
AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY⇤

HAILIANG LIU† AND XUPING TIAN‡

Abstract. We propose AEGD, a new algorithm for optimization of non-convex objective functions,
based on a dynamically updated ‘energy’ variable. The method is shown to be unconditionally energy
stable, irrespective of the base step size. We prove energy-dependent convergence rates of AEGD
for both non-convex and convex objectives, which for a suitably small step size recovers desired
convergence rates for the batch gradient descent. We also provide an energy-dependent bound on the
stationary convergence of AEGD in the stochastic non-convex setting. The method is straightforward
to implement and requires little tuning of hyper-parameters. Experimental results demonstrate that
AEGD works well for a large variety of optimization problems. Specifically, it is robust with respect
to initial data, capable of making rapid initial progress. The stochastic AEGD shows comparable and
often better generalization performance than SGD with momentum for deep neural networks. The
code is available at https://github.com/txping/AEGD.

Key words. Stochastic optimization, gradient descent, energy stability

AMS subject classifications. 90C15, 65K10, 68Q25

1. Introduction. From a mathematical perspective, training neural networks is
a high-dimensional non-convex optimization problem, and the dynamics of a training
process can be incredibly complicated. Despite this, stochastic gradient descent (SGD)
[48] methods have proven to be extremely e↵ective for training neural networks in
practice (see, for example, [11, 18]). Such stochastic training often reduces to solving
the following unconstrained minimization problem

(1.1) min
✓2Rn

f(✓),

where f : Rn ! R is a finite-sum function, defined as f(✓) := 1
m

Pm
i=1 fi(✓), where

fi(✓) := l(F (xi; ✓); yi) is a loss of the machine learning (ML) model F (·; ✓) on the
training data {xi, yi}, parametrized by ✓. For many practical applications, f(✓) is
highly non-convex, and F (·; ✓) is chosen among deep neural networks (DNNs), known
for their superior performance across various tasks. These DNNs are heavily over-
parametrized and require large amounts of training data. Thus, both m and n can
scale up to millions or even billions. These complications pose serious computational
challenges.

Gradient descent (GD) or its variants are methods of choice for solving (1.1).
There are two variations of gradient decent, which di↵er in how much data we use to
compute the gradient of the objective function. They are fully gradient decent, aka
batch GD, and SGD. For large dataset, SGD is usually much faster by performing a
parameter update for each training example. The GD method is implemented as the
recursive rule given an initial point ✓0,

(1.2) ✓k+1 = ✓k � ⌘rf(✓k),

where ⌘ > 0 is the step size (called the learning rate in ML). GD has advantages of easy
implementation and being fast for well-conditioned and strongly convex objectives,

⇤

Funding: We would like to acknowledge support for this project from the National Science
Foundation (NSF grant DMS-1812666).

†Department of Mathematics, Iowa State University, Ames, IA 50011, USA (hliu@iastate.edu,
https://faculty.sites.iastate.edu/hliu/).

‡Department of Mathematics, Iowa State University, Ames, IA 50011, USA (xupingt@iastate.edu).

1

https://github.com/txping/AEGD
mailto:hliu@iastate.edu
https://faculty.sites.iastate.edu/hliu/
mailto:xupingt@iastate.edu

2 H. LIU AND X. TIAN

independent of the dimension of the underlying problem [41]. However, GD is stable
typically when step size ⌘ is suitably small, hence slow down the convergence. Finding
a good step size is an important practical problem [14, 41]. The step limitation issue
can be largely resolved by implicit updates,

(1.3) ✓k+1 = ✓k � ⌘rf(✓k+1).

This has an intimate relationship with the proximal point algorithm (PPA) [49]:

(1.4) ✓k+1 = argmin✓2Rn

⇢
f(✓) +

1

2⌘
k✓ � ✓kk2

�
.

The advantage of this method is that the objective function value f(✓k) decreases
monotonically for any step size ⌘ > 0. However, for non-quadratic functions f , one
would have to solve it by an internal iteration at each step. For example, by the
backward Euler method [58]. A natural question is:

Can we adapt (1.2) so that it becomes stable for arbitrary step size as in (1.3)
but still easy to implement?

We answer this question by proposing AEGD, a new method for e�cient op-
timization that only requires first-order gradients. The key idea with AEGD is to
introduce g =

p
f + c so that f + c > 0, and split the gradient rf(✓) as a product

rf(✓) = 2g(✓)rg(✓). We then apply an implicit-explicit selection to the product at
k�th iteration to obtain

✓k+1 = ✓k � 2⌘rk+1rg(✓k),

while rk also updates, according to rk+1 � rk = rg(✓k) · (✓k+1 � ✓k). This allows us to
obtain a base formulation:

rk+1 =
rk

1 + 2⌘|vk|2
,

✓k+1 = ✓k � 2⌘rk+1vk,

where vk = rg(✓k) or an unbiased estimate of rg(✓k) for stochastic AEGD. Two
distinct features with this method are: (i) it is easy to implement, since only explicit
updates are involved; (ii) it is unconditionally energy stable in the sense that rk as an
approximation of g(✓k) is a decreasing sequence in k, for any step size ⌘ > 0.

To the best of our knowledge the idea of using energy update to stabilize GD in the
optimization of non-convex objective functions was not explored earlier. Meanwhile
we show that AEGD feathers the expected convergence rates for first-order gradient
methods. At the core of AEGD is the auxiliary energy variable which serves to adjust
the e↵ective step size at each update. The name AEGD is derived from the adaptive
GD method with energy. We would like to emphasize that our AEGD features both a
global and an element-wise formulation, while by empirical evidence, the latter appears
to perform better in most cases.

1.1. Main Contributions. Some major benefits of AEGD are summarized
below:

• It is shown to be unconditionally energy stable, irrespective of the base step
size.

• It allows a larger base step size than GD.
• It converges fast even for objective functions that have a large condition
number.

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 3

• It is robust with respect to initial data.
• It has visible advantages over the GD algorithm with momentum.

Most of the above advantages are kept for the stochastic AEGD, which will be discussed
in Section 4. In particular, our numerical results also show that the stochastic AEGD
has the potential for training neural networks with better generalization, at least on
some benchmark machine learning tasks.

1.2. Further Related Work. A numerical method bearing a direct relation to
AEGD is the invariant energy quadratization (IEQ) approach introduced by [57] and
[62] for gradient flows in the form of partial di↵erential equations (PDEs). The IEQ
approach uses a modified quadratic energy to construct linear, unconditionally energy
stable schemes for solving time-dependent PDEs [31, 32, 53]. The AEGD algorithm
here is new in that we use an auxiliary energy variable to obtain unconditionally energy
stable optimization algorithms.

In the field of stochastic optimization, there is an extensive volume of research
for designing algorithms to speed up the convergence of SGD. Among these, main
advances fall into two categories: momentum methods [40, 44] and adaptive step size
methods [15, 55, 25]. The integration of momentum and adaptive step size led to
Adam [25], which is one of the optimization algorithms that are widely used by the
deep learning community. Many further advances have improved Adam [50, 35, 36].

The name momentum stems from an analogy to momentum in physics. GD
with constant momentum such as the heavy-ball (HB) method [44] is known to enjoy
the convergence rate of O(1/k) for convex smooth optimization. Remarkably, with
an adaptive momentum the Nesterov accelerated gradient (NAG) [40, 54] has the
convergence rate up to the optimal O(1/k2). Recent advances showed that NAG has
other advantages such as speeding up escaping saddle points [22], accelerating SGD
or GD in non-convex problems [47, 63]. Both first and second order optimization
methods can be designed via inertial systems [3, 12].

Another major bottleneck for fast convergence of SGD lies in its variance [9, 51, 52].
Di↵erent ideas have been proposed to develop variance reduction algorithms. Some
representative works are SAGA [13], SCSG [28], SVRG [23], Laplacian smoothing
[43, 56], and iterative averaging methods [45, 61].

For a gradient based method the geometric property of f often a↵ects the conver-
gence rates. For the non-convex f we consider an old condition originally introduced by
Polyak [46], who showed that it is a su�cient condition for gradient descent to achieve
a linear convergence rate; see [24] for a recent convergence study under this condition.
Such condition is often called the Polyak- Lojasiewicz (PL) inequality in the literature
since it is a special case of the inequality introduced by Lojasiewicz in 1963 [34]. A
generalization of the PL property for non-smooth optimization is the KL inequality
[27, 6]. The KL inequality has been successfully used to study the convergence of the
proximal algorithms [2], and the proximal alternating and projection methods [1].

Finally, we mention that a considerable body of work exists concerning the related
but distinct strategy of improving GD for unconstrained optimization problems. For
line search based GD methods we recall the classical Armijo rule (1966) and the Wolfe
conditions (1969) to guide the inexact line search, also referring to [60, 39], the book of
[41], and the references therein. Another notable gradient method with modified step
sizes is the BB method [4], which is motivated by Newton’s method but not involves
any Hessian. There are also studies of other GD-type methods that allow to handle
constraints and non-smooth objective functions, and the possibility of speeding up
[5, 16, 42, 29]; we refer the reader to [38, 17, 7] for work on minimizing composite

4 H. LIU AND X. TIAN

objectives, and also further references.
Even though we do not consider alternative methods or related extensions here, our

present results for unconstrained optimization problems provide some understanding of
the energy-driven update rule, which serves to create a path towards more alternative
algorithms with energy.

1.3. Organization. In Section 2, we motivate and present the AEGD method
for non-convex optimization in both global and element-wise version. Theoretical
results, including stability, convergence, and convergence rates, are given in Section 3,
with technical proofs deferred to Appendix A. In Section 4 we present the stochastic
AEGD and some theoretical results. Section 5 provides experimental results to show
the performance of AEGD. We end this paper with concluding remarks in Section 6.

1.4. Notation. Throughout this paper, we denote {1, · · · ,m} by [m] for integer
m. For vectors and matrices we use k · k to denote the l2-norm. For a function
f : Rn ! R, we use rf and r2f to denote its gradient and Hessian, and ✓⇤ to denote
a local minimizer of f . We also use the notation @i := @✓i . In the algorithm description,
we use z = x/y to denote element-wise division if x and y are both vectors of size n;
x� y is element-wise product, and x2 = x� x; 1 = (1, ..., 1) is a vector of all ones.

2. AEGD. Motivated by the invariant energy quadratizaton (IEQ) strategy,
introduced in [57, 62] for discretization of PDEs, we define g(✓) =

p
f(✓) + c with c

chosen so that f(✓) + c > 0. Set r = g(✓), then r2 plays the role of energy and

rf = 2rrg, r = g(✓).

This transformation when applied to the usual gradient flow ✓̇ = �rf(✓) leads to an
augmented system

✓̇ = �2rrg(✓),(2.1a)

ṙ = rg(✓) · ✓̇.(2.1b)

It allows the dissipation of the quadratic energy d
dt (r

2) = �|✓̇|2 in place of the

dissipation of nonlinear loss function: d
dtf(✓) = �|✓̇|2. Based on (2.1) we introduce

the following update rule:

✓k+1 = ✓k � 2⌘rk+1rg(✓k), k = 0, 1, 2, · · · ,(2.2a)

rk+1 � rk = rg(✓k) · (✓k+1 � ✓k).(2.2b)

This is actually a linear algorithm with

rk+1 =
rk

1 + 2⌘|rg(✓k)|2
, r0 =

p
f(✓0) + c,(2.3a)

✓k+1 = ✓k � 2⌘rk+1rg(✓k), k = 0, 1, 2, · · · ,(2.3b)

and easy to implement. In order to allow the use of di↵erent step size in each coordinate,
we also propose an element-wise AEGD, set forth as follows:

rk+1,i =
rk,i

1 + 2⌘(@ig(✓k))2
, r0,i =

p
f(✓0) + c, i 2 [n],(2.4a)

✓k+1,i = ✓k,i � 2⌘rk+1,i@ig(✓k), k = 0, 1, 2, · · · .(2.4b)

This also implies

rk+1,i � rk,i = @ig(✓k)(✓k+1,i � ✓k,i), i 2 [n].(2.5)

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 5

Remark 2.1. One may wonder whether r = (f + c)↵ is admissible for building
similar algorithms for all ↵ 2 (0, 1). To see this, we write the corresponding augmented
system as

✓̇ = �↵�1r1/↵�1rg(✓), ṙ = rg · ✓̇.

A similar implicit-explicit discretization can yield a linear update for r if and only if
1
↵ � 1 = 1 , ↵ = 1

2 . This explains why energy quadratization has been used in [57, 62]
to name such strategy.

Remark 2.2. This method can also be linked with inertial methods at the contin-
uous level. More precisely, from (2.1) we can derive a second order equation governed
by

(2.6) ✓̈(t) + 2⌘(
d

dt
g(✓(t)))rg(✓(t)) + 2⌘g(✓(t))r2g(✓(t))✓̇(t) = 0,

which belongs to the class of form

✓̈(t) + �(t)r2g(✓(t))✓̇(t) + b(t)rg(✓(t)) = 0.

Related systems have been recently investigated in [3]. From their results, we can
identify the strong aspect of AEGD: it is autonomous (adaptive), and involves strong
damping governed by the Hessian of the function to be minimized. The method
stability could be further improved if there is a way to incorporate an additional
damping term in (2.6); in particular for functions which are not well conditioned.

3. Theoretical Results. In this section, we will show AEGD is unconditionally
energy stable, irrespective of the step size ⌘, and obtain di↵erent convergence rates
for non-convex and convex functions. We say f is µ-strongly convex if for all u and v
we have f(u) � f(v) + hrf(v), u� vi+ µku� vk2/2; f is L-smooth if kr2f(u)k  L
for any u 2 Rn. For convex (µ = 0) and L-smooth functions, it is known that the
convergence rate O(1/k) for GD of form (1.2) is guaranteed if ⌘  1

L [37]. This may
suggest very small step-sizes in practice, which is a condition that may be violated in
more complicated scenarios. In contrast, AEGD is energy stable for any ⌘ > 0 (see
Theorem 3.1), and converges for a large range of ⌘ (see Theorem 3.3).

3.1. Unconditional energy stability.

Theorem 3.1. (Energy stability and convergence) Consider min{f(✓), ✓ 2 Rn},
where f(✓) is di↵erentiable and bounded from below so that f(✓) + c > 0 for some
c > 0. Then
(i) AEGD (2.3) is unconditionally energy stable in the sense that for any step size
⌘ > 0,

(3.1) r2k+1 = r2k � (rk+1 � rk)
2 � ⌘�1k✓k+1 � ✓kk2,

rk is strictly decreasing and convergent with rk ! r⇤ as k ! 1, and also

(3.2)
1X

j=0

k✓j+1 � ✓jk2  ⌘(r20 � (r⇤)2), hence lim
k!1

k✓k+1 � ✓kk = 0.

(ii) AEGD (2.4) is unconditionally energy stable in the sense that for any step size
⌘ > 0,

(3.3) r2k+1,i = r2k,i � (rk+1,i � rk,i)
2 � ⌘�1(✓k+1,i � ✓k,i)

2, i 2 [n],

6 H. LIU AND X. TIAN

rk,i is strictly decreasing and convergent with rk,i ! r⇤i as k ! 1, and also

(3.4)
1X

j=0

k✓j+1 � ✓jk2  ⌘
nX

i=1

(r20,i � (r⇤i)
2), hence lim

k!1
k✓k+1 � ✓kk = 0.

Proof. (i) We use the two equations in (2.2) to derive

2rk+1(rk+1�rk) = 2rk+1rg(✓k)·(✓k+1�✓k) = �4⌘r2k+1krg(✓k)k2 = �1

⌘
k✓k+1�✓kk2.

Upon rewriting with 2b(b� a) = b2 � a2 + (b� a)2 we obtain equality (3.1). From this
we see that r2k is monotonically decreasing (also bounded below), therefore convergent;
so does rk since rk � 0. Summation of (3.1) over k from 0, 1, · · · yields (3.2). The
proof of (ii) is entirely similar.

Remark 3.2. It is worth pointing out that this theorem does not require the
function f satisfy L-smoothness or convexity assumption. The result asserts that the
unconditional energy stability featured by AEGD also implies convergence of {rk}k�0

for any ⌘ > 0, and the sequence {k✓k+1 � ✓kk}k�0 converges to zero at a rate of at
least 1/

p
k. But this is not su�cient—at least in general—to prove convergence of the

sequence {✓k}k�0, when no further information is available about this sequence.

3.2. Convergence and convergence rates. To understand the convergence
behavior of AEGD (2.3), we reformulate it as

(3.5) ✓k+1 = ✓k � ⌘krf(✓k), ⌘k := ⌘
rk+1

g(✓k)
.

Note that using L-smoothness of f and (3.5) we have

f(✓k+1)  f(✓k)�
✓

1

⌘k
� L

2

◆
k✓k+1 � ✓kk2 < f(✓k),

when ⌘k gets smaller so that ⌘k < 2/L. Since rk is decreasing, after finite number
of iterations ⌘j can be ensured (by choosing ⌘ to be suitably small if necessary) to
fall below 2/L under which f(✓j) turns into a strictly decreasing sequence, hence
convergent. To ensure the convergence of {✓k}, one needs further info on the geometrical
property of the objective function, such as convexity, or the Kurdyka-Lojasiewicz (KL)
property. The KL property at a point describes how the objective function can be made
sharp through a concave mapping near that point. This property characterizes a rich
function class, and often considered as a structural assumption in general nonconvex
optimization (see [2] for a detailed account on this property and its applications). In
the present work we restrict to a special case of KL, called Polyak-Lojasiewics (PL)
property: f is PL if there exists µ > 0 such that

1

2
krf(✓)k2 � µ(f(✓)� f⇤),(3.6)

where we assume that {✓, f(✓) = f⇤} is not empty. One such example is f(x) =
x2 + 3sin2(x), non-convex, yet satisfying the PL inequality with f⇤ = 0 and µ = 1/32.

In Theorem 3.3 below, we present convergence rates of AEGD in two di↵erent
cases: nonconvex with the PL property and convex. For general ⌘, convergence rates
can depend on the behavior of rk, which is part of the solution to the AEGD algorithm.
Therefore, we present a hybrid result of convergence rates combining both k and rk (
posterior estimates).

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 7

Theorem 3.3. (Convergence rates) Suppose f is di↵erentiable and bounded from
below. Let ✓k be the k-th iterate generated by AEGD (3.5), then

1

k

k�1X

j=0

krg(✓j)k2 
p
f(✓0) + c

2⌘krk
.

We have convergence rates in two distinct cases:
(i) f is PL and L-smooth with a minimizer ✓⇤. If maxk0j<k ⌘j  1/L for some
k0 � 0, then {✓k} is convergent. Moreover,

1X

k=k0

k✓k+1 � ✓kk  4p
2µ

p
f(✓k0)� f(✓⇤),(3.7)

f(✓k)� f(✓⇤)  e�c0(k�k0)rk(f(✓k0)� f(✓⇤)), c0 :=
µ⌘p

f(✓k0) + c
.

(ii) f is convex and L-smooth with a global minimizer ✓⇤. If maxk0j<k ⌘j  1/L for
some k0 � 0, then

f(✓k)� f(✓⇤)  c1k✓k0 � ✓⇤k2

2(k � k0)rk
, c1 :=

p
f(✓k0) + c

⌘
.

See Appendix A.1 for the proof.

Remark 3.4. The gradient estimate in Theorem 3.3 when using g(✓) =
p
f(✓) + c

gives

1

k

k�1X

j=0

krf(✓j)k2  2(f(✓0) + c)
1
2 (Fk + c)

⌘krk
, Fk = maxj<kf(✓j).

For this estimate, neither L-smoothness nor step size restriction is needed. This is in
sharp contrast to the classical result for GD (see pages 29-31 in [37]).

Remark 3.5. Regarding the convergence rates, a series of remarks are in order.
1. The convergence rate in (i) may be extended to the case when f features the

more general KL property; see [2, 1] for relevant techniques in establishing
convergence rates for proximal and other gradient methods.

2. If r⇤ > 0, which is the case to be shown in Lemma 3.3 for ⌘ < ⌧ , then rk
on the right of the three estimates in Theorem 3.3 can all be replaced by
r⇤(< rk), hence (i) guarantees the linear convergence rate when f is PL; and
(ii) recovers the usual sublinear rate O(1k).

3. It is clear that all results are valid as long as rk ! 0 slower than 1/k. Our
numerical tests indicate that for each objective function f there exists a
threshold ⌘̃ in the sense that convergence is ensured if ⌘  ⌘̃. However,
identifying ⌘̃ appears to be a challenging task in theory.

Remark 3.6. Regarding the base step size ⌘, we make further remarks.
1. Empirical evidence (see Figure 3 (c)) shows that there exists a threshold index

J so that ⌘j turns to decrease for j > J . Hence the assumptions in (i)-(ii) are
reasonable and readily met.

2. Our results suggest that decaying ⌘ at a later stage (say k � k0 for some
k0) to ensure the su�cient conditions in Theorem 3.3 can help to achieve
all-time good performance of the AEGD algorithm. This comment applies to
the element-wise AEGD as well (see Theorem 3.10).

8 H. LIU AND X. TIAN

Remark 3.7. If f is µ-strongly convex, then f is also PL:

f(✓⇤) � f(✓) +rf(✓) · (✓⇤ � ✓) +
µ

2
k✓⇤ � ✓k2

= f(✓)� 1

2µ
krf(✓)k2 + µ

2
k 1
µ
rf(✓) + (✓⇤ � ✓)k2

� f(✓)� 1

2µ
krf(✓)k2.

Hence result in (i) holds true for strongly convex f .

3.3. Behavior of the energy. Since rk is strictly decreasing and g(✓k) is positive
and bounded from below and above, their relative ratio ⌘k essentially depends on the
behavior of rk. On the other hand, as ⌘ ! 0, the numerical solution (✓k, rk) may be
shown to converge to the solution of the ODE system

✓̇ = �2rrg, ṙ = rg · ✓̇(3.8)

at tk = k⌘, subject to initial data ✓(0) = ✓0, r(0) = g(✓0). For this system the level
set r(t) � g(✓(t)) = 0 is invariant for all time. Hence for a fixed but suitably small
⌘, starting from (✓0, g(✓0)), the limit of (✓k, rk) as k ! 1 must be approaching to
(✓⇤, g(✓⇤)), that is

r⇤ ⇡ g(✓⇤) > 0.

A natural question is whether a threshold ⌧ for the base step size ⌘ can be identified
so that we will still have r⇤ > 0 for ⌘  ⌧ . Indeed, we are able to obtain a su�cient
condition to ensure this.

Lemma 3.8. Suppose f is L-smooth, bounded from below by f(✓⇤) and we have
max krf(✓)k  G1, then g is Lg-smooth with

g � g(✓⇤) =
p
f(✓⇤) + c, Lg =

1

2g(✓⇤)

✓
L+

G2
1

2g2(✓⇤)

◆
.

Consider AEGD (2.3), then

(3.9) rk > r⇤ > g(✓⇤)(1� ⌘/⌧), ⌧ :=
2g(✓⇤)

Lgg2(✓0)
.

This implies that r⇤ > 0 if ⌘  ⌧ .

Proof. For any x, y 2 Rn we have

krg(x)�rg(y)k =
1

2

����
rf(x)(g(y)� g(x))

g(x)g(y)
+

rf(x)�rf(y)

g(y)

����

 G1
2g2(✓⇤)

|g(y)� g(x)|+ 1

2g(✓⇤)
krf(x)�rf(y)k  Lgkx� yk.

Such Lg-smoothness of g implies that

g(✓j+1)  g(✓j) +rg(✓j) · (✓j+1 � ✓j) +
Lg

2
k✓j+1 � ✓jk2

= g(✓j) + rj+1 � rj +
Lg

2
k✓j+1 � ✓jk2.

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 9

Take a summation over j from 0 to k � 1 so that

g(✓k)� g(✓0)  rk � r0 +
Lg

2

k�1X

j=0

k✓j+1 � ✓jk2

= rk � r0 +
Lg⌘

2

k�1X

j=0

�
r2j � r2j+1 � (rj+1 � rj)

2
�

= rk � r0 +
Lg⌘

2

0

@r20 � r2k �
k�1X

j=0

(rj+1 � rj)
2

1

A ,

where (3.1) was used. Using r0 = g(✓0) and g(✓k) � g(✓⇤), we have for any k,

Lg⌘

2

k�1X

j=0

(rj+1 � rj)
2 +

Lg⌘

2
r2k � rk + g(✓⇤)� Lg⌘g2(✓0)

2
 0.

Passing to the limit as k ! 1, we also have

Lg⌘

2

1X

j=0

(rj+1 � rj)
2 +

Lg⌘

2
(r⇤)2 � r⇤ + g(✓⇤)� ⌘Lgg2(✓0)

2
 0.

Since the first two terms are positive, we have

r⇤ > g(✓⇤)� ⌘Lgg2(✓0)

2
= g(✓⇤)(1� ⌘/⌧),

where the definition of ⌧ in (3.9) was used.

Remark 3.9. 1. Note that ⌘  ⌧ is only a su�cient condition, not necessary for
r⇤ > 0 to surely happen.
2. One may take a suitably large ⌘ to gain initial rapid progress, and adjust ⌘ at a
later stage at k = k0. A similar argument shows that r⇤ > 0 is ensured by ⌘ < ⌧1 for
k � k0,

(3.10) ⌘ < ⌧1 :=
2(g(✓⇤) + rk0 � g(✓k0))

Lgr2k0

.

As we expected, for small ⌘, AEGD features same convergence rates as GD does, since
the rates are essentially depending on the local geometry of f near ✓⇤.

3.4. Convergence results for the element-wise AEGD. Similar results also
hold for the element-wise AEGD (2.4), although analysis is more involved. With the
notation

⌘ij := ⌘rj+1,i/g(✓j), i 2 [n], j = 0, 1, 2, · · · ,

we now present the main result for (2.4) in the following.

Theorem 3.10. (Convergence rates) Suppose f is di↵erentiable and bounded from
below. Let ✓k be the k-th iterate generated by the AEGD (2.4), then

min
j<k

(@ig(✓j))
2  1

k

k�1X

j=0

(@ig(✓j))
2 

p
f(✓0) + c

2⌘krk,i
, i 2 [n].

10 H. LIU AND X. TIAN

We have convergence rates in two distinct cases:
(i) f is PL and L-smooth with a minimizer ✓⇤. If maxk0jk ⌘ij  1

L for i 2 [n] and
some k0 � 0, then

f(✓k)� f(✓⇤)  e�c0(k�k0)mini rk,i(f(✓k0)� f(✓⇤)), c0 :=
µ⌘p

f(✓k0) + c
.

(ii) f is convex and L-smooth with a global minimizer ✓⇤. If maxk0j<k ⌘ij  1
L for

i 2 [n] and some k0 � 0, then

f(✓k)� f(✓⇤)  c1 maxk0j<k k✓j � ✓⇤k2

(k � k0)mini rk,i
, c1 :=

p
f(✓k0) + c

⌘
.

See Appendix A.3 for the proof.

Remark 3.11. The above gradient estimate when using g(✓) =
p
f(✓) + c leads to

min
j<k

(@if(✓j))
2  1

k

k�1X

j=0

(@if(✓j))
2 

2(f(✓0) + c)
1
2 (Fk + c)

⌘krk,i
, Fk = maxj<kf(✓j).

As argued above, our convergence rates in Theorem 3.10 depend also on the behavior
of rk,i, about which we have the following result.

Lemma 3.12. Under the same assumptions as in Lemma 3.3, for AEGD (2.4) we
have for i 2 [n],

rk,i > r⇤i > g(✓⇤)(1� ⌘/⌧̃), ⌧̃ :=
2g(✓⇤)

nLg(g(✓0))2
.

This implies that r⇤i > 0 if ⌘  ⌧̃ .

We include a proof in Appendix A.2.

4. Stochastic AEGD. This section presents a stochastic AEGD for the uncon-
strained finite-sum optimization problem:

(4.1) min
✓

(
f(✓) =

1

m

mX

i=1

fi(✓)

)
.

We use ✓⇤ to denote a minimizer of f(✓), and assume that fi is di↵erentiable and lower
bounded so that fi(✓) > �c, for i 2 [m], for some c > 0. This problem is prevalent in
machine learning tasks where ✓ corresponds to the model parameters, fi(✓) represents
a loss on the training point i and the aim is to minimize the average loss f(✓) across
points. When m is large, SGD or its variants are preferred for solving (4.1) mainly
because of their cheap per iteration cost. To present a stochastic algorithm, we use vk
to denote a random search direction at k-th step. Here we give only the element-wise
version of our stochastic AEGD.

Remark 4.1. If at each iteration step, a mini-batch of training data were selected,
Algorithm 4.1 still applies if fik(✓k) is replaced by 1

b

P
i2Bk

fi(✓k), where Bk denotes
a randomly selected subset of [m] of size b at step k with b ⌧ m.

To allow for any form of minibatching we use the arbitrary sampling notation

f⇠(✓) =
1

m

mX

j=1

⇠jfj(✓),

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 11

Algorithm 4.1 Stochastic AEGD. Good default setting for parameters are c = 1 and
⌘ = 0.1.

Require: {fi(✓)}mi=1, ⌘: the step size, ✓0: initial guess of ✓, and K: the total number
of iterations.

Require: c: a parameter such that for any i 2 [m], fi(✓)+ c > 0 for all ✓ 2 Rn, initial
energy: r0 =

p
fi0(✓0) + c1

1: for k = 0 to K � 1 do
2: vk := rfik(✓k)/

�
2
p
fik(✓k) + c

�
(ik is a random sample from [m] at step k)

3: rk+1 = rk/(1 + 2⌘vk � vk) (update energy)
4: ✓k+1 = ✓k � 2⌘rk+1 � vk
5: end for
6: return ✓K

where ⇠ = (⇠1, · · · , ⇠m) 2 Rm
+ is a random sampling vector (drawn from some distribu-

tion) such that E[⇠j] = 1 for j 2 [m]. The element-wise update rule for the stochastic
AEGD with arbitrary sampling can be reformulated as

vk = rf⇠k(✓k)/(2
q
f⇠k(✓k) + c),(4.2a)

rk+1,i � rk,i = vk,i(✓k+1,i � ✓k,i), r0,i =
q
f⇠0(✓0) + c(4.2b)

✓k+1,i = ✓k,i � 2⌘rk+1,ivk,i k = 0, 1, 2, · · · .(4.2c)

It follows immediately from the definition of sampling vector ⇠ that

E[f⇠(✓)] = f(✓), E[rf⇠(✓)] = rf(✓),

which means that we still have access to unbiased estimates of f and its gradient. Of
particular interest is the minibatch sampling: ⇠ 2 Rm

+ is a b-minibatch sampling if for
every subset B 2 [m] with |B| = b we have that

P
"
⇠ =

m

b

X

i2B

ei

#
=

b!(m� b)!

m!
.

One can show by a double counting argument that if ⇠ is a b�minibatch sampling, it
is indeed a valid sampling with E[⇠j] = 1 (see [19]) and 1

m

Pm
j=1 ⇠

j = 1.
No matter how vk is defined, we have the following result.

Theorem 4.2. (Unconditional energy stability) The stochastic AEGD of form
(4.2) is unconditionally energy stable in the sense that for any step size ⌘ > 0,

(4.3) E[r2k+1,i] = E[r2k,i]� E[(rk+1,i � rk,i)
2]� ⌘�1E[(✓k+1,i � ✓k,i)

2], i 2 [n],

that is E[rk,i] is strictly decreasing and convergent with E[rk,i] ! r⇤i as k ! 1, and
also
(4.4)

1X

j=0

E[|✓j+1,i � ✓j,i|2]  ⌘(f(✓0) + c), hence lim
k!1

E[|✓k+1,i � ✓k,i|2] = 0, 8i 2 [n].

The proof is entirely similar to that for Theorem 3.1, details are omitted.
With mild assumptions on fl we are able to establish the following.

12 H. LIU AND X. TIAN

Theorem 4.3. Suppose krflk1  G1, and fl + c � a > 0 for all l 2 [m]. Then
stochastic AEGD of form (4.2) admits the following direction-wise estimate, for i 2 [n],

1

k

kX

j=0

E[(vj,i)2] 
Ci

kE[rk,i]
, Ci :=

E[r0,i](2a+ ⌘G2
1)

4a⌘
.

The proof is given in Appendix A.4.
As in the deterministic case, the above rough bound comes directly from the special

structure of the scheme. Due to the nonlinearity of vk in terms of the random variables,

we only have 2E
h
vk
p
f⇠k(✓k) + c

i
= rf(✓k), the estimate of refined convergence rates

is more subtle, and will be dealt with elsewhere [30].

5. Experimental Results. We evaluate the deterministic AEGD (2.4) and
stochastic AEGD (Algorithm 4.1) on several benchmarks for optimization, including
convex and non-convex performance testing problems, k-means clustering, which has
a non-smooth objective function, and convolutional neural networks on the standard
CIFAR-10 and CIFAR-100 data sets. Overall, we show that AEGD is a versatile
algorithm that can e�ciently solve a variety of optimization problems.

In all experiments, we fine tune the base step size for each algorithm to obtain
its best performance. The base step size is given in respective plots, denoted as “lr”,
and the momentum in GDM and stochastic GDM (SGDM) is set to 0.9. For AEGD
we found that the parameters that impact performance the most were the base step
size and step decay schedule in the deep learning experiments. Parameter c has little
impact on the method performance (see a test in Section 5.1), we simply take c as a
fixed value as long as f + c > 0. We use c = 1 for nonnegative objective functions.

Our experiments show the following primary findings: (i) AEGD allows larger
e↵ective step size, hence evolves much faster than GD; (ii) Empirically the performance
of AEGD appears better than or at least comparable with (S)GDM: in full batch setting,
AEGD typically displays rapid initial progress while GDM tends to overshoot and
detour to the target; in stochastic settings, AEGD produces solutions that generalize
better than SGDM when coupled with a learning rate decay schedule.

5.1. Performance Testing Problems. We begin with two benchmark convex
and non-convex performance testing problems:

(i) A quadratic function (a strongly convex function with µ = 2/100 and L = 2)

(5.1) f(x1, x2, ..., x100) =
50X

i=1

x2
2i�1 +

50X

i=1

x2
2i

102
,

with initial point (1, 1, ..., 1);
(ii) The 2D Rosenbrock function (non-convex and L-smooth)

(5.2) f(x1, x2) = (1� x1)
2 + 100(x2 � x2

1)
2,

with initial point (�3,�4).
E↵ect of c: Using these examples we first show the marginal e↵ect of c on the
performance of AEGD. For AEGD with c = 1, 10, 100, we search and take the base
step size ⌘ that gives the best performance (fastest convergence) in each case. The
results presented in Figure 1 (b) (d) indicate that a larger c would require a larger
base step size to achieve faster initial progress, but which c to use does not seem to
a↵ect the overall performance of AEGD significantly. We also present the results of

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 13

(a) (b) (c) (d)

Fig. 1: The e↵ect of c on the performance of AEGD when applied to the quadratic
problem (a)(b) and the Rosenbrock problem (c)(d).

AEGD with di↵erent c but the same base step size in 1 (a) (c), from which we see
that the di↵erences between the results are marginal.

Now we compare the performance of AEGD with GD and GDM when applied to
the two benchmark problems. Numerical comparison results in Figure 2 (a) are for
the quadratic function. We see that AEGD converges much faster than both GD and
GDM on this problem.

Results in Figure 3 (a) are for the Rosenbrock function. For this problem, the
convergence of GD is very slow compared with GDM and AEGD. Though the number
of iterations that AEGD needs to reach the minima is slightly more than GDM, AEGD
makes a faster initial progress. This can be observed more clearly in Figure 4, which
shows that GD and GDM tend to overshoot and detour to the minima while AEGD
goes along a more direct path to the minima.

(a) (b) (c)

Fig. 2: The quadratic problem: (a) Optimality gap of di↵erent algorithms; (b) Behavior
of rk,1 for di↵erent ⌘; (c) Behavior of ⌘1k for di↵erent ⌘.

Behavior of rk: We also numerically investigated how the base step size ⌘ a↵ects
the behavior of rk of AEGD on the two problems. (For both functions, rk,1 = mini rk,i,
hence we only show the behavior of rk,1.) The results are presented in Figure 2 (b)
for the quadratic problem and Figure 3 (b) for the Rosenbrock problem. From these
results, there appears to exist a threshold ⌘̃ such that when ⌘ < ⌘̃, r⇤ > 0; when
⌘ > ⌘̃, r⇤ = 0; when ⌘ = ⌘̃, rk converges to 0 at the speed rate of O(1/k); and when
⌘  ⌘̃, AEGD converges to the minima. We conjecture that such critical threshold
phenomenon for the base step size ⌘ should hold true for more general objective

14 H. LIU AND X. TIAN

(a) (b) (c)

Fig. 3: The Rosenbrock problem: (a) Optimality gap of di↵erent algorithms; (b)
Behavior of rk,1 for di↵erent ⌘; (c) Behavior of ⌘1k for di↵erent ⌘.

functions. Specifically, for the quadratic problem: ⌘̃ ⇠ 26.51; for the Rosenbrock
problem, ⌘̃ ⇠ 8.4e�4. Based on our tests, the largest step size GD ensures convergence
is 1 for the quadratic problem and ⇠ 3.94e� 4 for the Rosenbrock problem. In both
cases, ⌘̃ is much larger than the admissible step sizes for GD.
Behavior of ⌘k: From Figure 2 (c) and Figure 3 (c), we see that ⌘k can increase
in the initial stage, and turn to decrease at a later stage – showing a threshold
phenomenon as argued in Remark 3.6. At the final stage ⌘k ⇠ ⌘p

c+f⇤ rk+1, i.e, the

convergence behavior of ⌘k is dominated by the convergence behavior of rk, regardless
of the size of ⌘.

We note that GDM has been proven to be faster than GD in terms of convergence
rates in certain cases; see [44] for the quadratic convex problem, While AEGD shares
the same convergence rates as GD. However, both GD and GDM su↵er from step-size
limitations. In contrast, AEGD allows larger e↵ective step sizes ⌘k in the initial stage,
which can result in faster initial progress than GDM. This is more observable for
problems with large condition numbers, as shown in Figure 2 (a) and Figure 3 (a).

Fig. 4: Trajectories of di↵erent optimization algorithms on the Rosenbrock function.

5.2. K-means Clustering. We consider the k-means clustering problem for a
set of data points {pi}mi=1 in Rd with K centroids {xj}Kj=1. Denote x = [x1, · · · ,xK] 2

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 15

RKd, we seek to minimize the quantization error:

(5.3) min
x2RKd

(
f(x) :=

1

2m

mX

i=1

min
1jK

kxj � pik2
)
.

If a data point pi has more than one distinct nearest centroids, we assign pi to
one of them randomly. We define the gradient of f (presented in Appendix B.1) as
[10] did when applying the gradient-based method. In this example, the Iris data
set, which contains 150 four-dimensional data samples from 3 categories, is used to
compare the robustness to initialization of three methods: GD, AEGD, and expectation
maximization (EM) [33].

(a) (b) (c) (d)

Fig. 5: The histogram of the quantization error of k-means on Iris trained by EM (a),
GD (b) and AEGD (c) over 100 independent experiments. (d) Frequency of
GD and AEGD achieve the improved minimum valued at ⇠ 0.26 in 100 runs
with di↵erent base step sizes.

Figure 5 (a) (b) (c) present the frequency of error given by the three methods in
100 runs. In each run, the initial centroids are selected from the data set randomly.
We see that though there are chances for all the three methods to get stuck at a local
minimum whose value is ⇠ 0.48, AEGD managed to locate an improved minimum
valued at ⇠ 0.26 with the highest probability.

We also present the frequency of GD and AEGD achieving the improved minimum
in 100 runs with di↵erent base step sizes in Figure 5 (d). We see that compared with
GD, AEGD allows a larger set of base step size to achieve the improved minimum
with much higher probability, with ⌘ ⇠ 6.5 being the optimal choice.

5.3. Convolutional Neural Networks. First, we should point out that the
generalization capability of AEGD in training deep neural networks remains to be
further understood. However, we would like to present some preliminary results to
show the potential of the AEGD in this aspect.

Using ResNet-56 [20] and SqueezeNet [21], we consider the task of image classifi-
cation on the standard CIFAR-10 and CIFAR-100 datasets. In our experiments, we
employ the fixed budget of 200 epochs and reduce the learning rates by 10 after 150
epochs, with a minibatch size of 128 and weight decay of 1 ⇥ 10�4. We recall that
weight decay has been a standard trick in training neural networks [8, 26]. For SGD,
it can be interpreted as a form of L2 regularization, but for adaptive algorithms such
as Adam, careful implementation techniques are often needed [35, 59]. Inspired by

16 H. LIU AND X. TIAN

(a) Training loss, ResNet-56, CIFAR-10 (b) Test accuracy, ResNet-56, CIFAR-10

(c) Training loss, SqueezeNet, CIFAR-100 (d) Test accuracy, SqueezeNet, CIFAR-100

Fig. 6: Training loss and test accuracy for ResNet-56 on CIFAR-10 and SqueezeNet
on CIFAR-100

[35], we introduce an AEGD-specific weight decay algorithm, called AEGDW. The
algorithm for AEGDW and the initial set of step sizes are presented in Appendix B.2.

Our experimental results, as given in Figure 6, show that Adam and AdamW
perform better than other algorithms early. But by epoch 150 when the learning
rates are decayed, AEGD and AEGDW significantly outperform other methods in
generalization. In the above two experiments, AEGD(W) even surpasses SGDM by
1% in test accuracy.

6. Conclusions. Inspired by the IEQ approach for gradient flows in the form
of time-dependent partial di↵erential equations, we proposed AEGD in both global
and element-wise form, as a new algorithm for optimization of non-convex objective
functions. This simple update with an auxiliary energy variable is easy to implement,
proven to be unconditionally energy stable irrespective of the base step size, and
features energy-dependent convergence rates with mild conditions on the base step size.
It is suitable for general objective functions, as long as they are bounded from below.
Numerical examples ranging from performance test problems, K-means clustering, to
CNNs, all demonstrate the advantages of the proposed AEGD: it enjoys rapid initial
progress and faster convergence than GD, is robust with respect to initial data, and
generalizes better for deep learning problems. Overall, the results presented in this

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 17

paper suggest that further research of AEGD could prove useful.

Appendix A. Technical Proofs. In this section, we prove Theorem 3.3 and
Theorem 3.10 from Section 3.

A.1. Proof of Theorem 3.3. We rewrite AEGD (2.3) as

(A.1) ✓k+1 = ✓k � ⌘krf(✓k), ⌘k := ⌘
rk+1

g(✓k)
.

This is in the form of the usual GD with a variable step size ⌘k.
(i) Using scheme (2.2) we have

rj+1 � rj = rg(✓j) · (✓j+1 � ✓j) = �2⌘rj+1krg(✓j)k2.

Take a summation over j from 0 to k � 1 gives

r0 � rk = 2⌘
k�1X

j=0

rj+1krg(✓j)k2 � 2⌘rk

k�1X

j=0

krg(✓j)k2

Use r0 = g(✓0) and rk is strictly decreasing to get

kmin
j<k

krg(✓j)k2 
k�1X

j=0

krg(✓j)k2  g(✓0)

2⌘rk
.

Next we prove (i) and (ii), taking k0 = 0, for simplicity in presentation.
(i) By L-smoothness of f and scheme (A.1), we have

(A.2)
f(✓k+1)� f(✓k)  rf(✓k) · (✓k+1 � ✓k) +

L

2
k✓k+1 � ✓kk2

 �⌘k
2
(2� L⌘k)krf(✓k)k2  �⌘k

2
krf(✓k)k2

as long as ⌘k  1/L. Here and in what follows, we denote wk = f(✓k)� f⇤, then the
PL property reads

1

2
krf(✓k)k2 � µ(f(✓k)� f⇤) = µwk.

With this property, (A.2) can be written as

wk+1 � wk  �µ⌘kwk.

This implies wk+1  (1� µ⌘k)wk. By induction,

wk 
k�1Y

j=0

(1� µ⌘j)w0 = exp

0

@
k�1X

j=0

log(1� µ⌘j)

1

Aw0  exp

0

@�µ
k�1X

j=0

⌘j

1

Aw0.

Noticing that ⌘j = ⌘ rj+1

g(✓j)
� ⌘ rk

g(✓0)
, we further get

wk  exp(�c0krk)w0, c0 =
µ⌘

g(✓0)
.

To obtain the convergence of ✓k, we use scheme (A.1) to rewrite (A.2) as

f(✓k)� f(✓k+1) �
1

2⌘k
k✓k+1 � ✓kk2) wk � wk+1 � 1

2⌘k
k✓k+1 � ✓kk2.

18 H. LIU AND X. TIAN

The PL property when combined with (A.1) gives

k✓k+1 � ✓kk2 � 2µ⌘2kwk) 1
p
wk

�
p
2µ⌘k

k✓k+1 � ✓kk
.

Using the above two inequalities and noting that wk � wk+1, we have

p
wk �p

wk+1 � 1

2
p
wk

(wk � wk+1) �
p
2µ

4
k✓k+1 � ✓kk.

Taking a summation over k from 0 to 1 gives

1X

k=0

k✓k+1 � ✓kk  4p
2µ

p
w0.

This yields (3.7), which ensures the convergence of {✓k}.
(ii) By the L-smoothness assumption, scheme (A.1) and ⌘k  1/L, as in (i) we obtain

f(✓k+1)  f(✓k)�
1

2⌘k
k✓k+1 � ✓kk2.

Denoting dk := k✓k � ✓⇤k, we proceed to obtain the convergence rate. By convexity of
f ,

f(✓k)  f(✓⇤) +rf(✓k) · (✓k � ✓⇤).

These when combined lead to

wk+1  1

2⌘k
(2⌘krf(✓k) · (✓k � ✓⇤)� k✓k+1 � ✓kk2)

=
1

2⌘k
(�2(✓k+1 � ✓k) · (✓k � ✓⇤)� k✓k+1 � ✓kk2)

=
1

2⌘k
(d2k � d2k+1).

Upon summation over iteration steps, we have

d20 � d2k = 2
k�1X

j=0

⌘iwi+1 � wk

k�1X

j=0

⌘i � 2kwk
⌘rk
g(✓0)

.

Hence for maxj<k ⌘j  1/L, we have

f(✓k)� f(✓⇤) = wk  k✓0 � ✓⇤k2g(✓0)
2k⌘rk

.

This completes the proof.

A.2. Proof of Lemma 3.12. The Lg-smoothness of g implies that

g(✓j+1)  g(✓j) +rg(✓j) · (✓j+1 � ✓j) +
Lg

2
k✓j+1 � ✓jk2

= g(✓j) +
nX

i=1

@ig(✓j)(✓j+1,i � ✓j,i) +
Lg

2

nX

i=1

(✓j+1,i � ✓j,i)
2

 g(✓j) +
nX

i=1

(rj+1,i � rj,i) +
⌘Lg

2

nX

i=1

(r2j,i � r2j+1,i).

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 19

Take summation over j from 0 to k � 1 and use r0,i = g(✓0), so that

g(✓k)� g(✓0) 
nX

i=1

rk,i � ng(✓0) +
⌘Lg

2

n(g(✓0))

2 �
nX

i=1

r2k,i

!
.

Using g(✓k) � g(✓⇤), we have for any k,

�
nX

i=1

rk,i + g(✓⇤) + (n� 1)g(✓0)�
n⌘Lg

2
(g(✓0))

2  0.

Passing to the limit as k ! 1, we also have

�
nX

i=1

r⇤i + g(✓⇤) + (n� 1)g(✓0)�
n⌘Lg

2
(g(✓0))

2  0.

From this we get

�
⇣
min
i

r⇤i + (n� 1)g(✓0)
⌘
+ g(✓⇤) + (n� 1)g(✓0)�

n⌘Lg

2
(g(✓0))

2  0,

which can be reduced to

�min
i

r⇤i + g(✓⇤)(1� ⌘/⌧̃)  0, ⌧̃ :=
2g(✓⇤)

nLg(g(✓0))2
.

Hence
min
i

r⇤i > g(✓⇤)(1� ⌘/⌧̃).

A.3. Proof of Theorem 3.10 . We rewrite AEGD (2.4) for i 2 [n] as

(A.3) ✓k+1,i = ✓k,i � ⌘ik@if(✓k), ⌘ik := ⌘
rk+1,i

g(✓k)
.

(i) Using scheme (2.5), for i 2 [n] we have

rj+1,i � rj,i = @ig(✓j)(✓j+1,i � ✓j,i) = �2⌘rj+1,i(@ig(✓j))
2.

Take summation over j from 0 to k � 1 gives

r0,i � rk,i = 2⌘
k�1X

j=0

rj+1,i(@ig(✓j))
2 � 2⌘rk,i

k�1X

j=0

(@ig(✓j))
2

Using r0,i = g(✓0) and rj,i is strictly decreasing, we get

kmin
j<k

(@ig(✓j))
2 

k�1X

j=0

(@ig(✓j))
2  g(✓0)

2⌘rk,i
.

Next we turn to prove (i) and (ii). For simplicity in presentation, we take k0 = 0.
(i) By L-smoothness of f and scheme (A.1), we have

f(✓k+1)� f(✓k)  rf(✓k) · (✓k+1 � ✓k) +
L

2
k✓k+1 � ✓kk2

 �
nX

i=1

⌘ik
2

(@if(✓k))
2  �mini ⌘ik

2
krf(✓k)k2

20 H. LIU AND X. TIAN

as long as ⌘ik  1/L. As in the proof for Theorem 3.3 (i), we have

wk  exp

0

@�µ
k�1X

j=0

min
i

⌘ij

1

Aw0.

Noticing that mini ⌘ij = mini ⌘
rj+1,i

g(✓j)
� ⌘mini rk,i

g(✓0)
, we further get

wk  exp(�c0kmin
i

rk,i)w0, c0 =
µ⌘

g(✓0)
.

(ii) Using the L-smoothness assumption, scheme (2.4) and ⌘ik  1/L, as in (i) we
obtain

f(✓k+1)  f(✓k)�
nX

i=1

1

2⌘ik
(✓k+1,i � ✓k,i)

2.

Denote dik := ✓k,i � ✓⇤i , then by convexity of f ,

f(✓k)  f(✓⇤) +rf(✓k) · (✓k � ✓⇤).

These when combined lead to

wk+1 
nX

i=1

1

2⌘ik
(2⌘ik@if(✓k)(✓k,i � ✓⇤i)� (✓k+1,i � ✓k,i)

2)

=
nX

i=1

1

2⌘ik
(�2(✓k+1,i � ✓k,i)(✓k,i � ✓⇤i)� (✓k+1,i � ✓k,i)

2)

=
nX

i=1

1

2⌘ik
(d2ik � d2i,k+1).

That is

2⌘

g(✓k)
wk+1 

nX

i=1

1

rk+1,i
(d2ik � d2i,k+1).

This upon summation over iteration steps gives

k�1X

j=0

2⌘

g(✓j)
wj+1 

k�1X

j=0

nX

i=1

1

rj+1,i
(d2ij � d2i,j+1)


nX

i=1

2

4 d2i0
r1,i

� d2ik
rk,i

+
k�1X

j=0

✓
1

rj+1,i
� 1

rj,i

◆
d2ij

3

5 =: RHS.

Since f(✓j) is decreasing in j, so is g(✓j). Hence

k�1X

j=0

2⌘

g(✓j)
wj+1 � 2k⌘

wk

g(✓0)
.

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 21

On the other hand, using rj,i > rj+1,i, we have

RHS 
nX

i=1

2

4 d2i0
r1,i

� d2ik
rk,i

+max
j<k

d2ij

k�1X

j=0

✓
1

rj+1,i
� 1

rj,i

◆3

5


nX

i=1


d2i0
r1,i

� d2ik
rk,i

+max
j<k

d2ij

✓
1

rk,i
� 1

r0,i

◆�

 2
nX

i=1

maxj<k d2ij
rk,i

.

Hence

wk  g(✓0)

k⌘

nX

i=1

maxj<k |✓j,i � ✓⇤i |2

rk,i
 g(✓0)

k⌘

maxj<k k✓j � ✓⇤k2

mini rk,i
.

A.4. Proof of Theorem 4.3. From vj,i = @if⇠(✓j)/(2
p
f⇠(✓j) + c), it follows

(vj,i)2  G2
1

4a . Using (4.2a, b), we obtain

(A.4) rj,i � rj+1,i = �vj,i(✓j+1,i � ✓j,i) = 2⌘rj+1,i(vj,i)
2 = 2⌘rj,i

(vj,i)2

1 + 2⌘(vj,i)2
,

where we used rj+1,i =
rj,i

1+2⌘(vj,i)2
. Taking expectation conditioned on (✓j , rj) in (A.4),

we have

(A.5) rj,i � E[rj+1,i] = 2⌘rj,iE


(vj,i)2

1 + 2⌘(vj,i)2

�
� 2⌘rj,i

1 + 2⌘G2
1/(4a)

E[(vj,i)2].

Rearranging and taking expectations to get

E[rj,i]� E[rj+1,i] �
4a⌘

2a+ ⌘G2
1
E[rj,i]E[(vj,i)2].

Summing over j from 0 to k � 1 and using telescopic cancellation gives

E[r0,i]� E[rk,i] �
4a⌘

2a+ ⌘G2
1

k�1X

j=0

E[rj,i]E[(vj,i)2] �
4a⌘

2a+ ⌘G2
1
E[rk,i]

k�1X

j=0

E[(vj,i)2].

That is

kmin
j<k

E[(vj,i)2] 
k�1X

j=0

E[(vj,i)2] 
Ci

E[rk,i]
, Ci :=

E[r0,i](2a+ ⌘G2
1)

4a⌘
.

This completes the proof.

Appendix B. Additional Experimental Results and Implementation De-
tails. Here we provide additional experimental results and implementation details
beyond those in Section 5.

B.1. K-means Clustering. By abuse of notation, we can define the ‘gradient’
of f at any point x as

(B.1) rf(x) =
1

m

"
X

i2C1

(x1 � pi), ...,
X

i2CK

(xK � pi)

#>
,

where Cj denotes the index set of the points that are assigned to the centroid xj .
With the definition of loss function in (5.3) and its gradient so defined, we can apply
gradient-based methods including AEGD to solve the k�means clustering problem.

22 H. LIU AND X. TIAN

Algorithm B.1 AEGD with decoupled weight decay (AEGDW). Good default setting
for parameters are c = 1 and ⌘ = 0.7/0.9 for deep learning problems

Require: {fj(✓)}mj=1, ⌘: the step size, ✓0: initial guess of ✓, and K: the total number
of iterations.

Require: c: a parameter such that f(✓) + c > 0 for all ✓ 2 Rn, initial energy,
r0 =

p
f(✓0) + c1, weight decay factor � 2 R

1: for k = 0 to K � 1 do
2: vk := rfik(✓k)/

�
2
p
fik(✓k) + c

�
(ik is a random sample from [m] at step k)

3: rk+1 = rk/(1 + 2⌘vk � vk) (update energy)
4: ✓k+1 = ✓k � ⌘(2rk+1 � vk + �✓k) (update parameters with weight decay)
5: end for
6: return ✓K

B.2. Convolutional Neural Networks. The initial set of step sizes used for
each algorithm are
SGDM: {0.05, 0.1, 0.2, 0.3},
Adam: {1e-4, 3e-4, 5e-4, 1e-3, 2e-3},
AdamW: {5e-4, 1e-3, 3e-3, 5e-3},
AEGD: {0.1, 0.2, 0.3, 0.4},
AEGDW: {0.6, 0.7, 0.8, 0.9}.

The results presented in Figure 6 show that Adam(W) does not generalize as well
as SGDM and AEGD(W). Therefore, we only compare the generalization capability
of AEGD(W) with SGDM for the remainder of the experiments.

MLP on MNIST. We train a simple multi-layer perceptron (MLP), a special
class of feedforward neural networks, with one hidden layer of 200 neurons for the
multi-class classification problem on MNIST data set. We run 50 epochs with a batch
size of 128 and a weight decay of 10�4 for this experiment. Figure 7 (b) shows that
AEGDW performs slightly better than SGDM in this case. This is as expected for
simple networks.

CifarNet on CIFAR-10. We also train a simple 3-block convolutional neural
network and name it CifarNet on CIFAR-10. We use the same training set as before –
that is, reduce the learning rates by 10 after 150 epochs – with a minibatch size of 128
and weight decay of 10�4. Results for this experiment are reported in Figure 7 (d).
The overall performance of each algorithm for CifarNet on CIFAR-10 is similar to the
experiments in Figure 6.

AEGDW as an improved AEGD can help to reduce the variance and generalize
better early, but such generalization performance does not seem to sustain after
decaying the learning rate as pre-scheduled (see examples in Figure 7 (a) and (c)).
Overall, AEGDW or AEGD can give better generalization performance than SGDM
as evidenced by our experiments.

Data availability: The data that support the findings of this study are publicly
available online at http://yann.lecun.com/exdb/mnist/ and https://www.cs.toronto.
edu/⇠kriz/cifar.html.

REFERENCES

[1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and
projection methods for nonconvex problems: An approach based on the Kurdyka- Lojasiewicz

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 23

(a) AEGD v.s. AEGDW (b) Test Accuracy for MLP on MNIST

(c) AEGD v.s. AEGDW (d) Test Accuracy for CifarNet on CIFAR-10

Fig. 7: Test accuracy for MLP on MNIST and CifarNet on CIFAR-10

inequality, Math. Oper. Res., 35 (2010), pp. 438–457.
[2] H. Attouch, J. Bolte, and B. Svaiter, Convergence of descent methods for semi-algebraic

and tame problems: proximal algorithms, forward–backward splitting, and regularized
Gauss–Seidel methods, Mathematical Programming, 137 (2013), pp. 91–129.

[3] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi, First-order optimization algorithms via
inertial systems with hessian driven damping, Mathematical Programming, (2020), pp. 1–43.

[4] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA journal of numerical
analysis, 8 (1988), pp. 141–148.

[5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM journal on imaging sciences, 2 (2009), pp. 183–202.

[6] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet, Characterizations of lojasiewicz inequalities:
Subgradient flows, talweg, convexity, Transactions of The American Mathematical Society -
TRANS AMER MATH SOC, 362 (2009), pp. 3319–3363.

[7] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for
nonconvex and nonsmooth problems, Mathematical Programming, 146 (2014), pp. 459–494.

[8] S. Bos and E. Chug, Using weight decay to optimize the generalization ability of a perceptron,
in Proceedings of International Conference on Neural Networks, vol. 1, 1996, pp. 241–246.

[9] L. Bottou, Stochastic gradient descent tricks, Neural Networks: Tricks of the Trade, 7700
(2012), pp. 421–436.

[10] L. Bottou and Y. Bengio, Convergence properties of the k-means algorithms, Advances in
neural information processing systems, 7 (1994).

[11] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine
learning, SIAM Review, 60(2) (2018), pp. 223–311.

[12] C. Castera, J. Bolte, C. Févotte, and E. Pauwels, An inertial newton algorithm for deep
learning., J. Mach. Learn. Res., 22 (2021), pp. 134–1.

24 H. LIU AND X. TIAN

[13] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives, Advances in neural information
processing systems, 27 (2014).

[14] D. Di Serafino, V. Ruggiero, G. Toraldo, and L. Zanni, On the steplength selection in
gradient methods for unconstrained optimization, Applied Mathematics and Computation,
318 (2018), pp. 176–195.

[15] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization, Journal of Machine Learning Research, 12(61) (2011), pp. 2121–
2159.

[16] S. Ghadimi and G. Lan, Accelerated gradient methods for nonconvex nonlinear and stochastic
programming, Mathematical Programming, 156 (2016), pp. 59–99.

[17] P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye, A general iterative shrinkage and thresholding
algorithm for non-convex regularized optimization problems, in international conference on
machine learning, 2013, pp. 37–45.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
[19] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik, SGD:

General analysis and improved rates, in International Conference on Machine Learning,
2019, pp. 5200–5209.

[20] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[21] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,
arXiv preprint arXiv:1602.07360, (2016).

[22] C. Jin, P. Netrapalli, and M. I. Jordan, Accelerated gradient descent escapes saddle points
faster than gradient descent, in Proceedings of Machine Learning Research, vol. 75, 2018,
pp. 1042–1085.

[23] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, in Advances in Neural Information Processing Systems 26, 2013, pp. 315–323.

[24] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient
methods under the polyak- lojasiewicz condition, in Joint European conference on machine
learning and knowledge discovery in databases, Springer, 2016, pp. 795–811.

[25] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, (2014).

[26] A. Krogh and J. A. Hertz, A simple weight decay can improve generalization, in Advances in
Neural Information Processing Systems 4, 1992, pp. 950–957.

[27] K. Kurdyka, On gradients of functions definable in o-minimal structures, Annales de l’Institut
Fourier, 48 (1998), pp. 769–783.

[28] L. Lei, C. Ju, J. Chen, and M. I. Jordan, Non-convex finite-sum optimization via SCSG
methods, in Advances in Neural Information Processing Systems 30, 2017, pp. 2348–2358.

[29] H. Li and Z. Lin, Accelerated proximal gradient methods for nonconvex programming, Advances
in neural information processing systems, 28 (2015).

[30] H. Liu and X. Tian, SGEM: stochastic gradient with energy and momentum, arXiv preprint
arXiv:2208.02208, (2022).

[31] H. Liu and P. Yin, Unconditionally energy stable DG schemes for the Swift-Hohenberg equation,
Journal of Scientific Computing, 81 (2019), pp. 789–819.

[32] H. Liu and P. Yin, Unconditionally energy stable discontinuous galerkin schemes for the
cahn–hilliard equation, Journal of Computational and Applied Mathematics, 390 (2021),
p. 113375.

[33] S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory,
28 (1982), pp. 129–137.

[34] S. Lojasiewicz, A topological property of real analytic subsets, Coll. du CNRS, Les équations
aux dérivées partielles, 117 (1963), p. 2.

[35] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, arXiv preprint
arXiv:1711.05101, (2017).

[36] L. Luo, Y. Xiong, Y. Liu, and X. Sun, Adaptive gradient methods with dynamic bound of
learning rate, in International Conference on Learning Representations, 2018.

[37] Y. Nesterov, Introductory lectures on convex optimization: A basic course, vol. 87, Springer
Science & Business Media, 2003.

[38] Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical program-
ming, 140 (2013), pp. 125–161.

[39] Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky, Primal–dual accelerated

AEGD: ADAPTIVE GRADIENT DESCENT WITH ENERGY 25

gradient methods with small-dimensional relaxation oracle, Optimization Methods and
Software, 36 (2021), pp. 773–810.

[40] Y. E. Nesterov, A method for solving the convex programming problem with convergence rate
o(1/k2), Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543–547.

[41] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 2006.
[42] P. Ochs, Y. Chen, T. Brox, and T. Pock, ipiano: Inertial proximal algorithm for nonconvex

optimization, SIAM Journal on Imaging Sciences, 7 (2014), pp. 1388–1419.
[43] S. Osher, B. Wang, P. Yin, X. Luo, F. Barekat, M. Pham, and A. Lin, Laplacian smoothing

gradient descent, Research in the Mathematical Sciences, 9 (2022), pp. 1–26.
[44] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Compu-

tational Mathematics and Mathematical Physics, 4 (1964), pp. 1–17.
[45] B. Polyak and A. Juditsky, Acceleration of stochastic approximation by averaging, SIAM

Journal on Control and Optimization, 30 (1992), pp. 838–855.
[46] B. T. Polyak, Gradient methods for minimizing functionals, Zhurnal Vychislitel’noi Matematiki

i Matematicheskoi Fiziki, 3 (1963), pp. 643–653.
[47] N. Qian, On the momentum term in gradient descent learning algorithms, Neural Networks, 12

(1999), pp. 145–151.
[48] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical

Statistics, 22 (1951), pp. 400–407.
[49] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on

Control and Optimization, 14 (1976), pp. 877–898.
[50] J. R. Sashank, K. Satyen, and K. Sanjiv, On the convergence of adam and beyond, in

International Conference on Learning Representations, vol. 5, 2018, p. 7.
[51] O. Shamir and T. Zhang, Stochastic gradient descent for non-smooth optimization: Con-

vergence results and optimal averaging schemes, in International conference on machine
learning, 2013, pp. 71–79.

[52] A. Shapiro and Y. Wardi, Convergence analysis of gradient descent stochastic algorithms,
Journal of Optimization Theory and Applications, 91 (1996), pp. 439–454.

[53] J. Shen, J. Xu, and J. Yang, A new class of e�cient and robust energy stable schemes for
gradient flows, SIAM Review, 61 (2019), pp. 474–506.

[54] W. Su, S. Boyd, and E. Candes, A di↵erential equation for modeling Nesterov’s accelerated
gradient method: theory and insights, in Advances in Neural Information Processing Systems
27, 2014, pp. 2510–2518.

[55] T. Tieleman and G. Hinton, Divide the gradient by a running average of its recent magnitude.
coursera: Neural networks for machine learning, Technical report, (2017).

[56] B. Wang, D. Zou, Q. Gu, and S. J. Osher, Laplacian smoothing stochastic gradient markov
chain monte carlo, SIAM Journal on Scientific Computing, 43 (2021), pp. A26–A53.

[57] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for
the phase field model of homopolymer blends, Journal of Computational Physics, 327 (2016),
pp. 294–316.

[58] P. Yin, M. Pham, A. Oberman, and S. Osher, Stochastic backward Euler: an implicit gradient
descent algorithm for K-means clustering, Journal of Scientific Computing, 77 (2018),
pp. 1133–1146.

[59] G. Zhang, C. Wang, B. Xu, and R. Grosse, Three mechanisms of weight decay regularization,
in International Conference on Learning Representations, 2018.

[60] H. Zhang and W. W. Hager, A nonmonotone line search technique and its application to
unconstrained optimization, SIAM journal on Optimization, 14 (2004), pp. 1043–1056.

[61] S. Zhang, A. E. Choromanska, and Y. LeCun, Deep learning with Elastic Averaging SGD,
in Advances in Neural Information Processing Systems 28, 2015, pp. 685–693.

[62] J. Zhao, Q. Wang, and X. Yang, Numerical approximations for a phase field dendritic crystal
growth model based on the invariant energy quadratization approach, International Journal
for Numerical Methods in Engineering, 110 (2017), pp. 279–300.

[63] Z. Zhu, Katyusha: The first direct acceleration of stochastic gradient methods, The Journal of
Machine Learning Research, 18(1) (2018), pp. 1–51.

	Introduction
	Main Contributions
	Further Related Work
	Organization
	Notation

	AEGD
	Theoretical Results
	Unconditional energy stability
	Convergence and convergence rates
	Behavior of the energy
	Convergence results for the element-wise AEGD

	Stochastic AEGD
	Experimental Results
	Performance Testing Problems
	K-means Clustering
	Convolutional Neural Networks

	Conclusions
	Appendix A. Technical Proofs
	Proof of Theorem 3.3
	Proof of Lemma 3.12
	Proof of Theorem 3.10
	Proof of Theorem 4.3

	Appendix B. Additional Experimental Results and Implementation Details
	K-means Clustering
	Convolutional Neural Networks

	References

