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We design sources for the two-dimensional Helmholtz
equation that can cloak an object by cancelling out
the incident field in a region, without the sources
completely surrounding the object to hide. As in
previous work for real positive wavenumbers, the
sources are also determined by the Green identities.
The novelty is that we prove that the same approach
works for complex wavenumbers which makes it
applicable to a variety of media, including media with
dispersion, loss and gain. Furthermore, by deriving
bounds on Graf’s addition formulas with complex
arguments, we obtain new estimates that allow to
quantify the quality of the cloaking effect. We illustrate
our results by applying them to achieve active exterior
cloaking for the heat equation.

This article is part of the theme issue ‘Wave
generation and transmission in multi-scale complex
media and structured metamaterials (part 2)".

1. Introduction

Our goal is to use specially designed sources to cloak or
hide a bounded object from a probing field u; satisfying

(© 2022 The Author(s) Published by the Royal Society. Al rights reserved.
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the two-dimensional Helmholtz equation
Au; + Ku; =0, (1.1)

in a region containing the object. Here A denotes the Laplacian. This is called active cloaking since
to build the cloak, we use sources rather than passive materials that may be hard to manufacture
[1]. Moreover, a great advantage of the cloaking strategy we present is that it does not require
completely surrounding the object to hide it, hence the exterior cloaking name. This idea was
introduced in [2] for the two-dimensional Helmholtz equation with k real (lossless propagative
media). Here we allow k to take any values in the complex plane, except for the negative
real axis. Thus, using a frequency decomposition of the transient regime via a Fourier—Laplace
transform on the time variable, our approach applies to cloaking objects for acoustic waves
propagating in passive, dissipative, active or dispersive media, and similarly for diffusive media.
Interestingly, complex wavenumbers open a path to exterior cloaking for problems modelled by
partial differential equations with second order derivatives in space and with time derivatives of
an arbitrary order. Moreover, we derive new error estimates on the convergence of active exterior
cloaking and apply our results to cloaking for the heat equation in the transient regime.

(@) Active exterior cloaking

From potential theory [3] or using the Green identities (e.g. [4]), it is possible to reproduce a
solution to the Helmholtz equation inside of a bounded region £2 and getting, simultaneously, a
zero field outside of £2. This is achieved by a distribution of monopole and dipole sources on the
boundary 352 that can be expressed in terms of the value of the field and its normal derivative on
302. As observed by Miller [5], this principle can be used for cloaking. Indeed the monopole and
dipole distribution can be chosen to generate the cloak field

—u; in 2

U= —
0 outside §2,

(12)

where X denotes the closure of a set X. We see that by linearity, u. + u; cancels out inside £2
without affecting u; outside of 2. The end result is that objects inside £2 will not scatter, and it is
impossible to detect the cloaked field outside of £2. We call this approach the Green identity cloak.
A first drawback of this approach is that the probing field u; needs to be known ahead of time.
A second drawback is that the sources completely surround the object that we wish to hide. The
exterior cloaking approach lifts this second limitation.

To achieve exterior cloaking, we follow the approach in [6] for the two-dimensional Helmholtz
equation with real wavenumbers, see also [7] for the three-dimensional Helmholtz equation and
[8,9] for elasticity. See also [10] for a general analysis. The key observation is that Graf’s addition
formulas (see e.g. §10.23 in [11] or [12]) can be used to move a monopole (or dipole) located at y
to a new location x;. However, the price to pay is that the new source is obtained by an infinite
superposition of multipolar sources that diverges in the disc

Dyyi={xeR?||x — x| < |y —xjl}, (13)

where | - | denotes the Euclidean norm. By linearity, we should also be able to move a distribution
of monopoles or dipoles on a compact portion 3£2; of the boundary 352 to a new location x;,
obtaining the same cloak field u., provided we are outside of the closed disc

Rj:{xeRzllx—lefﬁlgéj ly — xjl}. (1.4)

Assuming the portions 3£2; cover 3£2 and their intersection is reduced to points, we can achieve
the same cloaking effect as the Green identity cloak if we are outside of the region Ry URp U ... U
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Figure 1. Active exterior cloak for the Helmholtz equation starting from the Green identities applied on the surface 952 of
a domain £2. To hide the object (kite) inside £2, the sources in the portions 9£2; of 32 are moved to new locations x;,
Jj=T ..., Ngy. The grey discs are the domains of divergence R; for the new fields, see (1.4). For illustration purposes, we
took Nge, = 4, but three sources would suffice to achieve exterior cloaking.

RN,,, (see figure 1 for an illustration). Here we extend this approach to complex wavenumbers that
enables new applications. Moreover, by obtaining bounds for the Graf’s addition formula with
complex arguments, we derive a simple geometric series ansatz to predict the truncation error
for the field generated by the multipolar sources. This extends previous work on the truncation
error of Graf’s addition formulae [13,14] for real arguments. The truncation estimates allow us to
quantitatively predict the quality of the cloaking effect.

(b) Extending active exterior cloaking to complex k

Many partial differential equations in the frequency domain lead to the Helmholtz equation
with a complex wavenumber. To name a few: the telegraph equation, the diffusion equation,
Schrédinger equation and the Klein—-Gordon equation (e.g. [15,16] or [17], §1.1.2). More generally,
consider partial differential equations (PDEs) in the time domain of the form

P(3)u = Au +, (1.5)

where P is a polynomial of degree n and f(x,t) is a source term. Since (1.5) is a constant
coefficient PDE, it admits a solution in the distributional sense, for example for any compactly
supported source term f. This can be seen from the Malgrange—Ehrenpreis theorem, though
without uniqueness or causality guarantees, e.g. [18].

Many classic equations are of the form (1.5). For example, the wave equation can be obtained
with P(z) = z2, and the heat equation with P(z) = z. For a causal source f (i.e. f(x,t) =0 for t < 0), we
can analyse equations of the form (1.5) in the frequency domain by means of the Fourier-Laplace
transform

u(x, ) = f dtetu(x, 1), (1.6)

where w is in general complex and u is assumed to grow sufficiently slowly. For example, we may
assume that u(x, t) satisfies for t > 0

[lu(, ]| < Ce™ (1 +#), (1.7)
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where C>0, peN and @ €R are constants, e.g. [15,19]. Under this assumption, the Fourier—
Laplace transform is defined on the half plane

C} == {we C | Im(w) > a). (1.8)

The choice of norm depends on the spatial differential operator. Since we focus on the Laplacian,
we use the H! norm on any bounded open set of interest (@, p, C could depend on the choice of
the set). To summarize, in our situation, we may assume that ue Llloc(([}, 00), HIIDC(RZ))I satisfies
the growth condition (1.7) for the H'-norm on any bounded open set of R2. Furthermore, we
assume that all its time derivatives up to order n (the degree of the polynomial P) and the source
term f are in Llloc(([], 00), leoc (R2)) and satisfy (1.7) on any bounded open set of R? for the L2-norm
(with the same real « as for u, that could depend only on the spatial set). This growth condition
allows to make sense of the Fourier-Laplace transform for solutions that may grow exponentially
in time,? as is the case of active media.3

Remark 1.1. The Fourier-Laplace transform is equivalent to the Laplace transform with
s=—iw (see e.g. (4.5) for a definition). Here we choose this convention because when w is real
it corresponds to the angular frequency in wave propagation.

Assuming u and all its time derivatives up to order n — 1 vanish at t =0, we get that u(x, »)
satisfies the inhomogeneous Helmholtz equation:

Au+KRPu=—f, (1.9)

with the relation k* = —P(—iw). This formalism shows that k may be complex, e.g. in the case of
the heat equation. Another example is the modified wave equation with P(z) =z% 4 oz, « €R.
If @ > 0, this is the dissipative wave equation which corresponds to wave propagation in lossy
media. If w > 0, we can choose the root k such that Im(k) > 0 to get spatially decreasing solutions
to (1.9). Whereas with @ <0, @ > 0 we choose k such that Im(k) <0 to get spatially increasing
solutions corresponding to an amplifying medium (medium with gain) (e.g. [25]). We summarize
the possibilities in figure 2. We have highlighted the region with Re(k?) <0 (or equivalently
|Re(k)| < [Im(k)]), since a form of the maximum principle holds for the Helmholtz equation with
such k [26,27]. Later in §3b, we see that the maximum principle gives a form of stability for the
accuracy of approximations to our cloaking approach.

Other situations where complex wavenumber k arises are in passive, dispersive media, where
the index of refraction is a complex valued function of frequency w [28-33]. A typical example is
the dispersion law given by the Drude-Lorentz model in electromagnetism, which can model
both metals and metamaterials with negative index of refraction [34]. In acoustics (see e.g.
section 1.1.2 of [17]), complex wavenumbers also arise when studying acoustic (pressure) waves
propagating within complex (but homogeneous and isotropic) fluids (i.e. not barotropic) with a
relaxation time (due to the presence of solid particles or bubbles) that can be modelled in the time-
harmonic regime with K = w? ;‘(02(1 — iwty)). Here c is the speed of sound (m s1), w the pulsation
frequency (rad 5_1) and 7, the density relaxation time (s).

We note that the frequency domain formulation gives a strategy for active exterior cloaking
in the time domain for equations of the form (1.5), and even when the powers are fractional or
negative (which corresponds to integro-differential equations). One caveat of our approach is that

Let X c Y. We recall that for p =1, L] (X) (resp. H]. ) is the set of functions that are L7 (resp. H') on any bounded open
subset of X, with closure inside X. See [20,21].

2The growth condition (1.6) and the regularity assumption u € LEDC((O, o), L%DC(RZ)) ensure in particular the existence of the
Laplace transform (1.6) as a Bochner integral with respect to t valued in L? [19], and thus also pointwise for almost all x € R?
and all w € C}. We point out that in a more general context, the Fourier-Laplace transform can be extended to spaces of
distributions, e.g. [15,22,23].

3By ‘active media’, we mean there is energy input that may lead to increase of the magnitude of the fields in time, see for
instance [24]. By ‘gain media’, we mean that there are spatially growing outgoing solutions of the Helmholtz equation as e.g.
resonant states, see [25]. This is not a universal nomenclature.

4We shall see in §2 that the decay is consistent with the choice of Green function (2.1).
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loss + max principle

gain + max principle

Figure 2. Diagram of cases for the wavenumber k defined by k = +i+/P(—icw), where we used the principal square root and
the sign is chosen to match the sign of Im(k). When Im(k) = 0 we have k = 4-+/—P(—iw). (Online version in colour.)

the sources need to make sense physically in (1.5). However, for active thermal cloaking (§4) the
sources we obtain can be thought of as Peltier devices [35].

(c) Structure of the paper

We derive convergence estimates for the Graf addition formula applied to Green functions in §2,
showing that the truncation error of the series can be dominated by that of a geometric series
with ratio that depends only on the position of the evaluation point relative to the positions of the
original and new sources. This result can be applied to get truncation estimates for the multipolar
source expansions that appear in active exterior cloaking for possibly complex wavenumbers (§3).
In §3, we also use a form of the maximum principle for the Helmholtz equation, which guarantees
the truncation errors in a region are maximum on the boundary of the region (this only holds for
a class of dissipative or diffusive media). The time domain problem for the heat equation is then
considered in §4. We conclude with some future work and perspectives in §5.

2. Moving sources

The field evaluated at x corresponding to a point source located at y is given by the appropriate
Green function

Glx— y4) = THPKix — y), e2)

where Hf}l) is the zeroth-order Hankel function of the first kind,? (e.g. [11], eqn 10.4.3). Moreover,
G(x; k) — 0 as |x| — oo whenever Im(k) = 0, as can be seen from the large argument asymptotics for
Bessel functions ([11], eqn 10.2.5). When Im(k) < 0, the same asymptotic shows that |G(x; k)| — oco.
Thus, the choice of Green function is consistent with the loss and gain conventions in the diagram
appearing in figure 2.

*In the context of the wave equation with constant propagation speed ¢, we have k = w/c > 0 and the choice of Green function
(2.1) corresponds to outgoing waves. This is consistent with the Fourier-Laplace transform convention (1.6) and with the
convention that the corresponding time harmonic field is Re(exp[—iwt]G(x — y; k)). In fact Re(k) = 0 also gives outgoing waves,
as can be seen e.g. from adapting the discussion ([17], eqn 1.2.12) from three- to two-dimensional using ([11], eqn 10.4.3).
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Thanks to the Graf addition formulae ([11], eqn 10.23.7), we can move (with three significant
caveats) the source from location y to another location x;, indeed:

Ge—yh=7 Y HYkx —x)m(kly — 5) explimd], 22)

HM=—00

where 6 = arg(x — x;) — arg(y — x;) and argx is the counter-clockwise angle between the vectors x
and (1,0). Here [, is the mth-order Bessel function of the first kind, e.g. ([11], eqn 10.2.2). The first
caveat is that the new source in (2.2) is no longer a monopole point source like (2.1), but a linear
combination of Helmholtz equation solutions that diverge as |x — xj| — 0, of the form Vi(x — x;)
where

Vin(x) = explim arg(x) | Ho (k|x]), (2.3)

and that are known as multipolar sources (or cylindrical outgoing waves when k is real). The second
caveat is that the Graf addition formula is only valid for k € C \ (—o0, 0]. The third caveat is that
the series converges only outside of the disc Dy, as defined in (1.3).

The same method and caveats apply if we desire to move a dipole located at y and oriented in
the direction v(y) normal to the boundary 352 at y, or more precisely

aG PN ) N
W(x_y:k)—zm;w}lm (klx x’”&u(y)

where 6 is the same as in (2.2). Formally speaking, equation (2.4) can be obtained by taking the
gradient term by term (with respect to y) in (2.2) and then taking the dot product with v(y).
The differentiation term by term can be easily justified by using lemma 2.2 in order to prove
that the involved series of gradients is locally normally convergent (and thus locally uniformly
convergent) with respect to y when x, x; are fixed.

We start in §2a by proving convergence estimates for (2.2) and (2.4). The convergence errors
are illustrated numerically in §2b.

(Jm(Kly — x;)) explimd]), (24)

(a) Truncation error estimates

To study the convergence rate of (2.2) and (2.4) we define the truncation to 2M + 1 terms of the
formula (2.2) for moving the point source at x; to location y by

. M
Gimr—yiR =7 3 Hyy(klx —xjJm(kly — i) explime], (25)
m=—M

where M is an integer. The truncation error for a monopole and dipole are given, respectively, by

Rim(x; k) =|G(x — y; k) — Gjm(x — y; k)|

3 (2.6)
W[G(I — k) - Gimlx —y;0)]|.

Here v(y) can be the normal to the boundary 852 or any other unit length vector. In the next
theorem, we show that these truncation errors are dominated by the truncation errors of well-
known series such as geometric series. Our convergence estimates account for moving sources
from different original positions y to a single new position x;. The case of different original
positions y is useful in the context of active exterior cloaking (§3). We point out that the monopole
truncation error was derived for real wavenumbers by ([13], Lemma 9) and [14], using techniques
that are similar to the ones we use here. Theorem 2.1 applies to the monopole and the dipole
truncation errors and allows for estimates that are uniform with respect to original source location
y, evaluation point x and complex wavenumbers k.

and R} MGk =
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Theorem 2.1. Let xj e RL,M=2,YCR2bea compact set and define the disc

— 2
D;“aX_{xe]R | |x — x; Er;éayx|y—xj|}.

Let X CR2\ D™ gnd KC C\ (—o0, 0] be compact sets. Then for any (x,k) € X x K we have the
following boumfs for the monopole and dipole truncation errors

m

M m
Rjm(x;k) < C (— In(l —ax)— ) ai)

m=1 (2.7)
aM—i—l
and Riys(:k) < Cp—=2—,
J"M( )= 1—ay
where C1 and Cp may depend on X, Y, K and
max —x;
gy = 2ex Y — %l (2.8)

lx — xj

To prove theorem 2.1, we need the following asymptotic formulae for Bessel functions that
are uniform on the order and are valid on appropriate compact sets of C excluding the negative
real axis (—oo, 0]. This is because we use the power series definitions for Bessel functions in ([11],
§10.8) and the power series expansion for Hf,l)(z) is not valid for z € (—o0,0] (as the expansion
contains the term (2i/m)In(z/2)],(z), which has a discontinuity for such z). Theorem 2.1 can be
reformulated by excluding from the complex plane a different half-line than (—oo, 0]. This would
require using a non-principal branch of the square root (to define k), of the natural logarithm
In and of Bessel functions. Also theorem 2.1 holds even if v(y) is an arbitrary unit vector (not
necessarily the normal to the boundary at y).

Lemma 2.2. Let Ky be a compact set of C, Ky be a compact set of C\ (—o0,0] and n € N. Then there
exists constant Cg;,, C K, and C K, (independent of n) such that:

1 z\n Cx, (l21\"*?
Jn(z) — F (5) = m (? , VzeKy, n=0, (2.9)
, 1zl Gk, (12"
Jn(2) — m (E) = n_'] (?) ,VzeK;, n=>1 (2.10)
in—1) /2\" = 2\"2
and HD ) 4 =D (;) <Cy(n —2)! (E) ,VzeKy, n>2. (2.11)
F1 4

The proof of lemma 2.2 is included in appendix A. From lemma 2.2, we can deduce the

following inequalities for [, J;, (the derivative of J,;) and H},l) that are useful in the proof of
theorem 2.1. Let K1 be a compact set of C and K3 be a compact set of C \ (—o0,0]. Applying the
inequality (2.9), we get that forallze K and n >0

1 zze| 1 [1z]\"
Ju(z) — pl (E) + o (?)
CK1 |Z| n+2 1 IZI n
CES] (7) T (?)

B n 2
=< K (E—') with By, =max (1rCK1 max (%) ) > 0. (2.12)

n! zeKy

[Ja(2)| =

Similarly, one deduces from formula (2.10) and (2.11) that there exists two constants f?Kl >0and
Bk, > 0 such that:

B n—1
ol <o (5) - veekinz (213)

'
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and

- 23\"
V@) < Bey(n — 11 (ﬁ) , VieKpn>2. (2.14)
z

We remark that lemma 2.2 shows that inequalities (2.12)—(2.14) are optimal in the sense that they
bound the functions by their leading order term. We are now ready to prove theorem 2.1.

Proof. Step 1: inequality on the monopole truncation error Rj .

We want to apply the lemma 2.2 to bound the terms [ (k|ly — x;[) and H{,,P(klx —xj|) for m>
M + 1 appearing in the expression of Rjy = |G(x — y; k) — Gum(x — y; k)|. Noting first that H‘_11,)ﬂ =
(=1)"H\Y and J_; = (=1)"],,, we obtain that:

Rm(cR) < Y H (klx — x0Imkly —xDl= Y 21H (klx — x;)m(kly — x;]).
|m|=M+1 m=M+1

Thus, applying inequalities (2.12) and (2.13) gives that there exists C1 > 0 (depending on the
compacts X and K but not on the truncation index M) such that

= 1 M m
Rimk<C ) ;a'j‘:Cl —In(l—a)— )" FX )
m=M+1 m=1

Step 2: inequality on the dipole truncation error R; M
For R; M(x; k), we have the following (note that # and n depend on y)

R p(x: k) = > HY (k| — %3 B(y) [Jm(kly — le)exp[imﬁ]]|
[m|=M+1
-| X - xpexplimok Ly -
[m|=M+1 ]

+H‘,:)(k|x — xjl)exp[im8 [ (kly — Ijl)(—im)%@)arg(y — Xxj)

>

|m]=M+1

H (klx — jnkﬁfﬂ,m )

ly — xjl

+ H 5 Tbly = 5 sargly )|

Since H‘_l,),, = (—1)"‘H,‘,P and J_; = (—1)"],, we can reduce the sum to

R} py(x;K) <2 Z w ’

1
Hy (lx — k= (kly — 5
m=M+1 Y =%
+2 Z H’}}})(qu—xlr ) (kly — le)ma @ )arg(y xj)| - (2.15)
m=M+1

We deal with the two latter sums separately. We start with the second sum due to its similarity to
the monopole error. Noting that

@/‘_

arg(y — P

<C (2.16)

| v (y) (y‘_ly—x;
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Figure 3. The monopole (a) and dipole (b) errors (logarithmic scale), R;  and R; m in (2.6) respectively, and the bounds from
theorem 2.1 for a single point in space that was relatively close to the source. The colour represents the set for k as given in
figure 4. For the dipoles, we cannot differentiate the different bounds as they all lie on top of each other. We observe that the
dipole errors and bounds are larger. This is in line with theorem 2.1: the dipole error bound decays slower than the monopole
error bound. Although some curves cannot be distinguished, the bounds always overestimate the actual errors. (Online version
in colour.)

where for a vector u= (u1,u2) eR2, u; =(—up,u1) and the positive constant C is defined by
C=maxyey |y — x}-|_1. Thus, combining (2.12), (2.14) and (2.16) gives that

> m

m=M+1

HY (klx — x;)m(kly — %3 (yarg(y

<c Y 217)
m=M+1
where the positive constant C3 depends only on Y, X and K.
Now, we estimate the first sum of (2.15). By virtue of the estimates (2.13) and (2.14), one gets
that there exists a constant C4 > 0 such that

o0 o0
(v v(y)
> Hg)(k|x—xj|)k—|fm( — ) S > oam
m—M41 ly 7 M1

Setting C5 = C4 maxyex |x — x; | 1, 0, one obtains

oo
)
> [HW(kix —x)k —("J,,,qu “xh[=cs 3 ar (218)
m=M+1 ly — m=M+1
Combining (2.15), (2.17) and (2.18) yields the second inequality of (2.7). [ |

(b) Numerical experiments for truncation error estimates

We illustrate our bounds numerically in the case where there is only one source to move, i.e.
Y = {y} and using v(y) = (y — x;)/|y — x;|. The bounds in theorem 2.1 involve a quantity a, that can
be estimated from the relative positions of x, y and x; (respectively, the evaluation point and the
original and new source positions). The bounds also involve constants C1, C that may depend in
non-obvious ways on the different choices of compact sets in space and wavenumber. To estimate
C1 (resp. Cy) for a particular choice of (x, k) € X x K, we assume the truncation error has the form
predicted by the respective upper bound in (2.7), and we find the C; (resp. Cp) that matches the
actual error explicitly for one small value of M. We repeat this estimate on a grid for X x K and
then take the maxima of the estimates for Cj (resp. Cp) over the grid.
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Figure 4. Wavenumber ranges used in the numerical experiments and their visualization in the complex plane. (Online version
in colour.)
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Figure 5. The monopole (a) and dipole (b) errors (logarithmic scale), R; 4 and R; W in (2.6), respectively, and bounds for a range
of points in space at a real k =1, pure imaginary k = i, complex (dissipative) k =1/ 3+ i\/i,z‘ V3, and complex (gain)
k= (99 — |\/19_9) /100 wavenumbers with the colours represented in figure 4. The plots for different wavenumbers cannot
be differentiated. (Online version in colour.)

In figure 3, we show these bounds for {x} x K, for different choices of wavenumber sets in
complex plane and for the fixed evaluation point x = (0, 0.43). The original source location is y =
(0,0) and it is moved to the new location x; = (0, 0.2). We took M = 4 to approximate the constants
C1 and Cp over {x} x K and then use our estimated C; and C; to predict the truncations errors
with M =20 terms. The different wavenumber ranges in the complex plane that we considered
are summarized in figure 4. Then in figure 5, we estimated the constants C; and Cp on X x {k}
for four different wavenumbers k € C. Here X is the region X = [xeR%12 < ly —x;l/1x — xj| <
0.995} N {x1 =0}, i.e. the annulus for which the ratio in the geometric series ansatz belongs to
[1/2,0.995].
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3. Active exterior cloaking at fixed frequency

One can achieve active cloaking by observing [5] that a distribution of monopoles and dipoles on
the boundary 82 of a bounded open £ C B2 can create a field . that cancels out the incident or
probing field u; inside a region £2, while vanishing outside, or in other words satisfying (1.2). By
applying the Green identities (e.g. [4]) or potential theory (e.g. [3]) the function u, = —u; is given
forx ¢ 32 by

5= [ a5) [ 77b G — 3k + ik~ ik 31)
where G(x; k) is the Green function (2.1).

Remark 3.1. The representation formula (3.1) is valid for example when £2 has Lipschitz
boundary 3£2. To see this, we assume 2 C O, where O is an open set and the incident field
u; e HIIOC(O) solves (in the distributional sense) the Helmholtz equation Au; +Kku; =0 in O for
k e C\ {0}. Then as —Au; = k?u; on O, one easily proves by interior elliptic regularity of the minus
Laplacian operator (applying iteratively theorem 2, p. 314 of [20]) that u; € C*°(£2).

We point out that u, = —u; € C*®°(2) and the outward normal vector v(y) € L®(342) since 32
is a Lipschitz boundary. Thus, it is clear that the Dirichlet trace u; is smooth on 342 and that the
Neumann trace [du;/dv(y)](y; k) is in L>°(352). Hence, the integrand in (3.1) is integrable as a sum
of two products of L*°(342) functions. Indeed since we have x ¢ 352, the Green function G(x — y; k)
is smooth for y € 812 and its normal derivative [3G/3v(y)](x — y; k) is in L°°(3£2) as a function of y.

To get exterior cloaking, the idea is to move the monopoles and dipoles on the portions 9£2;
of the boundary 912 to the new source locations x;. Formally, this can be done by replacing
the Green function and its normal derivative in the representation formula (3.1) by their series
expansions (2.2) and (2.4). Theorem 3.2 and remark 3.1 allow to permute the order of the series
and the integral over 352 (since the series is normally convergent with respect to y). Thus we can
express the new cloaking field as

Ngev o0

UK=Y " D" bjmVmlx—x;;k), (32)

}'=1 HM=—00

where V), are multipolar sources (2.3) and the coefficients b;,, are given by (3.4) in terms of
integrals over the 32;, identical to those obtained in [2]. We emphasize that theorem 3.2 is valid
for complex k with the exception of the negative real axis, whereas the result in [2] is only proven
for real k positive. Moreover, theorem 3.2 leverages on the Graf addition formula truncation error
estimates in theorem 2.1, to give the truncation error when we consider instead the truncated

fields:
Ngew M

UM =" 3" b Vinlx—x;h). (3.3)

j=1 m=—M
This error estimate is novel and applies to the results in [2].

Theorem 3.2. Let 2 C R? be a bounded open set with Lipschitz boundary 852. Assume u; is a H}M(O)
solution to the Helmholtz equation, where O is an open set containing §2. Define the region R=R1 U -.-U
RN,,,, i.e. the union of the discs R; in (1.4). Let K be a compact subset of C \ (—o00,0] and X a compact
subset of R2 \ R. Define the coefficients b; y in (3.2) and (3.3) by

_ Uy — %K)
e Gty — 30+ ) — 2] 34)

wherej=1, ..., Ny, m € L and Uy, (x; k) = J;n(k|x|) exp[—imarg(x)]. Then there exists a constant C > 0
(which may depend on K, X, u; and du;/dv(y)) such that for any (x,k) e X x K,

bim= LQ,- @) [

M) M—I—l
[uc(x; k) — He (x; k) = Cn (3.5)
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where

ly — ]
a=max max max <1
=1,....Ngey yed2j |x — I}'|

In particular for any x ¢ R and k ¢ (—oo, 0], we have u.(x; k) = u.(x; k).

Remark 3.3. The integral appearing in the definition of the bj,, in (3.4) can be expressed
as a series when the incident field u; is given in terms of its cylindrical wave expansion
([36], Theorem 2). Although the series expansion is proven for the two-dimensional Helmholtz
equation with k > 0, we conjecture it is valid for complex k.

Remark 3.4. Controlling fields outside of a bounded open set 2 can be useful for the
mimicking problem (making a scatterer inside £2 look like another one) or for cloaking a source
inside £2. This requires an exterior version of the Green representation formula (3.1), which is valid
for Im(k) = 0, when the field to reproduce u; is a solution to the Helmholtz equation outside of £2
and satisfies the Sommerfeld radiation condition (e.g. [37], Theorem 3.3). We are not aware of the
validity of this result for gain media (Im(k) < 0). Therefore, we anticipate that theorem 3.2 can be
adapted to control fields outside of R for Im(k) > 0 and k ¢ (—oo, 0].

(a) Proof of theorem 3.2

Proof. We rewrite the boundary integral representation (3.1) of the cloaking field u. as a sum of
integrals over the portions 312; of the boundary. We then apply (2.2) to yield

Neev
uc(x)ZZJaﬂ y)[ —0u; (y’)— Z Vin(x — x)Um(y — x})

j=1 m=—00

‘("'43 @2 Z Vm(x — x)Unm(y — ] (3.6)

which holds for x ¢ R. We approximate the cloak field by ugM) with coefficients b;, chosen as in
(3.4) to match the |m| <M terms in the series in (3.6). Thus the error we make by approximating
u:(x) by uf,M) at some x ¢ R can be bounded by

Ndev
ZLQ dsu[ 3@”’@)1 T Vil — x)Uny — %)

=1 Im)=M+1

lue(x) — u ()| =

z@/)4 3 Q]) E Vin(x — xj)um@ - ;)i| ‘

|m|=M+1
Naer —du;
szj ds(y) | L2 | Y Vil — 1)Uty — %))
j=1 7022 [m|=M+1
i
+ uf@j)z| _(lj E m(x — x))Um(y — x;)
=M+
We notice that
Rjm(x; k)= Z Vin(x — x)Um(y — x))
|m|=M+1
and
a

> Valx —x)Un(y —xj)|,

|m|=M+1

R py(x;K) =

()
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allowing us to apply theorem 2.1 to bound the truncation by remainders of a geometric series. It
follows that there exists two positive constants Cy ; and Cp; that depend on the compact sets X,
Y;=342; and K such that

|u.:(x)—u("“)(x)|~<NZ‘“J dsw( L0130 + 30 il
E j=1 724 ) / 1—ay;’

with

MaXyeaq, ly — x5l

Ayj=—"—
1 [x — x5l

Setting C1 = maxj_1,.. N,,, C1j and C2 = maxj_1, N, C2;, it follows that

aM+1
lue(x) — uM ()] < < nmax |39 c (3.7)
where, using that u; € c%(3£) and du;/9v(y) is L°°(8£2) by remark 3.1, we introduced
C=ess sup —(y) 1| + max u,—(y)lq (3.8)
yeds? av( ) yedi2 4
and
a= rnax n:llax ayj <1. (3.9
j=

The error bound (3.5) follows by letting C = Nge, C max; j18£2;]. In addition, we have for x ¢ R and

ke C\ (0o, 0] that |uc(x) — ue(x)| = impg_, oo [1c(x) — uf,m (x)] = 0sincea < 1. Hence we have u, = u,
for x ¢ R. The fields do not agree for x € R, because for at least one j€ {1, ..., Ngey}, the series in
(3.2) diverges. |

(b) Stability through the maximum principle
Helmholtz equation solutions satisfy a strong maximum principle if Re(k?) < 0 or equivalently
[Im(k)| > [Re(k)]. (3.10)

Although we use this result for constant isotropic media, it has been proved in the very general
context of the Helmholtz equation with anisotropic heterogeneous media ([26], corollary 2.1).
Another proof in the case of isotropic heterogeneous media appears in ([27], theorem 6).

We now state the strong maximum principle. By interior regularity (see remark 3.1), a solution
ue Hlloc((‘?) to the Helmholtz equation in an open set O with a wavenumber k satisfying (3.10),
is C*°(B) on any open bounded subset B with Lipschitz boundary 3B satisfying B C O. Thus, one
can apply the strong maximum principle on the set B to get on one hand that

max |u(x)| = max Ju(x)],

xeB
and on the other hand that the maximum of |u| is only reached on the boundary 3B of B. We
note that the strong maximum principle is not valid for k outside the region (3.10) as one can find
examples of solutions violating it [26].

In particular if u and v are smooth solutions to the Helmholtz equation in B with k satisfying
(3.10), the maximum of the error |u(x) — v(x)| is attained only at the boundary 3B. In other words,
the error within the domain is controlled by the error on the boundary (the Dirichlet data). This
can be viewed as a form of stability for the boundary integral representation (3.1). Moreover, u,
and u(M) are C®°(B) solutions to the Helmholtz equation on B, where B is a bounded open set
such that B c B2 \ R (see theorem 3.2). Therefore, we can conclude from the maximum principle
that the truncation error of exterior cloaking (|u.(x) — ue )(x )]) reaches its maximum over B
only on the boundary 3B. Finally, we point out that when numerically evaluating the boundary
representation formula (3.1), we use finitely many monopole and dipole sources on the domain
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Figure 6. (a) The configuration of the exterior cloak used for four exterior sources (x;) to maximize the region where an object
can be dissimulated (the blue striped region), we take §p = \/55(. (b) Cloaking region with smallest inscribed circle with radius
I, and largest circumscribed circle with radius r¢, . (a) Inner and exterior cloak configuration, (b) doak with in/circumscribed
circles. (Online version in colour.)

302. Following the same argument, the error we make with this discretization is also maximum
on the boundary of any bounded domain B such that B ¢ R? \ 8£2. We numerically illustrate in
figure 9 that the maximum principle predicts that the maximum cloaking errors occur on the
boundary of a region and not inside.

() Numerical experiments

We explain how we evaluate the truncated cloak field uE,M) in §3c(i). Then the truncation errors
are predicted in §3c(ii) using the error bounds in theorem 3.2. Finally, we explain in §3c(iii) how
we calculate scattered fields when Im(k) = 0.

(i) Evaluation of the cloak field

We illustrate theorem 3.2 numerically using a disc region £2 and n=4 sources, as shown in

figure 6. While we chose to illustrate exterior cloaking with four multipolar sources, only three
M)

are necessary in two dimensions to give a non-empty region cloaking [6]. Cloaking fields ug
with M =22 are shown in figure 7 for several representative wavenumbers on the square [0, 10]?
using a 200 x 200 uniform grid. The disc 2 is centred at (5,5) and with radius éc =10/6. The
xj are uniformly spaced on a circle of same centre and radius 8p (figure 6), where §p is chosen
to maximize the area of the cloaking region for ¢ fixed. The optimization is done via a simple
geometric argument similar to [6] and gives 8p =54/2/3. The incident field is generated by a
point source at y =(2,5). To evaluate the truncated exterior cloaking field, ugm, we use an equi-
spaced discretization of 312, into points y; withi=1,. .., n;,;. We split 312 into n =4 regions each
associated with a new source location x;. We choose n;,; so that there is an equal number of
discretization points of 32 for each 9£2; and choose the x; such that maxy,eaq, lyi — xj| is equal
for all j in order to keep the size of the theoretical divergence regions R; of our devices equal. The
integrals over 342 that determine the coefficients b;,, in theorem 3.2 are approximated using the
midpoint rule (so that the total integral over 812 is the trapezoidal rule).

We note that the colour scale in figure 7 is deliberately limited to exclude the large fields near

(M)

the new source locations x; which are due to the singularity of u, ~ at the x;. This may seem to be
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Figure 7. Field reproductions (b) and the original field (a) at different wavenumbers on the square [0, 10]” with a point source
located at (2, 5) . The colour scale was kept the same for each k and was chosen to highlight the different behaviours of the point
sources for different k. (Online version in colour.)
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an impediment to physically realize such cloaking devices. However, as noted in [6], it is possible
to use the Green exterior representation formula (valid for Im(k) > 0, see [37], Theorem 3.3) to
replace the multipolar sources by a distribution of monopoles and dipoles on some boundary
enclosing each of the x;. Since the cloak field uS,M) is smaller, we expect it is easier to realize in
practice. The drawback is that these ‘extended cloaking devices’ leave only small gaps between
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Figure 8. Predicted and actual maximum error (logarithmic scale) on circles of radius slightly larger than r., and smaller than
I, which are outside of the divergence region of the cloak field. The abscissa corresponds to the parameter £ for the segment
of wavenumbers /C, as defined in figure 4. (Online version in colour.)

the cloaked region and the exterior. By theorem 3.2, we expect that |ugM) (x)] — 0o, when M — oo
for x € R. So increasing M leads to smaller gaps; there is a trade-off between getting larger gaps
and truncating the ideal cloak field u,, see (3.2).

(i) Computation of error bounds and the maximum principle

In order to use the error bounds from theorem 3.2 in our particular geometric set-up, we define
the radius r¢, (resp. rc,) of the largest (resp. smallest) inscribed (resp. circumscribed) circle
that is inside (resp. outside) the divergence region R (defined in theorem 3.2). The inscribing
and circumscribing circles are represented in figure 6. We recall from (3.7) that the cloak field
truncation error can be bounded by the truncation error of a geometric series with ratio a that
is determined by the relative positions of the 3£2;, the x; and the region of interest where we
want to evaluate the fields, see (3.9). Since we expect the cloaking fields to diverge close to
R, it does not make sense to evaluate the errors on the inscribing and circumscribing circles.
We do it instead on slightly smaller or larger circles of radii r¢, + 0.18¢ and rc, — 0.18¢. If we
take the region X from theorem 3.2 to be the union of these two circles and symmetric xj, a
simple geometric argument yields that there are eight points in X that attain the maximum over
X in the definition of a (3.9). At each of these points, the ratio of the geometric series ansatz
is the same, so we can conclude the truncation error can be bounded by C(1 — aM+1) /(1 — a),
where a <1, but the constants C depend on the point. We first estimate the constant C at a
point x by using the ‘empirical method” we used in §2b. In other words, we find the C for
which Iuga)(x) — u,(x)| is equal to C(1 — aM+1) /(1 — a) with M =3. Then we take the worst case
scenario, i.e. the largest of such C for the eight points in X that we considered. We emphasize
that this is a heuristic meant to simplify the exhaustive method, where we would have to
evaluate the largest C for all x € X. We summarize in figure 8 the application of this heuristic
for wavenumbers k € K3 (as defined in figure 4). In these experiments, we used 128 equispaced
discretization points for 32, §c =10/6 and 3p = 54/2/3. Finally the incident field we used for
this experiment was a point source located at x=(8,5). As can be seen from figure 8, the error
bound we obtain for M =22 overestimates the actual error and follows the same trend for varying
wavenumber.

We illustrate in figure 9 that when |Im(k)| > [Re(k)|, the maximum principle (§3b) can be used to
predict where the maximum cloaking error occurs. In fact the wavenumbers we used for figure 8
also allow us to use the maximum principle to observe that a bound for the truncation error on
the boundary of the circle with radius r¢, — 0.16¢ automatically leads to a bound on the whole
disc of same radius.

€2007207 ‘08 ¥ 205§ ‘Ul 11yqeis)/jeuinol/GioBunysijgnd/ianosiefos



Downloaded from https://royalsocietypublishing.org/ on 03 August 2023 by Fernando Vasquez

0
-12
4

()

0
-1
-2
=3
-4
=5
-6
=7
-8

Figure 9. We display the cloaking field truncation error logy, |ur:' — u,| (outside of the ‘extended cloaking devices’ in white)
corresponding to (@) k =i/2 and (b) k =10 + i/2. We note that (a) (resp. (b)) corresponds to the second (resp. third) row
in figure 7. By applying the maximum principle on the disc 3 (dashed curve), we see that the maximum error is attained on
9B in (a) but not in (b). The difference is that the wavenumber in (a) satisfies |Im(k)| > |Re(k)| so a version of the maximum
principle applies, see also figure 2. (Online version in colour.)

(iii) Calculating scattered fields for Im(k) > 0

To demonstrate cloaking, we recall how to calculate scattered fields from a sound-soft (or
homogeneous Dirichlet) obstacle A. Here we follow the discussion in [4]. We assume for simplicity
that the obstacle A is a bounded domain with C? boundary 9A (for similar results in the more
general case of Lipschitz boundary see [38], §9). The scattering problem can be posed as the
following exterior Dirichlet problem

Aus+itu; =0, xeR*\ A

and

Us =—u;, xe€adA,

where u; also satisfies the Sommerfeld radiation condition

lim |x|/2 (% - 1k) us(x) =0,
where d/3|x| denotes the radial derivative and the limit is uniform for all directions x/|x| (see
[4], §3.4). The exterior Dirichlet problem has a unique solution u; € Hlloc (R \ A) for Im(k) > 0 and
;| € HY2(3A), e.g. ([4], §3.2). This is clearly the case under the assumptions in remark 3.1, since
u; € C*(af2).

We seek the scattered field in the form of a mixed single and double-layer potential ¢ €
H/2(3A) satisfying

us(: k) = LA ds(y) (%

where 5 #0, satisfying nRe(k) = 0, is a coupling parameter. This choice guarantees invertibility
for Im(k) =0 (e.g. [37], §3.6) but it is not necessary when Im(k) > 0. The corresponding boundary
layer operators are defined for x € dA by

(x —y;K) — inGlx — y; k)) v, (3.11)

(o)) =2 LA dS@IG — y;Ke(v)]

and

aG
koW =2[ d56)| jrste—hee)].
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for the single and double-layer potential, respectively. We note that the operators can be taken as
bounded operators S, K : L2(3A) — L%(3A) (e.g. ([39], Theorem 4.4.1) for smooth 3A or ([38], ch. 6)
for C% or even Lipschitz dA). We also need the following jump relations, letting z € R \ dA

tim | dS@IGe - ko) =202
2A

- (3.12)

av(y)

where z — x denotes the limit from the exterior of A. Taking the limit of (3.11) as we approach
the boundary of A from the exterior and applying (3.12) yields

¥ + Ky — inSy¢r = —2u;)4, (3.13)

which has a unique solution ¢ (e.g. [4], §3.2). We assume that dA admits a 2w-periodic
parametrization of the form

and lim LA dS(y)[

z—xt

- ko) =3 (v + K010,

q(z) =(x1(x),x2(xr)), 0=t <2m,

that is g([0,27]) = 8A and q is assumed smooth for our numerical experiments. As noted in e.g.
([4], §3.5), (3.13) is an integral equation of the second kind with a weakly singular kernel. There
are several methods to discretize such integral equations, e.g. [40] for a review. Here we chose the
Kapur—Rokhlin method [41], which is based on the trapezoidal rule for periodic functions. In this
method, the unknowns are the values of ¢ at uniformly spaced points of [0, 2r]. To account for
the singularity, the entries in a band of the system matrix are weighted so that the quadrature is
exact for polynomials of a given order (sixth order in our case).

We do note that the Kress quadrature [4] was used in [6] for computing the scattered fields
with k > 0 and is spectrally accurate. Unfortunately, accuracy of the Kress quadrature degrades for
complex k. Indeed, the Kress quadrature is obtained by splitting the singular kernel into a singular
and non-singular part. The latter requires the evaluation of Jy(kr), which grows exponentially in
Im(k) for fixed r > 0, e.g. ([11], §10.7). The correction weights for the Kapur—Rohklin method only
depend on the type of singularity and order of the method. Thus the Kapur—Rokhlin is better
adapted for complex k. Convergence for k complex follows from convergence of the method for
the real and imaginary parts, considered individually.

4. Active exterior cloaking for the heat equation

We now apply the single wavenumber exterior cloaking approach to the time domain heat
equation. We recall in §4a other cloaking approaches. We then use the Fourier-Laplace transform
to obtain the Helmholtz equation from reasonable heat equation solutions (§4b). The exterior
cloaking approach is applied for different wavenumbers and then put together again in §4c via
the inverse Laplace transform. The details of the discrete Fourier transform-based algorithm we
used for this purpose are given in §4d.

(a) Other cloaking approaches for the heat equation

Cloaking for the heat equation was originally introduced through a change of coordinate system
[42], inspired by transformation optics [43,44]. However, this approach leads to an extreme
anisotropic thermal conductivity, and even a thermal cloak designed through a regularized
geometric transform suffers from limited efficiency in the transient regime [42]. A good thermal
cloak efficiency requires as many as 10000 isotropic concentric layers to finely approximate
its spatially varying anisotropic conductivity [45]. Thus, fabricated metamaterial cloaks with a
limited number of layers suffer from reduced efficiency in the transient regime [46-50]. For other
passive cloaking and mimicking approaches see e.g. [51,52]. Recent advances in thermal cloaking
are thus underpinned by inverse homogenization problems that require heavy computational
resources. On the other hand, thermoelectric devices have been proposed to pump the heat flow
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accurately from one side of a thermal cloak to the other side by adjusting the input current,
so that the background temperature field can be restored in a stationary regime [53,54]. In our
former work [55], we envisioned using Peltier devices (surrounding the object to cloak) to control
transient thermal fields generated by a source. The approach we present here can be viewed as
a generalization of that in [56] that considered a single dipole source placed inside the object
to cloak in the stationary regime. There should be a trade-off between using a single dipole
source and numerous monopole and dipole sources to achieve efficient thermal cloaking in the
transient regime, which is what motivated the present work. Numerical optimization techniques
can also be used to achieve active exterior cloaking for the heat equation [57]. Our analysis is
performed in the frequency regime, where we can extend results of [6] to the Helmholtz equation
with complex wavenumbers. Results are then translated in the time domain through the inverse
Fourier-Laplace transform.

Remark 4.1. Since our approach is based on the Laplace transform of the time domain heat
equation, it is more convenient to assume a zero initial condition. Indeed a non-zero initial
condition would appear as a source term for the Helmholtz equation, which would prevent
us from using the interior reproduction formula (3.1). However, as noted in [55], if the initial
condition is a steady-state solution to the heat equation (i.e. harmonic) we can use the linearity of
the heat equation to apply our approach to u(x, t) — u(x, 0).

Remark 4.2. As we see next, we obtain solutions to the heat equation that achieve exterior
cloaking but they can be large as we get close to the new source locations x;. However, as
noted in [55], it is conceivable to use Peltier devices to physically implement the interior/exterior
reproduction formula for the time domain heat equation [58]. This procedure allows to replace
point-like sources by active surfaces that we call ‘extended cloaking devices’, which would keep
the temperatures at levels that would be practical to implement.

(b) From time domain to frequency domain

We now apply our frequency domain cloaking approach to the heat equation. The temperature
u(x, f) (measured in Kelvin) in a homogeneous isotropic medium satisfies the heat equation

a
,«:)e:a—‘t1 =kAu+h, fort=0, (4.1)

where t is the time (s), p is the mass density (kg m_z), ¢ is the specific heat (J K1 kg_l) and
k is the thermal conductivity (W I(_l). Here we assume that p, ¢ and « are positive constants.
The source term is h(x, t) (W m~2) and assumed causal, i.e. h(x,t) =0 for t < 0. For simplicity, we
assume a zero initial condition and consider

M oAutr L fortso, (4.2)

ot pc
where o =« /pc is the thermal diffusivity (m2s™1). Assuming further that the source term h e
Llloc((O, 00), LZ(RZ)) satisfies the growth condition (1.7) with LZ(]RZ) norm, & >0 and an integer
p =0, we can see that e~ fth(x, 1) EL?'([O, o00), L2(R?)) for any & > «a. Using ([15], Corollary 2, p.
238) it is possible to conclude that (4.2) admits a unique solution u(x, t) satisfying e ftu(x, ) e
L%([0, 00), H2(R?)) for any & > «. This allows to define the Fourier-Laplace transform (1.6) of all
terms in (4.2) on the half plane C7, thus obtaining the Helmholtz equation

i h
At ) + Lu(e) =222, @3)

K

where the wavenumber is k = iy/—1w/o, using the principal value of the square root and h is the
Fourier-Laplace transform of h. We note that Re(k?) = Re(iw/o) < 0, whenever Im(w > 0), which
guarantees that the Helmholtz equation satisfies a form of the maximum principle for any w € C}
(since a = 0), for x outside of the support of the source 1 (see §3b and (1.8) for the definition
of C}).
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Figure 10. (a) Temperature distribution at time t = 4 with o = 1.5 (see (4.2)) resulting from a point source at location (8, 5)
in the presence of a ‘kite’ object with homogeneous Dirichlet boundary condition. () The same object and source as in (g), but
with the cloaking devices activated. The temperatures outside of the black circles are bounded by u,,,, == 6.2 (see (4.4)) for
t < [0, 4]. The computational domain was [0, 10]2. The linear colour scale spans temperatures in [—0.0133, 0.0133] and ranges
from blue (negative) to red (positive), with zero represented in white. (See also the movie in the electronic supplementary
material.) (Online version in colour.)

() Numerical experiments

We show in figure 10 a numerical simulation of active exterior cloaking of a Dirichlet object (a
‘kite’ with constant zero temperature at its boundary) and compare it with the case where there
are no cloaking devices. For the purposes of the numerical experiments, we non-dimensionalized
(4.2) choosing o =1.5 and p=c=1. As can be seen from the time snapshot in figure 10, the
isotherm lines without the cloaking devices are significantly different from those of the point
source that we used as the incident field u;, this is because of the field ‘scattered’ by the object.
For an observer far from the cloaking devices, the isotherms appear consistent with those of a
point source, so it is hard for the observer to detect the object from thermal measurements. In our
numerical experiments, the region £2 is a disc centred at (5, 5) and with radius ¢ = 10/6 enclosing
the “kite” object. We moved the distribution of monopoles and dipoles to four new source locations
determined as in figure 6 with 8p = 5+/2/3. We note that three new source locations would have
been sufficient, as in [6]. The fields are calculated on [0,10]? using a 200 x 200 uniform grid.
The incident field is generated by a point source at y=(8,5). The integral in theorem 3.2 is
approximated with 256 uniformly placed points and the series in (3.3) uses the truncation M = 22.
The boundary of the scatterer is discretized using 512 equally spaced points on the parametric
representation of dA and the scattered fields (in the frequency domain) are calculated according
to the scheme in §3c. The frequency domain calculation is performed for 2050 frequencies and the
Laplace transform is inverted using a Fast Fourier Transform-based method (see §4d).

Because the multipolar sources are singular at the x;, the cloaking field diverges as we approach
the x;. This could limit the physical implementation (e.g. because the material starts degrading
with such high temperatures). Of course, we may use the Green exterior representation formula
(e.g. [55,58]) to replace each of the multipolar sources by a monopole and dipole distribution on
surfaces containing the multipolar source. These active surfaces or ‘extended cloaking device’
could be realized in practice using Peltier devices [53] and the temperatures do not need be
unreasonably large. To illustrate this, we display in figure 10 black circles centred at the new
source positions, outside of which we are guaranteed to have |u(gM)(x, t)| < umax- Our choice
Upnay 1S

=100 i(x,1)|. 44
Umax (x,t)g;?a;[ 01 |ui(x, £)] (4.4)
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Figure 11. The solid blue curve corresponds to circular active surface radii (relative to the scaling parameter &) to achieve
exterior cloaking of a point source located at (10, 1) for 40 different values of the scaling parameter 8¢ and for £2 centred at
(10, 10) (figure 6). The dotted line corresponds to the value for which the circles touch. Since the blue data points are below
the dotted line, there are gaps between the circular active surfaces, showing that even the ‘extended cloaking devices' do not
completely surround the object (exterior cloaking). (Online version in colour.)

This choice is not a statement of what is feasible, but simply for illustration purposes. In figure 10,
we have T=2 and umax ~ 6.2.

To show that we are achieving exterior cloaking even when replacing the multipolar sources by
extended cloaking devices (circular active surfaces), we changed the scale 3¢ (radius of £2) of the
cloaking configuration in figure 6 with 8p = +/28, keeping £2 as a disc with a fixed centre (10, 10)
and a fixed point source positioned at (10, 1), which generates the incident field (see also §3c(i)).
For all values of 5c, we used the same diffusivity & = 1.3 in (4.2), truncation M = 22 and 128 points
to discretize a parametric representation of 3£2. The temperature fields where evaluated using
130 wavenumbers. The computation was repeated for 40 equally spaced 8¢ in the interval [1, 8],
chosen so that the divergence region R from theorem 3.2 does not include the source location.
For each 8¢, the cloak field was evaluated on a 100 x 100 uniform grid of the square [0, 2(}]2
and the circles outside of which |u(x, f)| < umax were determined with T=1 in (4.4). We display
in figure 11 the radius of these circles relative to ¢ and as a function of §¢c. The dotted line in
figure 11 corresponds to the radius for which the circular active surfaces would touch and match
the divergence region R. As we can see from figure 11, the circular active sources do not touch, and
thus we have exterior cloaking even in this situation. Roughly speaking, according to figure 11,
the “urchins” have a radius that is about 70% of the radius of the grey circles in figure 6.

(d) From the frequency domain to the time domain

For convenience, we express the numerical algorithm we use to go from frequency domain to time
domain in terms of the Laplace transform of u(x, t) rather than the Fourier-Laplace transform (1.6).
Under the same growth condition assumption (1.7) on u(x, t), its Laplace transform is

u(x, s) = J:o dtfe—tu(x, )], (4.5)

which is well defined for Re(s) > «, where « > 0 is defined in §4b. Clearly we have u(x, s) = u(x, is),
where the right-hand side is the Fourier—Laplace transform of u given in (1.6). The inverse Laplace
transform is then given by

1 c+ioo o
u(x,t)z;J dsleu(x, 9], (4.6)

Tl Je—ico

€2007207 08 ¥ 205y ‘Ui 11yqeis1/jeuinolGioBurysiignd/ianosiedor



//royalsocietypublishing.org/ on 03 August 2023 by Fernando Vasquez

.
.

Downloaded from https

for any ¢>a.® We follow the numerical method in [59] for computing the inverse Laplace
transform by approximating it with a discrete Fourier transform (or DFT, which can be evaluated
efficiently with the Fast Fourier Transform or FFT, see [60] for a definition). For a review of
numerical inverse Laplace transform methods, see [61]. The idea is that to a uniform grid of the
time interval [0, T] with N points, i.e. t, =pAt€[0,T], p=0,...,N —1, At=T/N, we associate
the discretization of a dual variable w given by w;=gqAw, 4=0,...,N —1, Aw=2n/T. The
discretizations are chosen such that t,w,; =2xpg/N, which is the negative of the phase of the
complex exponential in the DFT of length N. Using the change of variables s = ¢ + iw in equation
(4.6) and approximating with a Riemann sum on a finite interval yields the following (we assume
u(x, t) is real)

o0

u(x, t) = % j dwlexp(ct) exp(iwt)u(x, c + iw)]

N-1
S % Z Aw[exp(ct) exp(iwgt)u(x, c + iwg)]
g=—(N-1)
exp(ct) N-1 ) .
= E [exp(iwgtIu(x, c + iwg)]
g=—(N—1)
N-1
=2 ex;;(ct) Re Z{% [exp(—iwgtu(x, ¢ — iwy)] — “(J;' 9 ,
q’:

where the last equality follows by the symmetry for Laplace transforms of real functions (u(x, s) =
u(x,5)). By evaluating at the t,, our approximation can be written in terms of the real part of a DFT:

N-1
e ty) = ZEXP;Ctp) Re Z [exp(—itpwy)u(x, c — iwg)] — U(xz, c)
)
_ zexP,I(_Ctp)Re I:fft(“(xr"" —iwy),q=0,...,N—1)— I-I(IZ,C):I .

Here ££t(v) represents the DFT of a vector v of length N, as defined in [60]. Thus we end up
evaluating the frequencies w; =w; + ic, 9=0,...,N—1. As noted in [59], the convergence only
holds for [0, T/2), so in practice we use N = 2N + 2 and only use the first N + 1 time steps to give
convergence on the interval [0, T] . Here the additional two frequencies mean the terminal time
step is T as opposed to T — AT. Since the heat equation solutions we consider decay, we takea =0
and set c=a — (Aw/27) In(107®) > 0. We note that there are methods to speed up convergence of
this class of numerical inverse Laplace transform, e.g. [62].

5. Summary and perspectives

In our earlier work on active exterior cloaking for the parabolic heat equation [55], we noted in the
concluding remarks that our approach could also be tied to the active exterior cloaking strategies
for the Helmholtz equation by going to Fourier or Laplace domain in time. Here we have shown
that it is possible to cloak objects from thermal measurements by using active heat sources,
starting from a zero temperature condition. We believe that our work opens up a new path for
active cloaking for a variety of physical situations, in addition to the class of differential equations

éWe note that the assumptions of §4b (i.e. the growth control of the source term, the zero initial condition and the causality of
u) imply that for any £ > o > 0 : e~$*u(x, ) € L*([0, 00), H2(R?)) and (using the heat equation) that e~5!3u e L([0, c0), L2(R2)).
Thus, one has that u(-,5) = s=! £(3u)(-, s) is analytic with respect to s for Re(s) > &, where £ stands for the Laplace transform.
Since [|£(3;u)(-,s)|| — 0 for Re(s) = ¢ > e and |s| — oo, we get ||u(-,s)|| = o(}s|™). We need a little more of decay to use the
formula (4.6) for the inverse Laplace transform. It is enough to assume that there exists £ = 0 such that ||u(-,s)|| = Cls|—1+)
for Re(s) = ¢ > a. Then, (4.6) is well defined as a Bochner integral valued in L?(R?) (see e.g. the proof of [19], Theorem 2.5.1 or
[22]) and thus also pointwise for a. e. x e B and all ¢ = 0.

Gzttt o5 o g st tisasandcporei [



//royalsocietypublishing.org/ on 03 August 2023 by Fernando Vasquez

.
.

Downloaded from https

of the form (1.5). Indeed, complex wavenumbers make it possible to model pseudodifferential
operators in time such as fractional time derivatives [63] and integro-differential equations. This
opens new avenues in active exterior cloaking. To give an example of this flexibility, consider a
(non-dimensionalized) heat equation with memory that arises when considering homogenized
diffusion models in fractured media [64]

du [t du
m —l-Lp(f— t)a(r)dr:Au+h, (5.1)

where h(x, t) is a source term and p(t) is a causal convex monotone decreasing history function (e.g.
p(t) = a exp[—at] for t = 0). Indeed by taking Fourier—Laplace transform and assuming zero-initial
conditions we get in the frequency domain

Au(x, ) — (—iw + plo))u(x, w) = —h(x, o). 5.2)

The present work allows us to also study active cloaking in the context of diffusive photon

density waves governed by

3

3—‘:+;¢u:crAu+l}, fort=0, (5.3)
where ;. > 0 is an absorption coefficient, o is a conductivity and h represents the photon current
density (photon flow per unit surface and per unit time). Making use of the Fourier-Laplace
transform (1.6) and assuming zero initial conditions, (5.3) takes the form of the Helmholtz
equation in the context of diffusion wave scattering
h(x, w)

u(x; w) = — P (5.4)

Au(x;w) + 21

where we note that (5.4) reduces to (4.3), when w 3> u. Scattering cancellation of such diffusive
waves has been addressed in [65,66].

Moreover, advection—diffusion problems play a prominent role notably in diffusion and
mixing of fluid flow modelled by [67]

du
pcﬁz—v-Vu+xAu+l), for t=0, (5.5)

where v is a constant velocity, p is a mass density, « a conductivity and c the heat capacity. The
same equation is known as the Fokker—Planck equation and is central to models for transport of
salt, heat, buoys and markers in geophysical flows [68,69]. It turns out that one can recast (5.5)
using the exponential variable transform [70]

u(x, ) =exp [% - x] w(x,t) and bh(x, t)=exp [% . x] gx, 1) (5.6)

together with the Fourier-Laplace transform (1.6), into the Helmholtz equation (assuming zero
initial conditions)

Aw(x; w) — rzw(x; w) =

X, @
_gxe) (5.7)
K

where 2 = (| v| /2x)? — iw/o, and & = «/(pc).

Finally, the exterior cloaking theory that we developed may allow us to also achieve exterior
cloaking in the context of Maxwell-Cattaneo heat waves governed by [71]

Pu 9 3
r3—5+3—‘:=mu+:ma_‘:+h, fort>0, (5.8)

where « is the thermal conductivity, o accounts for diffusive phenomena, r is the thermal
relaxation time (that corresponds to the time it takes for a medium to reduce its temperature to
half). We assume that «, 7, o are positive constants. Making use of the Fourier—Laplace transform
(1.6) with zero initial conditions, (5.8) takes the form of the Helmholtz equation in the context of
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diffusion wave scattering

Au(x; w) + Mu(x; w)=— h(x, w)

K —iwto Kk —iwro’

(5.9)

and thus one can define k% = w(wt + i)/(x — iwto) that, unlike for the Fourier heat equation (4.3),
can lead to propagating features (when Re(k?) > 0). Scattering cancellation of such diffusive waves
has been addressed in [72].

Another situation where complex wavenumbers may play a prominent role is for in-
plane pressure and shear elastodynamic waves propagating in passive, dissipative, active or
even viscoelastic media (the case of anti-plane shear waves would be covered by the two-
dimensional scalar Helmholtz equation with complex wavenumber). The latter, viscoelastic
media, would require using the Helmholtz decomposition proposed in [73] u=V® +V x ¥,
with ¥ a divergence free vector field, in the vector Navier equation

(X +2a)VV -u+ aVZiu+ po?u=0, (5.10)

where A=) + MM, =p+nsM, M being a convolution operator with certain power law
(named after Szabo & Wu [74]), 2, 1 are the usual Lamé parameters, p is the density and 7, , < 1.
Our approach would then be applied to Helmholtz equations with the complex wavenumbers for
shear (s) and pressure (p) waves

K (@)= (1 - ﬂM(w)) , m=s,p, (5.11)
G

with ¢, = /(A +2u)/p, ¢ = Ji/p, the pressure and shear wave velocities, respectively, vp =

(np + 2n5)/p, vs = ns/p and where the multiplication operator M is the Fourier transform of the

convolution operator M. The Hodge decomposition can also be applied to split the elastodynamic

wave equation with isotropic viscoelasticity into two acoustic wave equations in time (P and S

waves) that can be transformed into the Helmholtz equation, see [75].

There may also be ways of adapting our approach to other differential operators in space. One
example would be to consider constant anisotropic media (e.g. coming from a homogenization
approach). We believe that our strategy could be also applied to (1.5) wherein the Laplacian is
replaced by a bi-Laplacian in the right-hand side. This problem arises when modelling flexural
waves in thin elastic plates, which are governed by the Kirchhoff-Love equation. Active cloaking
in this context has been considered in [9]. We are also considering applying our theory to active
cloaking for flexural gravity waves in floating thin elastic plates that would involve a tri-Laplacian
in the right-hand side of (1.5) [76].

We conjecture that our approach can be adapted to the three-dimensional Helmholtz equation
for complex wavenumbers, which would allow us to address cloaking in general dispersive
media (including media with losses or gain). As in [7], we plan to use an addition theorem for the
Green function involving spherical Hankel functions, e.g. ([4], §3.3). Neither the Green function
nor the spherical Hankel functions have branch-cuts, which may simplify the results for complex
wavenumbers. Finally, we note that open questions related to gain media (Im(k) < 0) remain. In
particular what is a sensible functional space setting for the exterior Green representation formula
and for the scattering problem in gain media. We believe that the approach of exterior cloaking
which we have developed in this article allows us to cover a broad range of problems for active
cloaking of diffusion and wave phenomena.

Data accessibility. We provide the following supplementary materials. (i) A movie animating figure 10. (ii) The
MATLAB code to reproduce figures 3, 5, 7-11 is available in the repository [77].
The data are provided in the electronic supplementary material [78].
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Appendix A. Proof of lemma 2.2

Proof. Step 1: We prove first (2.9). The entire function J, is defined ([11], eq. 10.2.2) via the
following power series:

n n _ 13k n
Ekl n+k)'f( )+2k=$(§) +gﬁ(%) +2k, VzeC. (A1)

As1l/(n+k)!=1/(n+1)! for k=1, one gets

X (=1k [ zy\ntk 1 1z [ & 1 [z 22 Cx, (lz1\"*?
g k! (n + k)! (E) = (n+1)! (?) g M (?) = [CE] (?) , (A2)

where the positive constant Ck, is defined by

ith f entire defined b > L2y
CKlzlgé?()](f(lzD with f entire define Yf(z):gﬁ(i) , VzeC. (A3)

We point out that f(z) :4(exp(22;'4) — 1),.r‘z2 for z#0 and f(0) =1. Thus, (2.9) is an immediate
consequence of (A1) and (A 2).

Step 2: The asymptotic formula (2.10) for J;, follows immediately from the asymptotic
expansion (2.9) and the recurrence formula (see [11], eqn 10.6.1) J,,(z) = (1/2)(Ju—1(2)) — Jn+1(2))-
Another way to obtain the formula (2.10) is to differentiate the power series that defines J,, and
apply the same method as for formula (2.9).

Step 3: We now prove (2.11). By definition of the Hankel function Hy, (v (see [11], eqn 10.4.3), one
has forallze C\ (—o0,0]:

Using (A 1) and the series representation of Y, on C \ (—o0, 0] (see [11], eqn 10.8.1) on the previous
expression leads to:

. n . nn—1
who R () = (3) R () e e

k=1

where

Ln,2)=(3)" i (% (21n(3) = v+ 1D plen+1)+ 1) kn;—i)u (g)”‘ ,

where In is the principal value of the logarithm function with a branch cut on (—oo,0] and ¢ :=
I''/T" with I" the well-known Gamma function. We estimate now the two terms appearing in
(A 4). For the first one, one obtains

H R ]

k=1
n—2
<oy (i) , (A5)

b4 z|
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with the constant Ck, defined by replacing the compact K1 by K3 in (A3). As the function
evaluated on integers (see [11], eqn 5.4.14) is given by

m
Y(m+1):= E 1 +y form=>1withy =T"'(1)=v(1) the Euler constant,
p:l
the second term of (A 4) can be bounded by

o=t () (5)
x[g(zpn( )|+C+§ 'ff )kanrk)T(IZI) }

with C=2y + = (we point out that we use the inequality ¥ (k+ 1) <y (k + 2) for k> 0 to avoid
the particularity of the case k =0). Then, using the following inequality Z;;l 1/p <In(m) + 1 for
m > 1 (obtained by comparison of the harmonic series with the integral) and the fact that In(k +
1) <In(n + k), one gets that

( 2)] n—2 |ZI 2!1—2
(2l = = 2 (IZI) (?)

S 2k
[Eer@lres e i (3]

Notice that
In(n + k) In(n + k) 1 1 1 1
TR oy yompr e e e P T e T

50 we obtain that

e Z)|_lgﬂ_2;! (%)ﬂ—ﬂ(%)%—z (2[im(3)] +c+4) [Z Kk + 1) (IZ|) }

By introducing the entire functions,

|2\ 22 1 z\2%
g(2) = E(H ( ) and h(z)_gk!(k—m(i) ,VzeC,

it follows that

II2(n,2)| < Cx,(n —2)! (IZ?')H with Cg, = 1 7 maxg (IzD) ( |ln ( )| +C +4) h(lz)).
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