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1 Introduction

Quantization of a given classical system often feels more art than science [1]. There exists a
range of prescriptions, from the very straightforward to the heuristic and all the way to the
highly technical and rigorous. A priori, none of them is guaranteed to work. Furtermore, if
a quantization exists, it does not have to be unique. There is a good reason for all this;
nature is intrinsically quantum. In general a more appropriate question to ask is what
classical system(s) arises in the semiclassical regime(s) of a given quantum system, if such
a regime can indeed be defined. However, a human’s quantum intuition is very limited.
As a result, quantization of classical models is still one of the most efficient methods for
constructing interesting novel quantum systems.

It helps that the physics of the problem often imposes very restrictive requirements on
the admissible quantization. This is exactly the situation considered in the present paper.
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We show here how to quantize the zigzag model, which is a relativistic N -body maximally
superintegrable mechanical system recently identified in [2, 3]. As we will see, even though
the classical zigzag model is embarrassingly simple, it is surprisingly subtle to construct
its proper quantization. The zigzag model describes N massless particles on a line whose
motion is governed by the following Hamiltonian

H =
N∑
i=1
|pi|+ `−2

s

N−1∑
i=1

(qi − qi+1 + |qi − qi+1|) . (1.1)

Closely related models describing closed string dynamics (known as closed folded strings,
or the Bardeen-Bars-Hanson-Peccei (BBHP) model) have appeared previously in [4–6],
we comment on the relation in section 6. The zigzag Hamiltonian was originally derived
by considering the high-energy dynamics on the worldsheet of a confining string in two-
dimensional adjoint QCD (with a single adjoint Majorana flavor) in the ‘t Hooft planar limit,
and `−2

s determines the tension of the confining flux tube in the fundamental representation.
In what follows we set

`s = 1

unless specified otherwise.
The expectation is that it should be possible to set up a high energy expansion on

the worldsheet using the zigzag model as a leading order approximation. For this idea to
be successful, the zigzag model itself needs to be Poincaré invariant and solvable. This
is indeed the case at the classical level. The classical zigzag model is Poincare invariant,
Liouville integrable (i.e., it exhibits N globally defined charges in involution) and maximally
superintegrable (i.e., it is possible to construct 2N − 2 algebraically independent conserved
charges in addition to the Hamiltonian). Hence, in this paper we are looking for the
quantization of the zigzag model which preserves both Poincaré invariance and integrability.

Classical scattering in the zigzag model gives rise to a time delay proportional to the
collision energy. In the quantum language this time delay corresponds to the celebrated
shock wave phase shift [7, 8],

eiδ = e
is
4 , (1.2)

which also describes the worldsheet scattering of critical strings [9] and, more generally,
scattering arising as a result of the T T̄ deformation [10–12]. This suggests that the classical
zigzag model describes an N -particle subsector of the massless T T̄ -deformed fermion
similarly to how the Ruijsenaars-Schneider model [13] describes an N -soliton subsector of
the sine-Gordon model. Given that the T T̄ deformation can be described in terms of the
one-loop exact path integral [14] this connection suggests that an integrable quantization of
the zigzag model results in the classical shock wave phase shift as an exact quantum answer.

The relation to the T T̄ -deformed theories raises a number of interesting conceptual
questions about the zigzag model. Indeed, the T T̄ -deformation describes a relativistic
quantum filed theory coupled to a topological gravity [14–16]. As a result one does not
expect the existence of local off-shell observables in T T̄ deformed models. At first sight this
seems to be at odds with the relation between the T T̄ deformation and the zigzag model.
Indeed, one may expect that the positions of particles in the quantum zigzag model provide
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a set of well-defined local off-shell observables. However, this expectation is somewhat too
naive. Indeed, this subtlety is well familiar already from a first quantized description of
conventional free relativistic particles. In particular, amplitudes defined by the relativistic
invariant path integral

〈x|y〉 =
∫
DXeiSpp[x,y] , (1.3)

cannot be interpreted as conventional transition amplitudes in the position space. Instead,
they correspond to the Feynmann propagator of the second quantized field theory. We
will see that the zigzag case is even more subtle. Our quantization of the zigzag model
indeed reproduces the T T̄ S-matrix at the quantum level. However, at present it is unclear
whether it leads to well-defined off-shell observables.

The structure of the paper is as follows. In section 2 we present the naive straightforward
quantization of the zigzag model in the two-particle case N = 2. We will see that this
approach does not lead to a satisfactory quantization of the zigzag model. In section 3 we
trace the problem to the non-trivial phase space geometry of the model, which is ignored
by the naive quantization. We argue that a consistent quantization of the zigzag model is
achieved by making use of the globally defined action angle variables constructed in [3]. In
section 4 we explain how to reconstruct the T T̄ S-matrix (1.2) using this quantization. The
construction is very similar to the T T̄ S-matrix derivation as presented in [15]. Namely,
action angle variables provide a formulation of the zigzag model in terms of free particles.
The non-trivial S-matrix (1.2) arises as a consequence of introducing “dynamical” physical
coordinates, which are different from the free ones. In section 5 we briefly describe the
extension of all these results to the multi-particle case. In section 6 we comment on the
relation to the BBHP strings [4–6] and the ‘t Hooft model [17]. We conclude in section 7.

2 Failures of the naive quantization

The zigzag Hamiltonian in the two-particle subsector is given by

H = |p1|+ |p2|+ q1 − q2 + |q1 − q2| . (2.1)

At first sight it is natural to quantize this model using the standard canonical quantiza-
tion prescription

[qi, pj ] = iδij . (2.2)

In the coordinate presentation one then encounters a somewhat unconventional operator
|p|. However, it is straightforward to define it via the Fourier transform,

|p| = −
∫
dq

2πe
ipq
( 1

(q − iε)2 + 1
(q + iε)2

)
≡ −

∫
dq

π
eipq
P
q2

so that
|p|ψ(q) = − 1

π

∫ ∞
−∞

dq′ψ(q′, t) P
(q − q′)2 .

The first indication that this quantization is problematic stems from the following
observation. An important step in the classical analysis of the integrable structure of the
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zigzag model presented in [2, 3] is the construction of a conserved topological charge T ,
which in the two-particle case reduces to

T = 1
2 (−s1 + s1s1,2 + s1,2s2 − s2) , (2.3)

where
si = sign pi , si,j = sign (qi − qj) .

The existence of this topological invariant implies that the classical phase space splits into
three distinct superselection sectors, labeled by the possible values of T = −2, 0, 2. These
values simply count the number of left- and right-movers in the asymptotic regions t→ ±∞.1

Of course, for two particles the existence of these sectors is completely obvious. The
values T = ±2 correspond to the LL (RR) sectors describing two left(right)-moving particles
which stay free at all times. The value T = 0 gives rise to the only interacting LR sector
present in the two-particle case.

It is immediate to see that the free LL and RR sectors are lost with the naive
quantization. Indeed, states in the LL sector can be characterized by the condition

(P +H)ψ(q) = 0 , (2.4)

where
P = p1 + p2

is the total momentum. This condition implies that the wave function has to satisfy

(p1 + |p1|)ψ(q) = 0 (2.5)

(p2 + |p2|)ψ(q) = 0 (2.6)

(q1 − q2 + |q1 − q2|)ψ(q) = 0 . (2.7)

The first condition (2.5) implies that

ψ(q1, q2) =
∫ ∞

0
dp1e

ip1q1f(p1, q2)

is an analytic function of q1 in the upper half plane Im q1 > 0. Hence, it cannot vanish at
all values q1 > q2 as required by the last condition (2.7).

One might try to get around this difficulty by postulating that one should first restrict
to a certain classical subsector before performing the quantization, so that the naive
quantization describes the LR sector only. The free RR and LL sectors are straightforward
to construct separately — these describe a pair of free massless particles with positive and
negative momenta.

To see that this still does not lead to a satisfactory quantization of the zigzag model,
let us inspect the resulting Schrödinger equation in the P = 0 frame,

i∂tψ(q, t) = − 2
π

∫ ∞
−∞

dq′ψ(q′, t) P
(q − q′)2 + (q + |q|)ψ(q, t) , (2.8)

1At intermediate times they count the number of left- and right-movers “along the string worldsheet” [3].
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Figure 1. Numerical phase shift corresponding to the Schrödinger equation (2.8) (red points)
versus the shock wave phase shift (solid lines).

and calculate the corresponding scattering phase shift. Note that as a consequence of the
non-local nature of the |p| kernel, one cannot proceed by solving this equation in q > 0 and
q < 0 regions and gluing the solutions at q = 0, as one would had done in the conventional
quantum mechanics (see, e.g. [18]). As far as we can tell, this equation cannot be solved
analytically, so we resort to the numerical determination of the scattering phase shift. We
discuss details of this calculation in the appendix A. The result is presented in figure 1.
One observes that in the semiclassical (large momentum) regime the naive quantization
perfectly agrees with the classical shock wave phase shift (1.2). However, the two phase
shifts disagree at intermediate momenta p ∼ 1, even though they remain quite close to each
other at almost all momenta.2 This demonstrates that the classical equivalence between the
zigzag model and the T T̄ deformation does not extend at the quantum level if one follows
the naive quantization.

Perhaps the most severe trouble with the naive quantization becomes manifest upon
the inspection of the Poincaré algebra in the zigzag model. At the classical level the boost
symmetry generator takes the following form,

J =
N∑
i=1

qi|pi|+
1
2

N−1∑
i=1

(qi + qi+1)(qi − qi+1 + |qi − qi+1|) . (2.9)

At the level of classical Poisson brackets this generator forms the ISO(1, 1) Poincaré algebra
together with the Hamiltonian H and the total momentum P . However, at the quantum
level the algebra is spoiled by contact terms, which appear uncurable by any ordering
prescription (this observation in related models has also been made in [5, 19, 20]).

2Numerical results cannot be trusted at p� 1 due to numerical finite size effects. However, we checked
that the disagreement at p ∼ 1 is not caused by the numerics.
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Figure 2. Hamiltonian flows of the zigzag model in the (p, q) plane at P = −1 (left panel),
P = 0 (middle panel) and P = 1 (right panel). Topological sectors corresponding to different
values of the charge T are labeled as LL, RR and LR. The vector field vanishes in the free
LL and RR regions.

3 Geometry of the phase space and quantization

Failures of the naive quantization described in the previous section appear as a set of
disconnected technical issues. To construct a successful alternative quantization it is
important to find an underlying general reason for these shortcomings. We argue here that
they all are related to the non-trivial phase space geometry of the zigzag model which is
completely ignored by the naive quantization.

To see the origin of this non-trivial geometry it is convenient to separate the bulk and
the relative motion by performing the following canonical coordinate change,

P = p1 + p2 , q̄ = q1 + q2
2 (3.1)

p = p1 − p2
2 , q = q1 − q2 , (3.2)

so that the Hamiltonian (2.1) turns into

H =
∣∣∣∣P2 + p

∣∣∣∣+ ∣∣∣∣P2 − p
∣∣∣∣+ q + |q| . (3.3)

In figure 2 we presented phase portraits of the zigzag model in the (q, p) plane at
positive, zero and negative values of the total momentum P . One immediately finds that
the Hamiltonian vector flow of the zigzag model is badly discontinuous at the boundaries
of the topological sectors corresponding to different values of the topological charge (2.3).
Note that the vector field itself has additional discontinuities inside the LR region. However,
these can easily be smoothed out and the geometry of the flow lines is continuous there,
unlike at the boundaries between the topological sectors. This strongly suggests that the
proper classical phase space of the N = 2 zigzag model is not the full R4, but one needs
to exclude these boundaries. Equivalently, one needs to quantize in each of the sector
separately, accounting for the fact that the sectors are non-trivial subregions in R4, which
is ignored by the naive quantization of section 2.
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This point gets even stronger when the Poincaré invariance of the zigzag model is
taken into account. Indeed, the flow generated by the boost generator changes the value
of the total momentum P . However, the sign of P does not change in the free LL and
RR sectors, so that P stays positive in RR and negative in LL. On the other hand, by
applying the boost in the LR sector one may change the value of P (including its sign)
arbitrarily. Consequently, also the classical flow corresponding to the boost generator J
is badly discontinuous at the boundaries between different sectors. This explains why
the naive quantization, which ignores the phase space geometry, is incompatible with the
Poincaré symmetry.

3.1 Free LL and RR sectors

Let us now describe a consistent quantization of the zigzag model guided by these geometrical
considerations. The most straightforward way to exclude the boundaries between the
topological sectors from R4 is to perform quantization in each of the sectors separately.
Let us start with the free LL and RR sectors. At first sight these are completely trivial,
however, even here we encounter a subtlety. For concreteness, let us focus on the RR sector.
Here the phase space is a subregion of R4 determined by the following inequalities,

p1 > 0 , p2 > 0 , (3.4)

q1 − q2 > 0 , (3.5)

which is the same as R3
+ ×R. The Hamiltonian is simply

HRR = p1 + p2 .

If the range of coordinates q1, q2 were not restricted, i.e., if the phase space geometry were
(R+ × R)2, the quantization would be straightforward. The corresponding Hilbert space
is spanned by the momentum eigenstates |p1, p2〉 with positive momenta p1, p2 > 0. Note,
however, that a particle on a half-line (or, equivalently, a particle with a positive momentum)
provides perhaps the simplest example where a non-trivial phase space geometry (R+ ×R

in this case) has important consequences. This example is often used as a testing ground
for more sophisticated quantization methods, such as group theoretical quantization [21].

The subtlety is that the coordinate operator cannot be extended to a self-adjoint operator
if the range of momenta is restricted to a half-line. In particular, no coordinate represenation
exists for the Hilbert space. Hence it is problematic to enforce the inequality (3.5) in the
RR sector. This complication is a direct consequence of the uncertainty principle, and
essentially equivalent to the reason why the naive quantization misses the LL and RR

sectors, as articulated in the beginning of section 2.
We believe that the most natural way of getting around this problem is to declare that

particles in the zigzag model are identical in the RR and LL sectors. At the classical level
this amounts to identifying points in the phase space related by particle permutation

(p1, q1, p2, q2) ∼ (p2, q2, p1, q1) .

– 7 –
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This automatically enforces the constraint (3.5) (or, better to say, restricts (q1 − q2) to be
on a half-line). At the quantum level this is implemented by imposing the identification

|p1, p2〉 = ±|p2, p1〉 ,

where the sign determines bosonic or fermionic statistics, as usual. This prescription
amounts to a non-trivial modification of the classical zigzag model. Note that the statistical
identification cannot be imposed in the LR sector, because the zigzag Hamiltonian is not
invariant under the particle exchange there.

It is somewhat unconventional that the statistics in the zigzag model is imposed only in
certain subsectors of a theory. However, it is in fact quite natural when the zigzag model is
obtained as a high energy limit of the adjoint QCD. This is related to the off-shell particle
identity arising as a consequence of color ordering in the worldsheet theory, as discussed
in [22]. As explained there, worldsheet excitations correspond to identical particles only at
the level of asymptotic scattering states. The free LL and RR sectors are in a sense always
on-shell, so that the statistical identification can (and should) be imposed directly there.
On the other hand, it is impossible to impose particle identification off-shell in the LR
sector, where zigzags forms during scattering processes. Conventional quantum statistics
gets restored in this sector at the level of scattering states, because the potential in (3.3)
has only one flat asymptotic region q < 0, as if scattering were taking place on a half-line.

3.2 Interacting LR sector

Let us now come to the quantization of the dynamical LR sector. The discussion above
strongly suggests that a successful quantization can be achieved by switching to a set of
phase space coordinates that are better adjusted to the geometry of the LR region. Given
that we would like to preserve classical integrability at the quantum level, it is natural to
follow the classical integrable structure as a guide for the quantization.

As demonstrated in [3], the zigzag model with N particles exhibits 2N − 1 independent
integrals of motions. In the asymptotic t → ±∞ regions these reduce to the particle
momenta and pairwise interparticle separations between particles moving in the same
direction. For N = 2 the integrals are

P1 = P +H

2 (3.6)

P2 = P −H
2 (3.7)

P̃ = p2s2 −
q1
2 (1− s1,2)− q2

2 (3 + s1,2) . (3.8)

These expressions are simpler than those provided in the appendix A of [3]. The reason is
that here we simplified expressions for the charges, using that we restrict to the LR sector
only. Note that the first two integrals (3.6), (3.7) are translationally invariant, while the last
one may be thought of as a dynamical “rod” variable — it shifts linearly under an overall
shift of the particle positions. In addition to these integrals, a natural “clock” variable —
a quantity which depends linearly on time when equations of motion are satisfied — was

– 8 –
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constructed in [3],
H̃ = p2 + q1 − q2

2 s1(1− s1,2) . (3.9)

It is straightforward to see that (P1, P2, P̃ , H̃) define a globally well-defined parametriza-
tion of the LR region of the phase space (momentarily, we will provide an explicit inverse
mapping to the (p, q) variables). Hence it is natural to use these coordinates as a basis for
quantization. To be precise, let us define the following coordinate variables

Q1 = 1
2
(
H̃ − P̃ − P2

)
, (3.10)

Q2 = 1
2
(
−H̃ − P̃ + P1

)
, (3.11)

which, together with momenta (P1, P2) form a global set of canonical coordinates in the
LR sector.

In these coordinates, the zigzag Hamiltonian (2.1) takes a simple form

H = P1 − P2 . (3.12)

In fact, the whole Poincare algebra rewritten in terms of these coordinates takes the free
particle form

P = P1 + P2 (3.13)

J = Q1P1 −Q2P2 (3.14)

and
{H,P} = 0 , {J, P} = H , {J,H} = P . (3.15)

Hence, (P1, P2, Q1, Q2) is a set of action-angle variables for the zigzag model. Importantly,
these action-angle variables are globally well-defined—(P1, P2, Q1, Q2) provide a one-to-one
parametrization of the LR sector, provided the momenta are restricted to a half-line

P1 > 0 , P2 < 0 , (3.16)

as follows from (3.6), (3.7). Indeed, by fixing the values of the conserved quantities P1, P2
and

Q̄ = Q1 +Q2
2

one uniquely determines the phase space trajectory, and then the remaining “clock” variable

Q = Q1 −Q2

picks a point on the trajectory.
In addition to this indirect argument it is also straightforward to explicitly reconstruct

the original physical coordinates through the action-angle variables. Indeed, (Q,P ) and
(q, p) variables are piecewise linearly related to each other, with the exact form of the
relation being determined by the values of s1, s2 and s1,2. So for each possible value of
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s1, s2 and s1,2,3 one may solve for (q, p)’s in terms of (Q,P )’s. After this is done, one can
rephrase the choice of s1, s2, s1,2 in terms of (Q,P ) variables.

The result of this procedure can be summarized by the following expressions,

q = H

2 −
|Q|
2 −

|P |
4 −

1
2

∣∣∣∣|Q| − |P |2

∣∣∣∣ (3.17)

p = sign (Q)
2

(∣∣∣∣H2 − |Q|
∣∣∣∣− H

2 − |Q|
)

(3.18)

q̄ = Q̄+ sign (Q)sign (P )
4

( |P |
2 + |Q| −

∣∣∣∣ |P |2 − |Q|
∣∣∣∣) . (3.19)

In the new canonical variables the N = 2 zigzag model turns into a system of two
massless free particles with each of momenta restricted to a half-line, so that the phase space
geometry is (R×R+)× (R×R−). Quantization of this phase space is most straightforward
to perform in the momentum representation, so that the Hilbert space is spanned by
the vectors

|P1, P2〉 .

As we already mentioned, coordinate operators

Qi = i∂Pi

do not admit self-adjoint extension for this system. Geometrically, this can be traced to
the fact that the Hamiltonian flow corresponding to the coordinate operator does not map
the half-line of positive momenta into itself.4 Still, for all practical purposes a theory of a
particle with positive momentum is perfectly local. Indeed, given a function f(P ), such that

f(0) = 0 , f(∞) = 1

one may construct a regularized essentially self-adjoint coordinate operator

Q̂i,f = f
(
P̂i
)
Q̂if

(
P̂i
)
. (3.20)

By considering a family of functions f , which approach unity almost at all values of momenta
apart from a small vicinity of the origin P = 0, one obtains a family of regularized operators
Q̂i,f whose action on wave packets carrying non-zero momenta approximates the coordinate
operators Q̂i with any desired precision. Note that the Lorentz boost generator (3.14) does
not require any regularization and that boosts act as

|P1, P2〉 → |λP1, λ
−1P2〉 .

At first sight the existence of these globally defined action-angle variables turns the
zigzag model into a free system, however this is not the case. To properly describe the

3Note that the values s1 = s2 = s1,2 = ±1 are not possible because these correspond to LL and
RR sectors.

4Note that for certain observables with this property, such as Q̂2
i , one can still define a self-adjoint

operator by introducing appropriate boundary conditions at Pi = 0. More generally, this can always be
done for positive definite operators using the Friedrichs extension.
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physics one needs to get back to the original coordinates as defined by (3.17), (3.18), (3.19).
Note that this situation is not at all unusual. Recall, that according to Darboux’s theorem
(for contact forms) any mechanical system can be brought into a canonical free form by
a change of coordinates in a vicinity of a generic point. Consequently, at least locally, all
physical content of a given system is determined by a coordinate choice.

At the quantum level it is not immediately obvious that the rather complicated looking
expressions (3.17), (3.18), (3.19) allow us to unambiguously define the corresponding
quantum operators. However, we will see now that using regularized versions of the physical
(p̂, q̂) operators it is possible to construct at least some quantum observables, such as the
S-matrix.

4 Two-particle S-matrix

4.1 Scattering in the rest frame

Let us now use this quantization to derive the exact S-matrix in the LR sector. For
simplicity, let us first consider scattering in the rest frame P = 0. Then our quantization
lands us in the energy representation, with the P = 0 basis states of the form

|H/2,−H/2〉 ≡ |H〉 .

The expression for the relative coordinate

q̂ = q̂1 − q̂2 ,

as determined by (3.17), simplifies in the rest frame to

q̂ = Ĥ

2 −
ˆ|Q| . (4.1)

Here, as before,
Q̂ = 2i∂H .

This operator can be thought of as a “clock” operator in the following sense. Let us consider
a Q̂ eigenstate with eigenvalue Q,

|Q〉 =
∫
dHe−iHQ/2|H〉 . (4.2)

Its time evolution amounts to a shift Q→ Q+ 2t, so that performing measurements of Q̂ is
equivalent to measuring time t.

To calculate the S-matrix we follow the standard prescription of stationary scattering
theory. Namely, we deduce the phase shift from the behavior of a stationary wave function
in the coordinate representation,

ψH(q) = 〈q|H〉 (4.3)

in the free region q → −∞. Importantly, we are using the physical coordinate q here. By
making use of (4.1) we find that ψH(q) satisfies the following equation,

qψH(q) = H

2 ψH(q)−
∫ ∞

0
dH1ψH1(q)〈H1||Q̂||H〉 . (4.4)

– 11 –
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Given that the clock operator Q̂ does not have a self-adjoint extension, in order to define
an operator |Q̂| we use a regularized operator Q̂f , which takes form

Q̂f = 2if2(H)∂H + 2if(H)∂Hf(H) (4.5)

in the H representation. This operator has a continuum spectrum Q ∈ (−∞,∞). Us-
ing (3.20) one finds that the corresponding eigenfunctions take the following form,

|Q〉f =
∫ ∞

0

dH

2
√
πf(H)e

−iQ
∫ H dH̃

2f2(H̃) |H〉 , (4.6)

which are normalized as
f 〈Q1|Q2〉f = δ(Q1 −Q2) .

This allows us to define a regularized matrix element of |Q̂| as

〈H1||Q̂f ||H〉=
1

4π

∫ ∞
−∞

dQ

f(H)f(H1) |Q|e
iQ
∫ H1
H

dH̃
2f2(H̃) =− 2

πf(H)f(H1)Re
(∫ H1

H

dH̃

f2 +iε
)−2

.

At this stage it is natural to remove the regularization by setting f(H) = 1. As a result, (4.4)
turns into the following equation for the physical stationary wave function,

qψH(q) = `2s
2 HψH(q) + 2

π

∫ ∞
0

dH1ψH1(q) P
(H1 −H)2 , (4.7)

where we restored the explicit dependence on the string tension `s. We see that the sole
role of the regularization is to motivate the definition of the |Q| operator.

Note that the eigenvalue equation (4.7) is quite different from a stationary Schrödinger
equation that arises in conventional scattering theory. Namely, it is written in the energy
representation, so that the roles played by the coordinate q and energy H are interchanged
— the coordinate q enters in (4.7) as an eigenvalue. Related to this, (4.7) is linear w.r.t.
multiplying by an arbitrary function of q, but not by a function of H. Operationally this
happened because we already fixed relative phases of energy eigenstates |H〉 by defining
Q̂ via (4.2).

To determine the scattering phase shift we need to solve (4.7) in the free region q → −∞.
One expects the wave function to turn into a sum of an incoming and scattered waves there,

ψH(q)|q→−∞ = ψ+ + ψ−, (4.8)

where
ψ± ∼ A±e±

i
2 qH+iδ±(H) . (4.9)

To determine the phase shifts δ±(H) let us make use of the derivative of the Sokhotski formula

P
(H1 −H)2 = 1

(H1 −H ∓ iε)2 ± iπδ
′(H1 −H) . (4.10)

Namely, note that at q → −∞ the scattered wave ψ+ is exponentially small in the lower
half-plane, Im H < 0 and the incoming wave ψ− is exponentially small in the upper half
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plane Im H > 0. Then by using the upper sign in (4.10) for ψ+ and the lower one for ψ− we
may Wick rotate the integration contours by ∓π/2 without encountering any singularities.
As a result, (4.7) takes the following form

`2s
H

2 (ψ+ + ψ−) + 2δ′+ψ+ − 2δ′−ψ− +A+I+ +A−I− = 0 (4.11)

where
I±(H) = ∓ 2

π

∫ ∞
0

dh
1

(ih±H + iε)2 e
qh+iδ±(∓ih) . (4.12)

At H 6= 0 these integrals vanish in the q → −∞ region, which allows us to determine the
phase shifts from (4.11)

δ± = ∓`2s
H2

8 + c± . (4.13)

where c± are H-independent integration constants. This approximation is valid provided

H � 1
(q`2s)1/3 �

1
q
. (4.14)

Indeed, in this range integrals in (4.12) can be estimated as I± ∼ 1
qH2 , which can be

neglected compared to other terms in (4.11).
It is worth noting that for these phase shifts eiδ± is exponentially small at large values

of |H| in the fourth quadrant of the complex plane, and eiδ± is exponentially small in the
first quadrant. Hence, to justify the Wick rotation which we performed, one does not need
to take the strict q → −∞ limit — it can be performed at large finite negative q as well.

Note that at this stage we still have a freedom to multiply ψ± by arbitrary functions of
q. In other words, up to now we determined that the wave function in the q → −∞ region
takes form

ψH(q)|q→−∞ = A+(q)e
i
2 qH−

i
8H

2 +A−(q)e−
i
2 qH+ i

8H
2
. (4.15)

To fix the A± amplitudes let us inspect the equation (4.7) in the small H limit. Here one
may neglect the first term on the r.h.s. so that the equation reduces to

qψH(q) = 2
π

∫ ∞
0

dH1ψH1(q) P
(H1 −H)2 . (4.16)

This equation corresponds to the infinite tension, `s = 0, limit of the zigzag model.
Previously, this integral equation appeared in the semiclassical analysis of the ‘t Hooft
equation [23, 24] and can be solved exactly. We review this solution in appendix B. The
resulting solution takes the following form in the qH → −∞ limit,

ψ0
H(q)|q→−∞ = e

i
2 qH+i 3π

8 + e−
i
2 qH−i

3π
8 . (4.17)

This approximation is valid in the range

1
q
� H � 1

`s
,
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which overlaps with (4.14). Then by requiring that the two approximations (4.15) and (4.17)
match in the overlap region one finds that

A±(q) = e±i
3π
8 .

As a result, the scattering wave function in the free asymptotic region determines the phase
shift to be

δ ≡ δ− − δ+ = `2sH
2

4 − 3π
4 , (4.18)

which reproduces the T T̄ phase shift (1.2) up to a constant −3π/4 shift.
Note that the energy dependent part of the phase shift can be obtained by using a

quicker argument, which is parallel to the classical one presented in [3]. The argument again
relies on the relation (4.1) and makes a direct use of Q̂ as a clock variable. Namely, let us
consider a wave packet peaked around q(t) in the physical coordinate space and around H
in energy. Then from (4.1) one finds that at early, te → −∞, and late, tl →∞, times

q(te) = H

2 +Q(te) (4.19)

q(tl) = H

2 −Q(tl) , (4.20)

where
Q(t) = Q0 + 2t

is the trajectory of the wave packet in the Q space. By taking the sum of (4.19) and (4.20)
one finds that

tl − te = −q(te) + q(tl)
2 + H

2 , (4.21)

which corresponds to the time delay H/2 in agreement with the phase shift (4.18). One may
be worried though that this argument is not rigorous enough given that strictly speaking
the Q representation does not exist in this setup because Q̂ is not a self-adjoint operator.
A more rigorous and detailed derivation presented above gives confidence that this issue
is mostly a technicality, and provides a tractable description of the quantum scattering
process directly in the physical coordinates via the scattering equation (4.7).

4.2 Scattering in a general frame

The quantization described in section 3 is manifestly Poincaré invariant in the sense that
the Poincaré generators (H,P, J) are represented by Hermitian operators acting on the
Hilbert space and the commutation relations exhibit no quantum anomalies. However,
as we emphasized before, it is the choice of the physical coordinates (3.17), (3.19) which
distinguishes this model from a free one. So one may wonder whether this choice is
compatible with the Poincaré symmetry. In particular, a natural question to ask is whether
the S-matrix which we just derived is Poincaré invariant.

To check this, let us consider a scattering process for a general total momentum P .
Proceeding as above, let consider a general energy and momentum eigenstate |P,H〉, with
H > |P | > 0, and define the corresponding scattering wave function ψH,P (q) as

〈P, q|P ′, H〉 = δ(P − P ′)ψH,P (q) . (4.22)
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Then, following the steps of the previous section, one arrives at the following generalization
of (4.7),

qψH,P (q) = `2s
2 HψH,P (q) + 2

π

∫ ∞
|P |

dH1ψH1,P (q) P
(H1 −H)2 cos `

2
sP (H1 −H)

4 . (4.23)

The analysis of this equation proceeds similarly to the P = 0 case. Namely, in the
semiclassical region

H − |P | � q−1 , (q`2s)−1/3

one finds the same wave function (4.15) as before, where the A± amplitudes may now
depend not only on q but also on P . To reconstruct these amplitudes let us consider the
limit

`s(H − |P |)� 1 (4.24)

with P`s kept fixed. In this limit (4.23) reduces to

qψH,P (q) = `2s
2 |P |ψH,P (q) + 2

π

∫ ∞
|P |

dH1ψH1,P (q) P
(H1 −H)2 , (4.25)

which is the same as (4.16) up to a shift of q and H. The solution of this equation at large
negative q (and also accounting for (4.24)) takes the form

ψ0
H(q)|q→−∞ = e

i
2 q(H−|P |)+i

3π
8 + e−

i
2 q(H−|P |)−i

3π
8 . (4.26)

By requiring this solution to match with the semiclassical one in the overlap region one
obtains the scattering phase shift

δ = `2s
H2 − P 2

4 − 3π
4 , (4.27)

in agreement with the Lorentz invariance of the S-matrix. Note that the wave function (4.26)
is the same as in the free `s = 0 theory. However, for this argument it is important that to
arrive at (4.26) we considered the limit (4.24), resulting in (4.25), rather than the naive
`s = 0 limit. This allows us to keep track of the `2sP 2 term in the phase shift, as necessary
for a test of Lorentz invariance.

This result provides a non-trivial consistency check of the Lorentz invariance of our
quantization. However, at the same time it raises the following puzzle. Namely, the
momentum dependence of the wave function (4.26) does not match (4.9). This issue arises
already in the strict free (infinite tension) limit, `s = 0, so to understand it better let us
discuss quantization of the zigzag model in this limit in more detail.

4.3 Infinite tension limit

In the infinite tension limit `s = 0 the expressions (3.17), (3.18), (3.19) for the physical
coordinates simplify to

q = −|Q| (4.28)

p = −sign (Q)
2 H (4.29)

q̄ = Q̄ , (4.30)
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where, as before, at the classical level q̄ is canonically conjugate to the total momentum
P . The unconventional form of the wave function (4.26) in the asymptotic region indicates
that commutators of these physical coordinates do not exhibit the canonical form with our
quantization procedure. Indeed, as follows from (4.25) the q̂ operator is defined as

q̂ψ(H,P ) = 2
π

∫ ∞
|P |

dH1ψ(H1, P ) P
(H1 −H)2 . (4.31)

It is immediate to check that this operator does not commute with the operator

ˆ̄q = i∂P

due to the P dependence of the integration range in (4.31). This shows that the naive
expectation for the form of the position space wave function in the asymptotic region,

〈q, q̄|P,H〉 ∼ ei
qH
2 +iq̄P+iδ + h.c. ,

does not hold simply because common q, q̄ eigenvectors 〈q, q̄| don’t exist at all.5 This is
somewhat surprising, given that the differences between quantum commutators and classical
Poisson brackets are usually attributed to ordering ambiguities. At first sight these are
absent for q, q̄ as defined by (4.28), (4.30). However, common eigenvectors for these two
operators are still absent as a consequence of the non-trivial phase space geometry.

The states |q, P 〉 considered above do exist. However, the expectation (4.9) for their
asymptotic form is based on considering the matrix element of the form

〈q, P |eiαp̂|P,H〉

under the assumption that p̂ acts a generator of shifts in q (and that H = 2|p| in the
asymptotic region). To define the p̂ operator based on (4.29) one needs to deal with ordering
ambiguities. We did not manage to find a prescription to define p̂ in such a way that it has
a canonical commutation relation with q̂ which is consistent with the unconventional form
of the wave function (4.26).

In fact, applying this logic backwards, (4.26) suggests that if we define

pc = −sign (Q)
2 (H − |P |) , (4.32)

then it should be possible to define the corresponding operator p̂c in such a way that

[q̂, p̂c] = i ,
[
P̂ , p̂c

]
= 0 . (4.33)

Indeed, as we show in appendix C this is achieved by using the following ordering prescription
for p̂c,

p̂c = −1
2Ĥ

1/2sign
(
Q̂
)
Ĥ1/2 , (4.34)

5In addition to the presence of the anomaly in the [q, q̄], the q̄ operator is not even symmetric with our
quantization as a consequence of the |P | < H constraint.
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where the sign (Q̂) operator is defined as the Hilbert transform on a half-line

sign (Q̂)ψ(H,P ) = 2i
π

∫ ∞
|P |

dH1ψ(H1, P ) P
H1 −H

. (4.35)

This reasoning explains the origin of the unconventional wave function behavior exhib-
ited in (4.26), but may leave one wondering whether our choice of dynamical coordinates is
indeed compatible with the Lorentz invariance of the system. As a self-consistency check
let us present here a manifestly Lorentz-invariant quantization. It is available in the infinite
tension limit and leads to the same result as above. This quantization is more conventional,
in particular it operates directly in physical coordinates.

In the infinite tension limit the LR subsector of the zigzag model is described by a
free Hamiltonian

H =
∣∣∣∣P2 + p

∣∣∣∣+ ∣∣∣∣P2 − p
∣∣∣∣ . (4.36)

It would still be wrong to apply the naive quantization of section 2, because the phase
space still has a non-trivial geometry, which is obtained as the `s → 0 limit of figure 2.
Namely, the relative coordinate q is restricted now to the half-line, q < 0, and the relative
momentum p satisfies

|p| > |P |2 . (4.37)

In addition, pairs of points with opposite relative momenta ±p are identified at q = 0. As a
consequence of (4.37) one finds that the Hamiltonian (4.36) reduces simply to

H = 2|p| (4.38)

at all values of P . Let us quantize in the q, P representation, so that the states are described
by wave functions Ψ(q, P ) with q ∈ (−∞, 0]. A naive quantization based on the canonical
commutation relation between q and p fails to account for the constraint (4.37) on the range
of p. Note, however, that pc defined as

pc = p− sign (p)
2 |P | (4.39)

takes values on the whole real axis.6 It is straightforward to check that the definition (4.39)
agrees with the earlier one, (4.32). Furthermore, at the level of the Poisson brackets one finds

{q, pc} = 1− 1
2δ(p)|P | = 1 , (4.40)

where at the last step we made use of (4.37). On the other hand, we now have

{q̄, pc} = −1
2sign (p)sign (P ) .

This can be fixed by introducing

q̄c = q̄ + qsign (p)sign (P ) . (4.41)
6One may worry about what happens at pc = 0. We ignore this issue. This is justified by the end result.
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Then one finds that (q, pc, q̄c, P ) form a set of canonical variables on the classical phase
space at hand,

{q̄c, pc} = {q, P} = {pc, P} = 0 (4.42)

{q̄c, P} = {q, pc} = 1 (4.43)

{q̄c, q} = qδ(p)sign (P ) = 0 , (4.44)

where in evaluating the last Poisson bracket (4.44) we again made use of (4.37). Given that
in terms of these variables the only constraint we have is q ≤ 0, it is natural use these for a
canonical quantization, i.e., to define

ˆ̄qc = i∂P , p̂c = −i∂q .

The Hamiltonian (4.36) takes the following form in these variables,

H = 2|pc|+ |P | . (4.45)

Following the same procedure to define |p̂c| as before, we conclude that wave functions
Ψ(q, P ) satisfy the Schrödinger equation with the Hamiltonian Ĥ given by

ĤΨ(q, P ) = |P |Ψ(q, P )− 2
π

∫ 0

−∞
dq1Ψ(q1, P ) P

(q1 − q)2 . (4.46)

The functional form of the corresponding energy eigenstates ΨH(q, P ) is

ΨH(q, P ) = f(q(H − |P |)) . (4.47)

On the other hand, as follows from (4.31), the q̄ eigenfunctions ψq(H,P ) in the quantization
we had before take exactly the same form,

ψq(H,P ) = f(q(H − |P |)) (4.48)

with the same function f (whose explicit form can be found in appendix B). Hence, in the
infinite tension limit the quantization relying on dynamical coordinates is equivalent to the
one based on the conventional Schrödinger equation.

Let us check now that the Schrödinger quantization is also manifestly Lorentz invariant.
Classically, the boost generator (2.9) takes the following form in the (q, pc, q̄c, P ) variables,

J = q̄c(2|pc|+ |P |)− 2sign (P )qpc . (4.49)

Just like before, a normal ordering ambiguity cancels out between two terms in (4.49), so
at the quantum level we may define the boost operator as

ĴΨ(q, P ) = i∂P

(
|P |Ψ(q, P )− 2

π

∫ 0

−∞
dq1Ψ(q1, P ) P

(q1 − q)2

)
+ isign (P )q∂qΨ(q, P ) .

(4.50)
It is straightforward to check now that Ĵ , Ĥ and P̂ form the Poincaré algebra ISO(1, 1).
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5 Multi-particle case

Generalizing the two-particle discussion, the zigzag solution for N particles can be recast
as the dynamics of N free particles with restricted momenta. Each sector with distinct
topological charge T = NL − NR leads to NL free left-movers and NR free right-movers.
Amongst each set (being left or right-movers) there is an absolute ordering analogous to the
LL (RR) sectors of the two-particle case. Below we explain in detail how this picture arises.

In the construction of [3], almost all integrals of motion are functions that have support
along diagonals in the string “bit space” that intersect the physical region defined by the
topological charge. Asymptotically, each of these integrals reduces to either a momentum pi
or a coordinate difference qi−qi+1 between only left- or only right-movers. To construct free
particle variables we call these integrals Pi and Qi −Qi+1 respectively. Since the particles
in the zigzag model have definite asymptotic ordering, Qi − Qi+1 integrals are all of a
definite sign in the topological sector in which they are defined. The same is true for the Pi
integrals whose sign determines whether a particle is a left- or right-mover asymptotically.
Therefore we arrive at NL free left-movers and NR free right-movers that have definite
orderings amongst themselves. In total we have NR + NL integrals Pi, NL − 1 integrals
QLi −QLi+1, and NR − 1 integrals QRi −QRi+1. To get canonical pairs (Pi, Qi), we need to
supplement this set with variables QL −QR and QL +QR.

The “clock” variable, H̃, in this picture is schematically a coordinate like QL − QR
that increases linearly in time as one would expect for free particles. As defined, however, it
is mixed with some other integrals which we’ll need to subtract to obtain canonical Poisson
brackets. This was also the case in the two-particle solution discussed in section 3.2, as is
clear by subtracting the two definitions in (3.10)

Q1 −Q2 = H̃ − 1
2(P2 + P1) . (5.1)

The recipe for QR −QL in the N particle sector will then just be a generalization of (5.1).
If we choose to label the free particles such QR1 < . . . < QRNR and QL1 < . . . < QLNL , then
analogously to (5.1) we define

QRNR −Q
L
NL
≡ H̃ − 1

2P . (5.2)

Then, as in the two particle case, we can use the fact that QLi and QRj transform with
opposite signs under the action of boosts to define the individual positions

QLNL ≡ −
1
2
(
QRNR −Q

L
NL

+
{
J,QRNR −Q

L
NL

})
(5.3)

QRNR ≡
1
2
(
QRNR −Q

L
NL
−
{
J,QRNR −Q

L
NL

})
. (5.4)

In terms of the last integral of motion P̃ = {H̃, J} defined in [3], we have

QRNR +QLNL = P̃ + 1
2H. (5.5)

All together we have 2(NR + NL) − 1 integrals of motion, as this system is classically
maximally superintegrable. Since the Poisson brackets of integrals again give integrals,
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we may calculate all Poisson brackets in the asymptotic region and extrapolate to the
whole topological sector of phase space. In fact, this trick also works for Poisson brackets
with QLNL and QRNR since their Poisson brackets with H are constant. Given the explicit
construction of [3], we know the asymptotic form of these integrals and we find the canonical
brackets one would expect from our suggestive naming scheme{

QRi , P
R
j

}
= δij (5.6){

QLi , P
L
j

}
= δij (5.7)

with all other brackets being zero. As in a two particle case we find that the expressions for
the Lorentz algebra can be rewritten into the form expected for free particles

H =
∑
i

PRi −
∑
i

PLi , P =
∑
i

PRi +
∑
i

PLi (5.8)

J =
∑
i

QRi P
R
i −

∑
i

QLi P
L
i . (5.9)

We are led to conclude that the zigzag solution for N particles can be recast as the
dynamics of N free particles with restricted momenta and positions. Each sector with
distinct topological charge T = NL −NR leads to NL strictly left movers and NR strictly
right movers. Amongst each set (being left or right-movers) there is also an ordering
Qi − Qi+1 < 0. To preserve this structure its natural to quantize the set of coordinates
(QRi , PRi ) and (QLi , PLi ), with phase space (R×R+)NR× (R×R−)NL . As in the two particle
LL/RR sectors, we enforce the constraint QR(L)

i −QR(L)
i+1 < 0 by imposing boson/fermion

statistics amongst right- (left-) movers. Just as before, this entails a non-trivial modification
of the zigzag model but is natural from the view of the parent adjoint QCD2.

The 2N − 1 integrals of motion select a unique trajectory in phase space and the final
“clock” QRNR −Q

L
NL

chooses a point on this trajectory. Clearly this map is one-to-one and as
before one may construct the inverse maps qi(Qi, Pi) and pi(Qi, Pi). With these definitions
in hand and following the procedures of the previous sections, in principle one should be
able to extract quantities such as the S-matrix. Of course this quickly becomes cumbersome
to perform in detail, so we will not pursue such an investigation here. On the other hand, it
is straightforward to follow the semi-classical argument presented at the end of section 4.1
to derive the momentum dependence of the time delay, which again reproduces the T T̄
phase shift (1.2).

6 Comments on (folded) closed strings

The zigzag model describes high energy dynamics of a long string in adjoint QCD2. It is
natural to also consider its closed string analogue, see figure 3. This is the BBHP string or
“folded” string model introduced back in [4] (see [25] for a recent overview). Restricting
to massless quarks and to a two-particle subsector the latter is given by the following
Hamiltonian

H = |p1|+ |p2|+ 2|q1 − q2| . (6.1)
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a) b)

Figure 3. A long string configuration with two partons, corresponding to the zigzag model
a), and a short closed “folded” string with two partons b).

Both models can be obtained from the action describing the two-dimensional Nambu-Goto
string interacting with massless point particles,

S = SNG + Spp1 + Spp2 ,

where

SNG = −`−2
s

∫
d2σ

√
− det ∂αXa∂βXb = −1

2`
−2
s

∫
d2σεαβεab∂αX

a∂βX
b

and
Spp =

∫
dτe(∂τXa)2 .

The difference between two sectors is entirely due to different choices of how the strings
are attached to the particles, as illustrated in figure 3. It is natural to ask whether the
analysis of the long string sector presented above teaches us anything about the closed
string sector. Probably the main lesson we learned so far is that a consistent quantization
of these models requires a careful accounting for the phase space geometry. Indeed, it was
observed back in [19, 20] that a straightforward quantization of the Hamiltonian (6.1) based
on the canonical commutation relations (2.2) is inconsistent with the Poincaré invariance of
the model and does not lead to a boost-invariant mass spectrum of closed strings. This is
very similar to the situation we encountered in section 2.

To see that this problem has a similar origin it is instructive to inspect the phase
portrait of (6.1). In figure 4 we presented an analogue of figure 2. We observe that short
closed strings describe a single topological sector. However, similarly to the zigzag model,
the Hamiltonian flow exhibits a bad discontinuity along the interval q = 0, |p| < |P |/2 in
the (q, p) plane. This strongly suggests that a consistent quantization of the closed string
sector should be performed by excluding this interval from the phase space. This leads us
to a phase space which has a topology of R2 ×R+ × S1 rather than simply R4. Of course,
the non-trivial part of the problem is the quantization of (q, p) variables, which correspond
to the R+ × S1 part of the phase space, which is topologically equivalent to a plane with
an excluded point.

Following the logic of section 3 it is natural to attempt to quantize closed string sector
using the action-angle variables. For a conventional one-dimensional system with R2 phase
space this quantization is problematic (see, e.g., [26]), because the angle variable is not
globally well-defined even at the classical level. This obstruction is not present for the
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Figure 4. The folded string Hamiltonian flow in the (p, q) plane for the total momentum
P = 1. A solid line shows the discontinuity of the flow, which should be excluded from the
phase space.

R+ × S1 phase space topology. Quantization in the action-angle variables implies that the
Bohr-Sommerfeld conditions ∮

pdq = 2πn

determine energy levels exactly as a consequence of the periodicity of the angle variable
(up to a possible constant shift related to a magnetic flux piercing the plane through the
origin). This results in the exactly linear Regge trajectory for closed strings,

H2 − P 2 = πn+ const . (6.2)

We feel that there are several reasons to be cautious about self-consistency of this
quantization. First, another plausible expectation for the closed string spectrum follows
from the ‘t Hooft equation [17] for large N QCD with fundamental quarks. It provides yet
another quantization for (6.1). Interestingly, the resulting spectrum is very close to the
linear Regge trajectory, and deviations from the exact linearity are at the percent level even
for the lowest lying states [24]. Still, these deviations are non-zero.

More generally, the only specific proposal for quantization of R+ × S1 we are aware
of is the one put forward in [27]. It is based on the SL(2, R) action on R+ × S1 and
leads indeed to the exactly linear Regge trajectory. However, it appears that the resulting
SL(2, R) representations actually correspond to the geometric quantization of the space-like
hyperbolic coadjoint SL(2, R) orbits [28], which have a topology of the disc. The coadjoint
orbit of SL(2, R) with the R+ × S1 topology is the (null) cone, and to the best of our
knowledge its quantization is unknown.

These considerations suggest that the straightforward action angle quantization of closed
strings is missing a subtle quantum effect. If so, this situation would be similar to what
happens for strings in D = 3 space-time dimensions. In that case, an integrable quantization
is consistent in the long string sector and is given by the T T̄ -deformation [29]. However,

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
7

its short string analogue, which is a light cone quantization, suffers from a global Poincaré
anomaly leading to the presence of irrational anyons in the spectrum [30]. Alternatively,
it is also possible that the system (6.1) and its mulitparticle generalizations admit several
inequivalent consistent quantizations (cf. [31]), and one of them corresponds to the linear
Regge trajectory. We leave the study of this interesting question for the future.

7 Discussion

To summarize, in this paper we described how to quantize the zigzag model consistently
with Poincaré symmetry and integrability. It appears that the principal lesson to draw
from our results is that a consistent quantization of this model requires a careful accounitng
for the non-trivial geometry of the phase space. This lead us to the quantization with
the expected properties — Poincaré invariance and a quantum phase shift which exactly
reproduces the classical time delay. We feel, however, that this study is only a first step
towards the proper understanding of the quantum zigzag model. Indeed, the integrable
structure of the classical zigzag model allows for a very elegant and suggestive formulation
in terms of the discrete geometry of the “classical bit space” [3]. This gives rise to a hope
that a comparably elegant description of the quantum zigzag model should be possible. We
don’t think this was achieved in the current work. Apart from purely aesthetic reasons,
there is also a practical motivation to look for an improved description of the quantum
zigzag model. Namely, the original motivation for our study was to use this model as a basis
for high energy expansion on the worldsheet of confining strings in two-dimensional adjoint
QCD. However, this goal looks quite hard to achieve using the formalism presented here.

A very interesting property of the zigzag model is that it leads to the shock wave phase
shift (1.2), which also describes massless T T̄ deformed theories. This phase shift exhibits
an essential singularity at s = ∞, signalling the absence of local off-shell observables [9].
However, it looks likely that the physics of the zigzag model is also somewhat different.
One indication comes from the fact that the full S-matrix which we obtained in the zigzag
model (4.27) contains an additional constant −3π/4 phase shift. This phase shift is well
familiar from the semiclassical analysis of the ‘t Hooft equation [23, 24] and does not have
an analogue in the T T̄ case. Furthermore, even though the two models lead to identical time
delays, the underlying physical mechanism is quite different. The T T̄ time delay may be
understood as coming from the fact that the proper length of the perturbed string worldsheet
stretches proportionaly to the excitation energy [9]. As a result the T T̄ scattering always
corresponds to the total transmission with time delays caused by the above stretching. On
the other hand, in the zigzag case the time delay is caused by a zigzag string configuration
resulting in total reflection. This is incompatible with integrability for particles of different
masses, unlike for the T T̄ deformation which exists for arbitrary masses of colliding particles.
It will be interesting to understand better the relation between the two models (see [32] for
similar ideas). We hope to address these and other related questions in the future.
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A Numerics for the naive phase shift

The naive quantization results in the Schrödinger equation (2.8) of the hypersingular form.
Solving it numerically directly in the position space looks somewhat problematic due to a
singularity present in the integral kernel. However, a very efficient way to deal with this
kernel is to make use of the Fourier transform. Namely we start with a spatial grid of Np

points in a finite spatial box q ∈ (−L,L). We evaluate the integral term of (2.8) by first
performing the (Fast) Fourier transform, then by multiplying the result by |p| and finally
by performing the inverse Fourier transform. The potential term is evaluated directly in the
position space. Then one finds the eigensystem of the resulting discretized Hamiltonian. The
phase shift is found by evaluating the numerical derivative of the resulting eigenfunctions
deep in the free region q < 0,

δ(p) = 2
(
i tan−1

(1
p

∂qψ

ψ

)
− pq

)
+ const .

The phase shift obtained by implementing this procedure in Mathematica with L = 50 and
Np = 4000 is presented in figure 1.

As a cross-check we also determined the phase shift by directly time evolving a narrow
initial wave packet using the time-dependent Schrödinger equation (2.8) (again evaluating the
kernel using the Fourier transform). This method is less accurate and harder to implement
(although, it works better for the equation (2.8) than for a conventional Schrödinger equation,
because wave packets keep their shape constant in the free region for (2.8)). Nevertheless, we
obtained the agreement between these two methods, which is good enough to be confident
that the deviation of the phase shift shown in figure 1 from the shock wave one is real
and trustworthy.

B Solving the scattering equation in the infinite tension limit

In the infinite tension limit, the eigenvalue problem for the q̂ operator reduces to solving
the following equation

qψ(H,P ) = 2
π

∫ ∞
|P |

dH1ψ(H1, P ) P
(H1 −H)2 . (B.1)

This equation has appeared before in the scaling limit of the ‘t Hooft equation with zero
renormalized quark mass [23, 24], and more recently in studies of fractional laplacians in
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bounded domains [33, 34]. The solution to this equation is most transparently presented in
Mellin space, via the transform

φ(λ) = [Mψ](λ) =
∫ ∞

0
dKKλ−1ψ(K) , (B.2)

where K ≡ H − |P | and we suppressed the dependence on P . Our eigenvalue problem
reduces to the difference equation

qφq(λ) = −2(λ− 1) cot(πλ)φq(λ− 1) , (B.3)

with q̂φq(λ) = qφq(λ). Solutions to this equation are straightforward to generate with the
double-sine function S2(λ; b) in hand. In the notation of [33], it is defined by the relations

S2(λ+ 1; b) = S2(λ; b)
2 sin πλ/b, S2(λ+ b; b) = S2(λ; b)

2 sin πλ , (B.4)

see [35] for further comments, we set b = 1 and suppress it in what follows. Solutions to
eq. (B.3) are of the form

φq (λ) =
(−2
q

)λ
P (λ) Γ(λ)S2(λ)

S2(λ+ 1/2) , (B.5)

where P (λ) = P (λ+1) is an arbitrary periodic function. Note that φ(λ) is only exponentially
bounded for q < 0, therefore the spectrum of q̂ is R−. Requiring that φ(λ) is bounded as
Im(λ)→∞ and analytic in 0 < Re(λ) < 2 restricts P (λ) = 1. The asymptotic behaviour
of the double-sine functions is given by [33]

S2(λ) v

e
iπ
2 (λ2−2λ) Im (λ)→∞

e−
iπ
2 (λ2−2λ) Im (λ)→ −∞

. (B.6)

Along with the well-known asymptotics of the Gamma function, a saddle-point analysis yields

ψq(K) ≡ 1
2πi

∫
C
dλK−λφq(λ) −−−−−→

qK→∞
eiqK/2e3πi/8 + e−iqK/2e−3πi/8 , (B.7)

as quoted in the main text. An explicit expression for the remainder r(qK) ≡ sin(qK/2 +
π/8) − ψq(K) appears in [34]. It is straightforward to formulate the interacting (ls 6= 0)
COM-frame eigenvalue problem in Mellin space as well

qφq(λ) = −2(λ− 1) cot(πλ)φq(λ− 1) + 1
2αφq(λ+ 1) . (B.8)

Despite some effort, we have not been able to solve this equation.

C pc commutation relations

Now we would like to show that [q̂, p̂c] = i if we start with [Q̂, K̂] = i. For convenience we
introduce the following two operators,

ε̃(Q̂)ψ(K) ≡ −i
π
√
K
−
∫ ∞

0
dK ′
√
K ′

ψ(K ′)
(K ′ −K) (C.1)
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and
ε̄(Q̂)ψ(K) ≡ −i

√
K

π
−
∫ ∞

0
dK ′

1√
K ′

ψ(K ′)
(K ′ −K) (C.2)

which are conjugate to one another. Furthermore, these are both inverses to the well known
Hilbert transform

ε(Q̂)ψ(K) ≡ −i
π
−
∫ ∞

0
dK ′

ψ(K ′)
(K ′ −K) (C.3)

which is self-adjoint and bounded. Unlike on the real line, where its eigenvalues are the points
±1, on the half-line the spectrum of the Hilbert transform is the continuum σ ∈ [−1, 1] [36].
Indeed for −1 < µ < 0 we have

ε(Q̂)Kµ = i cot(πµ)Kµ (C.4)

and its generalized eigenfunctions are K−1/2+ir with σ = tanh(πr). It’s inverse is clearly
σ−1, but this demands an iε procedure to avoid the pole at r = 0. The two signs for this iε
give rise to the two operators ε̄ and ε̃, where we suppress Q̂ in what follows. In analogy
with the propagators of field theory, they give a basis for generic Green’s functions. From
this discussion it is clear that

εε̃ = ε̃ε = 1 = εε̄ = ε̄ε (C.5)

With this compact notation, we have p̂c = −Kε̃ = −ε̄K and q̂ = −i∂Kε, and the commuta-
tor is

[q̂, p̂c] = i[∂Kε,Kε̃] = i∂KεKε̃− iKε̃∂Kε = i∂Kεε̄K − iKε̃ε∂K (C.6)
= i∂KK − iK∂K = i . (C.7)

When integrating by part in the second term in (C.6) we generate a boundary term

i∂Kεψ = 1
π
−
∫ ∞

0
dK ′∂K

1
(K ′ −K)ψ(K ′) = 1

π
−
∫ ∞

0
dK ′

∂K′ψ(K ′)
(K ′ −K) + ψ(0)

πK
(C.8)

which is subsequently annihilated by ε̃ as from above we have εK−1/2 = 0 = ε̃K−1.

Open Access. This article is distributed under the terms of the Creative Commons
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