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LEAST SQUARES SOLVERS FOR ILL-POSED PDES THAT ARE

CONDITIONALLY STABLE

Wolfgang Dahmen1, Harald Monsuur2 and Rob Stevenson2,*

Abstract. This paper is concerned with the design and analysis of least squares solvers for ill-posed
PDEs that are conditionally stable. The norms and the regularization term used in the least squares
functional are determined by the ingredients of the conditional stability assumption. We are then able
to establish a general error bound that, in view of the conditional stability assumption, is qualitatively
the best possible, without assuming consistent data. The price for these advantages is to handle dual
norms which reduces to verifying suitable inf-sup stability. This, in turn, is done by constructing appro-
priate Fortin projectors for all sample scenarios. The theoretical findings are illustrated by numerical
experiments.
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1. Introduction

In this paper a general approach is developed for the numerical solution of ill-posed boundary value problems
𝐴𝑢 = 𝑓 , where 𝐴 ∈ ℒ(𝑋,𝑉 ) for Hilbert spaces 𝑋 and 𝑉 , that are conditionally stable. The latter means that
for all 𝑢 ∈ 𝑋 that satisfy an a priori bound of the form ‖𝐿𝑢‖𝐻 ≤ 𝐶, for some 𝐿 ∈ ℒ(𝑋,𝐻) and a Hilbert space
𝐻, there is a continuous dependency of the solution on the data in the sense that, for some 𝜂 = 𝜂𝐶 : R+ → R+

with lim𝑡↓0 𝜂(𝑡) = 0, it holds that 𝑗(𝑢) ≤ 𝜂
(︀
‖𝐴𝑢‖𝑉

)︀
for some 𝑗 : 𝑋 → R+. In applications 𝑗(·) is a (semi-) norm

that is weaker than the norm on 𝑋, and, e.g., 𝜂(𝑡) = 𝑡𝑠 or even only 𝜂(𝑡) = (−1/ log 𝑡)𝑠 for some 𝑠 ∈ (0, 1].
Conditional stability has been established for various ill-posed PDEs including data-assimilation and Cauchy
boundary data problems for Poisson’s, heat and wave equations.

For finite dimensional subspaces 𝑋𝛿 ⊂ 𝑋 (“𝛿” refers to “discrete”), we approximate 𝑢 by the minimizer 𝑢𝛿
𝜀

over 𝑋𝛿 of the regularized least-squares functional 𝑧 ↦→
√︀
‖𝐴𝑧 − 𝑓‖2𝑉 + 𝜀2‖𝐿𝑧‖2𝐻 . For a suitable selection of 𝜀, it

will be shown that both ‖𝐿(𝑢−𝑢𝛿
𝜀)‖𝐻 is uniformly bounded, so that 𝑗(𝑢−𝑢𝛿

𝜀) ≤ 𝜂
(︀
‖𝑓−𝐴𝑢𝛿

𝜀‖𝑉
)︀
, and ‖𝑓−𝐴𝑢𝛿

𝜀‖𝑉
is bounded by an absolute multiple of ‖𝑓 −𝐴𝑢‖𝑉 + min𝑧∈𝑋𝛿 ‖𝑢− 𝑧‖𝑋 , being the sum of the consistency error
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and the error of best approximation. Consequently, we will achieve qualitatively the best possible bound on the
error quantity 𝑗(𝑢− 𝑢𝛿

𝜀) that can be expected for 𝑢𝛿
𝜀 ∈ 𝑋𝛿 in view of the conditional stability estimate.

In applications often 𝑉 is of product form
∏︀

𝑖 𝑉𝑖, and so 𝐴 = (𝐴𝑖) and 𝑓 = (𝑓𝑖), with one or more 𝑉𝑖 being
a Sobolev space with negative smoothness index, which is a natural space for a forcing term of a PDE, or a
fractional Sobolev space on (a part of) the boundary of the computational domain, which is a natural space for
a boundary datum. The norms on such spaces cannot be evaluated exactly.

An option to deal with a Sobolev norm of negative smoothness index is to replace it by an 𝐿2-norm. This,
however, requires more smoothness of the data and more regularity of 𝑋𝛿, e.g., a 𝐶1- instead of a 𝐶0-finite
element space, whereas it is not ensured that the error benefits from smallness of the residual in a stronger norm.
Similar disadvantages are connected to the replacement of fractional Sobolev norms by (weighted) 𝐿2-norms.

Our approach to deal with 𝑉𝑖 being a Sobolev space with negative smoothness index, i.e., a 𝑉𝑖 being of the form
𝑌 ′

𝑖 , is to replace ‖ · ‖𝑌 ′
𝑖

in the least-squares functional by a discrete dual norm ‖ · ‖𝑌 𝛿
𝑖

′ , where 𝑌 𝛿
𝑖 = 𝑌 𝛿

𝑖 (𝑋𝛿) ⊂ 𝑌𝑖

is such that ‖𝐴𝑖 · ‖𝑌 ′
𝑖

is equivalent to ‖𝐴𝑖 · ‖𝑌 𝛿
𝑖

′ on 𝑋𝛿, and dim𝑌 𝛿
𝑖 is proportional to dim𝑋𝛿. The first property

is known to be equivalent to existence of a (uniformly bounded) Fortin projector 𝑌𝑖 → 𝑌 𝛿
𝑖 .

By introducing the Riesz lift of the corresponding residual 𝑓𝑖 − 𝐴𝑖𝑢
𝛿
𝜀 ∈ 𝑌 𝛿

𝑖
′
as an independent variable, the

resulting least squares problem has an equivalent formulation as a mixed system, which does not involve the
dual norm ‖ · ‖𝑌 𝛿

𝑖
′ , and which is Ladyshenskaja–Babus̆ka–Brezzi (LBB) stable by virtue of the existence of

the Fortin projector. In many cases, one can construct a 𝐺𝛿
𝑌𝑖

: 𝑌 𝛿
𝑖
′ → 𝑌 𝛿

𝑖 (known as a preconditioner) with

(𝐺𝛿
𝑌𝑖

−1
𝑣)(𝑣) equivalent to ‖𝑣‖2𝑌𝑖

, and whose application can be performed in linear complexity, in which case
one can efficiently eliminate the additional variable and so retrieves a symmetric positive definite system.

We handle fractional Sobolev norms in the same manner. Viewing a fractional Sobolev space 𝑉𝑖, with either a
positive or negative smoothness index, as the dual of 𝑌𝑖 := 𝑉 ′

𝑖 , first we construct a (uniformly bounded) Fortin
projector 𝑌𝑖 → 𝑌 𝛿

𝑖 , and second, to avoid having to compute fractional norms with opposite index of arguments

from 𝑌 𝛿
𝑖 , we use a preconditioner 𝐺𝛿

𝑌𝑖
: 𝑌 𝛿

𝑖
′ → 𝑌 𝛿

𝑖 with (𝐺𝛿
𝑌𝑖

−1
𝑣)(𝑣) equivalent to ‖𝑣‖2𝑌𝑖

.

The steps to handle dual or fractional norms, mentioned above, make our approach practically feasible without
compromizing its attractive theoretical properties. Indeed, still one obtains a bound on the error quantity
𝑗(𝑢− 𝑢𝛿

𝜀) that is qualitatively the best possible.

We exemplify our approach by constructing Fortin interpolators and preconditioners for the examples of the
Cauchy problem for Poisson’s equation, and data-assimilation problems for wave- and heat-equations. Further-
more, for those examples we illustrate our theoretical findings with numerical results.

Our approach to minimize a regularized least squares functional is of course not new. Not making use of
conditional stability, in [5, 8, 9] this method was analyzed for a regularizing term 𝜀2‖𝑧‖2𝑋 , instead of our choice
𝜀2‖𝐿𝑧‖2𝐻 suggested by the conditional stability condition. By replacing the test function from 𝑋 by minus this
test function, a non-symmetric mixed system on 𝑋 × 𝑉 is obtained that is coercive, with a coercivity constant
that is, however, proportional to 𝜀2. With this formulation the notion of stability is fully due to the stabilization
term. By our approach to guarantee LBB-stability, the operator 𝐴 contributes to the stability of the least-
squares problem. It results in a proof of convergence rates in the error quantity associated to the conditional
stability estimate that seems new.

The use of conditional stability estimates for the numerical solution of various ill-posed PDEs has been
advocated in series of papers [11–19]. In those works a control functional is minimized under the constraint that
the state satisfies the PDE. Instead of adding Tikhonov stabilization at the continuous level, mesh-dependent
stabilization terms tailored to the application at hand are added to the finite element discretization.

1.1. Layout

In Section 2 we recall the concept of conditional stability for ill-posed problems 𝐴𝑢 = 𝑓 . Under the provision
that approximations 𝑢𝛿

𝜀 to 𝑢 from finite dimensional spaces 𝑋𝛿 are available that satisfy a certain quasi-optimal
error bound in an 𝜀-dependent energy norm, it will be demonstrated that, for a judiciously chosen regularization
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parameter 𝜀, a qualitatively best possible upper bound holds for the error quantity 𝑗(𝑢 − 𝑢𝛿
𝜀). In Section 3 we

present several classical examples to which the theory applies. In Section 4 the aforementioned quasi-optimal
error bound will be demonstrated for 𝑢𝛿

𝜀 ∈ 𝑋𝛿 being the minimizer of a regularized least squares functional, in
which, under inf-sup conditions, dual norms are replaced by discrete dual norms. The resulting least-squares
problem has an equivalent formulation as a mixed system. Section 5 is devoted to a reformulation of the mixed
problem as a symmetric positive definite variational problem, based on uniform preconditioners that serve as
approximate Riesz lifters in those Hilbert space components that require the use of dual norms. In Section 6
we discuss a posteriori residual estimators. In Section 7 we verify the validity of the critical inf-sup conditions
for all sample problems, the results in preceding sections hinge upon. Here the central work horse are suitable
Fortin operators. Finally, in Section 8 we present numerical results for our three sample problems.

1.2. Notation

In this work, by 𝐶 . 𝐷 we will mean that 𝐶 can be bounded by a multiple of 𝐷, independently of parameters
which 𝐶 and 𝐷 may depend on, as the discretisation index 𝛿, the tolerance 𝜏 for the consistency error, and the
regularization parameters 𝜀 and 𝜁. Obviously, 𝐶 & 𝐷 is defined as 𝐷 . 𝐶, and 𝐶 h 𝐷 as 𝐶 . 𝐷 and 𝐶 & 𝐷.

For normed linear spaces 𝐸 and 𝐹 , by ℒ(𝐸,𝐹 ) we will denote the normed linear space of bounded linear
mappings 𝐸 → 𝐹 , and by ℒis(𝐸,𝐹 ) its subset of boundedly invertible linear mappings 𝐸 → 𝐹 . We write
𝐸 →˓ 𝐹 to denote that 𝐸 is continuously embedded into 𝐹 . For convenience only, we exclusively consider linear
spaces over the scalar field R.

The set [0,∞) will be denoted by R+.

2. Problem setting and main result

For Hilbert spaces 𝑋 and 𝑉 , we consider operators 𝐴 ∈ ℒ(𝑋,𝑉 ) which are neither assumed to be injective
nor to have a dense range in 𝑉 . We study the problem of the (approximate) reconstruction of 𝑢 ∈ 𝑋 from its
image 𝐴𝑢 assuming we are only given a perturbation 𝑓 of 𝐴𝑢 for which

‖𝑓 −𝐴𝑢‖𝑉 ≤ 𝜏 (2.1)

holds for some tolerance 𝜏 ≥ 0 which we assume to be known. Since in particular we do not assume bounded
invertibility of 𝐴 our problem is ill-posed, even for 𝜏 = 0. Although for convenience we refer in the following to
𝑢 as the solution of our recovery problem, one should bear in mind that for 𝜏 > 0 there may be multiple 𝑢 ∈ 𝑋
that satisfy (2.1). Our results will be valid uniformly in those 𝑢.

Since Tikhonov [40] with stability for ill-posed problems, usually called conditional stability, one understands
some continuous dependency of the solution upon the data, typically with respect to a weaker metric than
that induced by ‖ · ‖𝑋 , under the assumption that a bound on the solution itself is available. More specifically,
similar to [11], we assume existence of an 𝐿 ∈ ℒ(𝑋,𝐻), where 𝐻 is some additional Hilbert space, such that
the following assumption is valid:

Assumption 2.1 (Conditional stability). The pair

(𝐴,𝐿) ∈ ℒ(𝑋,𝑉 ×𝐻) is injective,

and there exists a 𝑗 : 𝑋 → R+, and for any 𝒞 > 0, a non-decreasing 𝜂 = 𝜂𝒞 : R+ → R+ with lim𝑡↓0 𝜂(𝑡) = 0,
such that for 𝑧 ∈ 𝑋 with ‖𝐿𝑧‖𝐻 ≤ 𝒞, it holds that

𝑗(𝑧) ≤ 𝜂𝒞
(︀
‖𝐴𝑧‖𝑉

)︀
. (2.2)

Typically, 𝑗 is a norm or a semi-norm on a Hilbert space ̃︀𝐻 ←˒ 𝑋. In the first case, 𝐴 is injective. Several
examples will be given in Section 3.
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For 𝜀 > 0, we set

||| · |||𝜀 :=
√︁
‖𝐴 · ‖2𝑉 + 𝜀2‖𝐿 · ‖2𝐻 . (2.3)

To use precisely the ingredients of the conditional stability condition in the definition of ||| · |||𝜀 will be seen to
be essential in what follows. Moreover, notice that ||| · |||𝜀 is a norm on 𝑋 by our assumption of (𝐴,𝐿) being
injective.

Thinking of 𝜀 being small, tacitly we will always assume that 𝜀‖𝐿‖ℒ(𝑋,𝐻) . 1 so that, since 𝐴 is bounded,
||| · |||𝜀 . ‖ · ‖𝑋 .

Given a finite dimensional subspace 𝑋𝛿 of 𝑋, in Sections 4 and 5 we show how to compute for each 𝜀 > 0 a
𝑢𝛿

𝜀 ∈ 𝑋𝛿 satisfying ⃒⃒⃒⃒⃒⃒
𝑢− 𝑢𝛿

𝜀

⃒⃒⃒⃒⃒⃒
𝜀

. 𝜏 + min
𝑧∈𝑋𝛿

|||𝑢− 𝑧|||𝜀 + 𝜀‖𝐿𝑢‖𝐻 . (2.4)

If (2.2) is valid for 𝐿 = 0, and thus 𝜂𝒞 ≡ 𝜂 is independent of 𝒞, then one speaks about unconditional stability
of (2.1)1. In this case ||| · |||𝜀 = ‖𝐴 · ‖𝑉 is 𝜀-independent, and so will be 𝑢𝛿

𝜀.

Theorem 2.2. Assume (2.4) and recall Assumption 2.1. For 𝐿 ̸= 0, let 𝜀 = 𝜀(𝜏, 𝛿) > 0 be such that for some
𝒞 ≥ ‖𝐿𝑢‖𝐻 ,

𝜏 + min
𝑧∈𝑋𝛿

|||𝑢− 𝑧|||𝜀 . 𝜀𝒞 and 𝜀‖𝐿𝑢‖𝐻 . 𝜏 + min
𝑧∈𝑋𝛿

‖𝑢− 𝑧‖𝑋 . (2.5)

Then
𝑗
(︀
𝑢− 𝑢𝛿

𝜀

)︀
≤ 𝜂𝒞

(︀⃦⃦
𝐴
(︀
𝑢− 𝑢𝛿

𝜀

)︀⃦⃦
𝑉

)︀
, (2.6)

and ⃦⃦
𝐴
(︀
𝑢− 𝑢𝛿

𝜀

)︀⃦⃦
𝑉

. 𝜏 + min
𝑧∈𝑋𝛿

‖𝑢− 𝑧‖𝑋 . (2.7)

Proof. When 𝐿 = 0, (2.6) holds unconditionally, and ||| · |||𝜀 = ‖𝐴 · ‖𝑉 . ‖ · ‖𝑋 so that (2.7) follows directly from
(2.4). So let 𝐿 ̸= 0. From (2.4) and the lower bound from (2.5) on 𝜀, one derives ‖𝐿(𝑢−𝑢𝛿

𝜀)‖𝐻 ≤ 𝜀−1|||𝑢−𝑢𝛿
𝜀|||𝜀 . 𝒞.

Conditional stability then ensures
𝑗
(︀
𝑢− 𝑢𝛿

𝜀

)︀
≤ 𝜂𝒞

(︀⃦⃦
𝐴
(︀
𝑢− 𝑢𝛿

𝜀

)︀⃦⃦
𝑉

)︀
.2

Again (2.4), and the upper bound on 𝜀 from (2.5) show that

⃦⃦
𝐴
(︀
𝑢− 𝑢𝛿

𝜀

)︀⃦⃦
𝑉
≤

⃒⃒⃒⃒⃒⃒
𝑢− 𝑢𝛿

𝜀

⃒⃒⃒⃒⃒⃒
𝜀

. 𝜏 + min
𝑧∈𝑋𝛿

‖𝑢− 𝑧‖𝑋 ,

which completes the proof. �

Notice that when min𝑧∈𝑋𝛿 ‖𝑢 − 𝑧‖𝑋 in (2.5) is replaced by an upper bound, then one arrives at (2.7) with
min𝑧∈𝑋𝛿 ‖𝑢− 𝑧‖𝑋 replaced by that upper bound.

In the examples given in Section 3, 𝜂𝒞(𝑡) will be of the form 𝒪((𝑡+ 𝒞)1−𝜎𝑡𝜎) or 𝒪((𝑡+ 𝒞)(log(1 + 𝒞
𝑡 ))−𝜎) for

some 𝜎 ∈ (0, 1), or 𝒪(𝑡).

Remark 2.3 (Optimality of estimates). The bound (2.7) on ‖𝐴(𝑢−𝑢𝛿
𝜀)‖𝑉 , (valid because of the upper bound on

𝜀), by a multiple of the sum of the (maximal) consistency error 𝜏 and the approximation error min𝑧∈𝑋𝛿 ‖𝑢−𝑧‖𝑋 ,
is qualitatively the best that can be expected for a numerical approximation from 𝑋𝛿. Since, thanks to the lower
bound on 𝜀, at the same time ‖𝐿(𝑢−𝑢𝛿

𝜀)‖𝐻 . 𝒞, we obtain the generally qualitatively best possible upper bound
for 𝑗(𝑢− 𝑢𝛿

𝜀) that is permitted by the conditional stability estimate.

1Not to be confused with well-posedness, with which we mean 𝐴 ∈ ℒis(𝑋, 𝑉 ). An unconditionally stable problem where ran 𝐴
is closed is also benign in the sense that then, by an application of the open mapping theorem, equation (2.1) is well-posed in
least-squares sense, i.e., 𝐴*𝐴 ∈ ℒis(𝑋, 𝑋), and thus is also not of our primary interest.

2Although in applications, the decay of 𝜂𝒞(𝑡) for 𝑡 ↓ 0 is faster when simultaneously 𝒞 = 𝒞(𝑡) ↓ 0, by the very character of a
conditional stability estimate ‖𝐿𝑧‖𝐻 ↓ 0 cannot be expected to follow from ‖𝐴𝑧‖𝑉 ↓ 0.
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That being said, inserting the upper bound in (2.7) into (2.6) can nevertheless provide a pessimistic bound.
The reason is that perturbations in the data enter the approximation by solving a discretized problem, whose
conditioning is for coarser and coarser meshes usually increasingly better than that of the infinite dimensional
problem whose behaviour is captured by the conditional stability estimate.

Remark 2.4 (Selection of 𝜀 when 𝐿 ̸= 0). Let (𝑋𝛿) be a family of finite dimensional subspaces of 𝑋 such
that for some 𝑠 > 0 for general, sufficiently smooth 𝑢 ∈ 𝑋 it holds min𝑧∈𝑋𝛿 ‖𝑢 − 𝑧‖𝑋 h (dim𝑋𝛿)−𝑠. Then,
in view of (2.5), an obvious choice is to take 𝜀 h 𝜏 + (dim𝑋𝛿)−𝑠. Because of a lacking smoothness of 𝑢, it
might be, however, that this 𝜀 decays too fast for dim𝑋𝛿 →∞ which then would manifest itself by an increase
of ‖𝐿𝑢𝛿

𝜀‖𝐻 . Indeed, recall that the sole reason for imposing the lower bound on 𝜀 in (2.5) is to prevent an
unbounded growth of ‖𝐿𝑢𝛿

𝜀‖𝐻 , and thus of ‖𝐿(𝑢− 𝑢𝛿
𝜀)‖𝐻 , which would jeopardize a meaningful application of

the conditional stability estimate. The value of ‖𝐿𝑢𝛿
𝜀‖𝐻 , however, can be monitored and so the choice of 𝜀 can

be adapted when such a growth of ‖𝐿𝑢𝛿
𝜀‖𝐻 is observed.

In various numerical experiments we observed that regularization is actually not needed at all, whereas for
other data 𝜀 equal to 𝜏 was close to the experimentally found best regularization parameter. In our tests, where 𝑢
was smooth, we did not encounter an example where it was helpful to take 𝜀 equal to 𝜏 plus a “mesh-dependent”
term that approximates min𝑧∈𝑋𝛿 ‖𝑢− 𝑧‖𝑋 . A probable explanation is the better conditioning of the discretized
problems on coarser meshes.

Remark 2.5 (The case that (𝐴,𝐿) is only closed). This section started by assuming a pair (𝐴,𝐿) ∈ ℒ(𝑋,𝑉 ×
𝐻). If for some Hilbert space 𝑋̃, (𝐴,𝐿) : 𝑋̃ ⊃ dom(𝐴,𝐿) → 𝑉 ×𝐻 is only linear and closed, then by defining
𝑋 := {𝑧 ∈ 𝑋̃ : (𝐴𝑧,𝐿𝑧) ∈ 𝑉 × 𝐻} equipped with the graph norm, we are back in the situation required for
Assumption 2.1.

Remark 2.6 (About closedness of ran(𝐴,𝐿)). By injectivity of (𝐴,𝐿) from Assumption 2.1, the open mapping
theorem shows that for any 𝜀 > 0, closedness of ran(𝐴, 𝜀𝐿) ⊂ 𝑉 ×𝐻 is equivalent to (𝐴, 𝜀𝐿) ∈ ℒis(𝑋, ran(𝐴, 𝜀𝐿)),
being equivalent to ||| · |||𝜀 h ‖ · ‖𝑋 (obviously generally dependent on 𝜀). The latter shows that closedness of
ran(𝐴, 𝜀𝐿) implies that (𝑋, ||| · |||𝜀) is a Hilbert space, as well as that closedness of ran(𝐴, 𝜀𝐿) is equivalent to
closedness of ran(𝐴,𝐿).

Conversely, if ran(𝐴,𝐿) is not closed, so that ||| · |||𝜀 is not equivalent ‖ · ‖𝑋 , then from ||| · |||𝜀 . ‖ · ‖𝑋 and the
open mapping theorem it follows that (𝑋, ||| · |||𝜀) is not a Hilbert space.

An advantage offered by a pair (𝐴,𝐿) with closed ran(𝐴,𝐿) is that one can bound the condition number of the
linear system that determines this approximation (see Rem. 5.3). In that context note that if Assumption 2.1
holds for some (𝐴,𝐿) ∈ ℒ(𝑋,𝑉 × 𝐻), then it holds also for (𝐴, Id) ∈ ℒ(𝑋,𝑉 × 𝑋) with 𝑗new := 𝑗 and
𝜂new
𝒞 := 𝜂𝒞‖𝐿‖ℒ(𝑉,𝐻)

, where now ran(𝐴, Id) is closed. Despite this advantage we will not insist on closedness
of ran(𝐴,𝐿) in what follows. One argument for that is the following. If unconditional stability holds, then for
computing 𝑢𝛿

𝜀 using (𝐴, 0) no regularization will be needed.

3. Applications

Example 3.1 (Cauchy problem for Poisson’s equation). Let Ω ⊂ R𝑑 be a Lipschitz domain, and let Σ and Σ𝑐

be open, measurable subsets of 𝜕Ω with Σ∩Σ𝑐 = ∅, Σ∪Σ𝑐 = 𝜕Ω, and |Σ| > 0. Informally, the Cauchy problem
asks for finding a solution to

−△𝑢 = 𝑓𝐼 on Ω, 𝑢 = 𝑓𝐷 on Σ, 𝜕𝑢
𝜕𝑛 = 𝑓𝑁 on Σ, (3.1)

i.e., Dirichlet and Neumann conditions are imposed on the same boundary portion of non-vanishing measure. To
avoid unnecessarily restrictive assumptions on the data under which the formulation (3.1) would be meaningful,
and to identify an appropriate least squares functional we employ the following rigorous weak formulation.
Given 𝑓 = (𝑓𝐼 , 𝑓𝐷, 𝑓𝑁 ) ∈ 𝐻1

0,Σ𝑐(Ω)′ ×𝐻 1
2 (Σ)×𝐻− 1

2 (Σ), with 𝑔𝑓𝐼 ,𝑓𝑁
:= 𝑣 ↦→ 𝑓𝐼(𝑣) +

∫︀
Σ
𝑓𝑁𝑣 d𝑠 ∈ 𝐻1

0,Σ𝑐(Ω)′, we
search a solution of

𝐴𝑢 = (𝐵1𝑢,𝐵2𝑢) = (𝑔𝑓𝐼 ,𝑓𝑁
, 𝑓𝐷), (3.2)
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where (𝐵1, 𝐵2) ∈ ℒ
(︀
𝐻1(Ω)⏟  ⏞  

𝑋:=

, 𝐻1
0,Σ𝑐(Ω)′ ×𝐻 1

2 (Σ)
⏟  ⏞  

𝑉 :=

)︀
is defined by 𝐵2 := 𝛾Σ, being the trace operator on Σ, and

𝐵1 represents the negative Laplacian as a mapping from 𝑋 to 𝐻1
0,Σ𝑐(Ω))′

(𝐵1𝑧)(𝑣) :=

∫︁

Ω

∇𝑧 · ∇𝑣 d𝑥
(︀
𝑧 ∈ 𝑋, 𝑣 ∈ 𝐻1

0,Σ𝑐(Ω)
)︀
.

Here 𝐻1
0,Σ𝑐(Ω) is the closure in 𝐻1(Ω) of the smooth functions on Ω ∪ Σ with compact support, and 𝐻− 1

2 (Σ)

is the dual of ̃︀𝐻 1
2 (Σ), the latter in the literature also denoted by 𝐻

1
2
00(Σ). The dual of 𝐻

1
2 (Σ) is denoted by

̃︀𝐻− 1
2 (Σ).

For this problem it is known that ker𝐴 = 0 and, when |Σ𝑐| > 0, ran𝐴 ( ran𝐴 = 𝑉 (e.g., [9], Prop. 3.2). In
Theorems 1.7, 1.9 and Remark 1.8 from [1], the following conditional interior and conditional global stability
results have been established:

(i) For 𝜔 ⊂ Ω with dist(𝜔,Σ𝑐) > 0, there exists a 𝜎 ∈ (0, 1) such that

‖𝑧‖𝐿2(𝜔) .
(︀
‖𝐴𝑧‖𝑉 + ‖𝑧‖𝐿2(Ω)

)︀1−𝜎‖𝐴𝑧‖𝜎𝑉 (𝑧 ∈ 𝑋).

(ii) There exists a 𝜎 ∈ (0, 1) such that for 𝑧 ̸= 0

‖𝑧‖𝐿2(Ω) .
(︀
‖𝐴𝑧‖𝑉 + ‖𝑧‖𝐻1(Ω)

)︀(︂
log

(︂
1 +
‖𝑧‖𝐻1(Ω)

‖𝐴𝑧‖𝑉

)︂)︂−𝜎

(𝑧 ∈ 𝑋).

Notice that (i) and (ii) are of the form as in Assumption 2.1 where ‖𝐿𝑧‖𝐻 and 𝜂𝒞(𝑡) read as ‖𝑧‖𝐿2(Ω) and

𝒪
(︀
(𝑡+ 𝒞)1−𝜎𝑡𝜎

)︀
, or ‖𝑧‖𝐻1(Ω) and 𝒪

(︀
(𝑡+ 𝒞)

(︀
log(1 + 𝒞/𝑡)

)︀−𝜎)︀
, respectively.

Example 3.2 (Data-assimilation for the heat equation). Let Ω ⊂ R𝑑 be a domain, 0 < 𝑇1 < 𝑇2 < 𝑇 , and
∅ ≠ 𝜔 ⊂ Ω open. With 𝐼 := (0, 𝑇 ), given (𝑓, 𝑔) ∈ 𝐿2(𝐼;𝐻

−1(Ω)) × 𝐿2(𝐼 × 𝜔), the data-assimilation problem
reads as finding 𝑢 with 𝜕𝑡𝑢 − △𝑥𝑢 = 𝑓 on 𝐼 × Ω, and 𝑢|𝐼×𝜔 = 𝑔, or, more precisely, 𝐴𝑢 = (𝑓, 𝑔), where
𝐴 = (𝐵,Γ𝐼×𝜔) ∈ ℒ

(︀
𝐿2(𝐼;𝐻

1(Ω)) ∩𝐻1(𝐼;𝐻−1(Ω))⏟  ⏞  
𝑋:=

, 𝐿2(𝐼;𝐻
−1(Ω))× 𝐿2(𝐼 × 𝜔)⏟  ⏞  

𝑉 :=

)︀
is defined by Γ𝐼×𝜔𝑧 = 𝑧|𝐼×𝜔,

and (𝐵𝑧)(𝑣) :=
∫︀

𝐼

∫︀
Ω
𝜕𝑡𝑧 𝑣 +∇𝑥𝑧 · ∇𝑥𝑣 d𝑥d𝑡.

The following conditional stability estimates can be found in [13]:

(a) For a bounded 𝜔̆ b Ω, there exists a 𝜎 ∈ (0, 1) such that

‖𝑧‖𝐿2((𝑇1,𝑇2);𝐻1(𝜔̆)) .
(︀
‖𝐴𝑧‖𝑉 + ‖𝑧‖𝐿2(𝐼×Ω)

)︀1−𝜎‖𝐴𝑧‖𝜎𝑉 (𝑧 ∈ 𝑋).

(b) When one has the additional information that 𝑢 = 0 on 𝐼 × 𝜕Ω, then 𝑋 should be redefined as 𝑋 :=
𝐿2(𝐼;𝐻

1
0 (Ω)) ∩𝐻1(𝐼;𝐻−1(Ω)). For Ω being a bounded convex polytope, now it holds that

‖𝑧‖𝐿2((𝑇1,𝑇 );𝐻1(Ω))∩𝐻1((𝑇1,𝑇 );𝐻−1(Ω)) . ‖𝐴𝑧‖𝑉 (𝑧 ∈ 𝑋).

In Case (a), Assumption 2.1 is valid with ‖𝐿𝑧‖𝐻 and 𝜂𝒞(𝑡) reading as ‖𝑧‖𝐿2(𝐼×Ω) and 𝒪
(︀
(𝑡 + 𝒞)1−𝜎𝑡𝜎

)︀
,

whilst Case (b) concerns unconditional (Lipschitz) stability, i.e., 𝐿 = 0 and 𝜂(𝑡) = 𝒪(𝑡). To show the latter, it
remains to verify that 𝐴 is injective in Case (b). Suppose it is not, and let 0 ̸= 𝑧 ∈ 𝑋 with ‖𝐴𝑧‖𝑉 = 0. From
𝑋 →˓ 𝐶([0, 𝑇 ];𝐿2(Ω)) ([31], Ch. 1, Thm. 3.1), there exists an open interval 𝐽 ⊂ (0, 𝑇 ) such that for any 𝑡 ∈ 𝐽 ,
‖𝑧(𝑡, ·)‖𝐿2(Ω) ̸= 0. On the other hand, the above estimate shows that ‖𝑧‖𝐿2((𝑇1,𝑇 );𝐻1

0 (Ω))∩𝐻1((𝑇1,𝑇 );𝐻−1(Ω)) =

0 for any 𝑇1 ∈ (0, 𝑇 ). From 𝐿2((𝑇1, 𝑇 );𝐻1
0 (Ω)) ∩ 𝐻1((𝑇1, 𝑇 );𝐻−1(Ω)) →˓ 𝐶([𝑇1, 𝑇 ];𝐿2(Ω)) we arrive at a

contradiction.
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Example 3.3 (Data-assimilation for the wave equation ([18], Rem. A.5). Let Ω ⊂ R𝑑 be a domain with a
smooth boundary, and, for some 𝑇 > 0, let 𝐼 := (0, 𝑇 ). Let 𝜔 ⊂ Ω, and assume that 𝐼 × 𝜔 satisfies the
Geometric Control Condition [3, 4]. Roughly speaking, it means that all geometric optic rays in 𝐼 × Ω, taking
into account their reflections at the lateral boundary, intersect the set 𝐼 × 𝜔.

Given (𝑓, 𝑔, ℎ) ∈ 𝑉 := 𝐻−1(𝐼 ×Ω)×𝐿2(𝐼 × 𝜕Ω)×𝐿2(𝐼 × 𝜔), the data assimilation problem reads as finding
𝑢 that satisfies

(�𝑢)(𝑣) :=

∫︁

𝐼

∫︁

Ω

−𝜕𝑡𝑢 𝜕𝑡𝑣 +∇𝑥𝑢 · ∇𝑥𝑣 d𝑥d𝑡 = 𝑓(𝑣) (𝑣 ∈ 𝐻1
0 (𝐼 × Ω)),

𝛾𝐼×𝜕Ω𝑢 := 𝑢|𝐼×𝜕Ω = 𝑔, and Γ𝐼×𝜔𝑢 := 𝑢|𝐼×𝜔 = ℎ.

With 𝐴 := (�, 𝛾𝐼×𝜕Ω,Γ𝐼×𝜔) and 𝑋 = {𝑧 ∈ 𝐿2(𝐼×Ω): 𝐴𝑧 ∈ 𝑉 } equipped with the graph norm, or its completion
when 𝐴 : 𝐿2(𝐼 × Ω) ⊃ 𝐷𝐴 → 𝑉 is not closed, the following unconditional (Lipschitz) stability is valid:

‖𝑧‖𝐿∞(𝐼;𝐿2(Ω)) + ‖𝜕𝑡𝑧‖𝐿2(𝐼;𝐻−1(Ω)) . ‖𝐴𝑧‖𝑉 (𝑧 ∈ 𝑋). (3.3)

Remark 3.4 (The condition of 𝜕Ω being smooth). For finite element computations, for 𝑑 > 1 a problem with
the setting of Example 3.3 is the condition of 𝜕Ω being smooth. It is used in the derivation of both the Distributed
Observability Estimate ‖𝑧(0, ·)‖𝐿2(Ω) + ‖𝜕𝑡𝑧(0, ·)‖𝐿2(Ω) . ‖Γ𝐼×𝜔𝑧‖𝐿2(𝐼×𝜔) for functions 𝑧 that satisfy �𝑧 = 0
and 𝛾𝐼×𝜕Ω𝑧 = 0, see e.g., [30], and the Energy Estimate

‖𝑧‖𝐿∞(𝐼;𝐿2(Ω)) + ‖𝜕𝑡𝑧‖𝐿2(𝐼;𝐻−1(Ω)) . ‖𝑧(0, ·)‖𝐿2(Ω) + ‖𝜕𝑡𝑧(0, ·)‖𝐻−1(Ω) + ‖𝛾𝐼×𝜕Ω𝑧‖𝐿2(𝐼×𝜕Ω) + ‖�𝑧‖𝐻−1(𝐼×Ω),

see Proposition A.1 from [18], which builds on Theorem 2.1 and 2.3 of [29]. From both these estimates, one
easily derives (3.3) (cf. proof of Thm. 2.2 of [16] (see however [18], Rem. 2.6)). In [16] it is claimed that under
stronger conditions on 𝜔, the Distributed Observability Estimate can also be valid for polytopal Ω. See also [20]
for the related boundary controllability of the wave equation on domains with corners. Assuming that on such
domains also an energy estimate is valid, possibly with weaker norms on the left-hand side, in the case that
these norms do control ‖𝑧‖𝐿2(𝐼×Ω)), proof of Theorem 2.2 of [16] will give an unconditional stability estimate
(3.3) with those norms on the left-hand side.

Notice that only in Example 3.1(ii), ran(𝐴,𝐿) is closed.
Other examples of conditional stability include, e.g., data-assimilation for thePoisson equation [14], the backward

heat equation [26], and the heat and wave equations with lateral Cauchy data ([28] and Thm. 3.4.1 of [27]).

4. Least squares approximation

We adhere to the assumptions in Section 2. For a given suitable finite dimensional space 𝑋𝛿, we propose, as
an approximate “solution” to (2.1), the unique minimizer 𝑢𝛿

𝜀 ∈ 𝑋𝛿 of the regularized least-squares functional

𝑧 ↦→
√︁
‖𝐴𝑧 − 𝑓‖2𝑉 + 𝜀2‖𝐿𝑧‖2𝐻 .

As we have seen in applications, however, the space 𝑉 , or one or more components of 𝑉 when it is a product
space, are equipped with a norm that cannot be evaluated. For example it can be either a dual norm, i.e., a norm
of type sup0 ̸=𝑣∈𝑌

|·(𝑣)|
‖𝑣‖𝑌

, or a fractional Sobolev norm, the latter which typically arises with the enforcement of
boundary conditions.

For the dual norm case we will see that under an inf-sup or LBB condition, for minimizing the least-squares
functional over 𝑋𝛿 the supremum over 𝑌 can be replaced by a supremum over a suitable finite dimensional
space, which makes it computable assuming ‖ · ‖𝑌 can be evaluated.

Dealing with reflexive spaces, any norm can be viewed as a dual norm. Applying this to a fractional Sobolev
norm, the space 𝑌 is a fractional Sobolev space with smoothness index of opposite sign. At a first glance this
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might not seem to be helpful, but we saw that under an LBB condition the norm on the latter space needs
to be evaluated for arguments from a finite dimensional subspace only. Moreover, as we will see, it suffices to
compute a norm on this finite dimensional subspace that is only (uniformly) equivalent to the norm on 𝑌 .

In view of above comments, we consider our least squares problem in the following setting that covers all
envisioned scenarios. Specifically, 𝑉 may be the product of a dual space and a space whose norm is easy to
evaluate. So, for some Hilbert spaces 𝑌 and 𝑊 , let 𝑉 = 𝑌 ′ ×𝑊 , 𝐴 = (𝐵,𝐶), so that (2.3) takes the form

||| · |||𝜀 :=
√︁
‖𝐵 · ‖2𝑌 ′ + ‖𝐶 · ‖2𝑊 + 𝜀2‖𝐿 · ‖2𝐻 , (4.1)

and let 𝑓 = (𝑔, ℎ), so that the aforementioned least-squares functional reads as 𝑧 ↦→√︀
‖𝐵𝑧 − 𝑔‖2𝑌 ′ + ‖𝐶𝑧 − ℎ‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻 . We assume that the ‖ · ‖𝑊 -norm can be evaluated, ignoring

possible quadrature issues. The analysis of cases where the triple (𝑉,𝐴, 𝑓) has none or multiple components of
type either (𝑌 ′, 𝐵, 𝑔) or (𝑊,𝐶, ℎ) causes no additional problems.

To avoid the exact evaluation of the ‖ · ‖𝑌 ′ -norm, given a family (𝑋𝛿)𝛿∈Δ of finite dimensional subspaces of
𝑋, let (𝑌 𝛿)𝛿∈Δ be a family of finite dimensional subspaces of 𝑌 such that

𝜚 := inf
𝛿∈Δ

inf
{𝑧∈𝑋𝛿 : 𝐵𝑧 ̸=0}

sup
0 ̸=𝑣∈𝑌 𝛿

|(𝐵𝑧)(𝑣)|
‖𝐵𝑧‖𝑌 ′‖𝑣‖𝑌

> 0, (4.2)

and let ⟨·, ·⟩𝑌 𝛿 be an inner product on 𝑌 𝛿 with associated norm ‖ · ‖𝑌 𝛿 that satisfies

‖ · ‖𝑌 𝛿 h ‖ · ‖𝑌 on 𝑌 𝛿 (4.3)

(uniformly in 𝛿 ∈ ∆). A choice ‖ · ‖𝑌 𝛿 ̸= ‖ · ‖𝑌 is useful when also the ‖ · ‖𝑌 -norm cannot be (easily) evaluated.
As we will see in Section 5, another reason for taking a suitable ‖ · ‖𝑌 𝛿 ̸= ‖ · ‖𝑌 is when the stiffness matrix
corresponding to ⟨·, ·⟩𝑌 𝛿 can be efficiently inverted in which case the approximation 𝑢𝛿

𝜀 defined in the next
theorem can be found as the solution of a symmetric positive definite system instead of a saddle-point system.

Theorem 4.1. Let (4.2) and (4.3) be valid. For 𝑢𝛿
𝜀 being the unique solution of

𝑢𝛿
𝜀 := argmin

𝑧∈𝑋𝛿

{︃
sup

0 ̸=𝑣∈𝑌 𝛿

|(𝐵𝑧 − 𝑔)(𝑣)|2
‖𝑣‖2

𝑌 𝛿

+ ‖𝐶𝑧 − ℎ‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻

}︃
, (4.4)

it holds that ⃒⃒⃒⃒⃒⃒
𝑢− 𝑢𝛿

𝜀

⃒⃒⃒⃒⃒⃒
𝜀

. ‖𝐵𝑢− 𝑔‖𝑌 ′ + ‖𝐶𝑢− ℎ‖𝑊 + min
𝑧∈𝑋𝛿

|||𝑢− 𝑧|||𝜀 + 𝜀‖𝐿𝑢‖𝐻 , (4.5)

i.e., equation (2.4) is valid.

Proof. Initially we assume that ‖ · ‖𝑌 𝛿 = ‖ · ‖𝑌 on 𝑌 𝛿, and postpone the discussion about the case where we
have only a uniform equivalence (4.3) until the end of the proof.

The basic idea behind the proof is to use a suitable intermediary 𝑢𝜀 ∈ 𝑋 to estimate then |||𝑢 − 𝑢𝜀|||𝜀 and
|||𝑢𝜀−𝑢𝛿

𝜀|||𝜀. Ideally, 𝑢𝜀 should be the minimizer over 𝑧 ∈ 𝑋 of ‖𝐵𝑧− 𝑔‖2𝑌 ′ +‖𝐶𝑧−ℎ‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻 . Since we are
not insisting of ran(𝐵,𝐶,𝐿) being closed (cf. Rem. 2.6), this minimizer would not necessarily exist. Therefore,
more work is required to identify such uniform intermediaries via a perturbation that ensures closedness. To
that end, for 𝜁 ≥ 0 we equip 𝑋 with the additional norm

||| · |||𝜀,𝜁 :=
√︁
‖𝐵 · ‖2𝑌 ′ + ‖𝐶 · ‖2𝑊 + 𝜀2‖𝐿 · ‖2𝐻 + 𝜁2‖ · ‖2𝑋 .

Since ran(𝐵,𝐶,𝐿, Id) is closed, for 𝜁 > 0 the minimizer 𝑢𝜀,𝜁 over 𝑧 ∈ 𝑋 of

𝐺𝜀,𝜁(𝑧) := ‖𝐵𝑧 − 𝑔‖2𝑌 ′ + ‖𝐶𝑧 − ℎ‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻 + 𝜁2‖𝑧‖2𝑋
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does exist uniquely as the solution of the Euler–Lagrange equations

⟨𝐵𝑧,𝐵𝑢𝜀,𝜁 − 𝑔⟩𝑌 ′ + ⟨𝐶𝑧,𝐶𝑢𝜀,𝜁 − ℎ⟩𝑊 + 𝜀2⟨𝐿𝑧, 𝐿𝑢𝜀,𝜁⟩𝐻 + 𝜁2⟨𝑧, 𝑢𝜀,𝜁⟩𝑋 = 0 (𝑧 ∈ 𝑋).

To deal with the inner product in 𝑌 ′ we employ the Riesz lifter (= inverse Riesz map) 𝑅𝑌 : 𝑌 ′ → 𝑌 , defined
for 𝑓 ∈ 𝑌 ′ by

⟨𝑧,𝑅𝑌 𝑓⟩𝑌 = 𝑓(𝑧), ∀ 𝑧 ∈ 𝑌,
and introduce the lifted residual

𝑣𝜀,𝜁 := 𝑅𝑌 (𝑔 −𝐵𝑢𝜀,𝜁). (4.6)

We can then write
⟨𝐵𝑧,𝐵𝑢𝜀,𝜁 − 𝑔⟩𝑌 ′ = −⟨𝑣𝜀,𝜁 , 𝑅𝑌 𝐵𝑧⟩𝑌 = −(𝐵𝑧)(𝑣𝜀,𝜁),

from which one infers that (𝑢𝜀,𝜁 , 𝑣𝜀,𝜁) ∈ 𝑋 × 𝑌 is the (unique) solution of

(𝐵𝑧)(𝑣𝜀,𝜁) + (𝐵𝑢𝜀,𝜁)(𝑣) + ⟨𝑣, 𝑣𝜀,𝜁⟩𝑌 − ⟨𝐶𝑧,𝐶𝑢𝜀,𝜁⟩𝑊 − 𝜀2⟨𝐿𝑧, 𝐿𝑢𝜀,𝜁⟩𝐻 − 𝜁2⟨𝑧, 𝑢𝜀,𝜁⟩𝑋⏟  ⏞  
𝑑𝜀,𝜁((𝑢𝜀,𝜁 ,𝑣𝜀,𝜁),(𝑧,𝑣)):=

= ℓ(𝑧, 𝑣) := 𝑔(𝑣)− ⟨𝐶𝑧, ℎ⟩𝑊 ((𝑧, 𝑣) ∈ 𝑋 × 𝑌 ).

The symmetric bilinear form 𝑑𝜀,𝜁 on ((𝑋, ||| · |||𝜀,𝜁)× 𝑌 )× ((𝑋, ||| · |||𝜀,𝜁)× 𝑌 ) is bounded (uniformly in 𝜀 > 0 and
𝜁 ≥ 0).

Similarly as in the continuous case, for 𝛿 ∈ ∆ the minimizer 𝑢𝛿
𝜀,𝜁 over 𝑋𝛿 of

𝐺𝛿
𝜀,𝜁(𝑧) := sup

0 ̸=𝑣∈𝑌 𝛿

|(𝐵𝑧 − 𝑔)(𝑣)|2
‖𝑣‖2𝑌

+ ‖𝐶𝑧 − ℎ‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻 + 𝜁2‖𝑧‖2𝑋

exists uniquely. Thanks to dim𝑋𝛿 <∞, this holds even true for 𝜁 = 0 (where 𝑢𝛿
𝜀,0 = 𝑢𝛿

𝜀 is the solution of (4.4))
Defining in analogy to (4.6),

⟨︀
𝑧, 𝑣𝛿

𝜀,𝜁

⟩︀
𝑌

=
(︀
𝑔 −𝐵𝑢𝛿

𝜀,𝜁

)︀
(𝑧), 𝑧 ∈ 𝑌 𝛿,

the pair (𝑢𝛿
𝜀,𝜁 , 𝑣

𝛿
𝜀,𝜁) ∈ 𝑋𝛿 × 𝑌 𝛿 solves the Galerkin system

𝑑𝜀,𝜁

(︀(︀
𝑢𝛿

𝜀,𝜁 , 𝑣
𝛿
𝜀,𝜁

)︀
, (𝑧, 𝑣)

)︀
= ℓ(𝑧, 𝑣)

(︀
(𝑧, 𝑣) ∈ 𝑋𝛿 × 𝑌 𝛿

)︀
. (4.7)

We will demonstrate later below that

inf
𝛿∈Δ, 𝜀>0, 𝜁≥0

inf
0 ̸=(𝑧,𝑣)∈𝑋𝛿×𝑌 𝛿

sup
0 ̸=(𝑧,𝑣)∈𝑋𝛿×𝑌 𝛿

𝑑𝜀,𝜁((𝑧, 𝑣), (𝑧, 𝑣))√︁
|||𝑧|||2𝜀,𝜁 + ‖𝑣‖2𝑌

√︁
|||𝑧|||2𝜀,𝜁 + ‖𝑣‖2𝑌

> 0. (4.8)

Assuming the validity of (4.8) for the moment, the symmetry and boundedness of 𝑑𝜀,𝜁 , then shows that for
𝜁 > 0, ⃦⃦

𝑣𝜀,𝜁 − 𝑣𝛿
𝜀,𝜁

⃦⃦
𝑌

+
⃒⃒⃒⃒⃒⃒
𝑢𝜀,𝜁 − 𝑢𝛿

𝜀,𝜁

⃒⃒⃒⃒⃒⃒
𝜀,𝜁

. min
(𝑧,𝑣)∈𝑋𝛿×𝑌 𝛿

{︁
‖𝑣𝜀,𝜁 − 𝑣‖𝑌 + |||𝑢𝜀,𝜁 − 𝑧|||𝜀,𝜁

}︁
. (4.9)

uniformly in 𝜀 (see e.g., [39], Thm. 3.1).
Now, for any 𝑢 ∈ 𝑋 we simply estimate |||𝑢− 𝑢𝛿

𝜀,𝜁 |||𝜀,𝜁 ≤ |||𝑢− 𝑢𝜀,𝜁 |||𝜀,𝜁 + |||𝑢𝜀,𝜁 − 𝑢𝛿
𝜀,𝜁 |||𝜀,𝜁 and deduce first from

(4.9) that we have for the second term

⃒⃒⃒⃒⃒⃒
𝑢𝜀,𝜁 − 𝑢𝛿

𝜀,𝜁

⃒⃒⃒⃒⃒⃒
𝜀,𝜁

. ‖𝑣𝜀,𝜁‖𝑌 + min
𝑧∈𝑋𝛿

|||𝑢𝜀,𝜁 − 𝑧|||𝜀,𝜁

≤ ‖𝑔 −𝐵𝑢𝜀,𝜁‖𝑌 ′ + |||𝑢− 𝑢𝜀,𝜁 |||𝜀,𝜁 + min
𝑧∈𝑋𝛿

|||𝑢− 𝑧|||𝜀,𝜁
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≤ ‖𝑔 −𝐵𝑢‖𝑌 ′ + 2|||𝑢− 𝑢𝜀,𝜁 |||𝜀,𝜁 + min
𝑧∈𝑋𝛿

|||𝑢− 𝑧|||𝜀,𝜁 . (4.10)

Regarding the first term, an application of the triangle inequality and optimality of 𝑢𝜀,𝜁 give

|||𝑢− 𝑢𝜀,𝜁 |||𝜀,𝜁 ≤
√︁
𝐺𝜀,𝜁(𝑢) +

√︁
𝐺𝜀,𝜁(𝑢𝜀,𝜁)

≤ 2
√︁
𝐺𝜀,𝜁(𝑢) = 2

√︁
‖𝐵𝑢− 𝑔‖2𝑌 ′ + ‖𝐶𝑢− ℎ‖2𝑊 + 𝜀2‖𝐿𝑢‖2𝐻 + 𝜁2‖𝑢‖2𝑋 ,

which together with (4.10) yields

|||𝑢− 𝑢𝛿
𝜀,𝜁 |||𝜀,𝜁 . ‖𝐵𝑢− 𝑔‖𝑌 ′ +‖𝐶𝑢− ℎ‖𝑊 + min

𝑧∈𝑋𝛿
|||𝑢− 𝑧|||𝜀,𝜁 +𝜀‖𝐿𝑢‖𝐻 +𝜁‖𝑢‖𝑋 (4.11)

(uniformly in 𝛿 ∈ ∆, 𝜀, 𝜁 > 0).
Now fixing 𝛿 ∈ ∆ and 𝜀 > 0, the norms ||| · |||𝜀,𝜁 on 𝑋𝛿 are equivalent uniformly in 𝜁 ∈ [0, 1], and

lim𝜁↓0 min𝑧∈𝑋𝛿 |||𝑢 − 𝑧|||𝜀,𝜁 = min𝑧∈𝑋𝛿 |||𝑢 − 𝑧|||𝜀. Introducing the operator 𝐷𝛿
𝜀,𝜁 ∈ ℒ(𝑋𝛿 × 𝑌 𝛿, (𝑋𝛿 × 𝑌 𝛿)′),

defined by (︀
𝐷𝛿

𝜀,𝜁

(︀
𝑢𝛿

𝜀,𝜁 , 𝑣
𝛿
𝜀,𝜁

)︀)︀
(𝑧, 𝑣) := 𝑑𝜀,𝜁

(︀(︀
𝑢𝛿

𝜀,𝜁 , 𝑣
𝛿
𝜀,𝜁

)︀
, (𝑧, 𝑣)

)︀
,

and writing (𝐷𝛿
𝜀,𝜁)

−1 = (𝐷𝛿
𝜀,0)

−1 +(𝐷𝛿
𝜀,𝜁)

−1(𝐷𝛿
𝜀,0−𝐷𝛿

𝜀,𝜁)(𝐷
𝛿
𝜀,0)

−1, the uniform stability (4.8) and lim𝜁↓0𝐷𝛿
𝜀,𝜁 =

𝐷𝛿
𝜀,0 show that lim𝜁↓0 𝑢𝛿

𝜀,𝜁 = 𝑢𝛿
𝜀. We conclude that by taking the limit for 𝜁 ↓ 0 in (4.11) the proof of (4.5) for

the case that ‖ · ‖𝑌 𝛿 = ‖ · ‖𝑌 is completed as soon as we have confirmed the validity of (4.8).
The latter statement (4.8) left to be shown is equivalent to uniform stability of the variational problem (4.7),

i.e.,
|||𝑢𝛿

𝜀,𝜁 |||𝜀,𝜁 +
⃦⃦
𝑣𝛿

𝜀,𝜁

⃦⃦
𝑌

. ‖ℓ‖((𝑋𝛿,|||·|||𝜀,𝜁)×𝑌 𝛿)′ (4.12)

(uniformly in 𝛿, 𝜀 > 0, and 𝜁 ≥ 0) which requires utilizing (4.2). To that end, we introduce as additional
variables 𝜃 = −𝐶𝑢𝛿

𝜀,𝜁 , 𝜇 = −𝜀𝐿𝑢𝛿
𝜀,𝜁 , and 𝜒 = −𝜁𝑢𝛿

𝜀,𝜁 and the bilinear form

𝑒
(︁
𝑧,

(︁
𝑣, 𝜃, 𝜇̃, 𝜒̃

)︁)︁
:= (𝐵𝑧)(𝑣) +

⟨
𝜃, 𝐶𝑧

⟩

𝑊
+ 𝜀⟨𝜇̃, 𝐿𝑧⟩𝐻 + 𝜁⟨𝜒̃, 𝑧⟩𝑋 (4.13)

over 𝑋𝛿 × (𝑌 𝛿 ×𝑊 ×𝐻 ×𝑋). Then, (4.7) is equivalent to finding (𝑢𝛿
𝜀,𝜁 , 𝑣

𝛿
𝜀,𝜁 , 𝜃, 𝜇, 𝜒) ∈ 𝑋𝛿 × 𝑌 𝛿 ×𝑊 ×𝐻 ×𝑋

such that
⟨(︁
𝑣, 𝜃, 𝜇̃, 𝜒̃

)︁
,
(︀
𝑣𝛿

𝜀,𝜁 , 𝜃, 𝜇, 𝜒
)︀⟩

𝑌 ×𝑊×𝐻×𝑋
+ 𝑒

(︁
𝑢𝛿

𝜀,𝜁 ,
(︁
𝑣, 𝜃, 𝜇̃, 𝜒̃

)︁)︁
+ 𝑒

(︀
𝑧,

(︀
𝑣𝛿

𝜀,𝜁 , 𝜃, 𝜇, 𝜒
)︀)︀

= ℓ(𝑧, 𝑣) (4.14)

for all (𝑧, 𝑣, 𝜃, 𝜇̃, 𝜒̃) ∈ 𝑋𝛿 × 𝑌 𝛿 ×𝑊 ×𝐻 ×𝑋.
Recall from (4.2) that for any 𝜎 ∈ (0, 1), given 𝑧 ∈ 𝑋𝛿 we can find 𝑣 ∈ 𝑌 𝛿 with ‖𝑣‖𝑌 = ‖𝐵𝑧‖𝑌 ′ and

(𝐵𝑧)(𝑣) ≥ 𝜎𝜌‖𝐵𝑧‖2𝑌 ′ . Then take (𝜃, 𝜇̃, 𝜒̃) = (𝐶𝑧, 𝜀𝐿𝑧, 𝜁𝑧), to conclude that

𝑒
(︁
𝑧,

(︁
𝑣, 𝜃, 𝜇̃, 𝜒̃

)︁)︁
≥ 𝜎𝜌‖𝐵𝑧‖2𝑌 ′ + ‖𝐶𝑧‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻 + 𝜁2‖𝑧‖2𝑋

≥ 𝜎𝜚|||𝑧|||𝜀,𝜁

√︂
‖𝑣‖2𝑌 +

⃦⃦
⃦𝜃

⃦⃦
⃦

2

𝑊
+ ‖𝜇̃‖2𝐻 + ‖𝜒̃‖2𝑋 .

From this LBB stability we conclude that (4.14) is indeed uniformly stable, i.e., that |||𝑢𝛿
𝜀,𝜁 |||𝜀,𝜁 + ‖𝑣𝛿

𝜀,𝜁‖𝑌 +
‖𝜃‖𝑊 + ‖𝜇‖𝐻 + ‖𝜒‖𝑋 . ‖ℓ‖(𝑋𝛿,|||·|||𝜀,𝜁)×𝑌 𝛿)′ , which implies (4.12).

Finally, we discuss the case that ‖ · ‖𝑌 𝛿 ̸= ‖ · ‖𝑌 . We write 𝑌 = 𝑌 𝛿 ⊕ (𝑌 𝛿)⊥𝑌 ≃ 𝑌 𝛿 × (𝑌 𝛿)⊥𝑌 , and replace for
the 𝑌 𝛿-component the inner product ⟨·, ·⟩𝑌 by ⟨·, ·⟩𝑌 𝛿 . Then we are back in the case that ‖ · ‖𝑌 𝛿 = ‖ · ‖𝑌 on 𝑌 𝛿,
and the proof so far shows that 𝑢𝛿

𝜀 defined in (4.4) satisfies (4.5) with the 𝑌 ′-norm at its right-hand side and in
the definition of ||| · |||𝜀 at its left- and right-hand side being defined in terms of the so modified 𝑌 -norm. Since by
our assumption (4.3) this modified 𝑌 -norm, and so its resulting dual norm, is equivalent to the original norm,
uniformly in 𝛿 ∈ ∆, the proof is completed. �
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In view of (4.7) and the last paragraph in the above proof, note that the least squares approximation 𝑢𝛿
𝜀

defined in (4.4) can be computed as the first component of the pair (𝑢𝛿
𝜀, 𝑣

𝛿
𝜀) ∈ 𝑋𝛿 × 𝑌 𝛿 that solves the mixed

system

(𝐵𝑧)
(︀
𝑣𝛿

𝜀

)︀
+

(︀
𝐵𝑢𝛿

𝜀

)︀
(𝑣) +

⟨︀
𝑣, 𝑣𝛿

𝜀

⟩︀
𝑌 𝛿

−
⟨︀
𝐶𝑧,𝐶𝑢𝛿

𝜀

⟩︀
𝑊
− 𝜀2

⟨︀
𝐿𝑧, 𝐿𝑢𝛿

𝜀

⟩︀
𝐻

= 𝑔(𝑣)− ⟨𝐶𝑧, ℎ⟩𝑊
(︀
(𝑧, 𝑣) ∈ 𝑋𝛿 × 𝑌 𝛿

)︀
.

(4.15)

For a suitable choice of ⟨·, ·⟩𝑌 𝛿 , in Section 5 we will reduce this system to a symmetric positive definite system
for the primal variable 𝑢𝛿

𝜀.

Remark 4.2 (Relation to existing work). Suppose that the norm ‖ · ‖𝑋 is computable (which is not the case
in Example 3.2) and assume for simplicity that ‖ · ‖𝑌 𝛿 = ‖ · ‖𝑌 . Then by replacing 𝜀2‖𝐿𝑧‖2𝐻 by the stronger
regularizing term 𝜀2‖𝑧‖2𝑋 , instead of minimizing (4.4) as in Theorem 4.1 one may minimize the least-squares
functional

𝑢̂𝛿
𝜀 := argmin

𝑧∈𝑋𝛿

{︃
sup

0 ̸=𝑣∈𝑌 𝛿

|(𝐵𝑧 − 𝑔)(𝑣)|2
‖𝑣‖2𝑌

+ ‖𝐶𝑧 − ℎ‖2𝑊 + 𝜀2‖𝑧‖2𝑋

}︃
.

Upon replacing 𝜀2⟨𝐿·, 𝐿·⟩𝐻 by 𝜀2⟨·, ·⟩𝑋 in (4.7), and the test function 𝑧 by −𝑧, this amounts to solving for
(𝑢̂𝛿

𝜀, 𝑣
𝛿
𝜀) ∈ 𝑋𝛿 × 𝑌 𝛿 from

−(𝐵𝑧)
(︀
𝑣𝛿

𝜀

)︀
+
(︀
𝐵𝑢̂𝛿

𝜀

)︀
(𝑣)+

⟨︀
𝑣, 𝑣𝛿

𝜀

⟩︀
𝑌

+
⟨︀
𝐶𝑧,𝐶𝑢̂𝛿

𝜀

⟩︀
𝑊

+𝜀2
⟨︀
𝑧, 𝑢̂𝛿

𝜀

⟩︀
𝑋

= 𝑔(𝑣)+⟨𝐶𝑧, ℎ⟩𝑊
(︀
(𝑧, 𝑣) ∈ 𝑋𝛿 × 𝑌 𝛿

)︀
. (4.16)

The bilinear form on 𝑋 × 𝑌 on the left-hand side of (4.16) is bounded, uniformly in 𝛿 ∈ ∆. Moreover, already
without assuming (4.2), it is also coercive, although with the unfavorable coercivity constant h 𝜀2. With
(𝑢̂𝜀, 𝑣𝜀) ∈ 𝑋 × 𝑌 denoting the solution of (4.16) under testing with all (𝑧, 𝑣) ∈ 𝑋 × 𝑌 , one arrives at the
estimate ⃦⃦

𝑣𝜀 − 𝑣𝛿
𝜀

⃦⃦
𝑌

+
⃦⃦
𝑢̂𝜀 − 𝑢̂𝛿

𝜀

⃦⃦
𝑋

. 𝜀−2 inf
(𝑧,𝑣)∈𝑋𝛿×𝑌 𝛿

{‖𝑣𝜀 − 𝑣‖𝑌 + ‖𝑢̂𝜀 − 𝑧‖𝑋}. (4.17)

This approach to solve (4.16) without ensuring the LBB stability (4.2) has been suggested in [5, 9]. In
Theorem 2.7 from [9] it was shown that lim𝜀↓0(𝑢̂𝜀, 𝑣𝜀) = (𝑢, 0) in 𝑋 × 𝑌 , where 𝑢 is the minimal norm solution
of (𝐵𝑢,𝐶𝑢) = (𝑔, ℎ), under the assumption that a solution exists. To conclude from (4.17) convergence of
numerical approximations 𝑢𝛿

𝜀 towards 𝑢 requires making assumptions on the behavior of higher order norms
of (𝑢̂𝜀, 𝑣𝜀) as functions of 𝜀 ↓ 0 (cf. [5], Thm. 4.1). On the other hand, this approach does not assume any
conditional stability, and it concerns convergence in norm instead of convergence in the functional 𝑗 associated
to a conditional stability assumption.

Notice, however, that if conditional stability is available and the weaker notion of convergence in the associated
functional is relevant, then the difference between (4.17) and the quasi-optimal bound (4.9) shows that is indeed
very rewarding to select 𝑌 𝛿 dependent on 𝑋𝛿 such that (4.2) is valid.

Uniform discrete inf-sup stability (4.2) plays a pivotal role in our approach. We recall that it is equivalent to
the existence of uniformly bounded “Fortin operators”. Precisely, the following statement holds.

Theorem 4.3 ([38], Prop. 5.1). For general 𝐵 ∈ ℒ(𝑋,𝑌 ′), and closed subspaces 𝑋𝛿 and 𝑌 𝛿 of Hilbert spaces
𝑋 and 𝑌 with 𝐵𝑋𝛿 ̸= {0} and 𝑌 𝛿 ̸= {0}, let

𝑄𝛿 ∈ ℒ
(︀
𝑌, 𝑌 𝛿

)︀
with

(︀
𝐵𝑋𝛿

)︀(︀(︀
Id−𝑄𝛿

)︀
𝑌
)︀

= 0. (4.18)

Then 𝜉𝛿 := inf{𝑧∈𝑋𝛿 : 𝐵𝑧 ̸=0} sup0 ̸=𝑣∈𝑌 𝛿
|(𝐵𝑧)(𝑣)|

‖𝐵𝑧‖𝑌 ′‖𝑣‖𝑌
≥ ‖𝑄𝛿‖−1

ℒ(𝑌,𝑌 ).

Conversely, when 𝜉𝛿 > 0, and ran𝐵 is closed or dim𝑋𝛿 <∞, then there exists a 𝑄𝛿 as in (4.18), being even
a projector, with ‖𝑄𝛿‖ℒ(𝑌,𝑌 ) = 1/𝜉𝛿.
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Using this theorem, in Section 7 we will verify condition (4.2) for the examples from Section 3.
Finally, we note that the condition (4.2) may be slightly relaxed:

Remark 4.4 (Slight relaxation of inf-sup condition (4.2)). By an application of Young’s inequality, it is not
difficult to show that the reasoning that provided the LBB stability of the bilinear form 𝑒 from (4.13), and
consequently the proof of Theorem 4.1, still applies when, for some constant 𝜇 < 2

√
𝜚, (4.2) is relaxed to

sup0 ̸=𝑣∈𝑌 𝛿
|(𝐵𝑧)(𝑣)|
‖𝑣‖𝑌

≥ 𝜚‖𝐵𝑧‖𝑌 ′ − 𝜇
√︀
‖𝐶𝑧‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻 .

5. Choice of ⟨·, ·⟩𝑌 𝛿 , and the reformulation of (4.15) as a symmetric positive

definite system

Let 𝐺𝛿
𝑌 = 𝐺𝛿

𝑌

′ ∈ ℒis(𝑌 𝛿 ′, 𝑌 𝛿) be such that

⃦⃦
𝐺𝛿

𝑌 𝑓
⃦⃦2

𝑌
h 𝑓

(︀
𝐺𝛿

𝑌 𝑓
)︀ (︁

𝑓 ∈ 𝑌 𝛿 ′, 𝛿 ∈ ∆
)︁
. (5.1)

Assuming its application can be computed “efficiently”, such an operator 𝐺𝛿
𝑌 is often called a (uniform) precon-

ditioner. See Remark 5.2 below for scenarios where such preconditioners are available. This 𝐺𝛿
𝑌 can be employed

to define

⟨𝑣, 𝑣⟩𝑌 𝛿 :=
(︁(︀
𝐺𝛿

𝑌

)︀−1
𝑣
)︁
(𝑣)

(︀
𝑣, 𝑣 ∈ 𝑌 𝛿

)︀
, (5.2)

which, in view of (5.1), yields ‖ · ‖𝑌 𝛿 h ‖ · ‖𝑌 on 𝑌 𝛿, i.e., (4.3). The definition of ⟨·, ·⟩𝑌 𝛿 shows that 𝐺𝛿
𝑌 is the

Riesz lifter associated to the Hilbert space (𝑌 𝛿, ⟨·, ·⟩𝑌 𝛿). Since a Riesz lifter is an isometry, it follows that

sup
0 ̸=𝑣∈𝑌 𝛿

|𝑓(𝑣)|2
‖𝑣‖2

𝑌 𝛿

=
⃦⃦
𝐺𝛿

𝑌 𝑓
⃦⃦2

𝑌 𝛿 = 𝑓
(︀
𝐺𝛿

𝑌 𝑓
)︀ (︁

𝑓 ∈ 𝑌 𝛿 ′
)︁
.

We conclude that for ⟨·, ·⟩𝑌 𝛿 as in (5.2), 𝑢𝛿
𝜀 defined in (4.4) satisfies

𝑢𝛿
𝜀 = argmin

𝑧∈𝑋𝛿

{︁
(𝐵𝑧 − 𝑔)

(︀
𝐺𝛿

𝑌 (𝐵𝑧 − 𝑔)
)︀

+ ‖𝐶𝑧 − ℎ‖2𝑊 + 𝜀2‖𝐿𝑧‖2𝐻
}︁
,

meaning that 𝑢𝛿
𝜀 ∈ 𝑋𝛿 solves the Euler–Lagrange equations

(︀
𝐵𝑢𝛿

𝜀

)︀(︀
𝐺𝛿

𝑌 𝐵𝑧
)︀

+
⟨︀
𝐶𝑧,𝐶𝑢𝛿

𝜀

⟩︀
𝑊

+ 𝜀2
⟨︀
𝐿𝑧, 𝐿𝑢𝛿

𝜀

⟩︀
𝐻

= 𝑔
(︀
𝐺𝛿

𝑌 𝐵𝑧
)︀

+ ⟨𝐶𝑧, ℎ⟩𝑊
(︀
𝑧 ∈ 𝑋𝛿

)︀
. (5.3)

When 𝐺𝛿
𝑌 can be applied in linear complexity, the iterative solution of this symmetric positive definite system

can be expected to be more efficient than the iterative solution of the mixed system (4.15) with ⟨·, ·⟩𝑌 𝛿 = ⟨·, ·⟩𝑌 .
So even in the case that ⟨·, ·⟩𝑌 can be efficiently evaluated, it can be helpful to replace ‖ ·‖𝑌 by the above ‖ ·‖𝑌 𝛿

in the definition (4.4) of the regularized least squares approximation 𝑢𝛿
𝜀.

Remark 5.1. We arrived at (5.3) without introducing the Riesz lift of 𝑔 − 𝐵𝑢𝛿
𝜀 ∈ 𝑌 𝛿 ′ as a separate variable.

Alternatively, eliminating this variable 𝑣𝛿
𝜀 from the mixed system (4.15) using the definition (5.2) of ⟨·, ·⟩𝑌 𝛿 also

results in (5.3).

Remark 5.2 (Some scenarios where uniform preconditioners are available). Continuing the discussion preced-
ing Theorem 4.1, uniform preconditioners 𝐺𝛿

𝑌 of linear complexity are for example available when 𝑌 is a Sobolev
space of either positive or negative possibly non-integer smoothness index, and the 𝑌 𝛿 are common finite ele-
ment spaces. Wavelet preconditioners can be applied, but also multi-level preconditioners that make solely use
of nodal bases as the BPX preconditioner [10] for positive smoothness indices, and the preconditioner from [22]
for negative smoothness indices. Another option for negative smoothness indices is given by the preconditioner
from [37] based on the “operator preconditioning” framework where the “opposite order” operator of linear
complexity uses a multi-level hierarchy.
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Remark 5.3 (Conditioning of (5.3)). In the case that ran(𝐵,𝐶,𝐿) is closed, then one has 𝜀2 .
(𝐵·)(𝐺𝛿

𝑌 𝐵·)+⟨𝐶·,𝐶·⟩𝑊 +𝜀2⟨𝐿·,𝐿·⟩𝐻

‖·‖2
𝑋

. 1 on 𝑋𝛿 (cf. Rem. 2.6). So for 𝐺𝛿
𝑋 = 𝐺𝛿

𝑋

′ ∈ ℒis(𝑋𝛿 ′, 𝑋𝛿) with ‖𝐺𝛿
𝑋 · ‖2𝑋 h

·(𝐺𝛿
𝑋 ·) on 𝑋𝛿 ′, the condition number of the system matrix corresponding to (5.3) preconditioned by 𝐺𝛿

𝑋 is
. 𝜀−2, directly tying solver efficiency to regularization.

6. A POSTERIORI residual estimation

In view of Theorem 2.2, and the inequality ‖𝐴(𝑢 − 𝑢𝛿
𝜀)‖𝑉 ≤ 𝜏 + ‖𝑓 − 𝐴𝑢𝛿

𝜀‖𝑉 , it is desirable to have an a
posteriori estimate for ‖𝑓 − 𝐴𝑢𝛿

𝜀‖𝑉 . Indeed, for suitable 𝜀 it will give rise to a computable upper bound for
𝑗(𝑢− 𝑢𝛿

𝜀).

Considering 𝑉 = 𝑌 ′×𝑊 , 𝐴 = (𝐵,𝐶), and 𝑓 = (𝑔, ℎ), the issue is to approximate ‖𝑔−𝐵𝑢𝛿
𝜀‖𝑌 ′ . This is where

Fortin operators again come into play. Recall from Theorem 4.3 that (4.2) guarantees the existence of a family

of uniformly bounded Fortin operators (𝑄𝛿)𝛿∈Δ. We can then write 𝑔−𝐵𝑢𝛿
𝜀 = 𝑄𝛿 ′(𝑔−𝐵𝑢𝛿

𝜀) + (Id−𝑄𝛿)′𝑔, and
obtain

⃦⃦
𝑔 −𝐵𝑢𝛿

𝜀

⃦⃦
𝑌 ′
≤

⃦⃦
𝑄𝛿

⃦⃦
ℒ(𝑌,𝑌 )

sup
0 ̸=𝑣∈𝑌 𝛿

⃒⃒(︀
𝑔 −𝐵𝑢𝛿

𝜀

)︀
(𝑣)

⃒⃒

‖𝑣‖𝑌
+

⃦⃦
⃦
(︀
Id−𝑄𝛿

)︀′
𝑔
⃦⃦
⃦

𝑌 ′⏟  ⏞  
osc𝛿(𝑔):=

(4.3)
h sup

0 ̸=𝑣∈𝑌 𝛿

⃒⃒(︀
𝑔 −𝐵𝑢𝛿

𝜀

)︀
(𝑣)

⃒⃒

‖𝑣‖𝑌 𝛿

+ osc𝛿(𝑔).

Neglecting the term osc𝛿(𝑔), known as data oscillation, as well as the factor ‖𝑄𝛿‖ℒ(𝑌,𝑌 ), and using that

sup0 ̸=𝑣∈𝑌 𝛿
|(𝑔−𝐵𝑢𝛿

𝜀)(𝑣)|
‖𝑣‖𝑌

h sup0 ̸=𝑣∈𝑌 𝛿
|(𝑔−𝐵𝑢𝛿

𝜀)(𝑣)|
‖𝑣‖

𝑌 𝛿
, we will use

√︃
sup

0 ̸=𝑣∈𝑌 𝛿

|(𝑔 −𝐵𝑢𝛿
𝜀)(𝑣)|2

‖𝑣‖2
𝑌 𝛿

+ ‖ℎ− 𝐶𝑢𝛿
𝜀‖2𝑊

to estimate ‖𝑓 −𝐴𝑢𝛿
𝜀‖𝑉 .

Having solved 𝑢𝛿
𝜀 from either (4.15) or (5.3), this estimator can be computed at the expense of computing

only a few inner products. Indeed with 𝑣𝛿
𝜀 ∈ 𝑌 𝛿 defined by ⟨𝑣𝛿

𝜀 , 𝑣⟩𝑌 𝛿 = (𝑔 − 𝐵𝑢𝛿
𝜀)(𝑣) (𝑣 ∈ 𝑌 𝛿), the supremum

under the square root equals ‖𝑣𝛿
𝜀‖2𝑌 𝛿 . When 𝑢𝛿

𝜀 is determined by solving the mixed system (4.15), this 𝑣𝛿
𝜀 is the

second component of the solution. When 𝑢𝛿
𝜀 is determined by solving the symmetric positive definite system

(5.3), it holds that 𝑣𝛿
𝜀 := 𝐺𝛿

𝑌 (𝑔 −𝐵𝑢𝛿
𝜀) and ‖𝑣𝛿

𝜀‖2𝑌 𝛿 = (𝑔 −𝐵𝑢𝛿
𝜀)(𝐺

𝛿
𝑌 (𝑔 −𝐵𝑢𝛿

𝜀)).

Since (Id−𝑄𝛿)′𝐵𝑋𝛿 = 0, it holds that

osc𝛿(𝑔) ≤ ‖𝑄𝛿‖ℒ(𝑌,𝑌 ) min
𝑧∈𝑋𝛿

‖𝑔 −𝐵𝑧‖𝑌 ′ ,

so that the term that we have ignored is in any case 𝒪(min𝑧∈𝑋𝛿 ‖𝑔 −𝐵𝑧‖𝑌 ′). Of course this is not completely
satisfactory, because it does not ensure that our estimator of ‖𝑓 − 𝐴𝑢𝛿

𝜀‖𝑉 is reliable. In many cases for a
suitable choice of (𝑌 𝛿)𝛿∈Δ, the Fortin interpolators can be constructed such that, in any case for smooth 𝑢
and 𝑔, osc𝛿(𝑔) is of higher order than min𝑧∈𝑋𝛿 ‖𝑢 − 𝑧‖𝑋 , in which case it can be expected that osc𝛿(𝑔) is
asymptotically negligible. We do not discuss this issue further.

7. Verification of the inf-sup condition

In this section we establish the validity of the inf-sup condition (4.2) for the examples discussed earlier.
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7.1. Verification of (4.2) for the Cauchy problem for Poisson’s equation (Example 3.1)

Let Ω ⊂ R𝑑 be a polytope, and recall that 𝐴 = (𝐵1, 𝐵2) ∈ ℒ
(︀
𝐻1(Ω), (𝐻1

0,Σ𝑐(Ω)× ̃︀𝐻− 1
2 (Σ))′

)︀
where (𝐵1𝑧)(𝑣) =∫︀

Ω
∇𝑧 · ∇𝑣 d𝑥, and 𝐵2 = 𝛾Σ (see notations introduced around Eq. (4.1)). By viewing 𝐵2 here as an operator in

ℒ
(︀
𝐻1(Ω), ( ̃︀𝐻− 1

2 (Σ))′
)︀
, i.e., by using that ( ̃︀𝐻− 1

2 (Σ))′ = 𝐻
1
2 (Σ), we will avoid having to evaluate 𝐻

1
2 (Σ)-norms

of residuals.
Let (𝒯 𝛿)𝛿∈Δ being a family of conforming, uniformly shape regular partitions of Ω into (closed) 𝑑-simplices,

with ℱ(𝒯 𝛿) denoting the set of the (closed) faces of 𝒯 𝛿, and 𝜕𝒯 𝛿 := ∪ℱ(𝒯 𝛿) its skeleton. Assuming Σ to be
the union of some 𝑒 ∈ ℱ(𝒯 𝛿), we take

𝑋𝛿 = 𝒮0,1
𝒯 𝛿 :=

{︀
𝑧 ∈ 𝐶

(︀
Ω
)︀
: 𝑧|𝑇 ∈ 𝒫1(𝑇 )

(︀
𝑇 ∈ 𝒯 𝛿

)︀}︀
,

but expect that similar results can be shown for higher order finite element spaces.
We will approximate the solution of the Cauchy problem by the minimizer over 𝑋𝛿 of the regularized least-

squares functional that, in an abstract setting, was introduced and analyzed in Section 4. To show the inf-sup
condition (4.2) for the triple 𝐵, (𝑋𝛿)𝛿∈Δ, and a suitable family of test spaces (𝑌 𝛿

1 × 𝑌 𝛿
2 )𝛿∈Δ ⊂ 𝑌1 × 𝑌2 :=

𝐻1
0,Σ𝑐(Ω) × ̃︀𝐻− 1

2 (Σ), it suffices to show such inf-sup conditions for (𝐵𝑖, (𝑋
𝛿)𝛿∈Δ, (𝑌

𝛿
𝑖 )𝛿∈Δ) and 𝑖 ∈ {1, 2}

separately, which will be done in Propositions 7.1 and 7.2. Indeed, uniformly bounded 𝑄𝛿
𝑖 ∈ ℒ(𝑌𝑖, 𝑌

𝛿
𝑖 ) with

(𝐵𝑖𝑋
𝛿)((Id − 𝑄𝛿

𝑖 )𝑌𝑖) = 0 give uniformly bounded 𝑄𝛿 := 𝑄𝛿
2 × 𝑄𝛿

2 ∈ ℒ(𝑌1 × 𝑌2, 𝑌
𝛿
1 × 𝑌 𝛿

2 ) with (𝐵𝑋𝛿)((Id −
𝑄𝛿)(𝑌1 × 𝑌2)) = 0.

Proposition 7.1. For each 𝛿 ∈ ∆, let 𝒯 𝛿
𝑠 be a refinement of 𝒯 𝛿 such that3 each 𝑇 ∈ 𝒯 𝛿 is subdivided into a

uniformly bounded number of uniformly shape regular 𝑑-simplices, and, when 𝑑 > 1, 𝒯 𝛿
𝑠 has a vertex interior to

each 𝑒 ∈ ℱ(𝒯 𝛿) with 𝑒 ̸⊂ Σ. Then for
𝑌 𝛿

1 := 𝒮0,1
𝒯 𝛿

𝑠
∩𝐻1

0,Σ𝑐(Ω),

it holds that

inf
𝛿∈Δ

inf
{𝑧∈𝑋𝛿 : 𝐵1𝑧 ̸=0}

sup
{0 ̸=𝑣∈𝑌 𝛿

1 }
|(𝐵1𝑧)(𝑣)|

‖𝐵1𝑧‖𝐻1
0,Σ𝑐 (Ω)′‖𝑣‖𝐻1(Ω)

> 0.

Proof. For 𝑑 > 1, let 𝐽𝛿 denote a Scott–Zhang quasi-interpolator (cf. [34]) mapping into𝑋𝛿∩𝐻1
0,Σ𝑐(Ω) ⊂ 𝑌 𝛿

1 , i.e.,

one that preserves homogeneous boundary conditions on Σ𝑐. Using the technique applied in [6], for 𝑣 ∈ 𝐻1
0,Σ𝑐(Ω)

we define

𝑣𝛿 = 𝑄𝛿
1𝑣 := 𝐽𝛿𝑣 +

∑︁

{𝑒∈ℱ(𝒯 𝛿) : 𝑒 ̸⊂Σ}

∫︀
𝑒

(︀
Id− 𝐽𝛿

)︀
𝑣 d𝑠∫︀

𝑒
𝜑𝑒 d𝑠

𝜑𝑒 ∈ 𝑌 𝛿
1 ,

where 𝜑𝑒 ∈ 𝑌 𝛿
1 is such that 𝜑𝑒 has values in [0, 1], 𝜑𝑒 is 1 at a vertex of 𝒯 𝛿

𝑠 interior to 𝑒, and 𝜑𝑒 vanishes outside
∪𝜔𝑒, where 𝜔𝑒 := {𝑇 ∈ 𝒯 𝛿 : 𝑒 ⊂ 𝜕𝑇}. Then for each 𝑒 ∈ ℱ(𝒯 𝛿), it holds that

∫︀
𝑒
𝑣−𝑣𝛿 d𝑠 = 0, and so for 𝑧 ∈ 𝑋𝛿,

(𝐵1𝑧)
(︀
𝑣 − 𝑣𝛿

)︀
=

∑︁

𝑇∈𝒯 𝛿

{︂
−

∫︁

𝑇

△𝑧
(︀
𝑣 − 𝑣𝛿

)︀
d𝑥+

∫︁

𝜕𝑇

𝜕𝑧
𝜕𝑛

(︀
𝑣 − 𝑣𝛿

)︀
d𝑠

}︂
= 0.

So 𝑄𝛿
1 is a Fortin interpolator into 𝑌 𝛿

1 . In view of Theorem 4.3 we need to show sup𝛿∈Δ ‖𝑄𝛿
1‖ℒ(𝐻1

0,Σ𝑐 (Ω),𝐻1
0,Σ𝑐 (Ω)) <

∞.
By an application of the trace theorem and a homogeneity argument, the construction of a Scott–Zhang

quasi-interpolator shows that for arbitrary 𝑇𝑒 ∈ 𝒯 𝛿 with 𝑇𝑒 ⊂ 𝜔𝑒, with ℎ𝑒 := diam(𝑒) it holds that

⃦⃦(︀
Id− 𝐽𝛿

)︀
𝑣
⃦⃦

𝐿2(𝑒)
. ℎ

− 1
2

𝑒

⃦⃦(︀
Id− 𝐽𝛿

)︀
𝑣
⃦⃦

𝐿2(𝑇𝑒)
+ ℎ

1
2
𝑒

⃦⃦(︀
Id− 𝐽𝛿

)︀
𝑣
⃦⃦

𝐻1(𝑇𝑒)
. ℎ

1
2
𝑒 |𝑣|𝐻1(𝜔𝑇𝑒 ),

3Obviously, 𝒯 𝛿
𝑠 can be a further refinement of a partition that satisfies the listed requirements. Indeed, such a further refinement

renders a 𝑌 𝛿
1 that is only larger.
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where 𝜔𝑇 := ∪{𝑇 ′ ∈ 𝒯 𝛿 : |𝑇 ∩𝑇 ′| > 0}. From
∫︀

𝑒
𝜑𝑒 d𝑠 & ℎ𝑑−1

𝑒 , ‖𝜑𝑒‖𝐻1(Ω) . ℎ
𝑑
2−1
𝑒 , and |𝑒| 12 . ℎ

𝑑−1
2

𝑒 , we conclude

⃦⃦
𝑄𝛿

1𝑣
⃦⃦

𝐻1(Ω)
≤

⃦⃦
𝐽𝛿𝑣

⃦⃦
𝐻1(Ω)

+
∑︁

{𝑒∈ℱ(𝒯 𝛿) : 𝑒 ̸⊂Σ}

⃒⃒∫︀
𝑒

(︀
Id− 𝐽𝛿

)︀
𝑣 d𝑠

⃒⃒
⃒⃒∫︀

𝑒
𝜑𝑒 d𝑠

⃒⃒ ‖𝜑𝑒‖𝐻1(Ω)

. ‖𝑣‖𝐻1(Ω) +
∑︁

{𝑒∈ℱ(𝒯 𝛿) : 𝑒 ̸⊂Σ}
ℎ1−𝑑

𝑒 ℎ
𝑑
2−1
𝑒 ℎ

𝑑−1
2

𝑒 ℎ
1
2
𝑒 |𝑣|𝐻1(𝜔𝑇𝑒 ) . ‖𝑣‖𝐻1(Ω). �

Proposition 7.2. For 𝛿 ∈ ∆, let ℰ𝛿
𝑠 be a red-refinement of the partition ℰ𝛿 := {𝑒 ∈ ℱ(𝒯 𝛿) : 𝑒 ⊂ Σ} of Σ, i.e.,

in ℰ𝛿
𝑠 each (𝑑− 1)-simplex 𝑒 ∈ ℰ𝛿 has been split into 2𝑑−1 subsimplices that are similar to 𝑒. Then with

𝑌 𝛿
2 = 𝒮−1,0

ℰ𝛿
𝑠

:=
{︀
𝑣 ∈ 𝐿2(Σ): 𝑣|𝑒 ∈ 𝒫0(𝑒)

(︀
𝑒 ∈ ℰ𝛿

𝑠

)︀}︀
,

it holds that

inf
𝛿∈Δ

inf
{𝑧∈𝑋𝛿 : 𝛾Σ𝑧 ̸=0}

sup
{0 ̸=𝑣∈𝑌 𝛿

2 }

⃒⃒∫︀
Σ
𝑧𝑣 d𝑠

⃒⃒

‖𝛾Σ𝑧‖
𝐻

1
2 (Σ)
‖𝑣‖ ̃︀𝐻−

1
2 (Σ)

> 0.

Proof. Although formulated differently, a proof of this statement can be found in Theorem 4.1 and Lemma 5.6 of
[36]. We summarize the main steps. With Φ𝛿 = {𝜑𝜈} denoting the nodal basis for 𝒮0,1

ℰ𝛿 , there exists a collection
Ψ𝛿 = {𝜓𝜈} ⊂ 𝑌 𝛿

2 for which ⟨𝜑𝜈 , 𝜓𝜈′⟩𝐿2(Σ) h 𝛿𝜈𝜈′‖𝜑𝜈‖𝐿2(Σ)‖𝜓𝜈′‖𝐿2(Σ) and supp𝜓𝜈 ⊆ supp𝜑𝜈 . The resulting

biorthogonal Fortin projector 𝑄𝛿
2 with ran𝑄𝛿

2 = spanΨ𝛿 and ran(Id−𝑄𝛿
2) = (𝒮0,1

ℰ𝛿 )⊥𝐿2(Σ) is uniformly bounded

w.r.t. 𝐿2(Σ), and, thanks to the approximation properties of 𝒮0,1
ℰ𝛿 , its adjoint is uniformly bounded w.r.t. 𝐻1(Σ),

and therefore also w.r.t. 𝐻
1
2 (Σ). We conclude that sup𝛿∈Δ ‖𝑄𝛿

2‖ℒ( ̃︀𝐻−
1
2 (Σ), ̃︀𝐻−

1
2 (Σ))

<∞ as required. �

Remark 7.3. The proof of the above proposition hinges on the construction of a (uniformly locally supported)
basis dual to Φ𝛿 from the span of piecewise constants w.r.t. some refined partition. Such a construction is not
restricted to red-refinement, and obviously it applies when a deeper than red-refinement is applied as with the
application of the bisect(5) refinement rule for two-dimensional Σ (see e.g., [32], Rem. 1).

Next, in order to avoid the evaluation of the ̃︀𝐻− 1
2 (Σ)-norm of arguments from 𝑌 𝛿

2 , let𝐺𝛿
2 = 𝐺𝛿

2
′ ∈ ℒis(𝑌 𝛿

2
′
, 𝑌 𝛿

2 )

be such that ‖𝐺𝛿
2𝑓‖2̃︀𝐻−

1
2 (Σ)

h 𝑓(𝐺𝛿
2𝑓) (𝑓 ∈ 𝑌 𝛿

2
′
), and whose application can be performed in linear complexity

(examples in [22,37]). We equip 𝑌 𝛿
2 with ((𝐺𝛿

2)
−1·)(·)) 1

2 h ‖ · ‖ ̃︀𝐻−
1
2 (Σ)

.

In conclusion we have that the least squares approximation 𝑢𝛿
𝜀 from (4.4) of the solution of (3.2) is given as

the minimizer over 𝑧 ∈ 𝑋𝛿 of

sup
0 ̸=(𝑣1,𝑣2)∈𝑌 𝛿

1 ×𝑌 𝛿
2

⃒⃒∫︀
Ω
∇𝑧 · ∇𝑣1 d𝑥+

∫︀
Σ
𝛾Σ𝑧𝑣2 d𝑠−

(︀
𝑓𝐼(𝑣1) +

∫︀
Σ
𝑓𝑁𝑣1 + 𝑓𝐷𝑣2 d𝑠

)︀⃒⃒2

‖𝑣1‖2𝐻1(Ω) +
(︁(︀
𝐺𝛿

2

)︀−1
𝑣2

)︁
(𝑣2)

+ 𝜀2‖𝑧‖2𝐻 , (7.1)

where 𝐻 = 𝐿2(Ω) or 𝐻 = 𝐻1(Ω) for Case (i) or Case (ii), of Example 3.1 in Section 3, respectively. According
to (4.15) this 𝑢𝛿

𝜀 can be computed as the first component of the solution (𝑢𝛿
𝜀, 𝑣

𝛿
𝜀,1, 𝑣

𝛿
𝜀,2) ∈ 𝑋𝛿 × 𝑌 𝛿

1 × 𝑌 𝛿
2 of

∫︁

Ω

∇𝑧 · ∇𝑣𝛿
𝜀,1 d𝑥+

∫︁

Σ

𝛾Σ𝑧𝑣
𝛿
𝜀,2 d𝑠+

∫︁

Ω

∇𝑢𝛿
𝜀 · ∇𝑣1 d𝑥+

∫︁

Σ

𝛾Σ𝑢
𝛿
𝜀𝑣2 d𝑠+

⟨︀
𝑣1, 𝑣

𝛿
𝜀,1

⟩︀
𝐻1(Ω)

+
(︁(︀
𝐺𝛿

2

)︀−1
𝑣2

)︁
(𝑣𝜀,2)− 𝜀2

⟨︀
𝑧, 𝑢𝛿

𝜀

⟩︀
𝐻

= 𝑓𝐼(𝑣1) +

∫︁

Σ

𝑓𝑁𝑣1 + 𝑓𝐷𝑣2 d𝑠
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for all (𝑧, 𝑣1, 𝑣2) ∈ 𝑋𝛿 × 𝑌 𝛿
1 × 𝑌 𝛿

2 , which after elimination of 𝑣𝛿
𝜀,2 reads as finding (𝑢𝛿

𝜀, 𝑣
𝛿
𝜀,1) ∈ 𝑋𝛿 × 𝑌 𝛿

1 that
satisfies

∫︁

Ω

∇𝑧 · ∇𝑣𝛿
𝜀,1 d𝑥+

∫︁

Ω

∇𝑢𝛿
𝜀 · ∇𝑣1 d𝑥+

⟨︀
𝑣1, 𝑣

𝛿
𝜀,1

⟩︀
𝐻1(Ω)

−
∫︁

Σ

𝛾Σ𝑢
𝛿
𝜀𝐺

𝛿
2𝛾Σ𝑧 d𝑠− 𝜀2

⟨︀
𝑢𝛿

𝜀, 𝑧
⟩︀

𝐻

= 𝑓𝐼(𝑣1) +

∫︁

Σ

𝑓𝑁𝑣1 − 𝑓𝐷𝐺
𝛿
2𝛾Σ𝑧 d𝑠

(︀
(𝑧, 𝑣1) ∈ 𝑋𝛿 × 𝑌 𝛿

1

)︀
.

(7.2)

For this 𝑢𝛿
𝜀 the bound on |||𝑢−𝑢𝛿

𝜀|||𝜀 from Theorem 4.1 applies, and, with the specification of 𝑗 and 𝜂 according
to the estimates in Example 3.1 (i) or (ii), so does Theorem 2.2.

Remark 7.4. For completeness, we recall that in order to enhance the efficiency of an iterative solution process,
additionally in (7.1) one may replace ‖𝑣1‖2𝐻1(Ω) by an equivalent expression ((𝐺𝛿

1)
−1𝑣1)(𝑣1), where 𝐺𝛿

1 = 𝐺𝛿
1
′ ∈

ℒis(𝑌 𝛿
1
′
, 𝑌 𝛿

1 ) is such that ‖𝐺𝛿
1𝑓‖2𝐻1(Ω) h 𝑓(𝐺𝛿

1𝑓) (𝑓 ∈ 𝑌 𝛿
1
′
), and whose application can be performed in linear

complexity (e.g., a multigrid preconditioner). With this change, ⟨𝑣1, 𝑣𝛿
𝜀,1⟩𝐻1(Ω) in (7.2) reads as ((𝐺𝛿

1)
−1𝑣1)(𝑣𝜀,1),

and the unknown 𝑣𝛿
𝜀,1 can be eliminated which results in the symmetric positive definite system of finding

𝑢𝛿
𝜀 ∈ 𝑋𝛿 that satisfies

(︀
𝐵1𝑢

𝛿
𝜀

)︀(︀
𝐺𝛿

1𝐵1𝑧
)︀

+

∫︁

Σ

𝛾Σ𝑢
𝛿
𝜀𝐺

𝛿
2𝛾Σ𝑧 d𝑠+ 𝜀2

⟨︀
𝑢𝛿

𝜀, 𝑧
⟩︀

𝐻
= 𝑓𝐼

(︀
𝐺𝛿

1𝐵1𝑧
)︀

+

∫︁

Σ

𝑓𝑁𝐺
𝛿
1𝐵1𝑧 + 𝑓𝐷𝐺

𝛿
2𝛾Σ𝑧 d𝑠

(︀
𝑧 ∈ 𝑋𝛿

)︀
,

cf. equation (5.3).

Remark 7.5 (Other approaches). In [12], the Dirichlet boundary condition was enforced by the so-called
Nitsche method, which avoids the treatment of fractional Sobolev norms. Under the additional regularity con-
dition that 𝑢 ∈ 𝐻2(Ω), an error estimate was derived based on the conditional stability estimates (i) or (ii).

In [7], 𝐵2 = 𝛾Σ was viewed as a map in ℒ(𝐻1(Ω), 𝐿2(Σ)), i.e., the discrepancy between the Dirichlet data
and the trace of the approximate solution was measured in the weaker 𝐿2(Σ)-norm. For data such that the
Cauchy problem has a (unique) solution, the solution of the resulting regularized least squares problem with
𝑋𝛿 = 𝐻1(Ω) (so without discretization) was shown to converge to the exact solution for 𝜀→ 0.

7.2. Verification of (4.2) for the data-assimilation problem for the heat equation
(Example 3.2)

Let Ω ⊂ R𝑑 be a polytope, and recall that 𝐴 = (𝐵,Γ𝐼×𝜔) ∈ ℒ(𝑋,𝑉 ), where 𝐼 = (0, 𝑇 ), 𝑋 = 𝐿2(𝐼;𝐻
1(Ω)) ∩

𝐻1(𝐼;𝐻−1(Ω)) (Case (a)) or 𝑋 = 𝐿2(𝐼;𝐻
1
0 (Ω)) ∩ 𝐻1(𝐼;𝐻−1(Ω)) (Case (b)), 𝑉 = 𝑌 ′ × 𝐿2(𝐼 × 𝜔), 𝑌 =

𝐿2(𝐼;𝐻
1
0 (Ω)), Γ𝐼×𝜔𝑢 = 𝑢|𝐼×𝜔, and

(𝐵𝑢)(𝑣) =

∫︁

𝐼

∫︁

Ω

𝜕𝑡𝑢 𝑣 +∇𝑥𝑢 · ∇𝑥𝑣 d𝑥d𝑡.

Proposition 7.6. Let (𝒯 𝛿)𝛿∈Δ be a family of conforming, uniformly shape regular partitions of Ω into 𝑑-
simplices. For each 𝛿 ∈ ∆, let 𝒯 𝛿

𝑠 be a refinement of 𝒯 𝛿 such that each 𝑇 ∈ 𝒯 𝛿 is subdivided into a uniformly
bounded number of uniformly shape regular 𝑑-simplices and

(1) when 𝑑 > 1, 𝒯 𝛿
𝑠 has a vertex interior to each 𝑒 ∈ ℱ(𝒯 𝛿) with 𝑒 ̸⊂ 𝜕Ω,

(2) inf
𝛿∈Δ, 𝑇∈𝒯 𝛿

inf
0 ̸=𝑝∈𝒫1(𝑇 )

sup
{0 ̸=𝑝∈𝐻1

0 (𝑇 ) : 𝑝|𝑇 ∈𝒫1(𝑇 )(𝑇∈𝒯 𝛿
𝑠 , 𝑇⊂𝑇 )}

⟨𝑝,𝑝⟩𝐿2(𝑇 )

‖𝑝‖𝐿2(𝑇 )‖𝑝‖𝐿2(𝑇 )
> 0,

or 𝒯 𝛿
𝑠 is a further refinement of such a partition (cf. footnote 3). With (𝐼𝛿)𝛿∈Δ being a partition of 𝐼, let

𝑋𝛿 := 𝑋 ∩
(︁
𝒮0,1

𝐼𝛿 ⊗ 𝒮0,1
𝒯 𝛿

)︁
, 𝑌 𝛿 := 𝒮−1,1

𝐼𝛿 ⊗
(︁
𝒮0,1
𝒯 𝛿

𝑠
∩𝐻1

0 (Ω)
)︁
.
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Then

inf
𝛿∈Δ

inf
{𝑧∈𝑋𝛿 : 𝐵𝑧 ̸=0}

sup
{0 ̸=𝑣∈𝑌 𝛿}

|(𝐵𝑧)(𝑣)|
‖𝐵𝑧‖𝑌 ′‖𝑣‖𝑌

> 0,

i.e., equation (4.2) is valid.

Remark 7.7. When 𝒯 𝛿
𝑠 is generated from 𝒯 𝛿 by recursive either red-refinement or newest vertex bisection,

for 𝑑 ∈ {1, 2, 3} condition (7.6) is satisfied as soon as the refinement is sufficiently deep such that 𝒯 𝛿
𝑠 contains

a (closed) 𝑑-simplex in the interior of each 𝑇 ∈ 𝒯 𝛿 as can be verified by a direct computation on a reference
𝑑-simplex (see [21], S5.1).

Proof. It suffices to prove the statement for 𝑋 that corresponds to Case (a), so that 𝑋𝛿 := 𝒮0,1
𝐼𝛿 ⊗ 𝒮0,1

𝒯 𝛿 .

Let 𝑄𝛿
1,𝑥 : 𝐻1

0 (Ω) → 𝒮0,1
𝒯 𝛿

𝑠
∩𝐻1

0 (Ω) be the Fortin operator 𝑄1 introduced in the proof of Proposition 7.1 (for

Σ = 𝜕Ω). It has the properties

sup
𝛿∈Δ

⃦⃦
𝑄𝛿

1,𝑥

⃦⃦
ℒ(𝐻1

0 (Ω),𝐻1
0 (Ω))

<∞,
∫︁

𝑒

(︀
Id−𝑄𝛿

1,𝑥

)︀
𝑣 d𝑠 = 0

(︀
𝑣 ∈ 𝐻1

0 (Ω), 𝑒 ∈ ℱ
(︀
𝒯 𝛿

)︀)︀
,

⃦⃦(︀
Id−𝑄𝛿

1,𝑥

)︀
𝑣
⃦⃦

𝐿2(𝑇 )
. diam(𝑇 )|𝑣|𝐻1(𝜔𝑇 )

(︀
𝑣 ∈ 𝐻1

0 (Ω), 𝑇 ∈ 𝒯 𝛿
)︀
,

which also implies ‖(Id−𝑄𝛿
1,𝑥

′
)𝑔‖𝐻−1(Ω) .

∑︀
𝑇∈𝒯 𝛿 diam(𝑇 )2‖𝑔‖2𝐿2(𝑇 ) (𝑔 ∈ 𝐿2(Ω)).

Thanks to (7.6), Theorem 4.3 shows that there exists a projector 𝑄𝛿
2,𝑥 : 𝐿2(Ω) → {𝑣 ∈ 𝒮0,1

𝒯 𝛿
𝑠

: 𝑣|𝜕𝒯 𝛿 = 0},
where, for 𝑇 ∈ 𝒯 𝛿, (𝑄𝛿

2,𝑥𝑣)|𝑇 only depends on 𝑣|𝑇 , with

sup
𝛿∈Δ

⃦⃦
𝑄𝛿

2,𝑥

⃦⃦
ℒ(𝐿2(Ω),𝐿2(Ω))

<∞, ran
(︀
Id−𝑄𝛿

2,𝑥

)︀
⊥𝐿2(Ω) 𝒮−1,1

𝒯 𝛿 ,

so that 𝑄𝛿
2,𝑥

′
reproduces 𝒮−1,1

𝒯 𝛿 , and so

⃦⃦
⃦
(︁
Id−𝑄𝛿

2,𝑥

′)︁
𝑔
⃦⃦
⃦

𝐿2(𝑇 )
. diam(𝑇 )|𝑔|𝐻1(𝑇 )

(︀
𝑔 ∈ 𝐻1(Ω), 𝑇 ∈ 𝒯 𝛿

)︀
.

With 𝑄𝛿
𝑥 := 𝑄𝛿

1,𝑥 + 𝑄𝛿
2,𝑥 − 𝑄𝛿

2,𝑥𝑄
𝛿
1,𝑥 : 𝐻1

0 (Ω) → 𝒮0,1
𝒯 𝛿

𝑠
∩𝐻1

0 (Ω), and 𝑄𝛿
𝑡 being the 𝐿2(𝐼)-orthogonal projector

onto 𝒮−1,1
𝐼𝛿 , we take 𝑄𝛿 := 𝑄𝛿

𝑡 ⊗𝑄𝛿
𝑥. From

‖𝑄2,𝑥(Id−𝑄1,𝑥)𝑣‖𝐻1(𝑇 ) . diam(𝑇 )−1‖(Id−𝑄1,𝑥)𝑣‖𝐻1(𝑇 ) . |𝑣|𝐻1(𝜔𝑇 )

(︀
𝑇 ∈ 𝒯 𝛿

)︀
,

one infers that sup𝛿∈Δ ‖𝑄𝛿‖ℒ(𝑌,𝑌 ) <∞.
For 𝑧 ∈ 𝑋𝛿 and 𝑣 ∈ 𝑌 , by writing (𝐵𝑧)((Id−𝑄𝛿)𝑣) = (𝐵𝑧)((Id−𝑄𝛿

𝑡 )⊗ Id 𝑣) + (𝐵𝑧)(𝑄𝛿
𝑡 ⊗ (Id−𝑄𝛿

𝑥)𝑣), and
by realizing that the second term equals

∑︁

𝐽∈𝐼𝛿

∫︁

𝐽

∑︁

𝑇∈𝒯 𝛿

{︂∫︁

𝑇

𝜕𝑡𝑧 𝑄
𝛿
𝑡 ⊗

(︀
Id−𝑄𝛿

2,𝑥

)︀(︀
Id−𝑄𝛿

1,𝑥

)︀
𝑣 d𝑥+

∫︁

𝜕𝑇

𝜕𝑧

𝜕𝑛
𝑄𝛿

𝑡 ⊗
(︀
Id−𝑄𝛿

1,𝑥 +𝑄𝛿
2,𝑥𝑄

𝛿
1,𝑥

)︀
𝑣 d𝑠

}︂
d𝑡

one infers that both terms vanish, so that 𝑄𝛿 is a valid Fortin operator. �

Remark 7.8. For Case (b) and assuming Ω being convex, in Theorem 5.7 of [21] the statement of Proposi-
tion 7.6 was proven without Condition (7.6), which upon assuming Condition (7.6), is, however, harmless.

Remark 7.9 (Different meshes in different time-slabs). The result of Proposition 7.6 directly extends to the
situation that

𝑋𝛿 :=
{︀
𝑧 ∈ 𝑋 : 𝑧|𝐽×𝑇 ∈ 𝒫1(𝐽)⊗ 𝒫1(𝑇 ) (𝐽 ∈ 𝐼𝛿, 𝑇 ∈ 𝒯 𝛿(𝐽))

}︀
,
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𝑌 𝛿 :=
{︁
𝑣 ∈ 𝑌 : 𝑣|𝐽×𝑇 ∈ 𝒫1(𝐽)⊗ 𝒫1(𝑇 )

(︁
𝐽 ∈ 𝐼𝛿, 𝑇 ∈ 𝒯 𝛿

𝑠 (𝐽)
)︁}︁
,

i.e., when the spatial meshes underlying 𝑋𝛿 and 𝑌 𝛿 possibly depend on the time interval 𝐽 ∈ 𝐼𝛿. Notice that the
global continuity of functions in 𝑋𝛿 implies that nonconformities between spatial meshes in adjacent time-slabs
result in “hanging nodes”.

Remark 7.10. To end up with really general partitions of the time-space cilinder into prismatic elements, it
would be necessary to allow elements 𝐽 × 𝑇 and ̂︀𝐽 × ̂︀𝑇 with 𝑇 ∩ ̂︀𝑇 being a (𝑑− 1)-simplex and 𝐽 ( ̂︀𝐽 , i.e., to
allow hanging nodes on interfaces perpendicular to the plane {0}×Ω. Uniform boundedness in ℒ(𝑌, 𝑌 ) of Fortin
interpolators, needed to prove inf-sup stability, requires essentially that they map functions that are constant
in 𝑥 to functions that are constant in 𝑥. For such general partitions, unfortunately we do not see how this can
be done.

The kind of partitions for which we are able to prove inf-sup stability do not allow local (adaptive) refinements.
To circumvent this problem, in the next section we consider a reformulation of the data assimilation problem
for the heat equation as a first order system.

Concluding, we have that the least squares approximation 𝑢𝛿
𝜀 from (4.4) of the solution of the data-assimilation

problem for the heat equation is given as the minimizer

𝑢𝛿
𝜀 := argmin

𝑧∈𝑋𝛿

{︃
sup

0 ̸=𝑣∈𝑌 𝛿

|(𝐵𝑧 − 𝑔)(𝑣)|2
‖𝑣‖2𝐿2(𝐼;𝐻1(Ω))

+ ‖Γ𝐼×𝜔𝑧 − ℎ‖2𝐿2(𝐼×𝜔) + 𝜀2‖𝑧‖2𝐿2(𝐼×Ω)

}︃
,

where in Case (b) the regularizing term 𝜀2‖𝑧‖2𝐿2(𝐼×Ω) can be omitted. By replacing the nominator ‖𝑣‖2𝐿2(𝐼;𝐻1(Ω))

by ((𝐺𝛿
𝑌 )−1𝑣)(𝑣) for some uniform preconditioner𝐺𝛿

𝑌 = 𝐺𝛿
𝑌

′ ∈ ℒis(𝑌 𝛿 ′, 𝑌 𝛿), the resulting system can be reduced
to a symmetric positive definite system. For 𝑌 𝛿 as in tensor product setting from Proposition 7.2 or in the time-
slab setting from Remark 7.9, such preconditioners are easily constructed using multi-grid preconditioners in
the spatial direction. For the resulting 𝑢𝛿

𝜀, the bound on |||𝑢 − 𝑢𝛿
𝜀|||𝜀 from Theorem 4.1 applies, and so do the

bounds from Theorem 2.2 with the specification of 𝑗 and 𝜂 corresponding to Example 3.2.

7.3. Data-assimilation for the heat equation as a first order system

We reconsider the data assimilation problem 𝐴𝑢 = (𝐵,Γ𝐼×𝜔)𝑢 = (𝑔, ℎ) from Example 3.2. Writing here 𝑢
as 𝑢1, following [23,25] for the well-posed forward heat problem we rewrite this data-assimilation problem as a
first order system for u = (𝑢1,u2), where u2 = −∇𝑥𝑢1. To that end restricting (𝑓, 𝑔) to 𝐿2(𝐼×Ω)×𝐿2(𝐼×𝜔) (

𝐿2(𝐼;𝐻
−1(Ω))× 𝐿2(𝐼 × 𝜔), we consider the system

̃︀𝐴u := (u2 +∇𝑥𝑢1,div u,Γ𝐼×𝜔𝑢1) = (0, 𝑓, 𝑔), (7.3)

where div u := 𝜕𝑡𝑢1 + div𝑥 u2. With

̃︀𝑋 :=
{︁
u = (𝑢1,u2) ∈ 𝐿2

(︀
𝐼;𝐻1(Ω)

)︀
× 𝐿2(𝐼 × Ω)

𝑑
: div u ∈ 𝐿2(𝐼 × Ω)

}︁

equipped with the graph norm, where for Case (b) the space 𝐿2(𝐼;𝐻
1(Ω)) should be read as 𝐿2(𝐼;𝐻

1
0 (Ω)), it

holds that

̃︀𝐴 ∈ ℒ

⎛
⎜⎝ ̃︀𝑋,𝐿2(𝐼 × Ω)

𝑑 × 𝐿2(𝐼 × Ω)× 𝐿2(𝐼 × 𝜔)⏟  ⏞  
̃︀𝑉 :=

⎞
⎟⎠.

We are going to derive (un)conditional stability estimates for the first order system (7.3).
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For any z = (𝑧1, z2) ∈ ̃︀𝑋 and 𝑣 ∈ 𝐿2(𝐼;𝐻
1
0 (Ω)), integration-by-parts gives

(𝐵𝑧1)(𝑣) =

∫︁

𝐼

∫︁

Ω

𝜕𝑡𝑧1𝑣 +∇𝑥𝑧1 · ∇𝑥𝑣 d𝑥d𝑡 =

∫︁

𝐼

∫︁

Ω

div z 𝑣 + (z2 +∇𝑥𝑧1) · ∇𝑥𝑣 d𝑥d𝑡,

so that, thanks to max
(︀
‖𝑣‖𝐿2(𝐼×Ω), ‖∇𝑥𝑣‖𝐿2(𝐼×Ω)𝑑

)︀
≤ ‖𝑣‖𝐿2(𝐼;𝐻1(Ω)),

‖𝐵𝑧1‖𝐿2(𝐼;𝐻−1(Ω)) = sup
0 ̸=𝑣∈𝐿2(𝐼;𝐻1

0 (Ω))

∫︀
𝐼

∫︀
Ω
𝜕𝑡𝑧1𝑣 +∇𝑥𝑧1 · ∇𝑥𝑣 d𝑥d𝑡

‖𝑣‖𝐿2(𝐼;𝐻1(Ω))

≤ ‖div z‖𝐿2(𝐼×Ω) + ‖z2 +∇𝑥𝑧1‖𝐿2(𝐼×Ω)𝑑 , (7.4)

and so ‖𝐴𝑧1‖𝑉 =
√︁
‖𝐵𝑧1‖2𝐿2(𝐼;𝐻−1(Ω)) + ‖Γ𝐼×𝜔𝑧1‖2𝐿2(𝐼×𝜔) . ‖𝐴z‖𝑉 . From the conditional or unconditional

stability estimates for the second order formulation from (a) and (b), respectively, we infer that

‖𝑧1‖𝐿2((𝑇1,𝑇2);𝐻1(𝜔̆)) .
(︁⃦⃦
⃦ ̃︀𝐴z

⃦⃦
⃦̃︀𝑉 + ‖𝑧1‖𝐿2(𝐼×Ω)

)︁1−𝜎⃦⃦
⃦ ̃︀𝐴z

⃦⃦
⃦

𝜎

̃︀𝑉
(7.5)

or

‖𝑧1‖𝐿2((𝑇1,𝑇 );𝐻1(Ω))∩𝐻1((𝑇1,𝑇 );𝐻−1(Ω)) .
⃦⃦
⃦ ̃︀𝐴z

⃦⃦
⃦̃︀𝑉 , (7.6)

in Cases (a) and (b), respectively.
To conclude (un)conditional stability for the first order system formulation in both cases, it remains to check

injectivity of ( ̃︀𝐴, ̃︀𝐿) where ̃︀𝐿 ∈ ℒ( ̃︀𝑋,𝐿2(𝐼 × Ω)) is given by ̃︀𝐿z := 𝑧1 in Case (a), and ̃︀𝐿 := 0 in Case (b). In

Case (a), ( ̃︀𝐴, ̃︀𝐿)z = 0 implies 𝑧1 = 0 and thus z2 = −∇𝑥𝑧1 = 0; and in Case (b), ̃︀𝐴z = 0 implies 𝐴𝑧1 = 0, which
gives 𝑧1 = 0, and so z2 = −∇𝑥𝑧1 = 0.

Given a finite dimensional subspace 𝑋𝛿 ⊂ ̃︀𝑋, the regularized least squares approximation u𝛿
𝜀 ∈ 𝑋𝛿 of the

solution of (7.3) is given by

argmin
z=(𝑧1,z2)∈𝑋𝛿

‖z2 +∇𝑥𝑧1‖2𝐿2(𝐼×Ω)𝑑 + ‖div z− 𝑔‖2𝐿2(𝐼×Ω) + ‖Γ𝐼×𝜔𝑧1 − ℎ‖2𝐿2(𝐼×𝜔) + 𝜀2‖𝑧1‖2𝐿2(𝐼×Ω),

where in Case (b) the regularizing term 𝜀2‖𝑧1‖2𝐿2(𝐼×Ω) can be omitted. The bound on |||u−u𝛿
𝜀|||𝜀 from Theorem 4.1

applies, and so do the bounds from Theorem 2.2 with the specification of 𝑗 and 𝜂 corresponding to (7.5) or (7.6)
in Cases (a) and (b), respectively.

The main advantage of this regularized first order system least squares (FOSLS) formulation is that all com-
ponents of the residual are measured in 𝐿2-type norms, so that there is no need to introduce one or more of these
components as independent variables, and to ensure inf-sup stability by a careful selection of “trial” and “test”
spaces. As a consequence any finite dimensional subspace 𝑋𝛿 ⊂ ̃︀𝑋 can be applied. A potential disadvantage is
that to arrive at this formulation, in (7.4) the norm ‖div u‖𝐿2(𝐼;𝐻−1(Ω)) was estimated on the stronger norm
‖div u‖𝐿2(𝐼×Ω), which may result in reduced convergence rates for solutions that have singularities. Experiments
reported on in [23] for the well-posed forward heat equation show that the risk of getting very low rates is not
imaginary.

7.4. Verification of (4.2) for the data-assimilation problem for the wave equation
(Example 3.3)

Let Ω ⊂ R𝑑 be a polytope (cf. Rem. 3.4), and recall that 𝐴 = (�, 𝛾𝐼×𝜕Ω,Γ𝐼×𝜔) ∈ ℒ(𝑋,𝐻−1(𝐼 ×Ω)×𝐿2(𝐼 ×
𝜕Ω)× 𝐿2(𝐼 × 𝜔)). We have to verify (4.2) for 𝐵 = � ∈ ℒ(𝐻1(𝐼 × Ω), 𝐻−1(𝐼 × Ω)).

For (𝒯 𝛿)𝛿∈Δ being a family of conforming, uniformly shape regular partitions of 𝐼 ×Ω into (𝑑+ 1)-simplices,
we take

𝑋𝛿 := 𝒮0,1
𝒯 𝛿 .
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Proposition 7.11. For each 𝛿 ∈ ∆, let 𝒯 𝛿
𝑠 be a refinement of 𝒯 𝛿 such that3 each 𝑇 ∈ 𝒯 𝛿 is subdivided into a

uniformly bounded number of uniformly shape regular (𝑑 + 1)-simplices, and 𝒯 𝛿
𝑠 has a vertex interior to each

𝑒 ∈ ℱ(𝒯 𝛿) with 𝑒 ̸⊂ 𝜕(𝐼 × Ω). Then for

𝑌 𝛿 := 𝒮0,1
𝒯 𝛿

𝑠
∩𝐻1

0 (𝐼 × Ω),

it holds that

inf
𝛿∈Δ

inf
{𝑧∈𝑋𝛿 : �𝑧 ̸=0}

sup
{0 ̸=𝑣∈𝑌 𝛿}

|(�𝑧)(𝑣)|
‖�𝑧‖𝐻−1(𝐼×Ω)‖𝑣‖𝐻1(𝐼×Ω)

> 0.

The proof of this proposition is similar to the proof of Proposition 7.1. The fact that the current result
concerns the wave operator on 𝐼 × Ω instead of the Laplacian on Ω does not make any difference.

Concluding, the least squares approximation 𝑢𝛿
𝜀 ≡ 𝑢𝛿 from (4.4) of the solution of the data-assimilation

problem for the wave equation is given as the minimizer

𝑢𝛿 := argmin
𝑧∈𝑋𝛿

{︃
sup

0 ̸=𝑣∈𝑌 𝛿

|(�𝑧 − 𝑓)(𝑣)|2
‖𝑣‖2𝐻1(𝐼×Ω)

+ ‖𝛾𝐼×𝜕Ω𝑧 − 𝑔‖2𝐿2(𝐼×𝜕Ω) + ‖Γ𝐼×𝜔𝑧 − ℎ‖2𝐿2(𝐼×𝜔)

}︃
.

By replacing the denominator ‖𝑣‖2𝐻1(𝐼×Ω) by ((𝐺𝛿
𝑌 )−1𝑣)(𝑣) for some uniform preconditioner 𝐺𝛿

𝑌 = 𝐺𝛿
𝑌

′ ∈
ℒis(𝑌 𝛿 ′, 𝑌 𝛿), the resulting system can be reduced to a symmetric positive definite system. For the resulting 𝑢𝛿,
the bound on |||𝑢− 𝑢𝛿|||𝜀 from Theorem 4.1 applies (where ||| · |||𝜀 is 𝜀-independent because 𝐿 = 0), and so do the
bounds from Theorem 2.2 with the specification of 𝑗 and 𝜂 corresponding to Example 3.3.

8. Numerical experiments

The package P1-FEM from [24] was adjusted to implement the problems in Matlab. The finite element
library NGSolve from [33] was used to implement the data assimilation problem for the heat equation in two
dimensions.

We consider finite element spaces w.r.t. uniformly shape regular partitions 𝒯 𝛿 of 𝑛-dimensional bounded
domains (e.g., Ω, 𝐼 × Ω, or Γ ⊂ 𝜕Ω) into 𝑛-simplices, where we restrict ourselves to partitions that are quasi-
uniform. In view of the latter, we can speak of the mesh size ℎ𝛿, which number raised to the power −𝑛 is
proportional to #𝒯 and thus to the dimension of the finite element space (of fixed order).

In this section the relative error with respect to some 𝑗 : 𝑋 → R+ in a numerical approximation 𝑢𝛿
𝜀 to the

prescribed solution 𝑢 is defined as
𝑗(𝑢−𝑢𝛿

𝜀)
𝑗(𝑢) .

8.1. Cauchy problem for Poisson’s equation

For Ω = (0, 𝜋)× (0, 1), Σ = (0, 𝜋)× {0}, and Σ𝑐 = 𝜕Ω ∖ Σ, given 𝑓 = (𝑓𝐼 , 𝑓𝐷, 𝑓𝑁 ) ∈ (𝐻1
0,Σ𝑐(Ω))′ ×𝐻 1

2 (Σ)×
𝐻− 1

2 (Σ) we consider the problem of finding 𝑢 ∈ 𝐻1(Ω) that solves

−△𝑢 = 𝑓𝐼 on Ω, 𝑢 = 𝑓𝐷 on Σ, 𝜕𝑢
𝜕𝑛 = 𝑓𝑁 on Σ, (8.1)

or, more precisely, its variational formulation (𝐵1𝑢,𝐵2𝑢) = (𝑔𝑓𝐼 ,𝑓𝑁
, 𝑓𝐷) from (3.2).

We consider a sequence of uniform triangulations (𝒯 𝛿)𝛿∈Δ of Ω, where each next triangulation is created from
its predecessor by one uniform newest vertex bisection starting from an initial triangulation that consists of 12
triangles created from a subdivision of Ω into 3 rectangles of size 𝜋

3 ×1 by cutting each of these rectangles along
their diagonals. The three interior vertices in this initial triangulation are labelled as the “newest vertices” of
all 4 triangles that contain them.

Following Section 7.1, we take 𝑋𝛿 = 𝒮0,1
𝒯 𝛿 (Ω), and with 𝒯 𝛿

𝑠 denoting the second successor of 𝒯 𝛿 in the sequence

of triangulations, we set 𝑌 𝛿
1 = 𝒮0,1

𝒯 𝛿
𝑠
∩𝐻1

0,Σ𝑐(Ω) and 𝑌 𝛿
2 = 𝒮−1,0

ℰ𝛿
𝑠

, where ℰ𝛿
𝑠 is the set of edges on Σ̄ of 𝑇 ∈ 𝒯 𝛿

𝑠 .
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Figure 1. Poisson’s equation. Meshsize vs. relative 𝐿2(Ω)-error in case of unperturbed data.
The asymptotic convergence rate in terms of # DoFs indicated by the solid straight lines is
close to 0.15.

Considering the conditional stability estimate from Case (ii) in Example 3.1 (we did not test Case (i)), we
recall that the idea behind our approach is to compute the minimizer 𝑢𝛿

𝜀 over 𝑋𝛿 of the regularized least squares
functional 𝑧 ↦→ ‖𝐵1𝑧−𝑔𝑓𝐼 ,𝑓𝑁

‖2
𝐻1

0,Σ𝑐 (Ω)′
+‖𝛾Σ𝑧−𝑓𝐷‖2

𝐻̃−
1
2 (Σ)′

+𝜀2‖𝑧‖2𝐻1(Ω). To make this method feasible without

compromizing its qualitative properties, we replace the suprema over 𝐻1
0,Σ𝑐(Ω) and 𝐻̃− 1

2 (Σ) in the dual norms in

the first two terms by suprema over 𝑌 𝛿
1 and 𝑌 𝛿

2 , respectively (see Props. 7.1 and 7.2). At the same time we replace
the norms on 𝐻1(Ω) and 𝐻̃− 1

2 (Σ) in the denominators by ((𝐺𝛿
𝑌1

)−1·)(·) 1
2 and ((𝐺𝛿

𝑌2
)−1·)(·) 1

2 for preconditioners

𝐺𝛿
𝑌𝑖

= 𝐺𝛿
𝑌𝑖

′ ∈ ℒis(𝑌 𝛿
𝑖
′
, 𝑌 𝛿

𝑖 ) with ‖𝐺𝛿
𝑌1
𝑓‖2𝐻1(Ω) h 𝑓(𝐺𝛿

𝑌1
𝑓) (𝑓 ∈ 𝑌 𝛿

1
′
) and ‖𝐺𝛿

𝑌2
𝑓‖2

𝐻̃−
1
2 (Ω)

h 𝑓(𝐺𝛿
𝑌2
𝑓) (𝑓 ∈ 𝑌 𝛿

2
′
).

Then the resulting approximation 𝑢𝛿
𝜀 can be computed as the unique solution in 𝑋𝛿 of the symmetric positive

definite system

(︀
𝐵1𝑢

𝛿
𝜀 − 𝑔𝑓𝐼 ,𝑓𝑁

)︀(︀
𝐺𝛿

𝑌1
𝐵1𝑧

)︀
+

∫︁

Σ

(︀
𝛾Σ𝑢

𝛿
𝜀 − 𝑓𝐷

)︀
𝐺𝛿

𝑌2
𝛾Σ𝑧 d𝑠+ 𝜀2

⟨︀
𝑢𝛿

𝜀, 𝑧
⟩︀

𝐻1(Ω)
= 0

(︀
𝑧 ∈ 𝑋𝛿

)︀
.

For 𝐺𝛿
𝑌2

we take the (additive) multi-level preconditioner introduced in [22], and for 𝐺𝛿
𝑌1

we use a common
(multiplicative) multi-level preconditioner. Both preconditioners have linear computational complexity.

In all our experiments, we prescribe the solution

𝑢(𝑥, 𝑦) = sin𝑥 sinh 𝑦 + 1
9𝑥

2,

which corresponds to (exact) data

𝑓 = (𝑓𝐼 , 𝑓𝐷, 𝑓𝑁 ) =
(︀
− 2

9 , 𝑥 ↦→ 1
9𝑥

2, 𝑥 ↦→ − sin𝑥
)︀
. (8.2)

We measure the errors of numerical solutions in the relative 𝐿2(Ω)-norm, i.e., the 𝐿2(Ω)-norm divided by the
𝐿2(Ω)-norm of the exact solution.

8.1.1. Unperturbed data

For the case of unperturbed data, we consider two strategies for choosing the regularization parameter, viz.,
𝜀 = ℎ𝛿, the latter being the mesh-size, and 𝜀 = 0, and compare the results with those obtained with the
experimentally found 𝜀 that minimizes ‖𝑢 − 𝑢𝛿

𝜀‖𝐿2(Ω). Note that since 𝑢 is smooth, the choice 𝜀 = ℎ𝛿 satisfies
the conditions in (2.5).

The numerical results presented in Figure 1 indicate, however, that regularization is not helpful, although it
somewhat improves the conditioning of the system.

Likely the oscillations in the curves from Figure 1 are due to the different geometry of the triangulations
after an even or odd number of uniform refinements. The Hölder continuous behaviour, with exponent 0.15, of



2248 W. DAHMEN ET AL.

Figure 2. Poisson’s equation. Norm of perturbation vs. relative 𝐿2(Ω)-error in case of ran-
domly perturbed Neumann data for different choices of 𝜀. Left: random perturbations of vary-
ing 𝐻−1/2(Σ)-norm and fixed mesh with #DoFs ≈ 105. Right: random perturbations with
𝐻−1/2(Σ)-norm equal to 0.1, and varying mesh-size.

the error as function of the residual, the latter being of order ℎ𝛿, is better than the logarithmic dependence
provided by the conditional stability estimate. That estimate, however, covers the case of a residual of most
“nasty” type (and an infinitely fine mesh), whereas in our test, the residual is some specific function dependent
on the partition and the prescribed solution.

8.1.2. Randomly perturbed data

We now perturb the Neumann datum 𝑓𝑁 with a random piecewise constant 𝑔 ∈ 𝒮−1,0
ℰ𝛿

𝑠
with ‖𝑔‖

𝐻−
1
2 (Σ)

h 𝜏 .

We achieved this by normalizing a random function in 𝒮−1,0
ℰ𝛿

𝑠
, taking values in [0, 1], in a discrete 𝐻− 1

2 (Σ)-norm,

that is uniformly equivalent to the true 𝐻− 1
2 (Σ)-norm, and then multiplying the result with 𝜏 . We used the

discrete 𝐻− 1
2 (Σ)-norm constructed on p211 from [22] using results from [2].

Remark 8.1. An alternative for the latter is to construct a refinement ℰ𝛿
𝑠𝑠 of ℰ𝛿

𝑠 such that for 𝑔 ∈ 𝒮−1,0
ℰ𝛿

𝑠
,

‖𝑔‖
𝐻−

1
2 (Σ)

h sup0 ̸=𝑣∈𝒮0,1

ℰ𝛿
𝑠𝑠

∩𝐻1
0 (Σ)

∫︀
Σ

𝑔𝑣 d𝑠

‖𝑣‖
𝐻

1
2
00(Σ)

(see [35], S3.1-2), after which an expression equivalent to the right-

hand side can be computed using a standard multi-level preconditioner.

We compare the results obtained with the regularization strategies 𝜀 = 𝜏 + ℎ𝛿, which satisfies the conditions
in (2.5), and 𝜀 = 𝜏 , with those obtained with the experimentally found 𝜀 that minimizes ‖𝑢− 𝑢𝛿

𝜀‖𝐿2(Ω), which
also here turns out to be 𝜀 = 0. The results are presented in Figure 2.

We conclude that, for this problem, apparently such random perturbations are harmless, because without
any regularization, for ℎ𝛿 ↓ 0, which results in an increasingly ill-posed problem, their effect on the error hardly
increases.

8.1.3. “Difficult” perturbations

From [1] we know that for 𝑚 ∈ N, the solution 𝑢 = 𝑢(𝑚) of the Cauchy problem (8.1) with data 𝑓 =

𝑓 (𝑚) = (0, 0, 𝑓
(𝑚)
𝑁 ) where 𝑓

(𝑚)
𝑁 (𝑥) := −

√︁
2𝑚
𝜋 sin𝑚𝑥, is given by 𝑢(𝑚)(𝑥, 𝑦) =

√︁
2

𝑚𝜋 sin𝑚𝑥 sinh𝑚𝑦. It holds

that ‖𝑓 (𝑚)
𝑁 ‖

𝐻−
1
2 (Σ)

= 1, ‖𝑢(𝑚)‖𝐻1(Ω) h |𝑢(𝑚)|𝐻1(Ω) =
√︁

1
2 sinh 2𝑚 ∼ 1

2𝑒
𝑚 (𝑚 → ∞), and ‖𝑢(𝑚)‖𝐿2(Ω) ∼ 𝑒𝑚

2
√

2𝑚

(𝑚→∞), illustrating the strong ill-posedness of the Cauchy problem.
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Figure 3. Poisson’s equation. Meshsize vs. relative 𝐿2(Ω)-error for different choices of 𝜀 and

perturbation with 0.1
√︁

2𝑚
𝜋 sin𝑚𝑥 of the Neumann datum for 𝑚 = 1, 3, 6, 16. (A) For 𝑚 = 1.

(B) For 𝑚 = 3. (C) For 𝑚 = 6. (D) For 𝑚 = 16.

We investigate our numerical solver when we perturb the exact Neumann datum from (8.2) with 0.1 * 𝑓 (𝑚).
We compare the same regularization strategies as with random perturbations. The results given in Figure 3 show
that both for 𝑚 = 1, 3 as well as for 𝑚 = 16 regularization at most slightly improves the results. For 𝑚 = 1, 3
this can be understood because the perturbation has an only modest effect on the solution. An explanation
why for 𝑚 = 16 regularization is hardly helpful is that on the meshes that we employed apparently the best
representation of 𝑢(16) has a much smaller norm than 𝑢(16) itself. For the intermediate value 𝑚 = 6, however,
we clearly see that regularization is helpful.

8.2. Data-assimilation for the wave equation

For Ω = (0, 1), 𝐼 = (0, 1) and 𝜔 = (1
2 ,

3
4 ), given (𝑓, 𝑔, ℎ) ∈ 𝐻−1(𝐼 ×Ω)×𝐿2(𝐼 × 𝜕Ω)×𝐿2(𝐼 ×𝜔), we consider

the problem of finding 𝑢 that solves

𝜕2𝑢

𝜕𝑡2
−△𝑥𝑢 = 𝑓 on 𝐼 × Ω, 𝑢 = 𝑔 on 𝐼 × 𝜕Ω, 𝑢 = ℎ on 𝐼 × 𝜔,

or, more precisely its variational formulation 𝐴𝑢 = (𝑓, 𝑔, ℎ) with 𝐴 := (�, 𝛾𝐼×𝜕Ω,Γ𝐼×𝜔) given in Example 3.3.
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We consider a sequence of uniform triangulations (𝒯 𝛿)𝛿∈Δ of 𝐼 × Ω, where each next triangulation is created
from its predecessor by one uniform newest vertex bisection starting from an initial triangulation that is created
by cutting 𝐼 ×Ω along both diagonals. The interior vertex in this initial triangulation is labelled as the “newest
vertex” of all four triangles.

Following Section 7.4, we take 𝑋𝛿 := 𝒮0,1
𝒯 𝛿 (𝐼 × Ω), and with 𝒯 𝛿

𝑠 denoting the second successor of 𝒯 𝛿 in the

sequence of triangulations, we set 𝑌 𝛿 := 𝒮0,1
𝒯 𝛿

𝑠
∩𝐻1

0 (𝐼 × Ω).

Considering the unconditional stability estimate (3.3) in Example 3.3, our approach is to minimize the
least squares functional ‖�𝑧 − 𝑓‖2𝐻−1(𝐼×Ω) + ‖𝛾𝐼×𝜕Ω𝑧 − 𝑔‖2𝐿2(𝐼×𝜕Ω) + ‖Γ𝐼×𝜔𝑧 − ℎ‖2𝐿2(𝐼×𝜔) over 𝑧 ∈ 𝑋𝛿, so
without regularization term. To make this method feasible without comprimizing its qualitative properties, first
we replace the supremum from the first term by the supremum over 𝑌 𝛿 (see Prop. 7.11). Second, to make

the computation of the resulting dual norm efficient, we introduce a preconditioner 𝐺𝛿
𝑌 ∈ ℒis(𝑌 𝛿 ′, 𝑌 𝛿) with

‖𝐺𝛿
𝑌 𝑓‖2𝐻1(Ω) h 𝑓(𝐺𝛿

𝑌 𝑓) (𝑓 ∈ 𝑌 𝛿 ′), and compute our approximation 𝑢𝛿 as the unique solution in 𝑋𝛿 of the
symmetric positive definite system

(︀
�𝑢𝛿 − 𝑓

)︀(︀
𝐺𝛿

𝑌 �𝑧
)︀

+
⟨︀
𝛾𝐼×𝜕Ω𝑢

𝛿 − 𝑔, 𝛾𝐼×𝜕Ω𝑧
⟩︀

𝐿2(𝐼×𝜕Ω)
+

⟨︀
Γ𝐼×𝜔𝑢

𝛿 − ℎ,Γ𝐼×𝜔𝑧
⟩︀

𝐿2(𝐼×𝜔)
= 0

(︀
𝑧 ∈ 𝑋𝛿

)︀
.

For 𝐺𝛿
𝑌 we use a common (multiplicative) multi-level preconditioner.

In our experiments, we prescribe the solution

𝑢(𝑡, 𝑥) = cos(𝜋𝑡) sin(𝜋𝑥),

which corresponds to (exact) data
(𝑓, 𝑔, ℎ) = (0, 0, 𝑢|𝐼×𝜔).

We perform experiments with unperturbed and perturbed data. Instead of the error in the hard to evaluate
norm ‖ · ‖𝐿∞(𝐼;𝐿2(Ω)) + ‖𝜕𝑡 · ‖𝐿2(𝐼;𝐻−1(Ω)) from the unconditional stability estimate (3.3), we provide the a
posteriori residual estimator from Section 6 given by

√︂
(𝑓 −�𝑢𝛿)

(︁
𝐺𝛿

𝑌 (𝑓 −�𝑢𝛿
𝜀) + ‖𝛾𝐼×𝜕Ω𝑢𝛿

𝜀 − 𝑔‖
2
𝐿2(𝐼×𝜕Ω) + ‖Γ𝐼×𝜔𝑢𝛿

𝜀 − ℎ‖
2
𝐿2(𝐼×𝜔)

)︁
,

which provides, modulo a constant factor, an upper bound for the aforementioned norm of the error up to data
oscillations. We additionally provide the relative errors in the easily evaluable 𝐿2(𝐼 ×Ω)- and 𝐻1(𝐼 ×Ω)-norms
(i.e., these norms divided by the corresponding norm of the exact solution).

For the perturbed case we add to ℎ either a constant perturbation with 𝐿2(𝐼 × 𝜔)-norm equal to 𝜏 , or a
random perturbation of the form 𝑝 = 𝜏 𝑝

‖𝑝‖𝐿2(𝐼×𝜔)
, where 𝑝 is a random function in 𝑋𝛿 with values in [0, 1]. We

take 𝜏 = 0.01. Figure 4 shows the numerical results.
In the unperturbed cases, the rates for 𝐿2(𝐼 ×Ω)- and 𝐻1(𝐼 ×Ω)-norms are equal to the best approximation

rates in these norms.

8.3. Data-assimilation for the heat equation

For Ω = (0, 1)𝑑, 𝐼 = (0, 1) and 𝜔 = (1
4 ,

3
4 )𝑑, given (𝑓, 𝑔) ∈ 𝐿2(𝐼;𝐻

−1(Ω))×𝐿2(𝐼×𝜔), we consider the problem
of finding 𝑢 that solves the problem

𝜕𝑡𝑢−△𝑥𝑢 = 𝑓 on 𝐼 × Ω, 𝑢|𝐼×𝜔 = 𝑔,

which was discussed in Example 3.2. We consider the formulation of this problem as a first order system as
analyzed in Section 7.3. Assuming 𝑓 ∈ 𝐿2(𝐼 × Ω), for u = (𝑢1,u2) = (𝑢,−∇𝑥𝑢), it reads as ̃︀𝐴u := (u2 +

∇𝑥𝑢1,div u,Γ𝐼×𝜔𝑢1) = (0, 𝑓, 𝑔), where div u := 𝜕𝑡𝑢1 + div𝑥 u2 and u ∈ ̃︀𝑋 :=
{︀
u = (𝑢1,u2) ∈ 𝐿2(𝐼;𝐻

1(Ω)) ×
𝐿2(𝐼 ×Ω)𝑑 : div u ∈ 𝐿2(𝐼 ×Ω)

}︀
. Recall that we study this problem in two cases. Either we have no knowledge
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Figure 4. Data assimilation for the wave equation. Meshsize vs. relative error (or residual
estimator). (A) Unperturbed data. (B) Perturbations, with 𝐿2(𝐼 × 𝜔)-norm equal to 0.01, of
datum ℎ.

of 𝑢 on 𝐼 × 𝜕Ω (Case (a)), or 𝑢 is required to vanish on this lateral boundary (Case (b)). The latter problem is
unconditionally stable. In this Case (b), the space 𝐿2(𝐼;𝐻

1(Ω)) should be read as 𝐿2(𝐼;𝐻
1
0 (Ω)).

In view of the conditional or unconditional stability estimates (7.5) or (7.6), respectively, given a finite

dimensional subspace 𝑋𝛿 ⊂ ̃︀𝑋, with ̃︀𝑉 := 𝐿2(𝐼 ×Ω)𝑑 ×𝐿2(𝐼 ×Ω)×𝐿2(𝐼 × 𝜔) our approach is to minimize the

least squares functional ‖ ̃︀𝐴u − (0, 𝑓, 𝑔)‖2̃︀𝑉 + 𝜀2‖𝑢1‖2𝐿2(𝐼×Ω) over u ∈ 𝑋𝛿, where in Case (b) the regularization

term 𝜀2‖𝑢1‖2𝐿2(𝐼×Ω) is omitted.

In our experiments, we prescribe the solution

𝑢(𝑡, 𝑥) = (𝑡3 + 1)

𝑑∏︁

𝑖=1

sin(𝜋𝑥𝑖),

and define the data (𝑓, 𝑔) correspondingly. For Case (a) the errors are measured in the relative
𝐿2((𝑇1, 𝑇2);𝐻

1(𝜔̆))-norm, where we take 𝑇1 = 1
8 , 𝑇2 = 7

8 and 𝜔̆ = ( 1
8 ,

7
8 )𝑑. Instead of recording the error

in the 𝐿2((𝑇1, 𝑇 );𝐻1
0 (Ω)) ∩𝐻1((𝑇1, 𝑇 );𝐻−1(Ω))-norm, which is hard to evaluate, we make use of the uncondi-

tional stability estimate (7.6) for Case (b), and provide the residual ‖ ̃︀𝐴u− (0, 𝑓, 𝑔)‖̃︀𝑉 which, modulo a constant
factor, is an upper bound for the aforementioned norm of the error. In addition we measure relative errors in
the 𝐿2((𝑇1, 𝑇 );𝐻1(Ω))-norm for 𝑇1 = 1

8 which is easy to evaluate.

8.3.1. Unperturbed data, and Ω = (0, 1)

We consider a sequence of uniform triangulations (𝒯 𝛿)𝛿∈Δ of 𝐼 × Ω, where each next triangulation is created
from its predecessor by one uniform newest vertex bisection starting from an initial triangulation that is created
by cutting 𝐼 ×Ω along both diagonals. The interior vertex in this initial triangulation is labelled as the “newest
vertex” of all four triangles. We set 𝑋𝛿 := 𝒮0,1

𝒯 𝛿 (𝐼 × Ω) × 𝒮0,1
𝒯 𝛿 (𝐼 × Ω)𝑑 in Case (a), and 𝑋𝛿 := (𝒮0,1

𝒯 𝛿 (𝐼 × Ω) ∩
𝐿2(𝐼;𝐻

1
0 (Ω)))× 𝒮0,1

𝒯 𝛿 (𝐼 × Ω)𝑑 in Case (b).

Taking unperturbed data, we consider two strategies for choosing the regularization parameter 𝜀 in Case (a),
namely 𝜀 = 0 and 𝜀 = ℎ𝛿, the latter being the mesh-size. Since 𝑢 is smooth, the choice 𝜀 = ℎ𝛿 satisfies the
conditions in (2.5). In Figure 5, we give the relative errors for both these choices of 𝜀, and also give the relative
error and residual estimator in Case (b). In the latter unconditionally stable case no regularization is applied.
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Figure 5. Data assimilation for the heat equation, and Ω = (0, 1). Meshsize vs. relative error
(or residual estimator) in case of unperturbed data. Note that the norms in which the errors
are measured are different for Cases (a) and (b). The asymptotic convergence rate in terms of
# DoFs, indicated by the solid straight lines, is 0.5.

As in the case of the Cauchy problem for Poisson’s equation, the numerical results in Figure 5 indicate that
with unperturbed data regularization is not helpful. The rates for 𝐿2((

1
8 ,

7
8 );𝐻1(( 1

8 ,
7
8 )𝑑))- or 𝐿2((

1
8 , 1);𝐻1(0, 1))-

norms are equal to the best approximation rates in these norms.

8.3.2. Randomly perturbed data, Ω = (0, 1)

For (𝑋𝛿)𝛿∈Δ as in Section 8.3.1, we now perturb the observational datum 𝑔 with a random piecewise constant
𝑝 ∈ 𝒮−1,0

𝒯 𝛿 with ||𝑝||𝐿2(𝜔) = 𝜏 . This 𝑝 is constructed by normalizing a random function 𝑝 ∈ 𝒮−1,0
𝒯 𝛿 and multiplying

with 𝜏 . We considered the cases where 𝑝 takes values in either [0, 1] or [− 1
2 ,

1
2 ].

For Case (a), we compare the results obtained with the regularization strategies 𝜀 = 𝜏 , and 𝜀 = 𝜏 + ℎ𝛿,
where the latter choice satisfies the conditions in (2.5), with those obtained with the experimentally found 𝜀
that minimizes ||𝑢 − 𝑢𝛿

𝜀||𝐿2(𝐼;𝐻1(Ω)). In addition, we present the results obtained for Case (b). The results are
shown in Figure 6.

For both Cases (a) and (b), the solution is much more sensitive to random perturbations with mean 𝜏/2 than
to those with mean 0. In Case (a) regularization is helpful for perturbations with mean 𝜏/2, but it is not when
the mean is 0.

8.3.3. Unperturbed data, and Ω = (0, 1)2

We now consider the data-assimilation problem described in Section 8.3 for unperturbed data and the two-
dimensional spatial domain Ω = (0, 1)2. We consider a sequence of conforming partitions (𝒯 𝛿)𝛿∈Δ of 𝐼 × Ω into
tetrahedra, where each partition consists of ℎ−3

𝛿 cubes with sidelength ℎ𝛿 that are decomposed into 6 tetrahedra
using the Kuhn splitting. Since with our mesh-sizes and linear finite elements we could not clearly observe
convergence in Case (a), we take quadratic elements, i.e., we set 𝑋𝛿 := 𝒮0,2

𝒯 𝛿 (𝐼 ×Ω)×𝒮0,2
𝒯 𝛿 (𝐼 ×Ω)2 in Case (a),

and 𝑋𝛿 := (𝒮0,2
𝒯 𝛿 (𝐼 × Ω) ∩ 𝐿2(𝐼;𝐻

1
0 (Ω)))× 𝒮0,2

𝒯 𝛿 (𝐼 × Ω)2 in Case (b).
We consider regularization parameters 𝜀 = 0 and 𝜀 = ℎ2

𝛿 for Case (a), where the latter satisfies the conditions
in (2.5), and for Case (b) apply no regularization. The results are given in Figure 7.

9. Conclusion

We have constructed a least squares solver for general conditionally stable ill-posed PDEs. For this solver
it was demonstrated that, for a suitable regularization parameter, the error in the numerical approximation is
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Figure 6. Data assimilation for the heat equation, and Ω = (0, 1). Norm of perturbation
vs. relative error (or residual estimator). Results for random perturbation of the observational
datum 𝑔, for a fixed mesh with # DoFs ≈ 106 for different choices of 𝜀 and 𝜏 . Left: the case
where 𝑝 takes values in [0, 1]. Right: the case where 𝑝 takes values in [−1/2, 1/2].

Figure 7. Data assimilation for the heat equation, and Ω = (0, 1)2. Meshsize vs. relative error
(or residual estimator) in case of unperturbed data. The asymptotic convergence rate in terms
of # DoFs indicated by the dashed straight lines is 1.

qualitatively the best that can be expected in view of the conditional stability estimate. In applications the
least squares functional to be minimized involves negative and/or fractional Sobolev norms of residuals. It was
shown that these norms can be replaced by computable quantities without compromizing any of the attractive
theoretical properties of the method.

The theoretical results were illustrated by numerical experiments for Poisson’s equation with Cauchy data,
and data-assimilation problems for both heat and wave-equation. In several examples the bounds on the error
in the numerical approximation that were derived using the conditional stability estimates were pessimistic,
which is not surprising since these estimates cover worst case settings. Similarly, it turns out that in many cases
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better results were obtained by applying a smaller regularization parameter than predicted by the theoretical
estimates.
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