r a di ati o n f or c e ass o ci at e d  wit h a st a n di n g ultr a-
s o u n d  w a v e t o or g a ni z e a n d ori e nt s p h eri c al or hi g h-
as p e ct-r ati o p arti cl es dis p ers e d i n a fl ui d  m e di u m i nt o s p e-
ci fi c p att er ns [ 1 ,2 ].  T h e or eti c al  w or k t o st u d y t h e a c o usti c
r a di ati o n f or c e b e g a n i n t h e 1 9 3 0s  wit h  Ki n g [3 ],  w h o c o n-
si d er e d i n c o m pr essi bl e s p h eri c al p arti cl es s us p e n d e d i n a n
i n vis ci d fl ui d.  Y osi o k a a n d  K a w asi m a [4 ] e xt e n d e d  Ki n g’s
a n al ysis t o c o m pr essi bl e s p h eri c al p arti cl es i n a n i n vis ci d
fl ui d. I n 1 9 6 2,  G or’ k o v [ 5 ] g e n er ali z e d t h es e r es ults i n a n
a c o usti c r a di ati o n f or c e t h e or y f or c o m pr essi bl e s p h eri c al
p arti cl es, s m all er t h a n t h e a c o usti c  w a v el e n gt h, a n d dis-
p ers e d i n a n i n vis ci d fl ui d.  R e c e ntl y, S ett n es a n d  Br u us [ 6 ]
e xt e n d e d  G or’ k o v’s t h e or y t o i n cl u d e fl ui d vis c osit y; t h e y
s h o w e d t h at t h e a c o usti c r a di ati o n f or c e i n a vis c o us fl ui d
c o m p ar e d t o a n i n vis ci d fl ui d c h a n g es b y  m ulti pl e or d ers of
m a g nit u d e.  A d diti o n all y,  N o p ar ast et al . [7 ] t h e or eti c all y
d eri v e d a n d e x p eri m e nt all y d e m o nstr at e d t h at t h e l o c ati o n
w h er e p arti cl es ass e m bl e d uri n g ultr as o u n d  D S A d e p e n ds

* b art.r a e y m a e k ers @ vt. e d u

o n t h e fl ui d vis c osit y a n d p arti cl e v ol u m e fr a cti o n, b e c a us e
t h e s o u n d- pr o p a g ati o n v el o cit y of t h e  mi xt ur e of fl ui d a n d
p arti cl es is a f u n cti o n of t h e vis c osit y a n d p arti cl e v ol u m e
fr a cti o n.

T h e a c o usti c r a di ati o n f or c e r es ults fr o m s c att eri n g, a n d
dri v es p arti cl es t o t h e l o c ati o ns  w h er e t h e a c o usti c r a di a-
ti o n f or c e a p pr o a c h es z er o, a n d t h e ti m e- a v er a g e d a c o usti c
r a di ati o n p ot e nti al is l o c all y  mi ni m u m,  w hi c h c oi n ci d es
wit h t h e n o d es or a nti n o d es of t h e st a n di n g ultr as o u n d
w a v e, d e p e n di n g o n t h e c o m pr essi bilit y of t h e p arti cl es
a n d t h e fl ui d  m e di u m, r es p e cti v el y [ 1 ,2 ].  T h us, t h e p arti-
cl e p a c ki n g d e nsit y is hi g h er  w h er e p arti cl es ass e m bl e t h a n
o utsi d e of t h os e l o c ati o ns, or c o m p ar e d t o  w h e n p arti cl es
ar e r a n d o ml y dis p ers e d i n t h e fl ui d  m e di u m.  W h e n p ar-
ti cl es ar e cl os el y p a c k e d, a s e c o n d ar y a c o usti c r a di ati o n
f or c e r es ults fr o m t h eir i nt er a cti o n.  Bj er k n es [8 ] st u di e d
t his i nt er a cti o n f or c e b et w e e n a p air of b u b bl es i n a n a c o us-
ti c fi el d, f oll o w e d b y ot h ers  w h o st u di e d t h e i nt er a cti o n
f or c e b et w e e n a p air of i n c o m pr essi bl e p arti cl es i n a n
i n vis ci d [9 – 1 1 ] a n d vis c o us [1 2 ] fl ui d, r es p e cti v el y. Sil v a
a n d  Br u us [ 1 3 ] t h e or eti c all y d eri v e d t h e i nt er a cti o n f or c e
b et w e e n a p air of c o m pr essi bl e p arti cl es i n a n i n vis ci d
fl ui d a n d s u bj e ct t o a pl a n e a c o usti c  w a v e, c o nsi d eri n g
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monopole and dipole single scattering. Zhang et al. [14]
studied the interaction forces between multiple spherical
particles assembled at the (anti)node of a standing acoustic
wave. They derived an analytical expression that accounts
for multiple monopole and dipole scattering, but solved it
for single scattering only due to the computational cost of
multiple scattering simulations.

In contrast to other external field DSA methods, such
as electric [15,16] or magnetic [17,18] fields, which pose
strict requirements on the material properties of the par-
ticle, the existence of the acoustic radiation force is only
dependent on the acoustic contrast between the parti-
cles and the medium, which derives from their density
and compressibility [19]. Additionally, low attenuation of
ultrasound waves in low-viscosity media enables scalabil-
ity of ultrasound DSA, especially in comparison to electric
and magnetic fields [20]. Hence, ultrasound DSA finds
application in a myriad of engineering applications, such
as noncontact particle manipulation [21,22], manipulation
of cells in biological experiments [23,24], and biomedical
devices [25,26]. Furthermore, integrating ultrasound DSA
with different manufacturing methods, including freeze
casting [27,28] and mold casting [29–31], enables fabri-
cating engineered polymer composite materials with user-
specified organization and orientation of the filler within
the matrix. This, in turn, allows tailoring the proper-
ties of the composite material, including structural [30–
32], electrical [33–35], thermal [36], energetic [37–39],
or multifunctional properties [40]. Furthermore, integrat-
ing ultrasound DSA with additive manufacturing (AM)
[33,40–49], including vat polymerization (VP) [40,46–49]
and direct ink writing (DIW) [42–44], enables manufac-
turing engineered polymer matrix composite materials in
a layer-by-layer fashion, where in each layer ultrasound
DSA organizes and orients filler into specific patterns and
orientations.

In this paper, we quantify the local particle packing den-
sity within the pattern features that result from ultrasound
DSA, as a function of particle volume fraction, particle
size, and medium viscosity. This knowledge is particularly
helpful when using ultrasound DSA to manufacture mate-
rials where high particle packing density is required, e.g.,
to increase mechanical [31] or electrical [34] properties, or
to tailor the combustion of energetic particles [37,39,50],
among other applications.

The literature defines the particle packing density as
the volume fraction of a control volume occupied by
solid material [51]. Theoretical work documents the max-
imum packing density of spherical particles in different
configurations, including bcc = 0.68 and fcc = 0.74 [52].
Additionally, the maximum packing density of randomly
organized spherical particles is between 0.55–0.63 [53–
55]. Others document that the particle packing density
increases with particle volume fraction [51], independent
of particle size [55]. Additionally, the literature documents

comparisons between experiments and theoretical results
of particle packing density measurements [56,57]. Mixing
two (binary distribution) and three (ternary distribution)
particle sizes increases the packing density compared to
that of a single particle size, because small particles fit into
cavities between large particles [58]. Furthermore, for a
binary distribution, the particle packing density increases
with increasing particle size ratio but also depends on the
particle volume fraction of small and large particle sizes
[55,58–60].

Specifically related to particle packing density result-
ing from ultrasound DSA, Niendorf and Raeymaekers [48]
determined the microscale and macroscale alignment of
microfibers using ultrasound DSA as a function of parti-
cle volume fraction. They concluded that microscale and
macroscale microfiber alignment decrease and increase,
respectively, with increasing volume fraction as a result of
increasing microscale entanglement and increasing num-
ber of fibers. Additionally, Greenhall et al. [31] docu-
mented that the mechanical properties of engineered poly-
mer matrix composite materials increase with increasing
volume fraction of carbon nanotubes, and they quantified
the local particle volume fraction after ultrasound DSA.
Similarly, Scholz et al. [41] reported increasing mechan-
ical properties with increasing volume fraction of glass
fibers. Thus, changing the local packing density of parti-
cles allows tuning the properties of the engineered polymer
matrix composite material.

No other work relates the ultrasound DSA process
parameters to the local particle packing density within the
pattern features that result from ultrasound DSA, despite
its relevance in manufacturing engineered polymer matrix
composite materials with tailored properties. Thus, the
objective of this paper is to theoretically derive and exper-
imentally validate a three-dimensional (3D) model to sim-
ulate, quantify, and predict the local packing density of
spherical particles at the pattern features that result from
ultrasound DSA. We quantify the 3D particle packing den-
sity using numerical simulations of the ultrasound DSA
process. Additionally, we experimentally measure the local
particle packing density within the pattern features that
result from ultrasound DSA, fixated in place using a vat
polymerization setup.

II. METHODS AND MATERIALS

A. Theoretical model and simulation

We simulate the 3D assembly of spherical particles
dispersed in a viscous medium contained in a reservoir,
during the ultrasound DSA process, as a function of par-
ticle volume fraction, particle size, and medium viscosity.
Figure 1(a) schematically illustrates a spherical particle in
a viscous medium exposed to an ultrasound wave field,
showing the forces acting on the particle, in addition to
the local normalized acoustic pressure and the acoustic
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FI G. 1. ( a) S c h e m ati c of a s p h eri c al p arti cl e i n a vis c o us  m e di u m, a n d i n a st a n di n g ultr as o u n d  w a v e fi el d d uri n g ultr as o u n d  D S A,
i n di c ati n g t h e di ff er e nt f or c es a cti n g o n t h e p arti cl e. ( b) S c h e m ati c of t h e 3 D t h e or eti c al  m o d el of t h e r es er v oir  wit h t w o ultr as o u n d
tr a ns d u c ers a ffi x e d t o o p p osi n g  w alls t h at c o nt ai ns t h e  mi xt ur e of s p h eri c al p arti cl es dis p ers e d i n t h e vis c o us  m e di u m, s h o wi n g t h e
s ol uti o n d o m ai n  wit hi n a si m pl y cl os e d b o u n d ar y. ( c) Si m ul at e d 3 D p arti cl e l o c ati o n f or di ff er e nt p arti cl e v ol u m e fr a cti o ns.

r a di ati o n p ot e nti al.  A p arti cl e  wit h r a di us a e x p eri e n c es
t h e a c o usti c r a di ati o n f or c e F a t h at dri v es it t o t h e l o c al
mi ni m u m of t h e ti m e- a v er a g e d a c o usti c r a di ati o n p ot e n-
ti al, i n a d diti o n t o t h e St o k es’ dr a g f or c e  wit h  Os e e n’s
c orr e cti o n F d t h at r esists t h e  m oti o n of t h e p arti cl e i n
t h e vis c o us  m e di u m.  Als o, e a c h p arti cl e e x p eri e n c es b ot h
gr a vit y F g a n d b u o y a n c y f or c es F b ,  w hi c h d e p e n d o n
t h e  m ass of t h e p arti cl e a n d t h e d e nsit y of t h e vis c o us
m e di u m, r es p e cti v el y. I n o ur  m o d el,  w h e n p arti cl es c ol-
li d e  wit h e a c h ot h er or t h e  w all of t h e r es er v oir t h at
c o nt ai ns t h e  mi xt ur e of p arti cl es a n d vis c o us  m e di u m,
w e us e a tr u n c at e d  L e n n ar d-J o n es-li k e p ot e nti al t o cr e-
at e a r e p ulsi v e f or c e F L J t h at a c c o u nts f or t h e c ollisi o ns.
Fi g ur e 1( b) s c h e m ati c all y s h o ws a r es er v oir  wit h t w o
ultr as o u n d tr a ns d u c ers a ffi x e d t o o p p osi n g  w alls,  w hi c h
c o nt ai ns a  mi xt ur e of s p h eri c al p arti cl es dis p ers e d i n a
vis c o us  m e di u m.  E n er gi zi n g t h e ultr as o u n d tr a ns d u c ers
est a blis h es a st a n di n g ultr as o u n d  w a v e i n t h e r es er v oir,

w hi c h  w e si m ul at e at t h e N d d o m ai n p oi nts i n t h e 3 D
s ol uti o n d o m ai n t h at c o v ers t h e e ntir e r es er v oir [r e d d ots
i n Fi g. 1( b) ] usi n g t h e b o u n d ar y el e m e nt  m et h o d ( B E M)

b as e d o n t h e  H el m h olt z e q u ati o n ∇ 2 ϕ i n c + k̃ 2 ϕ i n c = 0.
H er e, k̃ = ( ω /c m ) /(1 − iω τ s )

1 / 2 i s t h e c o m pl e x  w a v e n u m-
b er t h at a c c o u nts f or a c o usti c att e n u ati o n i n a vis c o us
m e di u m [ 2 0 ] a n d ϕ i n c i s t h e i n ci d e nt v el o cit y p ot e nti al.
ω = 2 π f a n d f ar e t h e a n g ul ar a n d t e m p or al fr e q u e n c y
of t h e ultr as o u n d  w a v e fi el d, c m i s t h e s o u n d pr o p a g a-
ti o n v el o cit y  wit hi n t h e vis c o us  m e di u m, τ s = 4 η m / 3ρ m c m

2

i s t h e r el a x ati o n ti m e (i. e., vis c o us dissi p ati o n ti m e t o
d a m p e n t h e a c o usti c pr ess ur e t o 1/ e of its ori gi n al v al u e),
wit h η m a n d ρ m t h e vis c osit y a n d d e nsit y of t h e vis c o us
m e di u m, a n d i = (− 1) 1 / 2 [2 0 ].

We r e pr es e nt t h e r es er v oir as a si m pl y cl os e d b o u n d ar y
wit h N b b o u n d ar y el e m e nts t h at e n cl os e t h e 3 D s ol uti o n
d o m ai n  wit h N d d o m ai n p oi nts.  A b o u n d ar y el e m e nt j r e p-
r es e nts eit h er a p art of t h e r es er v oir  w all  wit h v el o cit y

0 6 4 0 8 7- 3
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vj = 0, or a part of an ultrasound transducer that acts as
a piston source with velocity vj = v0ei(ωt−θ) along its nor-
mal direction nj , with v0 the real velocity amplitude and ω

and θ the angular frequency and phase of the ultrasound
wave, respectively. We impose the impedance boundary
condition ∂ϕinc/∂nj + ik˜Zϕinc = vj at each boundary ele-
ment, with k=ω/cm = 2π /λ and λ is the wavelength of
the standing ultrasound wave. ˜Z = Zm/Zb accounts for
the absorption and reflection of the ultrasound wave at
the boundary of the reservoir; we maintain the acoustic
impedance Zb constant along the entire boundary, and the
acoustic impedance of the medium is Zm = ρmcm.

We simulate the 3D motion of N nonoverlapping parti-
cles, randomly dispersed in the fluid medium as a function
of time, resulting from the forces acting on the particles
[see Fig. 1(a)]. The N particles are located in the parti-
cle simulation domain, which is the center section of the
solution domain [see Fig. 1(b)], because it is too computa-
tionally expensive to track particles in the entire solution
domain. We calculate the velocity potential ϕ that results
from single scattering of all spherical particles in the 3D
particle simulation domain, and we assume they behave
like monopole and dipole scatterers, with ka� 1. k =
Re{k̃} = 2π/λ is the wave number and λ is the wavelength
of the standing ultrasound wave. The velocity potential at
location ri of the ith particle is given as [13]

ϕ(ri) = ϕinc(ri) +
N

∑

j = 1
j �= i

ϕsc(ri|rj ), (1)

which is the superposition of the incident velocity potential
ϕinc at ri calculated using the BEM method, and the sum of
velocity potentials resulting from single scattering off all N
particles j at rj . The scattered velocity potential from the
j th particle at the location of the ith particle ri is [13]

ϕsc(ri|rj ) = −i(ka)3
[

f1
3
h(1)

0 (k||ri − rj ||)ϕinc(rj )

− f2
2
h(1)

1 (k||ri − rj ||) ∂ϕinc(rj )
∂(k||ri − rj ||)

]

(2)

with f1= 1 −βp /βm and f2=Re{[2(1 − γ )(ρp /ρm − 1)]/
[2ρp /ρm+ 1 − 3γ ]}. Here, γ = −3/2[1 + i(1 + δ/a)]δ/a,
with δ = (2ηm/ωρm)1/2 the viscous boundary layer thick-
ness around a particle [6]. βp = 1/[ρp (cp ,c

2 − 4cp ,s
2/3)],

ρp , βm = 1/(ρmcm2), and ρm are the compressibility and
the density of the spherical particle and medium, respec-
tively [19]. cp ,c and cp ,s represent the compressional and
shear wave propagation velocities. h0

(1)(z) =−ieiz/z and
h1

(1)(z) = −eiz(z+ i)/z2 are zeroth- and first-order spher-
ical Hankel functions of the first kind [61]. ||ri − rj |||
is the Euclidean distance between locations ri and rj ,

and ∂ϕinc(rj )/∂||ri − rj || is the derivative of the incident
velocity potential at location rj in the direction of ri − rj .
We emphasize that in our model, the particle simulation
domain is several wavelengths removed from the bound-
aries of the solution domain and, thus, we assume that
the interaction between the scattered wave field and the
boundary elements is negligible. Note that the monopole
scattering coefficient f1 involves the compressibility con-
trast of the particles and the medium, whereas the dipole
scattering coefficient f2 involves the mass density contrast
and it also accounts for the effect of medium viscos-
ity on dipole scattering. Doinikov [62] also emphasized
that the thermal effects can cause imperfect behavior of
the medium surrounding the particle in a standing ultra-
sound wave, which affects the monopole scattering coef-
ficient f1 when the depth of penetration of the thermal
wave δt = [2κm/(ρmcp ,mω)]1/2 is comparable to the par-
ticle radius a. κm and cp ,m are the thermal conductivity
and specific heat of the medium, respectively. For the
range of parameters in this work 0.005 ≤ δt/a≤ 0.02 and,
thus, we neglect the thermal effects in our 3D simulation
model.

The ultrasound wave velocity v=∇ϕ and the pressure
p = iρmωϕ. Hence, the time-averaged acoustic radiation
potential U in the viscous medium is [6]

U = 4π

3
a3

(

f1
βm

2
〈

p2〉 − f2
3ρm

4
〈

v2〉
)

. (3)

Operators 〈·〉 and Re{·} represent the time average over a
wave period and the real part of the expression, respec-
tively. The acoustic radiation force Fa = −∇U. Thus,
we first calculate the incident velocity potential ϕinc in
all domain points of the solution domain using a com-
plex wave number in the Helmholtz equation to account
for the acoustic wave attenuation. Second, we calculate
the velocity potential ϕ in all domain points of the par-
ticle simulation domain as the summation of the inci-
dent velocity potential ϕinc and single monopole and
dipole scattering from other particles in the simulation
domain. Finally, we calculate the acoustic radiation poten-
tial and force on all particles in the particle simulation
domain.

Additionally, the Stokes drag force with Oseen’s correc-
tion that acts on each particle is Fd= 12πa2ρm||u||2(1 + 3/
16Re)/Re, which orients in the same direction and oppo-
site sense of the particle velocity u. Re = 2aρm||u||/ηm
is the Reynolds number [63]. Furthermore, we account
for particle-particle and particle-wall collisions using
the repulsive portion of a Lennard-Jones-like potential
VLJ = 4εLJ(2a/r)12. The force acting on two particles
within a distance r of each other is FLJ= −∇VLJ [64].
We tune εLJ following an iterative procedure in which we
average the smallest distance between neighboring parti-
cles over a finite time until the average minimum distance
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between colliding particles equals 2a (±2%) and between
particles and a wall equals a (±2%).

We simulate the ultrasound DSA process over a dura-
tion 0 ≤ t≤ T with time step �t. When t= 0, the particles
are stationary ||u|| = 0 and dispersed at randomly cho-
sen, nonoverlapping locations in the 3D particle simulation
domain. When t> 0, ||u|| �= 0 because the sum of all forces
acting on the particle [see Fig. 1(a)] accelerates the parti-
cle towards a local minimum of the time-averaged acoustic
radiation potential, where the particles assemble. In each
time step �t, we calculate the location and velocity of each
particle u after accounting for particle-particle collisions.

Finally, when all particles have assembled at t= T, we
determine the 3D particle packing density as the volume
of particles within a cuboid of width w around the local
minimum of the time-averaged acoustic radiation poten-
tial (node of the standing ultrasound wave) divided by the
volume of the cuboid. Figure 1(c) illustrates this concept,
showing a cuboid of width w (dashed line) around the node
of the standing ultrasound wave, highlighting the particles
that are partially or fully enclosed by it. The color map
shows the time-averaged acoustic radiation potential in
arbitrary units. We determine w based on the experiments
(see Sec. II B).

We define three nondimensional parameters based on
dimensional analysis using the Buckingham π theorem,
which characterizes the local particle packing density
at the pattern features that result from ultrasound DSA.
We consider the following parameters in the simula-
tions: the particle volume fraction 0 ≤ � ≤ 27.5% to
show the maximum reachable local packing density,
the nondimensional particle size 0.05 ≤K1= ka≤ 0.20 to
not violate the Rayleigh regime assumption (ka� 1),
and the nondimensional viscosity of the medium
3.3 × 103 ≤K2= ρmλcm/ηm ≤ 9.8 × 103. The range of K2
derives from the medium viscosity 150 ≤ ηm≤ 450 mPa s
to span the viscosity of commercial photopolymer
resins.

B. Experimental setup and parameter study

Figure 2(a) schematically shows the experimental setup
we use to manufacture material specimens for a full-
factorial study of the local particle packing density as a
function of � and K1. Parameter K2 does not affect the
steady-state local packing density after ultrasound DSA;
it determines only the speed by which particles assem-
ble, which we do not consider in this work. The setup
is based on a VP digital light processing (DLP) printer
(mUVe 1.1 DLP, Grand Rapids, Michigan, USA), aug-
mented with an acrylic, square reservoir with two ultra-
sound transducers (piezoelectric ceramic plate, center fre-
quency fc = 1.5 MHz, Steminc, Florida, USA) affixed to
opposing walls, to perform ultrasound DSA of particles

dispersed in the photopolymer resin. A function genera-
tor (Tektronix AFG 3102, Beaverton, Oregon, USA) and rf
power amplifier (E&I 2100L, Rochester, New York, USA)
energize the ultrasound transducers. The operating fre-
quency f of the ultrasound wave field is close to the center
frequency fc of the ultrasound transducers. We use stan-
dard photopolymer resin (3DRS standard V2 gray resin,
cm = 1420 m/s, ρm = 1100 kg/m3, ηm = 218 mPa s, 3D
Resin Solutions, Illinois, USA) and spherical aluminum
microparticles (a= 15 μm and 22 μm, cp ,c = 6420 m/s,
cp ,s = 3040 m/s, ρp = 2710 kg/m3 [65], US5005 solid alu-
minum spherical powder, US Research Nanomaterials,
Inc., Texas, USA). Based on these materials, the values of
nondimensional parameters are 0 ≤ � ≤ 1.50%, K1= 0.1
and 0.15, and K2= 6.8 × 103. The ranges of parameter val-
ues are driven by the feasibility of the experiments and
relevance to manufacturing of engineered polymer matrix
composite materials. Increasing the particle volume frac-
tion increases acoustic wave attenuation, which decreases
the magnitude of the acoustic radiation force and, thus, the
ability to assemble particles at the nodes of the standing
ultrasound wave. Furthermore, it increases the viscosity
of the mixture of particles and medium, which requires
increasing the acoustic radiation force to overcome the
drag force exerted on the particles. Finally, it also increases
the curing time required to fabricate a composite mate-
rial specimen in the VP setup, which potentially leads to
distortion of the pattern features. Thus, we choose particle
sizes (a= 15 and 22 μm) that satisfy the Rayleigh regime
assumption (ka= 0.10 and 0.15 � 1) and are observable
under an optical microscope. In addition, increasing the
particle size increases their mass, which could cause them
to precipitate to the bottom of the reservoir prior to assem-
bly into pattern features. The choice of the medium vis-
cosity (ηm = 218 mPa s) results from the availability of
commercial photopolymer resins.

We disperse a volume fraction � of particles in the
photopolymer resin using sonication to minimize particle
aggregation (80 W, 2 min, UP200Ht, Hielscher, Teltow,
Germany), after which we energize the ultrasound trans-
ducers for T= 10 s. The acoustic radiation force drives
the particles to the nodes of the standing ultrasound wave,
where they assemble and agglomerate. We fixate them in
place by curing a 12 × 12 mm specimen using the DLP
light source in the VP printer for 8 s. We postcure the spec-
imen outside the DLP printer for 120 s, to eliminate any
liquid resin. Figure 2(a) shows a typical material specimen
after curing (� = 1.00%, K1= 0.10).

We experimentally measure the local particle packing
density as the volume of particles within a cuboid of width
w around the location where particles assemble (node of
the standing ultrasound wave) divided by the volume of
the cuboid, as a function of the nondimensional parame-
ters � and K1. The measurement is based on the notion
that particle area fraction (the fraction of a surface covered
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( a) ( b)

FI G. 2. ( a) S c h e m ati c of t h e e x p eri m e nt al s et u p, s h o wi n g t h e  V P  D L P pri nt er a u g m e nt e d  wit h ultr as o u n d  D S A, a n d ill ustr ati n g
a t y pi c al  m at eri al s p e ci m e n t h at c o nsists of p h ot o p ol y m er a n d al u mi n u m p arti cl es. ( b) S c h e m ati c of t h e  m e as ur e m e nt  m et h o d ol o g y,
s h o wi n g a n o pti c al  mi cr o gr a p h  wit h t h e c orr es p o n di n g bi n ar y i m a g e, a n d i n di c ati n g t h e d o m ai n w = 6 a o v er  w hi c h  w e d et er mi n e t h e
p arti cl e p a c ki n g d e nsit y.

b y p arti cl es) is a g o o d a p pr o xi m ati o n t o t h e 3 D p arti cl e
p a c ki n g d e nsit y, as ori gi n all y d o c u m e nt e d b y  U n d er w o o d
[6 6 ], a n d v eri fi e d f or a c c ur a c y usi n g o ur 3 D si m ul ati o n
m o d el ( m a xi m u m 4 % err or at = 1. 5 %).  T h us, t h e p ar-
ti cl e ar e a fr a cti o n  wit hi n a r e ct a n gl e of  wi dt h w ar o u n d
w h er e p arti cl es ass e m bl e r e pr es e nts t h e p arti cl e p a c ki n g
d e nsit y  wit hi n a c u b oi d of  wi dt h w ar o u n d  w h er e p ar-
ti cl es ass e m bl e. Fi g ur e 2( b) s c h e m ati c all y ill ustr at es t h e
m e as ur e m e nt.  We o bt ai n o pti c al  mi cr o gr a p hs ( 1. 5 μ m s p a-
ti al r es ol uti o n, 1 8 0× m a g ni fi c ati o n,  A m S c o p e,  C alif or ni a,
U S A) of l o c ati o ns  w h er e  w e q u alit ati v el y o bs er v e g o o d
or g a ni z ati o n of t h e  mi cr o p arti cl es at t h e n o d es of t h e st a n d-
i n g ultr as o u n d  w a v e.  T h e p h ot o p ol y m er  m atri x a p p e ars
d ar k a n d t h e al u mi n u m  mi cr o p arti cl es a p p e ar bri g ht c ol-
or e d i n a t y pi c al o pti c al  mi cr os c o p y i m a g e [s e e Fi g. 2( b) ].
T o a c c ur at el y d et er mi n e t h e s urf a c e ar e a c o v er e d b y al u-
mi n u m p arti cl es,  w e bi n ari z e t h e i m a g e usi n g a t hr es h ol d
t h at e q u at es t h e p arti cl e ar e a fr a cti o n of t h e e ntir e i m a g e
t o t h e p arti cl e v ol u m e fr a cti o n us e d t o  m a n uf a ct ur e t h e
m at eri al s p e ci m e ns [s e e Fi g. 2( b) ].  T h us,  w e f o c us t h e o pti-
c al  mi cr os c o p e o n t h e t o p s urf a c e of t h e s p e ci m e n a n d
e ns ur e t o c o nsi d er o nl y p arti cl es o n t h e s urf a c e of t h e
s p e ci m e n a n d n ot i n t h e b ul k,  w hil e si m ult a n e o usl y c o n-
tr olli n g f or e xt er n al i n fl u e n c es, s u c h as li g hti n g c o n diti o ns
a n d gl ar e. F or e a c h  mi cr os c o p y i m a g e,  w e d et er mi n e t h e
p arti cl e ar e a fr a cti o n a n d, t h us, t h e p arti cl e p a c ki n g d e n-
sit y,  wit hi n a d o m ai n w = N a c e nt er e d ar o u n d a n o d e of
t h e st a n di n g ultr as o u n d  w a v e, a n d  w e c o m p ar e t h e e x p er-
i m e nt al a n d si m ul ati o n r es ults [s e e Fi g. 2( b) ].  We s el e ct
N = 6, i. e., w = 6 a t o e n c o m p ass  m ost p arti cl es t h at ass e m-
bl e at t h e n o d e of a st a n di n g ultr as o u n d  w a v e, b as e d o n
e x p eri m e nts  wit h = 1. 0 0 %.  We r e p e at e a c h  m e as ur e-
m e nt 3 ti m es f or di ff er e nt  m at eri al s p e ci m e ns a n d r e p ort
t h e a v er a g e,  mi ni m u m, a n d  m a xi m u m.

III.  R E S U L T S  A N D  DI S C U S SI O N

Fi g ur e 3 s h o ws t h e r es ults of t h e f ull-f a ct ori al p ar a m et er
st u d y of t h e l o c al p arti cl e p a c ki n g d e nsit y as a f u n cti o n of
ultr as o u n d  D S A o p er ati n g p ar a m et ers. Fi g ur e 3( a) s h o ws
t h e l o c al p arti cl e p a c ki n g d e nsit y at t h e l o c ati o n  w h er e p ar-
ti cl es ass e m bl e ( n o d e of t h e st a n di n g ultr as o u n d  w a v e) as
a f u n cti o n of t h e p arti cl e v ol u m e fr a cti o n a n d t h e n o n di-
m e nsi o n al p arti cl e si z e K 1 .  We s h o w t h e p arti cl e p a c ki n g
d e nsit y o bt ai n e d fr o m si m ul ati o ns P D si m ( h oll o w  m ar k-
ers) a n d e x p eri m e nts P D e x p ( s oli d  m ar k ers) f or K 1 = 0. 1 0
( bl a c k d ot) a n d K 1 = 0. 1 5 ( bl u e s q u ar e).  T h e s oli d  m ar k-
ers r e pr es e nt t h e a v er a g e of t hr e e e x p eri m e nts,  w h er e as t h e
err or b ars s h o w t h e  mi ni m u m a n d  m a xi m u m v al u es. F ur-
t h er m or e,  w e l a b el t h e d at a p oi nts i n Fi g. 3( a) a n d pr o vi d e
t h e c orr es p o n di n g o pti c al  mi cr os c o p y i m a g es a n d bi n ar y
i m a g es ( w hit e = r esi n, bl a c k = p arti cl es) i n Fi g. 3( b) t o
ill ustr at e t h e r es ults. Fi g ur e 3( c) s h o ws  m a g ni fi e d bi n ar y
i m a g es.

Fr o m Fi g. 3 w e o bs er v e t h at t h e p arti cl e p a c ki n g d e n-
sit y i n cr e as es  wit h i n cr e asi n g v ol u m e fr a cti o n a n d  wit h
d e cr e asi n g K 1 , as e x p e ct e d. I n cr e asi n g i n cr e as es t h e
n u m b er of p arti cl es at t h e n o d e of t h e st a n di n g ultr a-
s o u n d  w a v e b e c a us e  w h e n < 1. 5 %, t h e  m a xi m u m l o c al
p a c ki n g d e nsit y is l ess t h a n 1 0 % [s e e Fi g. 3( a) ],  w hi c h
is  m u c h s m all er t h a n t h e  m a xi m u m t h e or eti c al p a c ki n g
d e nsit y f or s p h eri c al p arti cl es of a p pr o xi m at el y 6 0 % [ 5 3 ].
F urt h er m or e, d e cr e asi n g K 1 = k a eit h er r e q uir es r e d u ci n g
k ,  w hi c h i n cr e as es λ a n d, t h us, i n cr e as es t h e n u m b er of
p arti cl es t h at ass e m bl e at a n o d e of t h e st a n di n g ultr as o u n d
w a v e (f or c o nst a nt ).  Alt er n ati v el y, it r e q uir es r e d u ci n g
a ,  w hi c h i n cr e as es t h e n u m b er of p arti cl es f or c o nst a nt

, t h us i n cr e asi n g t h e p arti cl e p a c ki n g d e nsit y at a n o d e
of t h e st a n di n g ultr as o u n d  w a v e.  Als o,  w e o bs er v e fr o m
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( a)

( b)

( c)

0. 0 0

FI G. 3. ( a)  L o c al p a c ki n g d e nsit y  wit hi n t h e p att er n f e at ur es t h at r es ult fr o m ultr as o u n d  D S A ( n o d e of t h e st a n di n g ultr as o u n d
w a v e) as a f u n cti o n of t h e p arti cl e v ol u m e fr a cti o n , s h o wi n g si m ul ati o n P Dsi m ( h oll o w  m ar k ers) a n d e x p eri m e nt P De x p ( s oli d
m ar k ers) r es ults f or K 1 = 0. 1 0 ( bl a c k d ot) a n d K 1 = 0. 1 5 ( bl u e s q u ar e). ( b)  O pti c al  mi cr os c o p y i m a g es a n d bi n ar y i m a g es ( w hit e = r esi n,
bl a c k = p arti cl es) f or t h e d at a p oi nts i n ( a). ( c)  M a g ni fi e d bi n ar y i m a g es t h at s h o w t h e p arti cl es ( bl a c k) a n d t h e d o m ai n o v er  w hi c h  w e
q u a ntif y P D e x p .
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Fi g. 3 t h at t h e t h e or eti c al si m ul ati o ns a n d e x p eri m e nt al
r es ults ar e i n e x c ell e nt a gr e e m e nt f or p arti cl e v ol u m e fr a c-
ti o ns < 1. 5 %, a n d  w e d et er mi n e a  m a xi m u m 6. 5 % err or
(K 1 = 0. 1 0, = 0. 7 5 %).

A d diti o n all y,  w e us e t h e t h e or eti c al  m o d el, f or  w hi c h
w e d o c u m e nt e x p eri m e nt al v ali d ati o n i n Fi g. 3 , t o u n d er-
st a n d t h e e ff e ct of , K 1 , a n d K 2 o n t h e l o c al p arti cl e
p a c ki n g d e nsit y aft er ultr as o u n d  D S A, c o v eri n g t h e e ntir e
ultr as o u n d  D S A pr o c ess e n v el o p e. Fi g ur e 4 s h o ws t h e
l o c al p a c ki n g d e nsit y P Dsi m at t h e l o c ati o n  w h er e p arti cl es
ass e m bl e ( n o d e of t h e st a n di n g ultr as o u n d  w a v e) as a f u n c-
ti o n of t h e p arti cl e v ol u m e fr a cti o n 0. 7 5 % ≤ ≤ 2 7. 5 0 %,
a n d as a f u n cti o n of t h e n o n di m e nsi o n al p arti cl e si z e
0. 0 5 ≤ K 1 ≤ 0. 2 0.  We d eri v e l o gisti c c ur v e b est- fit e q u a-
ti o ns t o pr e di ct t h e p arti cl e p a c ki n g d e nsit y at t h e p att er n
f e at ur es t h at r es ult fr o m ultr as o u n d  D S A (s e e Fi g. 4 )
or, c o n v ers el y, t o d et er mi n e t h e p arti cl e v ol u m e fr a cti o n

r e q uir e d t o o bt ai n a s p e ci fi c p arti cl e p a c ki n g d e nsit y.
Fr o m Fi g. 4 ,  w e o bs er v e t h at t h e p arti cl e p a c ki n g d e n-
sit y i n cr e as es  wit h i n cr e asi n g p arti cl e v ol u m e fr a cti o n
a n d  wit h d e cr e asi n g K 1 , si mil ar t o t h e r es ults of Fi g. 3 .
H o w e v er,  w e o bs er v e t h at t h e l o c al p arti cl e p a c ki n g d e n-
sit y at t h e n o d e of t h e st a n di n g ultr as o u n d  w a v e c o n v er g es
t o 4 5 %, i n d e p e n d e nt of K 1 ,  w hi c h is cl os e t o t h e  m a xi m u m
r a n d o m p arti cl e p a c ki n g d e nsit y of s p h er es i n 3 D. Fi n all y,
w e n ot e t h at Fi g. 4 i n cl u d es p ar a m et er v al u es t h at e xtr a p o-
l at e b e y o n d t h e p ar a m et er r a n g es us e d i n t h e e x p eri m e nt al
v ali d ati o n a n d, t h us,  m ust b e i nt er pr et e d  wit h c a uti o n.

Fi g ur e 5 s h o ws t h e l o c al p a c ki n g d e nsit y P D si m at t h e
l o c ati o n  w h er e p arti cl es ass e m bl e ( n o d e of t h e st a n d-
i n g ultr as o u n d  w a v e) f or K 1 = 0. 1 0 as a f u n cti o n of
t h e p arti cl e v ol u m e fr a cti o n a n d t h e n o n di m e nsi o n al
vis c osit y of t h e  mi xt ur e of p arti cl es a n d p h ot o p ol y m er
3. 3 × 1 0 3 ≤ K 2 ≤ 9. 8 × 1 0 3 .  We d eri v e l o gisti c c ur v e b est-
fit e q u ati o ns t o pr e di ct t h e p arti cl e p a c ki n g d e nsit y at
t h e p att er n f e at ur es t h at r es ult fr o m ultr as o u n d  D S A or,
c o n v ers el y, t o d et er mi n e t h e p arti cl e v ol u m e fr a cti o n
r e q uir e d t o o bt ai n a s p e ci fi c p arti cl e p a c ki n g d e nsit y.
Fr o m Fi g. 5 ,  w e o bs er v e t h at t h e p arti cl e p a c ki n g d e n-
sit y i n cr e as es  wit h i n cr e asi n g p arti cl e v ol u m e fr a cti o n ,
i n d e p e n d e nt of K 2 , si mil ar t o t h e r es ults of Fi gs. 3 a n d
4 .  We als o o bs er v e t h at t h e l o c al p arti cl e p a c ki n g d e n-
sit y at t h e n o d e of t h e st a n di n g ultr as o u n d  w a v e c o n v er g es
t o 4 5 %, i n d e p e n d e nt of K 2 ,  w hi c h is cl os e t o t h e  m a xi-
m u m r a n d o m p arti cl e p a c ki n g d e nsit y of s p h er es i n 3 D.
T h us, K 2 d o es n ot a ff e ct t h e l o c al p arti cl e p a c ki n g d e n-
sit y; it o nl y a ff e cts t h e s p e e d b y  w hi c h p arti cl es ass e m bl e
at t h e n o d es.  We a c c o u nt f or t h e e ff e ct of  m e di u m vis c osit y
o n t h e att e n u ati o n of t h e i n ci d e nt  w a v e, di p ol e s c att er-
i n g, a n d t h e a m plit u d e of t h e a c o usti c r a di ati o n p ot e nti al.
H o w e v er, t h e  m e di u m vis c osit y c a n als o i n d u c e n o nli n e ar
p h e n o m e n a s u c h as str e a mi n g at t h e r es er v oir  w alls a n d
e v e n  mi cr ostr e a mi n g ar o u n d p arti cl es [ 6 7 ,6 8 ].  T h es e p h e-
n o m e n a c a n a ff e ct t h e l o c al p a c ki n g d e nsit y f or p arti cl e
v ol u m e fr a cti o ns > 1. 5 %.

FI G. 4.  L o c al p a c ki n g d e nsit y  wit hi n t h e p att er n f e at ur es t h at
r es ult fr o m ultr as o u n d  D S A ( n o d e of t h e st a n di n g ultr as o u n d
w a v e) as a f u n cti o n of t h e p arti cl e v ol u m e fr a cti o n , f or
0. 0 5 ≤ K 1 ≤ 0. 2 0.

Fi g ur e 6 s h o ws t h e l o c al p arti cl e p a c ki n g d e nsit y P D si m

at t h e l o c ati o n  w h er e p arti cl es ass e m bl e ( n o d e of t h e st a n d-
i n g ultr as o u n d  w a v e) f or K 1 = 0. 1 0 a n d K 2 = 3. 3 × 1 0 3

a s a f u n cti o n of t h e p arti cl e v ol u m e fr a cti o n wit h
l o gisti c c ur v e b est- fit e q u ati o ns,  w h e n c o nsi d eri n g si n gl e

FI G. 5.  L o c al p a c ki n g d e nsit y  wit hi n t h e p att er n f e at ur es t h at
r es ult fr o m ultr as o u n d  D S A ( n o d e of t h e st a n di n g ultr as o u n d
w a v e) as a f u n cti o n of t h e p arti cl e v ol u m e fr a cti o n , f or
3. 3 × 1 0 3 ≤ K 2 ≤ 9. 8 × 1 0 3 , a n d  wit h K 1 = 0. 1 0.
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FI G. 6.  L o c al p arti cl e p a c ki n g d e nsit y  wit hi n t h e p att er n f e a-
t ur es t h at r es ult fr o m ultr as o u n d  D S A ( n o d e of t h e st a n di n g
ultr as o u n d  w a v e) as a f u n cti o n of t h e p arti cl e v ol u m e fr a c-
ti o n wit h K 1 = 0. 1 0 a n d K 2 = 3. 3 × 1 0 3 , a c c o u nti n g f or si n gl e
m o n o p ol e a n d di p ol e s c att eri n g ( bl a c k cir cl es) a n d  w h e n c o n-
si d eri n g o nl y s c att eri n g r es ulti n g fr o m t h e i n ci d e nt  w a v e ( bl u e
tri a n gl es).

m o n o p ol e a n d di p ol e s c att eri n g ( bl a c k cir cl e) a n d  w h e n
c o nsi d eri n g si n gl e  m o n o p ol e a n d di p ol e s c att eri n g ( bl a c k
cir cl e) a n d  w h e n o nl y c o nsi d eri n g s c att eri n g r es ulti n g fr o m
t h e i n ci d e nt  w a v e ( bl u e tri a n gl e). Fr o m Fi g. 6 ,  w e o bs er v e
t h at t h e l o c al p arti cl e p a c ki n g d e nsit y at t h e n o d e of t h e
st a n di n g ultr as o u n d  w a v e c o n v er g es t o 4 5 % a n d 5 3 %
w h e n  w e c o nsi d er a n d n e gl e ct si n gl e  m o n o p ol e a n d di p ol e
s c att eri n g, r es p e cti v el y.  We attri b ut e t his di ff er e n c e t o a
r e p ulsi v e a c o usti c p arti cl e i nt er a cti o n f or c e t h at r es ults
fr o m s c att eri n g,  w hi c h a gr e es  wit h r es ults fr o m P a vli c et
al . [6 8 ],  w h o r e p ort a r e p ulsi v e a c o usti c i nt er a cti o n f or c e
i n t h e dir e cti o n of  w a v e pr o p a g ati o n b et w e e n t w o c o p-
p er  mi cr o p arti cl es ( a = 5 μ m, a n d k a = 0. 0 1), a n d Sil v a
a n d  Br u us [ 1 3 ].  We als o p oi nt o ut t h at b as e d o n  m o d el-
i n g t h e i nt er a cti o ns b et w e e n p arti cl es usi n g  m o n o p ol e a n d
di p ol e s c att eri n g, o n e c a n als o d eri v e t h e i nt er a cti o n f or c e
b et w e e n s p h eri c al p arti cl es [ 1 3 ].

I V.  C O N C L U SI O N S

T his  w or k pr es e nts a 3 D t h e or eti c al  m o d el of ultr as o u n d
D S A i n a vis c o us  m e di u m  wit h  m ulti pl e p arti cl es,  w hi c h
all o ws si m ul ati n g t h e l o c ati o ns of s p h eri c al p arti cl es i n a n
ultr as o u n d  w a v e fi el d as a f u n cti o n of ti m e, a n d q u a ntif y-
i n g t h e l o c al p a c ki n g d e nsit y at l o c ati o ns  w h er e p arti cl es
ass e m bl e.  B as e d o n t h e r es ults of t h e e x p eri m e nts a n d
si m ul ati o ns,  w e c o n cl u d e t h e f oll o wi n g.

1.  T h e l o c al p arti cl e p a c ki n g d e nsit y at t h e p att er n
f e at ur es t h at r es ult fr o m ultr as o u n d  D S A d e p e n ds o n t h e
p arti cl e v ol u m e fr a cti o n a n d p arti cl e si z e, b e c a us e t h e y

d et er mi n e t h e n u m b er of p arti cl es t h at ass e m bl e i n o n e
l o c ati o n, a n d h o w t h e y p a c k t o g et h er.

2.  T h e vis c osit y of t h e  m e di u m i n  w hi c h  w e or g a-
ni z e t h e p arti cl es d o es n ot a ff e ct t h e l o c al p arti cl e p a c ki n g
d e nsit y r es ulti n g fr o m ultr as o u n d  D S A, b ut it d et er mi n es
t h e ti m e p arti cl es r e q uir e d t o ass e m bl e i n s p e ci fi c p att er n
b e c a us e i n cr e asi n g vis c osit y i n cr e as es t h e dr a g f or c e a cti n g
o n t h e p arti cl es.

3.  T h e  m a xi m u m a c hi e v a bl e l o c al p arti cl e p a c ki n g
d e nsit y is 4 5 %, i n d e p e n d e nt of p arti cl e si z e a n d  m e di u m
vis c osit y.  H o w e v er, t h e v ol u m e fr a cti o n r e q uir e d t o
a c hi e v e t h e  m a xi m u m p arti cl e p a c ki n g d e nsit y d e cr e as es
wit h d e cr e asi n g p arti cl e si z e.

We n ot e t h at  w hil e  w e pr o vi d e e x p eri m e nt al v ali d ati o n
of t h e  m o d el f or p arti cl e v ol u m e fr a cti o ns < 1. 5 %, o ur
si m ul ati o n r es ults e xtr a p ol at e b e y o n d = 1. 5 % a n d, t h us,
r es ults  m ust b e i nt er pr et e d  wit h c a uti o n.  T h e r es ults of t his
w or k e n a bl e pr e di cti n g t h e v ol u m e fr a cti o n of p arti cl es
r e q uir e d t o o bt ai n a s p e ci fi c l o c al p arti cl e p a c ki n g d e nsit y
at t h e s p e ci fi c p att er n f e at ur es t h at r es ult fr o m ultr as o u n d
D S A a n d, t h us, c o ntri b ut e t o t h e p h ysi c al u n d erst a n di n g
of t his pr o c ess,  w hi c h is us ef ul i n t h e c o nt e xt of  m a n u-
f a ct uri n g e n gi n e er e d p ol y m er  m atri x c o m p osit e  m at eri als
wit h ultr as o u n d  D S A a n d  V P. S p e ci fi c all y, t his  w or k h as
i m pli c ati o ns f or f a bri c ati n g e n gi n e er e d c o m p osit e  m at eri-
als  wit h a hi g h or a s p e ci fi c l o c al p arti cl e p a c ki n g d e nsit y
t o t ail or t h e pr o p erti es of t h e c o m p osit e  m at eri al.
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