HIGH ORDER UNCONDITIONALLY ENERGY STABLE RKDG SCHEMES
FOR THE SWIFT-HOHENBERG EQUATION

HAILIANG LIUT AND PEIMENG YIN#*

ABSTRACT. We propose unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin
(DG) schemes for solving a class of fourth order gradient flows including the Swift-Hohenberg
equation. Our algorithm is geared toward arbitrarily high order approximations in both space and
time, while energy dissipation remains preserved for arbitrary time steps and spatial meshes. The
method integrates a penalty free DG method for spatial discretization with an multi-stage alge-
braically stable RK method for temporal discretization by the energy quadratiztion (EQ) strategy.
The resulting fully discrete DG method is proven to be unconditionally energy stable. By numerical
tests on several benchmark problems we demonstrate the high order accuracy, energy stability, and

simplicity of the proposed algorithm.

1. INTRODUCTION

In this paper, we are concerned with arbitrarily high order numerical approximations to a class
of fourth order gradient follows,

uy = —L*u — @' (u), 1 €Q, t >0, (1.1)

where £ = — (A + a) is a second-order operator with a physical parameter a and ® is a nonlinear
function bounded from below. The model equation (1.1) governs the evolution of a scalar time-
dependent unknown u = u(z,t) in a convex domain € C R? and it describes important physical
processes in nature. Typical examples of (1.1) include the Swift-Hohenberg equation [43] and the
extended Fisher-Kolmogorov equation [10, 38].

We consider boundary conditions of form

(i) w is periodic; or (ii) Ohu = OabAu =0, x € 09, (1.2)
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where n stands for the unit outward normal to the boundary 0€2. With such boundary conditions,
equation (1.1) indeed features the energy dissipation property:

d 2
_ = — < .
dt8<u) /Q |ug|*dx <0, (1.3)
where the free energy
1
Eu) = / 5 (Cu)? + D(u)ds. (1.4)
Q

The model equation is nonlinear, its analytical solution is intractable. Hence designing accurate,
efficient, and energy stable algorithms to solve it becomes essential. This energy dissipation law
as a fundamental property of (1.1) has been explored in high order numerical approximations
[15, 29, 30]. It was shown to be crucial to eliminate numerical results that are not physical.
In this paper, we construct, analyze, and numerically validate unconditionally energy stable and
arbitrarily high order schemes to solve the above model problem, for which we use discontinuous
Galerkin (DG) methods for spatial discretization, and high order Runge-Kutta (RK) methods for
time discretization.

In the literature, there has been rapid development of different methods for simulating gradient
flow models including (1.1), see e.g., [8, 9, 16, 24, 40, 12, 47, 48, 41, 51, 54, 44]. They vary either in
the spatial discretization or the time discretization, while the latter typically emphasizes preserving
the energy dissipation property with no or mild time step restrictions. Let us briefly discuss the
existing works closely related to what we do here.

DG spatial discretizaiton. It is known that for equations containing higher order spatial
derivatives, DG discretization entails subtle difficulties in defining numerical fluxes. Several ap-
proaches have been developed to deal with the difficulties, including the local DG (LDG) methods
[50, 11, 45], the mixed symmetric interior penalty (SIPG) methods [13, 14, 46|, the direct DG
methods (DDG) [26, 27, 25], and the ultra-weak DG [7]. To avoid certain drawbacks of these
methods, a penalty free DG method was introduced in [28], where the symmetric structure of
the model (1.1) is essentially used. This method still inherits the advantages of the usual DG
methods,[23, 20, 39, 42], its distinct feature lies in numerical fluxes without using any interior
penalty. This is the spatial discretization we shall follow in this work.

EQ reformulation and time discretization. To keep the energy stability for gradient flow
models, several time discretization techniques are available in the literature, including the convex
splitting [12, 47], and the stabilization approach [48, 41]. The former leads to nonlinear schemes,
and the later often imposes restrictions on nonlinear terms in the model. The energy quadratization
(EQ) approach introduced in [51, 54] turned to be more general in the sense that it could be applied
to a class of gradient flow models. Based on the idea of EQ, the scalar auxiliary variable (SAV)
approach was introduced later in [44], where linear systems only with constant coefficients need to
be solved. Several extensions of EQ and SAV have been further explored in [6, 21, 32, 49]. Earlier
EQ based schemes are mostly up to 2nd order accurate in time, until recent works [18, 19], where
the EQ formulation is combined with the Runge-Kutta methods to achieve high order in time
schemes. Note that their schemes are fully nonlinear so that the solution existence and uniqueness

are not guaranteed for large time steps. This issue is further addressed in [17] in which the obtained
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schemes are unconditionally energy stable and linear. However, existing EQ based schemes such
as [b1, 54, 17, 18, 19] use mainly finite-difference or spectral methods for spatial discretization.
New difficulties arise when coupling EQ with the DG discretization, which is the main focus of
this work.

Integration of DG with EQ. Integration of EQ formulation with DG for solving (1.1) began
with [29], where up to 2nd order (in time) IEQ-DG schemes were introduced. These schemes are
shown to be unconditionally energy stable. A key point for the success in the scheme formulation
is that the auxiliary energy variable is updated in pointwise manner, and then projected back into
the DG space. This strategy of constructing the IEQ-DG schemes was further extended to solve
the Cahn-Hilliard equation [31], where the spatial discretization is based on the DDG method
26, 27]. However, all these EQ based DG schemes are no more than second order in time.

1.1. Present investigation. We begin with a semi-discrete DG scheme of from (2.4), which is an
ODE system coupled with an algebraic relation, and the energy dissipation law is well preserved at
this semi-discrete level. The results in [29] show that 2nd order (in time) DG schemes can be made
unconditionally energy stable. One interesting question about this semi-DG formulation remains
unanswered by previous studies: can we identify even higher order time discretization that is still
unconditionally energy stable?

In order to answer this question, we augment the DG formulation to a ‘linearized” ODE system
by introducing an auxiliary function, which is not necessarily in the DG space. We further apply
a multi-stage RK method for temporal discretization. Through a careful analysis we are able to
establish that the resulting fully discrete RKDG method is unconditionally energy stable if we
adopt an algebraically stable RK time discretizaiton. Such algebraically stable RK class has been
previously explored for energy stable time-discretization of some gradient flow models, see, e.g.,
[1, 17, 18, 19].

We would like to point out that the special form of the underlying semi-discrete DG formulation
requires new techniques in both the scheme construction and the proof of the energy stability. For
instance, in order to ensure the explicit update of the EQ auxiliary variable, a spatial projection
is essentially used in each stage to project it back into the DG space. This helps to reduce the
computational cost while fulfilling the explicit update of the auxiliary variable in DG space. In
addition, the semi-discrete DG scheme in the mixed formulation involves an intermediate function
g = — (A + a)u, which plays an essential role for avoiding the use of any penalty parameter on
interior cell boundaries [28]. In the proof of the energy dissipation property, several novel techniques
are designed to handle the underlying DG formulation, for which u and ¢ are independently
approximated in DG space. To the best of our knowledge, the RKDG method presented here
provides the first unconditionally energy stable schemes of arbitrarily high order for (1.1) within
the DG framework.

1.2. Our contribution. In this paper, we propose new Runge-Kutta DG schemes to solve (1.1),
which at their core integrate a penalty free DG discretization with an algebraically stable RK time

discretizaiton. The following consists of our main contributions.
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e We prove that the RKDG method features a discrete energy dissipation law for any time
steps, hence called unconditionally energy stable.

e We conduct experiments on benchmark examples to assess the performance of the proposed
method. First, we present numerical results to show the high order of spatial and temporal
accuracy of the RKDG method, and the energy dissipating property of numerical solutions.
Second, we conduct experiments on some two-dimensional pattern formation problems, all

of which demonstrate the good performance of the RKDG algorithm.

The common feature of gradient flow models is that the dynamics is driven by minimizing a free
energy. There are other gradient flows such as the classical Allen-Cahn equation [2] and Cahn-
Hilliard equaiton [5]. Our method can be readily adapted to the Allen-Cahn equation. For the
Cahn-Hilliard equaiton, instead of (2.4), the semi-discrete DG formulation introduced in [31] may
be used as a basis for developing a similar high order RKDG method.

1.3. Organization. In Section 2, we formulate a unified semi-discrete DG method for the gradient
flow (1.1) subject to two different boundary conditions. In Section 3, we present RKDG schemes,
and establish the energy dissipation law at the discrete level. We also present an RKDG algorithm
following a prediction-correction procedure. In Section 4, we verify the good performance of the
RKDG algorithm using several benchmark numerical examples. Finally some concluding remarks

are given in Section 5.

2. SPATIAL DG DISCRETIZATION

We derive mathematical formulation for our method. We begin with rewriting (1.1) as a mixed

form

q= Lu.

{ Uy = _‘Cq - (P/(u)’ (21>

Such reformulation is not unique, the symmetric feature of (2.1) is essential for our DG method
without the use of any interior penalty [28]. Let us recall some conventions of the DG discretization
introduced in [28]. Let the domain 2 be a union of shape regular meshes 7, = { K}, with the mesh
size hy = diam{K} and h = maxy hr. We denote the set of the interior interfaces by T, the set
of all boundary faces by I'?, and the discontinuous Galerkin finite element space by

VhI{UELQ(Q) : UIKEP’“(K), VKGIEL},

where P¥(K') denotes the set of polynomials of degree no more than k on element K. If the normal
vector on the element interface e € dK; N 0K is oriented from K; to K, then the average {-}
and the jump [-] operator are defined by

1
{U} = §<v|3K1 + U|3K2)7 [U] = U|8K2 - U|8K1’

for any function v € Vj,, where v|gg, (i = 1,2) is the trace of v on e evaluated from element K.
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The penalty free DG discretization of (2.1) on each element, following [28], is of the form

/ wnbdr = — / Van - Véde + / Dvand + (an — @)0vbds + / (ag — @' (up)) ddz,  (2.20)
K K oK

K
/ qndx —/ Vuy, - Vpdo — / &,/Ehw + (up, — up)0ypds — / auppdr, (2.2b)
K K 0K K

for uy, qn € V, with test functions ¢, ¢ € V}. Here, v is the outward normal direction to 0K for
each K. On cell interfaces e € 9K (T, central numerical fluxes

Boan = {0uan}, G = {an}, Oun = {Oyun}, Wy = {un} (2.3)

are adopted.
Summation of (2.2) over all elements K € 7T}, leads to a unified DG formulation, which is to find
(un(-,t),qn(-,t)) € Vi, x V}, such that

(une, @) = —=G(qn, ¢) — (2 (un), 9), (2.4a)
(th ¢> - G(U}“ ¢)7 (24b>
for all ¢, ¥ € V},. The precise form of G(-,-) depending on the types of boundary conditions is

given as follows:

G(w,v) Z/ (Vw - Vv — awv) dx—l—Z/ {O,w}v] + [w]{d,v})ds

KeTh e€l® (2.5)
+ 5 /I‘a ({ayw}[v] + [w]{auv}) dS,

where § = 1 for (i) of (1.2) and # = 0 for (ii) of (1.2). Note that for periodic case (i) the left
boundary and the right boundary are considered as same, for which we use the factor 1/2 to
avoid recounting. The initial data for uy, is taken as the piecewise L? projection, denoted by
up(x,0) = HMug(x).

The remarkable property of the above DG scheme is that the discrete energy of form

) = 3 lanll> + / B(up)dz (2.6)

admits a discrete dissipation law [28]:

d
%5 uh,qh / |uht]2dx < 0. (27)

3. TIME DISCRETIZATION

This section is devoted to arbitrarily higher order time discretization of the DG formulation
(2.4). First, we choose Cj so that ®(w) + Cy > 0, Vw € R, and introduce

P'(w)

(3.1)
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The TEQ reformulation of (2.4) requires to find (up(-,t), qn(+,t)) € Vi x V}, and U such that

(unt, @) = — G(¢, qn) — (H(up)U, $) (3.2a)
(qn, ) =G(un, ¥), (3.2b)
U, :%H(uh)uht, (3.2¢)

for all ¢,v € V},. The initial data for the above scheme is chosen as

uh(x,O) = Huo(x), U(:L‘,O) = \/@(u()(x)) + Co,

where II denotes the piecewise L? projection into V},. Note that U ¢ V,.
There are two steps involved in the time discretization of (3.2). First, we utilize the numerical

solutions of wy, for ¢ < ¢, to obtain a high order approximation uj, and replace the semi-discrete
DG scheme (3.2) by

(une, @) = — G(¢, qn) — (H(up)U, ¢), (3.3a)
(qn, V) =G (un, ), (3.3b)
Ut :%H(UZ)Uht- (3.3¢)

This linear scheme can be further solved in t € (¢,,t,+1] by a high order ODE solver. We should
point out that the above treatment does not destroy the energy dissipation property. Since for the
modified energy functional

1
E(gn, U) = Sllanll* + 1UI* = & (un, an) + Col€ (3-4)

still satisfies

d

L B ) = —/ Pz < 0.
dat o

Recall that for ODE of from y; = f(t,y), the general s-stage Runge-Kutta (RK) method has the
form

Y=yt Ty biki,
i=1
where

kz:f(tn‘}'CZT’yn—}—TZCLUkj)’ i::[’...’S‘

Jj=1

Here for consistency the RK coefficients satisty ¢; = ijl a;; and "7 | b; = 1. For the convenience
in applying the RK method to the semi-discrete DG schemes, we introduce the operator L; by

(Lyv, ¢) = G(v,8) Y € Vi (3.5)
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3.1. RKDG method. Applying an s-stage RK time discretization to semi-discrete scheme (3.3),
we obtain the following RKDG method. For given u}, U™ and ujy" = uj(z,t, + ¢;7), we find

(up™, gt UMY € Vi, x Vi x V,

by
UZH =up + 7 i bi&in, (3.6a)
=1
gt =Lpup ™, (3.6b)
Ut =Ur + 1 Z bils, (3.6¢)
=1
Uptt =nont, (3.6d)
where &, € Vj, and [; are determined by
(6n @) = = Glan &) — (H(j i), i=12- s (3.7a)
(Gin, V) =G (tin, ), Vo, € Vy, (3.7b)
=3 H o (3.1
and
Uip, =ujy + T i aii€in, (3.8a)
j=1
U, =Up + Ti%zj. (3.8b)
j=1

Definition 3.1. (Algebraically stable RK method [4]) A RK method is algebraically stable if the
RK coefficients satisfy stability conditions

b >0, i=1,2---,s, and M is positive semi-definite, (3.9)
where M is a symmetric matrix with elements
M;; = bia;; + bjaj; — bb;. (3.10)
Next, we show that the above RKDG scheme is unconditionally energy stable.

Theorem 3.1. The RKDG method with its RK coefficients satisfying the stability condition (3.9)

is uniquely solvable for any 7 > 0 and unconditionally energy stable in the sense that
Bt < E} —szz'HfihHQa (3.11)
i=1

where the energy

n n n 1 n n
Ejt = E(gi, Uy) = Sl aill” + 1U3 .
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Proof. In order to prove (3.11), we use ||Uy|| < ||U]| to obtain
Eyt - Ey < (th“H2 g ") + (U™ 1% = U1

and estimate two terms on the right, respectively. First we have

(||q 2= Narll?) =g —ap,aptt) - HQ"“ arll?
=G(up™ —up, gt — qu”+1 anll®
_erG P &) — _an+1 — qr|]*.

Note that from (3.6ab), (3.7b) and (3.8a), we have

gt =Lyup™ = Lyui + 7Y biLp&n,
j=1

Gin =Lntp = Lpuy, +7 Z aij Ln&jn.
=

This gives

n+1 = Gin+T Z bthgjh — Z CLithfjh> ,
—1 j=1

which implies

Glgp™ &mn) = G(Gins Ein) + 7 b;G(Ln&n, &in) — > ai;G( thﬂu&ﬁ)) : (3.12)

J=1 J=1

Setting ¢ = —&;;, in (3.7a), we have
— & ll? =G (Gin, &) + (H(U?A*)Uu@h)
=G (Gin, &) + 2(U3, 1),

where we have used (3.7¢) in the last step. Combining (3.13) with (3.12) gives

(3.13)

Gapt &n) = —lnll* — 2(Ui, 1) + 7 (Z b;G(Ln&jn, &in) — ZaijG(thjmfih)) -
j=1

j=1
Further, using (3.6ab), we obtain

||qn+1 arlI> == (Lnup™ — Lyuy, Lyup ™ — Lyuy)

»—t[ol»—t

72 Z bibj (Ln&in, Lr&;n)

3,7=1

1 S
=57 0 bbiGEn L)

4,j=1
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For the second term we use (3.6¢) to obtain

HUn+1H2 - HUI'TLLHZ :2(Un+1 Un+1 o Un) . ||Un+1 - U}TLLHQ

2(Um TZbl ot Uy Uttt = Uy

=27 Z bi(U™ L) = 72 bibi (s, 1),
=1

ij=1

Putting together all these estimates,

1 S S
Byt — B <= or > " bibG(&in, Lnn) — 7Y bibj(Li, 1))

i,j=1 ij=1
+TZbG A 5ih)+272bi(Un+17li)
i=1
<- 2 Z bzbj(lz,l]) — szl‘|£lh|’2 + QTZbi(UTLJrI . 01‘7 lz)
=1 i=1 i=1
1 < s
72 (5 Z bibjG<Lh£jh7£ih) — Z biaijG(thjh,&h)> )
hj=1 Q=1

Subtracting (3.8b) from (3.6¢) gives

Un+1 — UZ = Tijlj — TZaijlj.
j=1 j=1
Hence
2 b(UT = Uy by) (Z bibj (i, ;) — biaij(zi,zj)> :
i=1 i,j=1 tj=1

Combining the results above, we have

s

Ertl — Br < —TZb nl* — = Z My (Lnéin, L) =70 ) Mis(li, )

i,j=1 1,j=1
< —sziHﬁihH27
i=1

where we have used (3.9).

It is left to prove the unique solvability of the fully discrete scheme, for which it suffices to prove
the linear scheme admits only a zero solution if up = 0 and U™ = 0. In fact from E} = 0, the
energy dissipation inequality above tells that

th—HHQ + HUn+1H2 + sz nghHZ + Y Z MZJ thZMthjh +7 Z Mw lul ) 0.
=1

zgl 3,0=1

This therefore ensures that

q}?—i_l_OuUn—’—l:Oa i:l,---75,
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and b&p, =0 for i =1---5,s0 up™ =757 b&p = 0. O

Remark 3.1. System (3.7) may be put as a closed linear system as
gzhv Z az] fyha ¢) + G((jiha ¢) - (H(u?};*)U}?a ¢) )

TZaijG(fjh,w) — (Gin, V) = — G(uy, ),
=1

where the first equation is obtained by plugging (3.8b) as well as (3.7¢) into (3.7a), and the second
equation is obtained by plugging (3.8a) into (3.7b).
To implement the RKDG method, we need to prepare uj, hence u; . For n =0, we take

0 0,% 0
up = Hug, wy = uy.

For n > 1, we construct a Lagrangian interpolating polynomial u; based on s + 2 points:
(tnflu U‘Zil)? (tnfl + GT, ﬁih>7 (tn7 UZ),

and set

ulyt =y (@, by, + 7).

However, two drawbacks might show up with this simple extrapolation: (i) when s is large, inter-
polating polynomials may be highly oscillatory, leading to instability or inaccuracy of the extrap-
olation from [t,,_1,t,] to (t,,t,41]; (ii) the order of accuracy of the interpolation can be lower than
the order of the RK method, putting another restriction on the overall accuracy of the resulting

scheme.

3.2. RKDG algorithm. Let U;(z,t) be the Lagrangian interpolation polynomial based on the
interpolating points

(tnfl, U}?il), (tn,1 —|—CZ‘T, Uzh) and (tn,U;;),Z = 1,2, cee 8.

Here, Uy, = IIU; is the piecewise L? projection of U; in (3.8b) from (t,_1,t,].

The RKDG algorithm goes as follows: Given u},U", uj(z,t, + ¢;7) and Uj(z,t, + 1), i =
1,2,---, s, we explore a two-step prediction-correction.

Prediction: Set @9, = u}(z,t, + ¢;7), Uy = Uj(x,t, + ¢;7), we iteratively solve

(€m+l’¢) == (~?}:+17¢) ( ( %)U$>¢) ;o m=0,1,---, (314&)
(qNZZ-Ha ¢) :G(a?}lﬁ—la w)a \V/Qb, ¢ € Vh» (314b>
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and

U =y 4 Z ai &, (3.15a)

j=1

1

i =5H (@, e, (3.15b)
Ut =Uy + 7 agllt (3.15¢)

j=1
Ut =gt (3.15d)

We stop the iteration and set uj;" = ul;, where L > 0 is either a priori given integer, or
L > 1 such that max; ||@5 — @5t < Tol.
Correction: With the predicted u;", we apply RKDG to update the numerical solution,
and also set
Uy, = 11U,

for the update in the next time step.

Remark 3.2. The energy (1.4) when discretized in spatial variable by the DG method becomes the
energy (2.6). The semi-discrete DG scheme (2.4) satisfies a discrete energy dissipation law. The
closeness of these versions of energy is expected due to the high order of accuracy of the DG scheme.
Such dissipation law still holds true at the fully discrete level by the IEQ time discretization, yet
the modified energy (3.4) can deviate from (2.6) due to the use of auxiliary variable U. However,
with an appropriate number of iterations (L) in the prediction step, they can be very close. A
numerical example (Example 4.4) is given to demonstrate how the prediction step helps to reduce
the difference of the two energy expressions. This energy deviation issue has also been recently
addressed in [52, 53] using relaxation techniques.

4. NUMERICAL RESULTS

In this section, we numerically test the orders of convergence of the proposed RKDG schemes.
Further, we apply the schemes to the 2D Swift-Hohenberg equation in order to recover some known
patterns, while we also verify the unconditional energy stability at the same time. Before going

further two remarks are in order:

Remark 4.1. (The choice of C) To ensure the energy stability it suffices to take Cy > — inf ®(u).
We observe that a larger Cy can help to reduce the spatial projection error when associated with
the DG discretization. For example, let I1U; be the piecewise L? projection of Uy in V}, based on

P! polynomials, then the projection error is known as
where C' is independent of A and Uj. Note that

2
P’ (uy) 2
Uol 1) = E / ————] |Vul|dz,
H(Q) = Ji /(I)(Uo)—l-CQ
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from which we see that a larger Cy will reduce the total error.

Remark 4.2. (The choice of the RK method) A variety of algebraically stable RK methods have
been introduced in the literature, see, e.g., [4]. Here we recall three methods in the form of the
Butcher tableau. Qin and Zhang’s two-stage, second order diagonally implicit RK method [37]

1

c| A 4
T % (4.2)

2

and the two-stage, fourth order Gauss-Legendre method [22]:

1
4 0 0
_ /3 _
o= + 1+ R M_[ ] (4.4)
|3 !

These RK methods will be adopted in our numerical experiments.

The experimental orders of convergence (EOC) at 7' = n7 in terms of h and 7 are determined

EOC = log, (eih ) , EOC =log, (:T};) ,
h/2 h

where e}l represents the error between the numerical solution uf(z,y) and the exact solution

respectively by

u(z,y,t"), and e2" corresponds to the numerical solution with 7/2 as the time step.
The Swift-Hohenberg equation is a special case of model equation (1.1) with ¢ = 1 and

€ g u
D(u) = ——u? — 2o 4+ — 4.
(u) U~ Ju + (4.5)
that is,
up = —A%u — 2Au + (€ — )u + gu® — v’ (4.6)

Here physical parameters are g > 0 and € € R, which together with the size of the domain play
an important role in pattern selection; see, e.g., [3, 35, 33]. In our numerical tests, we focus on
(4.5) with ¢ > 0 and ¢ > 0. This function has double wells with two local minimal values at

uy = VI VI Guch that ®'(uy) =0, and

2

O(u) > min{P(uy)} = gggi (—1—12 (gv(g® + 4e) + e(g* + 36))) = —b,

so it suffices to choose the method parameter Cy > b. In all numerical examples b < 1, together

with the discussion in Remark 4.1, we will take Cy = 10® for all examples.
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Example 4.1. (Spatial accuracy test) Consider the Swift-Hohenberg equation (4.6) with an added

source of form
f(z,y,t) = —ev — gv® +0°, v:=e V*sin(x/2)sin(y/2),

subject to initial data

up(z,y) = sin(x/2) sin(y/2). (4.7)
This problem has an explicit solution
u(z,y,t) = e *sin(z/2) sin(y/2). (4.8)

To be specific, we take e = 0.025, g = 0, and domain Q = [—27,27]* with periodic boundary
conditions. We shall test the RKDG algorithm based on the RK method with Butcher tableau

(4.4) and P* polynomials. Note that due to the source term, we need to add

(f(?tn + bz’T)u ¢)>

to the right hand side of both (3.7a) and (3.14a). In prediction step, we take L = 10 and tolerance
Tol = 107'°. This example is used to test the spatial accuracy, using polynomials of degree k with
k=1, 2, 3 on 2D rectangular meshes. Both errors and orders of convergence at 7' = 0.01 are

reported in Table 1. These results confirm the (k + 1)th orders of accuracy in L?, L™ norms.

TABLE 1. L% L™ errors and EOC at T' = 0.01 with mesh N x N.

N=8 N=16 N=32 N=64
M7 error error order error order error order
13 |u — wpl| g2 |3.73985e-01|9.73764e-02| 1.94 |2.39651e-02| 2.02 |5.95959¢-03| 2.01
||u — up| L |1.38441e-01|3.83905e-02| 1.85 [9.61382e-03| 2.00 |2.40153e-03| 2.00
9104 |l — upl| 2 |7.10034e-02]1.50739e-02| 2.24 (2.02727e-03| 2.89 |2.58614e-04| 2.97
||lu — upl| L= [2.41033e-02|3.22536e-03| 2.90 [4.40302e-04| 2.87 |5.63426e-05| 2.97
3]96.5 |u — upl|z2 |1.20130e-02{1.13186e-03| 3.41 |7.72408e-05| 3.87 {4.94306e-06| 3.97
||u — up|| L |3.85682¢-03|3.68735e-04| 3.39 |2.43500e-05| 3.92 |1.53904e-06| 3.98

Example 4.2. (Temporal accuracy test) Consider the Swift-Hohenberg equation (4.6) with an

added source of form

f(:C,y,t) = —&U — gUQ +?)3,

subject to initial data

up(z,y) = sin(x/4) sin(y/4).

Its exact solution is given by

We want to test the temporal accuracy of the RKDG algorithm, for which we take ¢ = 0.025, g = 0,
and domain Q = [—4m, 47]? with periodic boundary conditions. We apply the two-stage RKDG

u(x,y,t) = e % sin(x/4) sin(y/4).

v = e % gin(z/4) sin(y/4),
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algorithm based on second, third and fourth order RK methods with Butcher tableau (4.2)-(4.4)
and P3 polynomials. Similar to Example 4.1, we also need to add

(f(7 "+ bi7_>a Qb),

to the right hand side of both (3.7a) and (3.14a). We take time steps 7 = 27" for 2 < m < 5 and
mesh size 64 x 64. In the prediction step, we choose the tolerance Tol = 107! and the value of L
depends on the specific RK methods. The L2, L> errors and orders of convergence at T = 1.5 are
shown in Table 2, and these results confirm that the schemes as tested can achieve the optimal

orders of convergence in time.

TABLE 2. L? L™ errors and EOC at T = 1.5 with time step 7.

rRK |1 T=2"2 T=273 =21 T=27°
error error order error order error order
(4.2) |u — upl| L2 |5.84575e-02{1.29975e-02| 2.17 |3.21365e-03| 2.02 |8.05270e-04 | 2.00
lu — upl| L [5.51717e-03|1.13568e-03| 2.28 |2.80093e-04| 2.02 |7.04859¢-05| 1.99
(4.3) |u — wpl|p2 |6.49591e-03|7.15397e-04| 3.18 |8.88739¢-05| 3.01 [9.69107e-06| 3.20
||u — up|| Lo | 7.59053e-04[1.09547e-04| 2.79 |1.37766e-05| 2.99 |1.46945e-06| 3.23
(4.4) |l — upl| 2 |2.10020e-03]1.38306e-04 | 3.92 |7.30941e-06| 4.24 —— ——
|| — up|| L |3.43273e-04|2.20772e-05| 3.96 {1.42833e-06| 3.95 —— ——

Example 4.3. (Rolls and Hexagons) In this example, we simulate the formation and evolution of
patterns of the the Swift-Hohenberg equation (4.6), which arises in the Rayleigh-Bénard convection.
Following [36, 29], we run the simulation from ¢ = 0 to ¢ = 198 on a rectangular domain Q =
[0,100]2, subject to random initial data and periodic boundary conditions. Model parameters €, g
will be specified below for different cases.

We apply the RKDG algorithm based on the fourth order RK method with Butcher tableau
(4.4) and P? polynomials using mesh 128 x 128. In prediction step, we take L = 3 and tolerance
Tol = 107°. This example is used to test the spatial accuracy, using polynomials of degree k with
k=1, 2, 3 on 2D rectangular meshes. We take time step 7 = 0.1, which is much larger than that
used in [36, 29]. In the following two test cases, we output E(g}, Uy') — Co|Q2| instead of E(q), U})
to better observe the evolution of the original free energy &£(u).

Test case 1. (Rolls) For parameters ¢ = 0.3, g = 0, we observe the periodic rolls for different
times as shown in Figure 1. We see that the pattern evolves approaching the steady-state after
t > 60, as also evidenced by the energy evolution plot in Figure 3a.

Test case 2. (Hexagons) The numerical simulations with the parameters ¢ = 0.1, g = 1.0 reveal
vividly the formation and evolution of the hexagonal pattern as shown in Figure 2. The pattern
at t = 1.2 is similar to that of rolls as shown in Figure 1. Similar to the pattern obtained by
the IEQ-DG scheme in [29], we also observe that at a certain point before ¢ = 40, lines break up
giving way to single droplets that take hexagonal symmetry. The steady state is approaching after
t > 100.
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The evolution of the patterns for both cases is shown to satisfy the energy dissipation law in
Figure 3. With the same parameters £, g as in [29], the RKDG algorithm can generate quite
similar formation and evolution of both roll and hexagonal patterns even with a larger time step.
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Example 4.4. We still use the Example 4.3 but with focus on the evolution of the modified energy
E(qr,Up) — ColQ| in (3.4), the original energy E(u}, g) in (2.6), and their difference

when time step 7 is not small. Again, we apply the RKDG algorithm based on the fourth order RK
method with Butcher tableau (4.4) and P? polynomials using mesh 128 x 128. In the prediction
step, we take tolerance Tol = 107°, but different number of iterations L = 0,1,2. We take the
time step 7 = 0.5, which is larger than 7 = 0.1 used in Example 4.3. Below we will take the
solution with smaller 7 in Example 4.3 as a reference solution.

Test case 1. (Rolls) For L = 0, 1,2, the L* errors of the solutions with the reference solution
at different ¢ are shown in Table 3, and the pattern snapshots at ¢t = 40,120,198 are given in
Figure 4. From these results, we still observe the roll patterns even 7 is large. However, without

the prediction step, namely L = 0, the pattern has a large error; for L = 1,2, the patterns are
comparable to those obtained in Example 4.3 with Test case 1.

TABLE 3. L errors of the solutions for different L.

t=0

t=26

t =20

t =40

t =60

t =120

t =150

t =198

0.0479

0.4606

0.8883

1.0519

1.2442

1.2591

1.2636

0.0517

N | —=| O

0.0566

0.0557

0.0580

0.0876

0.0878

0.0472

0.0519

0.0551

0.0491

0.0446

0.0333

0.0289

0.0232

The energy comparison results are given in Figure 5, from which we find that 1) both the modified

energy and the original energy satisfy the energy dissipation law; 2) the difference between the

modified energy and the original energy is large for L = 0, but significantly reduced when using
an appropriate prediction step, with L =1 or L = 2.
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We have also conducted experiments on Test case 2 with Hexagons, the observation is entirely
similar, so we omit the related results.

5. CONCLUDING REMARKS

In this paper, we present a new class of arbitrarily high order, fully discrete DG schemes.
These schemes have several advantageous properties: (1) the schemes are all linear such that
they are easy to implement and computationally efficient; (2) the schemes are uniquely solvable
and unconditionally energy stable, these ensure that large time steps can be used in long time
simulations; (3) the schemes can reach arbitrarily high order of accuracy in both space and time,
so that desired accuracy of solutions can be guaranteed with flexible meshes and time steps; (4)
the schemes do not depend on the specific form of the DG operator explicitly, hence applicable to
a larger class of semi-discrete DG schemes as long as they satisfy a semi-discrete energy dissipation
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law. The special structure of the DG formulation is nicely used in the proof for energy stability.
In addition, the prediction step in the RKDG algorithm is shown to be helpful in resolving the
issue with TEQ that the auxiliary variable deviates from its original counterpart due to numerical
errors accumulated through time discretization. Several numerical examples are presented to
assess the scheme performance in terms of accuracy and energy stability. The numerical results on
two dimensional pattern formation problems indicate that the method is able to deliver expected
patterns of high accuracy with a larger time step on coarse meshes.
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