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Abstract. We propose unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin

(DG) schemes for solving a class of fourth order gradient flows including the Swift-Hohenberg

equation. Our algorithm is geared toward arbitrarily high order approximations in both space and

time, while energy dissipation remains preserved for arbitrary time steps and spatial meshes. The

method integrates a penalty free DG method for spatial discretization with an multi-stage alge-

braically stable RK method for temporal discretization by the energy quadratiztion (EQ) strategy.

The resulting fully discrete DG method is proven to be unconditionally energy stable. By numerical

tests on several benchmark problems we demonstrate the high order accuracy, energy stability, and

simplicity of the proposed algorithm.

1. Introduction

In this paper, we are concerned with arbitrarily high order numerical approximations to a class

of fourth order gradient follows,

ut = �L2
u� �0(u), x 2 ⌦, t > 0, (1.1)

where L = � (�+ a) is a second-order operator with a physical parameter a and � is a nonlinear

function bounded from below. The model equation (1.1) governs the evolution of a scalar time-

dependent unknown u = u(x, t) in a convex domain ⌦ ⇢ Rd and it describes important physical

processes in nature. Typical examples of (1.1) include the Swift-Hohenberg equation [43] and the

extended Fisher-Kolmogorov equation [10, 38].

We consider boundary conditions of form

(i) u is periodic; or (ii) @nu = @n�u = 0, x 2 @⌦, (1.2)
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where n stands for the unit outward normal to the boundary @⌦. With such boundary conditions,

equation (1.1) indeed features the energy dissipation property:

d

dt
E(u) = �

Z

⌦

|ut|2dx  0, (1.3)

where the free energy

E(u) =
Z

⌦

1

2
(Lu)2 + �(u)dx. (1.4)

The model equation is nonlinear, its analytical solution is intractable. Hence designing accurate,

e�cient, and energy stable algorithms to solve it becomes essential. This energy dissipation law

as a fundamental property of (1.1) has been explored in high order numerical approximations

[15, 29, 30]. It was shown to be crucial to eliminate numerical results that are not physical.

In this paper, we construct, analyze, and numerically validate unconditionally energy stable and

arbitrarily high order schemes to solve the above model problem, for which we use discontinuous

Galerkin (DG) methods for spatial discretization, and high order Runge-Kutta (RK) methods for

time discretization.

In the literature, there has been rapid development of di↵erent methods for simulating gradient

flow models including (1.1), see e.g., [8, 9, 16, 24, 40, 12, 47, 48, 41, 51, 54, 44]. They vary either in

the spatial discretization or the time discretization, while the latter typically emphasizes preserving

the energy dissipation property with no or mild time step restrictions. Let us briefly discuss the

existing works closely related to what we do here.

DG spatial discretizaiton. It is known that for equations containing higher order spatial

derivatives, DG discretization entails subtle di�culties in defining numerical fluxes. Several ap-

proaches have been developed to deal with the di�culties, including the local DG (LDG) methods

[50, 11, 45], the mixed symmetric interior penalty (SIPG) methods [13, 14, 46], the direct DG

methods (DDG) [26, 27, 25], and the ultra-weak DG [7]. To avoid certain drawbacks of these

methods, a penalty free DG method was introduced in [28], where the symmetric structure of

the model (1.1) is essentially used. This method still inherits the advantages of the usual DG

methods,[23, 20, 39, 42], its distinct feature lies in numerical fluxes without using any interior

penalty. This is the spatial discretization we shall follow in this work.

EQ reformulation and time discretization. To keep the energy stability for gradient flow

models, several time discretization techniques are available in the literature, including the convex

splitting [12, 47], and the stabilization approach [48, 41]. The former leads to nonlinear schemes,

and the later often imposes restrictions on nonlinear terms in the model. The energy quadratization

(EQ) approach introduced in [51, 54] turned to be more general in the sense that it could be applied

to a class of gradient flow models. Based on the idea of EQ, the scalar auxiliary variable (SAV)

approach was introduced later in [44], where linear systems only with constant coe�cients need to

be solved. Several extensions of EQ and SAV have been further explored in [6, 21, 32, 49]. Earlier

EQ based schemes are mostly up to 2nd order accurate in time, until recent works [18, 19], where

the EQ formulation is combined with the Runge-Kutta methods to achieve high order in time

schemes. Note that their schemes are fully nonlinear so that the solution existence and uniqueness

are not guaranteed for large time steps. This issue is further addressed in [17] in which the obtained
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schemes are unconditionally energy stable and linear. However, existing EQ based schemes such

as [51, 54, 17, 18, 19] use mainly finite-di↵erence or spectral methods for spatial discretization.

New di�culties arise when coupling EQ with the DG discretization, which is the main focus of

this work.

Integration of DG with EQ. Integration of EQ formulation with DG for solving (1.1) began

with [29], where up to 2nd order (in time) IEQ-DG schemes were introduced. These schemes are

shown to be unconditionally energy stable. A key point for the success in the scheme formulation

is that the auxiliary energy variable is updated in pointwise manner, and then projected back into

the DG space. This strategy of constructing the IEQ-DG schemes was further extended to solve

the Cahn-Hilliard equation [31], where the spatial discretization is based on the DDG method

[26, 27]. However, all these EQ based DG schemes are no more than second order in time.

1.1. Present investigation. We begin with a semi-discrete DG scheme of from (2.4), which is an

ODE system coupled with an algebraic relation, and the energy dissipation law is well preserved at

this semi-discrete level. The results in [29] show that 2nd order (in time) DG schemes can be made

unconditionally energy stable. One interesting question about this semi-DG formulation remains

unanswered by previous studies: can we identify even higher order time discretization that is still

unconditionally energy stable?

In order to answer this question, we augment the DG formulation to a ‘linearized’ ODE system

by introducing an auxiliary function, which is not necessarily in the DG space. We further apply

a multi-stage RK method for temporal discretization. Through a careful analysis we are able to

establish that the resulting fully discrete RKDG method is unconditionally energy stable if we

adopt an algebraically stable RK time discretizaiton. Such algebraically stable RK class has been

previously explored for energy stable time-discretization of some gradient flow models, see, e.g.,

[1, 17, 18, 19].

We would like to point out that the special form of the underlying semi-discrete DG formulation

requires new techniques in both the scheme construction and the proof of the energy stability. For

instance, in order to ensure the explicit update of the EQ auxiliary variable, a spatial projection

is essentially used in each stage to project it back into the DG space. This helps to reduce the

computational cost while fulfilling the explicit update of the auxiliary variable in DG space. In

addition, the semi-discrete DG scheme in the mixed formulation involves an intermediate function

q = � (�+ a) u, which plays an essential role for avoiding the use of any penalty parameter on

interior cell boundaries [28]. In the proof of the energy dissipation property, several novel techniques

are designed to handle the underlying DG formulation, for which u and q are independently

approximated in DG space. To the best of our knowledge, the RKDG method presented here

provides the first unconditionally energy stable schemes of arbitrarily high order for (1.1) within

the DG framework.

1.2. Our contribution. In this paper, we propose new Runge-Kutta DG schemes to solve (1.1),

which at their core integrate a penalty free DG discretization with an algebraically stable RK time

discretizaiton. The following consists of our main contributions.
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• We prove that the RKDG method features a discrete energy dissipation law for any time

steps, hence called unconditionally energy stable.

• We conduct experiments on benchmark examples to assess the performance of the proposed

method. First, we present numerical results to show the high order of spatial and temporal

accuracy of the RKDG method, and the energy dissipating property of numerical solutions.

Second, we conduct experiments on some two-dimensional pattern formation problems, all

of which demonstrate the good performance of the RKDG algorithm.

The common feature of gradient flow models is that the dynamics is driven by minimizing a free

energy. There are other gradient flows such as the classical Allen-Cahn equation [2] and Cahn-

Hilliard equaiton [5]. Our method can be readily adapted to the Allen-Cahn equation. For the

Cahn-Hilliard equaiton, instead of (2.4), the semi-discrete DG formulation introduced in [31] may

be used as a basis for developing a similar high order RKDG method.

1.3. Organization. In Section 2, we formulate a unified semi-discrete DG method for the gradient

flow (1.1) subject to two di↵erent boundary conditions. In Section 3, we present RKDG schemes,

and establish the energy dissipation law at the discrete level. We also present an RKDG algorithm

following a prediction-correction procedure. In Section 4, we verify the good performance of the

RKDG algorithm using several benchmark numerical examples. Finally some concluding remarks

are given in Section 5.

2. Spatial DG discretization

We derive mathematical formulation for our method. We begin with rewriting (1.1) as a mixed

form (
ut = �Lq � �0(u),

q = Lu.
(2.1)

Such reformulation is not unique, the symmetric feature of (2.1) is essential for our DG method

without the use of any interior penalty [28]. Let us recall some conventions of the DG discretization

introduced in [28]. Let the domain ⌦ be a union of shape regular meshes Th = {K}, with the mesh

size hK = diam{K} and h = maxK hK . We denote the set of the interior interfaces by �0, the set

of all boundary faces by �@ , and the discontinuous Galerkin finite element space by

Vh = {v 2 L
2(⌦) : v|K 2 P

k(K), 8K 2 Th},

where P k(K) denotes the set of polynomials of degree no more than k on element K. If the normal

vector on the element interface e 2 @K1 \ @K2 is oriented from K1 to K2, then the average {·}
and the jump [·] operator are defined by

{v} =
1

2
(v|@K1 + v|@K2), [v] = v|@K2 � v|@K1 ,

for any function v 2 Vh, where v|@Ki (i = 1, 2) is the trace of v on e evaluated from element Ki.
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The penalty free DG discretization of (2.1) on each element, following [28], is of the form
Z

K

uht�dx =�
Z

K

rqh ·r�dx+

Z

@K

d@⌫qh�+ (qh � bqh)@⌫�ds+
Z

K

(aqh � �0(uh))�dx, (2.2a)

Z

K

qh dx =

Z

K

ruh ·r dx�
Z

@K

d@⌫uh + (uh �cuh)@⌫ ds�
Z

K

auh dx, (2.2b)

for uh, qh 2 Vh with test functions �,  2 Vh. Here, ⌫ is the outward normal direction to @K for

each K. On cell interfaces e 2 @K
T

�0, central numerical fluxes

d@⌫qh = {@⌫qh}, bqh = {qh}, d@⌫uh = {@⌫uh}, cuh = {uh} (2.3)

are adopted.

Summation of (2.2) over all elements K 2 Th leads to a unified DG formulation, which is to find

(uh(·, t), qh(·, t)) 2 Vh ⇥ Vh such that

(uht,�) = �G(qh,�)� (�0(uh),�), (2.4a)

(qh, ) = G(uh, ), (2.4b)

for all �,  2 Vh. The precise form of G(·, ·) depending on the types of boundary conditions is

given as follows:

G(w, v) =
X

K2Th

Z

K

(rw ·rv � awv) dx+
X

e2�0

Z

e

({@⌫w}[v] + [w]{@⌫v}) ds

+
✓

2

Z

�@

({@⌫w}[v] + [w]{@⌫v}) ds,
(2.5)

where ✓ = 1 for (i) of (1.2) and ✓ = 0 for (ii) of (1.2). Note that for periodic case (i) the left

boundary and the right boundary are considered as same, for which we use the factor 1/2 to

avoid recounting. The initial data for uh is taken as the piecewise L
2 projection, denoted by

uh(x, 0) = ⇧u0(x).

The remarkable property of the above DG scheme is that the discrete energy of form

E(uh, qh) :=
1

2
kqhk2 +

Z

⌦

�(uh)dx (2.6)

admits a discrete dissipation law [28]:

d

dt
E(uh, qh) = �

Z

⌦

|uht|2dx  0. (2.7)

3. Time discretization

This section is devoted to arbitrarily higher order time discretization of the DG formulation

(2.4). First, we choose C0 so that �(w) + C0 > 0, 8w 2 R, and introduce

H(w) =
�0(w)p

�(w) + C0

. (3.1)
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The IEQ reformulation of (2.4) requires to find (uh(·, t), qh(·, t)) 2 Vh ⇥ Vh and U such that

(uht,�) =�G(�, qh)� (H(uh)U,�) , (3.2a)

(qh, ) =G(uh, ), (3.2b)

Ut =
1

2
H(uh)uht, (3.2c)

for all �, 2 Vh. The initial data for the above scheme is chosen as

uh(x, 0) = ⇧u0(x), U(x, 0) =
p
�(u0(x)) + C0,

where ⇧ denotes the piecewise L
2 projection into Vh. Note that U 62 Vh.

There are two steps involved in the time discretization of (3.2). First, we utilize the numerical

solutions of uh for t  tn to obtain a high order approximation u
⇤
h
, and replace the semi-discrete

DG scheme (3.2) by

(uht,�) =�G(�, qh)� (H(u⇤
h
)U,�) , (3.3a)

(qh, ) =G(uh, ), (3.3b)

Ut =
1

2
H(u⇤

h
)uht. (3.3c)

This linear scheme can be further solved in t 2 (tn, tn+1] by a high order ODE solver. We should

point out that the above treatment does not destroy the energy dissipation property. Since for the

modified energy functional

E(qh, U) =
1

2
kqhk2 + kUk2 = E(uh, qh) + C0|⌦| (3.4)

still satisfies

d

dt
E(qh, U) = �

Z

⌦

|uht|2dx  0.

Recall that for ODE of from yt = f(t, y), the general s-stage Runge–Kutta (RK) method has the

form

y
n+1 = y

n + ⌧

sX

i=1

biki,

where

ki = f(tn + ci⌧, y
n + ⌧

sX

j=1

aijkj), i = 1, · · · , s.

Here for consistency the RK coe�cients satisfy ci =
P

s

j=1 aij and
P

s

i=1 bi = 1. For the convenience

in applying the RK method to the semi-discrete DG schemes, we introduce the operator Lh by

(Lhv,�) = G(v,�) 8� 2 Vh. (3.5)
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3.1. RKDG method. Applying an s-stage RK time discretization to semi-discrete scheme (3.3),

we obtain the following RKDG method. For given u
n

h
, U

n and u
n,⇤
ih

= u
⇤
h
(x, tn + ci⌧), we find

(un+1
h

, q
n+1
h

, U
n+1
h

) 2 Vh ⇥ Vh ⇥ Vh

by

u
n+1
h

=u
n

h
+ ⌧

sX

i=1

bi⇠ih, (3.6a)

q
n+1
h

=Lhu
n+1
h

, (3.6b)

U
n+1 =U

n

h
+ ⌧

sX

i=1

bili, (3.6c)

U
n+1
h

=⇧Un+1
, (3.6d)

where ⇠ih 2 Vh and li are determined by

(⇠ih,�) =�G(q̃ih,�)�
⇣
H(un,⇤

ih
)Ũi,�

⌘
, i = 1, 2, · · · , s (3.7a)

(q̃ih, ) =G(ũih, ), 8�, 2 Vh, (3.7b)

li =
1

2
H(un,⇤

ih
)⇠ih, (3.7c)

and

ũih =u
n

h
+ ⌧

sX

j=1

aij⇠jh, (3.8a)

Ũi =U
n

h
+ ⌧

sX

j=1

aijlj. (3.8b)

Definition 3.1. (Algebraically stable RK method [4]) A RK method is algebraically stable if the

RK coe�cients satisfy stability conditions

bi � 0, i = 1, 2, · · · , s, and M is positive semi-definite, (3.9)

where M is a symmetric matrix with elements

Mij = biaij + bjaji � bibj. (3.10)

Next, we show that the above RKDG scheme is unconditionally energy stable.

Theorem 3.1. The RKDG method with its RK coe�cients satisfying the stability condition (3.9)

is uniquely solvable for any ⌧ > 0 and unconditionally energy stable in the sense that

E
n+1
h

 E
n

h
� ⌧

sX

i=1

bik⇠ihk2, (3.11)

where the energy

E
n

h
:= E(qn

h
, U

n

h
) =

1

2
kqn

h
k2 + kUn

h
k2.
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Proof. In order to prove (3.11), we use kUhk  ||Uk to obtain

E
n+1
h

� E
n

h
 1

2
(kqn+1

h
k2 � kqn

h
k2) + (kUn+1k2 � kUn

h
k2)

and estimate two terms on the right, respectively. First we have

1

2

�
kqn+1

h
k2 � kqn

h
k2
�
=(qn+1

h
� q

n

h
, q

n+1
h

)� 1

2
kqn+1

h
� q

n

h
k2

=G(un+1
h

� u
n

h
, q

n+1
h

)� 1

2
kqn+1

h
� q

n

h
k2

=⌧
sX

i=1

biG(qn+1
h

, ⇠ih)�
1

2
kqn+1

h
� q

n

h
k2.

Note that from (3.6ab), (3.7b) and (3.8a), we have

q
n+1
h

=Lhu
n+1
h

= Lhu
n

h
+ ⌧

sX

j=1

bjLh⇠jh,

q̃ih =Lhũih = Lhu
n

h
+ ⌧

sX

j=1

aijLh⇠jh.

This gives

q
n+1
h

= q̃ih + ⌧

 
sX

j=1

bjLh⇠jh �
sX

j=1

aijLh⇠jh

!
,

which implies

G(qn+1
h

, ⇠ih) = G(q̃ih, ⇠ih) + ⌧

 
sX

j=1

bjG(Lh⇠jh, ⇠ih)�
sX

j=1

aijG(Lh⇠jh, ⇠ih)

!
. (3.12)

Setting � = �⇠ih in (3.7a), we have

�k⇠ihk2 =G(q̃ih, ⇠ih) +
⇣
H(un,⇤

ih
)Ũi, ⇠ih

⌘

=G(q̃ih, ⇠ih) + 2(Ũi, li),
(3.13)

where we have used (3.7c) in the last step. Combining (3.13) with (3.12) gives

G(qn+1
h

, ⇠ih) = �k⇠ihk2 � 2(Ũi, li) + ⌧

 
sX

j=1

bjG(Lh⇠jh, ⇠ih)�
sX

j=1

aijG(Lh⇠jh, ⇠ih)

!
.

Further, using (3.6ab), we obtain

1

2
kqn+1

h
� q

n

h
k2 =1

2

�
Lhu

n+1
h

� Lhu
n

h
, Lhu

n+1
h

� Lhu
n

h

�

=
1

2
⌧
2

sX

i,j=1

bibj (Lh⇠ih, Lh⇠jh)

=
1

2
⌧
2

sX

i,j=1

bibjG(⇠ih, Lh⇠jh).



RKDG 9

For the second term we use (3.6c) to obtain

kUn+1k2 � kUn

h
k2 =2(Un+1

, U
n+1 � U

n

h
)� kUn+1 � U

n

h
k2

=2(Un+1
, ⌧

sX

i=1

bili)� (Un+1 � U
n

h
, U

n+1 � U
n

h
)

=2⌧
sX

i=1

bi(U
n+1

, li)� ⌧
2

sX

i,j=1

bibj(li, lj).

Putting together all these estimates,

E
n+1
h

� E
n

h
� 1

2
⌧
2

sX

i,j=1

bibjG(⇠ih, Lh⇠jh)� ⌧
2

sX

i,j=1

bibj(li, lj)

+ ⌧

sX

i=1

biG(qn+1
h

, ⇠ih) + 2⌧
sX

i=1

bi(U
n+1

, li)

� ⌧
2

sX

i,j=1

bibj(li, lj)� ⌧

sX

i=1

bik⇠ihk2 + 2⌧
sX

i=1

bi(U
n+1 � Ũi, li)

+ ⌧
2

 
1

2

sX

i,j=1

bibjG(Lh⇠jh, ⇠ih)�
sX

i,j=1

biaijG(Lh⇠jh, ⇠ih)

!
.

Subtracting (3.8b) from (3.6c) gives

U
n+1 � Ũi = ⌧

sX

j=1

bjlj � ⌧

sX

j=1

aijlj.

Hence

2⌧
sX

i=1

bi(U
n+1 � Ũi, li) = 2⌧ 2

 
sX

i,j=1

bibj(li, lj)�
sX

i,j=1

biaij(li, lj)

!
.

Combining the results above, we have

E
n+1
h

� E
n

h
 �⌧

sX

i=1

bik⇠ihk2 �
⌧
2

2

sX

i,j=1

Mij(Lh⇠ih, Lh⇠jh)� ⌧
2

sX

i,j=1

Mij(li, lj)

 �⌧
sX

i=1

bik⇠ihk2,

where we have used (3.9).

It is left to prove the unique solvability of the fully discrete scheme, for which it su�ces to prove

the linear scheme admits only a zero solution if un

h
= 0 and U

n = 0. In fact from E
n

h
= 0, the

energy dissipation inequality above tells that

1

2
kqn+1

h
k2 + kUn+1k2 + ⌧

sX

i=1

bik⇠ihk2 +
⌧
2

2

sX

i,j=1

Mij(Lh⇠ih, Lh⇠jh) + ⌧
2

sX

i,j=1

Mij(li, lj)  0.

This therefore ensures that

q
n+1
h

= 0, Un+1 = 0, i = 1, · · · , s,
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and bi⇠ih = 0 for i = 1 · · · s, so u
n+1
h

= ⌧
P

s

i=1 bi⇠ih = 0. ⇤

Remark 3.1. System (3.7) may be put as a closed linear system as

(⇠ih,�) +
⌧

2

sX

j=1

aij

�
H(un,⇤

ih
)2⇠jh,�

�
+G(q̃ih,�) =� (H(un,⇤

ih
)Un

h
,�) ,

⌧

sX

j=1

aijG(⇠jh, )� (q̃ih, ) =�G(un

h
, ),

where the first equation is obtained by plugging (3.8b) as well as (3.7c) into (3.7a), and the second

equation is obtained by plugging (3.8a) into (3.7b).

To implement the RKDG method, we need to prepare u
⇤
h
, hence u

n,⇤
ih

. For n = 0, we take

u
0
h
= ⇧u0, u

0,⇤
ih

= u
0
h
.

For n � 1, we construct a Lagrangian interpolating polynomial u⇤
h
based on s+ 2 points:

(tn�1, u
n�1
h

), (tn�1 + ci⌧, ũih), (tn, u
n

h
),

and set

u
n,⇤
ih

= u
⇤
h
(x, tn + ci⌧).

However, two drawbacks might show up with this simple extrapolation: (i) when s is large, inter-

polating polynomials may be highly oscillatory, leading to instability or inaccuracy of the extrap-

olation from [tn�1, tn] to (tn, tn+1]; (ii) the order of accuracy of the interpolation can be lower than

the order of the RK method, putting another restriction on the overall accuracy of the resulting

scheme.

3.2. RKDG algorithm. Let U
⇤
h
(x, t) be the Lagrangian interpolation polynomial based on the

interpolating points

(tn�1, U
n�1
h

), (tn�1 + ci⌧, Ũih) and (tn, U
n

h
), i = 1, 2, · · · , s.

Here, Ũih = ⇧Ũi is the piecewise L
2 projection of Ũi in (3.8b) from (tn�1, tn].

The RKDG algorithm goes as follows: Given u
n

h
, U

n, u⇤
h
(x, tn + ci⌧) and U

⇤
h
(x, tn + ci⌧), i =

1, 2, · · · , s, we explore a two-step prediction-correction.

Prediction: Set ũ0
ih
= u

⇤
h
(x, tn + ci⌧), Ũ0

ih
= U

⇤
h
(x, tn + ci⌧), we iteratively solve

�
⇠
m+1
ih

,�
�
=�G(q̃m+1

ih
,�)�

⇣
H(ũm

ih
)Ũm

ih
,�

⌘
, m = 0, 1, · · · , (3.14a)

(q̃m+1
ih

, ) =G(ũm+1
ih

, ), 8�, 2 Vh, (3.14b)
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and

ũ
m+1
ih

=u
n

h
+ ⌧

sX

j=1

aij⇠
m+1
jh

, (3.15a)

l
m+1
i

=
1

2
H(ũm+1

ih
)⇠m+1

ih
, (3.15b)

Ũ
m+1
i

=U
n

h
+ ⌧

sX

j=1

aijl
m+1
j

, (3.15c)

Ũ
m+1
ih

=⇧Ũm+1
i

. (3.15d)

We stop the iteration and set u
n,⇤
ih

= ũ
L

ih
, where L � 0 is either a priori given integer, or

L � 1 such that maxi kũL

ih
� ũ

L�1
ih

k1 < Tol.

Correction: With the predicted u
n,⇤
ih

, we apply RKDG to update the numerical solution,

and also set

Ũih = ⇧Ũi

for the update in the next time step.

Remark 3.2. The energy (1.4) when discretized in spatial variable by the DG method becomes the

energy (2.6). The semi-discrete DG scheme (2.4) satisfies a discrete energy dissipation law. The

closeness of these versions of energy is expected due to the high order of accuracy of the DG scheme.

Such dissipation law still holds true at the fully discrete level by the IEQ time discretization, yet

the modified energy (3.4) can deviate from (2.6) due to the use of auxiliary variable U . However,

with an appropriate number of iterations (L) in the prediction step, they can be very close. A

numerical example (Example 4.4) is given to demonstrate how the prediction step helps to reduce

the di↵erence of the two energy expressions. This energy deviation issue has also been recently

addressed in [52, 53] using relaxation techniques.

4. Numerical results

In this section, we numerically test the orders of convergence of the proposed RKDG schemes.

Further, we apply the schemes to the 2D Swift-Hohenberg equation in order to recover some known

patterns, while we also verify the unconditional energy stability at the same time. Before going

further two remarks are in order:

Remark 4.1. (The choice of C0) To ensure the energy stability it su�ces to take C0 > � inf �(u).

We observe that a larger C0 can help to reduce the spatial projection error when associated with

the DG discretization. For example, let ⇧U0 be the piecewise L
2 projection of U0 in Vh based on

P
1 polynomials, then the projection error is known as

kU0 � ⇧U0k = Ch|U0|H1(⌦), (4.1)

where C is independent of h and U0. Note that

|U0|2H1(⌦) =
X

K2⌦

Z

K

 
�0(u0)p

�(u0) + C0

!2

|ru0|2dx,
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from which we see that a larger C0 will reduce the total error.

Remark 4.2. (The choice of the RK method) A variety of algebraically stable RK methods have

been introduced in the literature, see, e.g., [4]. Here we recall three methods in the form of the

Butcher tableau. Qin and Zhang’s two-stage, second order diagonally implicit RK method [37]

c A

bT
=

1
4

1
4 0

3
4

1
2

1
4

1
2

1
2

, M =

"
0 0

0 0

#
, (4.2)

Crouzeix’s two-stage, third order diagonally implicit RK method [34],

c A

bT
=

1
2 +

p
3
6

1
2 +

p
3
6 0

1
2 �

p
3
6 �

p
3
3

1
2 +

p
3
6

1
2

1
2

, M =

 
1

4
+

p
3

6

!"
1 �1

�1 1

#
, (4.3)

and the two-stage, fourth order Gauss-Legendre method [22]:

c A

bT
=

1
2 �

p
3
6

1
4

1
4 �

p
3
6

1
2 +

p
3
6

1
4 +

p
3
6

1
4

1
2

1
2

, M =

"
0 0

0 0

#
. (4.4)

These RK methods will be adopted in our numerical experiments.

The experimental orders of convergence (EOC) at T = n⌧ in terms of h and ⌧ are determined

respectively by

EOC = log2

 
e
n

h

e
n

h/2

!
, EOC = log2

✓
e
n

h

e
2n
h

◆
,

where e
n

h
represents the error between the numerical solution u

n

h
(x, y) and the exact solution

u(x, y, tn), and e
2n
h

corresponds to the numerical solution with ⌧/2 as the time step.

The Swift-Hohenberg equation is a special case of model equation (1.1) with a = 1 and

�(u) = � ✏

2
u
2 � g

3
u
3 +

u
4

4
, (4.5)

that is,

ut = ��2
u� 2�u+ (✏� 1)u+ gu

2 � u
3
. (4.6)

Here physical parameters are g � 0 and ✏ 2 R, which together with the size of the domain play

an important role in pattern selection; see, e.g., [3, 35, 33]. In our numerical tests, we focus on

(4.5) with g � 0 and ✏ > 0. This function has double wells with two local minimal values at

u± =
g±
p

g2+4✏

2 such that �0(u±) = 0, and

�(u) � min{�(u±)} = min
v=u±

✓
� 1

12

�
gv(g2 + 4✏) + ✏(g2 + 3✏)

�◆
= �b,

so it su�ces to choose the method parameter C0 � b. In all numerical examples b < 1, together

with the discussion in Remark 4.1, we will take C0 = 103 for all examples.
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Example 4.1. (Spatial accuracy test) Consider the Swift-Hohenberg equation (4.6) with an added

source of form

f(x, y, t) = �"v � gv
2 + v

3
, v := e

�t/4 sin(x/2) sin(y/2),

subject to initial data

u0(x, y) = sin(x/2) sin(y/2). (4.7)

This problem has an explicit solution

u(x, y, t) = e
�t/4 sin(x/2) sin(y/2). (4.8)

To be specific, we take " = 0.025, g = 0, and domain ⌦ = [�2⇡, 2⇡]2 with periodic boundary

conditions. We shall test the RKDG algorithm based on the RK method with Butcher tableau

(4.4) and P
k polynomials. Note that due to the source term, we need to add

(f(·, tn + bi⌧),�),

to the right hand side of both (3.7a) and (3.14a). In prediction step, we take L = 10 and tolerance

Tol = 10�10. This example is used to test the spatial accuracy, using polynomials of degree k with

k = 1, 2, 3 on 2D rectangular meshes. Both errors and orders of convergence at T = 0.01 are

reported in Table 1. These results confirm the (k + 1)th orders of accuracy in L
2
, L

1 norms.

Table 1. L
2
, L

1 errors and EOC at T = 0.01 with mesh N ⇥N .

k ⌧
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
ku� uhkL2 3.73985e-01 9.73764e-02 1.94 2.39651e-02 2.02 5.95959e-03 2.01

ku� uhkL1 1.38441e-01 3.83905e-02 1.85 9.61382e-03 2.00 2.40153e-03 2.00

2 1e-4
ku� uhkL2 7.10034e-02 1.50739e-02 2.24 2.02727e-03 2.89 2.58614e-04 2.97

ku� uhkL1 2.41033e-02 3.22536e-03 2.90 4.40302e-04 2.87 5.63426e-05 2.97

3 2e-5
ku� uhkL2 1.20130e-02 1.13186e-03 3.41 7.72408e-05 3.87 4.94306e-06 3.97

ku� uhkL1 3.85682e-03 3.68735e-04 3.39 2.43500e-05 3.92 1.53904e-06 3.98

Example 4.2. (Temporal accuracy test) Consider the Swift-Hohenberg equation (4.6) with an

added source of form

f(x, y, t) = �"v � gv
2 + v

3
, v := e

�49t/64 sin(x/4) sin(y/4),

subject to initial data

u0(x, y) = sin(x/4) sin(y/4). (4.9)

Its exact solution is given by

u(x, y, t) = e
�49t/64 sin(x/4) sin(y/4).

We want to test the temporal accuracy of the RKDG algorithm, for which we take " = 0.025, g = 0,

and domain ⌦ = [�4⇡, 4⇡]2 with periodic boundary conditions. We apply the two-stage RKDG
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algorithm based on second, third and fourth order RK methods with Butcher tableau (4.2)-(4.4)

and P
3 polynomials. Similar to Example 4.1, we also need to add

(f(·, tn + bi⌧),�),

to the right hand side of both (3.7a) and (3.14a). We take time steps ⌧ = 2�m for 2  m  5 and

mesh size 64⇥ 64. In the prediction step, we choose the tolerance Tol = 10�10 and the value of L

depends on the specific RK methods. The L2
, L

1 errors and orders of convergence at T = 1.5 are

shown in Table 2, and these results confirm that the schemes as tested can achieve the optimal

orders of convergence in time.

Table 2. L
2
, L

1 errors and EOC at T = 1.5 with time step ⌧ .

RK L
⌧ = 2�2

⌧ = 2�3
⌧ = 2�4

⌧ = 2�5

error error order error order error order

(4.2) 0
ku� uhkL2 5.84575e-02 1.29975e-02 2.17 3.21365e-03 2.02 8.05270e-04 2.00

ku� uhkL1 5.51717e-03 1.13568e-03 2.28 2.80093e-04 2.02 7.04859e-05 1.99

(4.3) 2
ku� uhkL2 6.49591e-03 7.15397e-04 3.18 8.88739e-05 3.01 9.69107e-06 3.20

ku� uhkL1 7.59053e-04 1.09547e-04 2.79 1.37766e-05 2.99 1.46945e-06 3.23

(4.4) 2
ku� uhkL2 2.10020e-03 1.38306e-04 3.92 7.30941e-06 4.24 �� ��
ku� uhkL1 3.43273e-04 2.20772e-05 3.96 1.42833e-06 3.95 �� ��

Example 4.3. (Rolls and Hexagons) In this example, we simulate the formation and evolution of

patterns of the the Swift-Hohenberg equation (4.6), which arises in the Rayleigh-Bénard convection.

Following [36, 29], we run the simulation from t = 0 to t = 198 on a rectangular domain ⌦ =

[0, 100]2, subject to random initial data and periodic boundary conditions. Model parameters ", g

will be specified below for di↵erent cases.

We apply the RKDG algorithm based on the fourth order RK method with Butcher tableau

(4.4) and P
2 polynomials using mesh 128⇥ 128. In prediction step, we take L = 3 and tolerance

Tol = 10�5. This example is used to test the spatial accuracy, using polynomials of degree k with

k = 1, 2, 3 on 2D rectangular meshes. We take time step ⌧ = 0.1, which is much larger than that

used in [36, 29]. In the following two test cases, we output E(qn
h
, U

n

h
)�C0|⌦| instead of E(qn

h
, U

n

h
)

to better observe the evolution of the original free energy E(u).
Test case 1. (Rolls) For parameters " = 0.3, g = 0, we observe the periodic rolls for di↵erent

times as shown in Figure 1. We see that the pattern evolves approaching the steady-state after

t > 60, as also evidenced by the energy evolution plot in Figure 3a.

Test case 2. (Hexagons) The numerical simulations with the parameters " = 0.1, g = 1.0 reveal

vividly the formation and evolution of the hexagonal pattern as shown in Figure 2. The pattern

at t = 1.2 is similar to that of rolls as shown in Figure 1. Similar to the pattern obtained by

the IEQ-DG scheme in [29], we also observe that at a certain point before t = 40, lines break up

giving way to single droplets that take hexagonal symmetry. The steady state is approaching after

t > 100.
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Figure 1. Evolution of periodic rolls.

Figure 2. Evolution of hexagonal patterns.

The evolution of the patterns for both cases is shown to satisfy the energy dissipation law in

Figure 3. With the same parameters ", g as in [29], the RKDG algorithm can generate quite

similar formation and evolution of both roll and hexagonal patterns even with a larger time step.
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Figure 3. Energy evolution. (a) Rolls. (b) Hexagons.

Example 4.4. We still use the Example 4.3 but with focus on the evolution of the modified energy

E(qn
h
, U

n

h
)� C0|⌦| in (3.4), the original energy E(un

h
, q

n

h
) in (2.6), and their di↵erence

|E(qn
h
, U

n

h
)� C0|⌦|� E(un

h
, q

n

h
)|

when time step ⌧ is not small. Again, we apply the RKDG algorithm based on the fourth order RK

method with Butcher tableau (4.4) and P
2 polynomials using mesh 128 ⇥ 128. In the prediction

step, we take tolerance Tol = 10�5, but di↵erent number of iterations L = 0, 1, 2. We take the

time step ⌧ = 0.5, which is larger than ⌧ = 0.1 used in Example 4.3. Below we will take the

solution with smaller ⌧ in Example 4.3 as a reference solution.

Test case 1. (Rolls) For L = 0, 1, 2, the L
1 errors of the solutions with the reference solution

at di↵erent t are shown in Table 3, and the pattern snapshots at t = 40, 120, 198 are given in

Figure 4. From these results, we still observe the roll patterns even ⌧ is large. However, without

the prediction step, namely L = 0, the pattern has a large error; for L = 1, 2, the patterns are

comparable to those obtained in Example 4.3 with Test case 1.

Table 3. L
1 errors of the solutions for di↵erent L.

L t = 0 t = 6 t = 20 t = 40 t = 60 t = 120 t = 150 t = 198

0 0 0.0479 0.4606 0.8883 1.0519 1.2442 1.2591 1.2636

1 0 0.0517 0.0566 0.0557 0.0580 0.0876 0.0878 0.0472

2 0 0.0519 0.0551 0.0491 0.0446 0.0333 0.0289 0.0232

The energy comparison results are given in Figure 5, from which we find that 1) both the modified

energy and the original energy satisfy the energy dissipation law; 2) the di↵erence between the

modified energy and the original energy is large for L = 0, but significantly reduced when using

an appropriate prediction step, with L = 1 or L = 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Evolution of periodic rolls: (a-c) L = 0; (d-f) L = 1; (g-i) L = 2.

We have also conducted experiments on Test case 2 with Hexagons, the observation is entirely

similar, so we omit the related results.

5. Concluding remarks

In this paper, we present a new class of arbitrarily high order, fully discrete DG schemes.

These schemes have several advantageous properties: (1) the schemes are all linear such that

they are easy to implement and computationally e�cient; (2) the schemes are uniquely solvable

and unconditionally energy stable, these ensure that large time steps can be used in long time

simulations; (3) the schemes can reach arbitrarily high order of accuracy in both space and time,

so that desired accuracy of solutions can be guaranteed with flexible meshes and time steps; (4)

the schemes do not depend on the specific form of the DG operator explicitly, hence applicable to

a larger class of semi-discrete DG schemes as long as they satisfy a semi-discrete energy dissipation
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Figure 5. Energy evolution. (a-b) L = 0; (c-d) L = 1; (e-f) L = 2.
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law. The special structure of the DG formulation is nicely used in the proof for energy stability.

In addition, the prediction step in the RKDG algorithm is shown to be helpful in resolving the

issue with IEQ that the auxiliary variable deviates from its original counterpart due to numerical

errors accumulated through time discretization. Several numerical examples are presented to

assess the scheme performance in terms of accuracy and energy stability. The numerical results on

two dimensional pattern formation problems indicate that the method is able to deliver expected

patterns of high accuracy with a larger time step on coarse meshes.
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