Flow physics of a passive flap on a dynamically pitched airfoil
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Covert bird feathers are believed to passively deploy during flight to mitigate separation
effects and improve aerodynamic performance, contributing to these animals’ maneuverability
even in unsteady conditions. Engineered devices that can mimic this effect have the potential to
aid flight robustness and performance in next generation vehicles. We numerically investigate a
canonical representation of this covert-feather system by mounting a thin, rigid flap to an airfoil
via a torsional hinge. This configuration is known to be capable of significantly increasing the
mean lift for a stationary airfoil at a stalled angle of attack. Yet, there remain open questions
about the benefits associated with using this flap on an airfoil undergoing unsteady maneuvers
and the mechanisms responsible for these benefits. In this study we use high-fidelity fully
coupled fluid-structure interaction simulations to investigate the behaviors of a flap mounted via
a torsional spring on an airfoil undergoing a pitch-up maneuver from @ = 0 — 45°. We perform
a 2D numerical investigation at a Reynolds number of Re = 1,000 with the torsional flap located
at 0.4 chord lengths, measured from the leading edge of the flap. Results indicate that the
torsional flap greatly increases lift at the start of the pitch-up motion due to the formation of a
clockwise vortex just downstream of the flap. However, the flap also appears to cause a loss in
lift at the end of pitch-up by a premature downstream advection of the clockwise vortex. In total,
the flap increases the total generated lift throughout the pitch-up maneuver by approximately

5%.
I. Nomenclature

as = pitching parameter
c = chord
ig = flap moment of inertia
K = nominal pitch rate
kg = flap stiffness
Ig = flap position
4 = pressure
Re = Reynolds number
s = surface parameter
t = time
U, = (freestream velocity
u = flow velocity
X = fluid grid points
Xe = airfoil center of rotation
a = angle of attack
@y = maximum angle of attack
&y = nominal angular velocity
B = flap deflection angle
r = body coordinate system
AT, = holding time
At = time step
Ax = grid spacing
v = kinematic viscosity
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py = fluid density

X = immersed body points
Xa = airfoil body points

xr = flapbody points

)(2 = flap hinge location

Q = fluid coordinate system

I1. Introduction

IRDS have the remarkable ability to perform aerodynamic maneuvers at high angles of attack and a wide range of

Reynolds numbers; a feature that is difficult but necessary to duplicate in next-generation aircraft. Studies of bird
flight have shown that this maneuverability may be aided by the covert feathers along the upper surface of the bird’s
wings. During unsteady flight conditions (such as landing or take off) the coverts deflect from the wing in such a way
that indicates it is a passive response to separation in the surrounding flow [1].

Many efforts have been made to mimic the behavior of coverts in passive flow control devices. These studies often
consider thin flaps mounted to the airfoil, either at a fixed deflection angle or freely moving with a hinge. Experiments
show that while the addition of these flaps does produce a small detrimental increase in drag and decrease in lift pre-stall,
well positioned flaps can both delay stall and reduce the loss in lift post-stall by a significant amount [2—4]. This is
largely due to the configuration of the flap, which prevents reverse flow from traveling upstream along the surface of the
airfoil [5]. Greater benefits can be attained by mounting the flap via a finite stiffness torsional hinge. Unlike a freely
hinged flap, which can over deploy during separation, the spring force limits motion in a manner more accurate to real
covert feathers. Rosti et al. [6] demonstrated numerically that the use of a finite stiffness torsional spring can lead
to additional benefits compared with the free (zero-stiffness) case, which the authors linked to structural resonance,
using an in-vacuo scaling that neglected added mass effects. Nair and Goza [7, 8] numerically performed a broader
sweep of flap parameters and found that the behavior of the torsional flap can be classified into different flow regimes
depending on whether it primarily interacts with the shear layer or the shed vortices. In both cases, the flap is capable of
significantly improving the mean lift for certain stiffness and inertia values. The authors found that the largest benefits
were obtained through a balance between aligning the flap resonance (with appropriately defined added mass terms)
near the intrinsic vortex shedding frequency and retaining an appropriate mean configuration, encoded by the flap
stiffness [8].

Nevertheless, there are still many questions about the behavior of these flaps, especially under dynamic motion.
Much of the existing literature focuses on airfoils at a fixed post-stall angle of attack. But any practical implementation
of these torsional flaps will require a more complete understanding of their behavior over the full development of
unsteady flow. A recent numerical study by Rosti et al. [9] observed that the addition of a torsional flap to a dynamically
pitching airfoil improved the aerodynamic efficiency and delayed stall. Similar to the static airfoil configuration, the
presence of the torsional flap limits direct interaction between the leading and trailing edge flow, which delays the
dynamic stall process. The flap’s motion also causes the trailing-edge vortex to advect downstream earlier than the
reference case so the dynamic stall leading-edge vortex stays attached longer. Similar to the stationary airfoil case, the
authors linked maximal benefits to having flap parameters with an in-vacuo structural natural frequency equal to the
frequency of vortex shedding. Yet, it is still unclear how factors such as the flap inertia and stiffness can individually
influence the airfoil’s performance under these conditions. Moreover, it is unknown how the flow regimes identified
in Nair and Goza [7] are affected by the dynamic motion. Finally, the dynamic airfoil motion yields non-stationary
dynamics (inexpressible through frequency decompositions), and quantifying the flap-flow mechanisms in terms of
these transient processes remains unexplored.

In this work we perform a numerical investigation of a dynamically pitching NACA 0012 airfoil with a torsional flap.
The airfoil is subjected to a nominally linear pitch-up maneuver from 0° to 45°. It is modeled in a uniform 2D flow with
Reynolds number Re = 1000. The flap is positioned at a distance 0.4c¢ along the upper surface of the airfoil with a fixed
stiffness and inertia.

II1. Problem Setup
For this study we use a NACA 0012 airfoil simulated in a uniform flow with freestream velocity U., and chord
Reynolds number Re = 1000. Figure 1 illustrates the airfoil setup. The airfoil has nondimensional chord length ¢ and a
center of rotation at x. = 0.25¢ along its chord line. A flap of length 0.2¢ is mounted along the upper suction surface of
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Fig. 1 Schematic of the torsionally hinged flap mounted on a NACA 0012 airfoil.

the airfoil with a torsional hinge that allows it to deploy freely into the flow. The flap is initially deployed at an angle of
5° relative to the surface of the airfoil to allow it to properly deploy without collisions against the airfoil. The flap has a
prescribed nondimensional spring stiffness, kg, and moment of inertia, ig. The nondimensional position of the flap
hinge is denoted /g relative to the leading-edge of the airfoil. These parameters are given as
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where Ig, Kg, and Lg are the dimensional inertia, stiffness, and flap position respectively. For this study we focus
on one case with kg = 0.01, ig = 0.01, and /g = 0.4. The variable p is the density of the fluid.
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The motion of the airfoil is prescribed using a smooth pitching function from Eldredge and Wang [10]. Equation 2
describes a pitch-up motion, from time #; to t,, followed by a holding period, and then a pitch-down motion from #3 to
t4. For the purposes of this study we only focus on the pitch-up motion, which is displayed in Figure 3. Note that all
times are nondimensionalized by U /c. The airfoil rotates at angular velocity ¢¢ = 2K % with nominal pitch rate
K =0.2. The time intervals are therefore defined by

12=l1+ﬂ, 13 = tp + ATy, l4=t3+ﬂ- “4)
(o} o
ATy, is the hold time between the end of pitch-up and the start of pitch-down. For this study we set ay = 11,1, =1,
ATy, = 1.12, and o = 45°.

IV. Numerical Methodology
We model the problem with the immersed boundary method described in Nair and Goza [11]. In this approach, the
fluid domain is assigned an Eulerian coordinate system, Q, and the immersed body is assigned a Lagrangian coordinate
system, I". The flow points in Q are denoted by x and the body points in I" are defined by y. We utilize the variable s to
parameterize the surface of the immersed bodies. All position coordinates are nondimensionalized by the chord length.
We also define the fluid velocity, u, which is nondimensionalized by Us,. The governing equations for the fluid-structure
interaction system are

6—” +u-Vu=-Vp+ LVzu + /f(,\/(s, 1))5(x(s,t) —x)ds, 5)
at Re r
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Fig. 2 The angle of attack for the airfoil begins at @ = 0 and increases linearly until it reaches «.
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Equation 5 is the Navier Stokes Equation. It contains the nondimensional pressure and chord Reynolds number
which are written below. In the Reynolds number, v is the kinematic viscosity. Additionally, f( x) represents the surface
stresses on the body.
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Equation 6 is the continuity condition for incompressible flow. Equation 7 describes the motion of the flap. In this
equation, 3 is the flap deflection angle and y r refers to the body points of the flap only. Additionally, Xﬁl is the location
of the flap’s hinge. Equations 8 and 9 are the no slip conditions for the airfoil and flap respectively. y, refers to the
body points of the airfoil and é’ is the unit direction vector for the angular motion of the flap.

The flow equations 5 and 6 are spatially discretized using the standard second-order central difference scheme. For
temporal discretization, an Adams Bashforth 2-step scheme is used for the advection term and a trapezoid scheme is
used for the diffusive term. Equation 7 is discretized in time with a Newmark scheme. The nonlinear algebraic system is
solved using a Newton iteration method, with a block-LU factorization used to restrict FSI iterations to systems that scale
with the number of points used to discretize the structure, rather than the (far greater) number of points used to represent
the entire flow and structural domain. Additionally, a sub-domain approach is used to pre-compute the fluid-structure
coupling matrices that arise from the LU factorization. The pre-computed matrices allow for an embedded linear solve,
that scales with the total number of points in the flow domain, to be avoided at substantial computational savings. See
Nair and Goza [11] for more details.

For all results below, we use a time step of At = 0.0004375 and a grid spacing of Ax = 0.00349. These values are
consistent with those used by Nair and Goza [8] for a stationary airfoil case, and for the modest pitch rate chosen below
the flow velocity magnitudes are commensurate with that study.
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Fig. 3 Lift (left) and drag (right) coefficients on the airfoil body throughout the pitch-up motion showing that
the airfoil with the flap follows the same trends as the reference but with significantly exaggerated features. The
vertical dashed lines represent the start and end times of pitch-up and the light blue regions indicate the time
interval in which the flow snapshots analyzed later in the manuscript have been taken.

V. Results

First we examine the reference case for the airfoil with no flap. Figure 3a shows the development of the lift coefficient
over the full pitching motion. There is a clear peak in the lift around ¢ = 1, which is the inertial reaction to the start
of pitch-up [10]. As the airfoil continues to rotate, the lift increases in a near-linear fashion until we observe a sharp
decrease in lift near ¢ = 3, just before the pitching motion ends. The drag coefficient, by contrast, increases smoothly
throughout the start of pitch-up, as shown in Figure 3b. There is no inertial reaction at the start of pitching, but there is a
decrease in drag just before pitch-up ends.

The case of the airfoil equipped with a torsional flap shares many of the same lift and drag features as the reference
case; there is a large lift increase at the start of pitch-up and a sharp decrease in both lift and drag near the end. However,
in the flap case, these features are significantly more pronounced. There is also more variation in the slope of the lift,
with C, being higher in the flap case for the first half of pitching but then dropping below that of the reference case for
the latter half. This results in the airfoil with the flap having a 5% improvement in total integrated lift over the full
pitch-up maneuver (r = 0.75 — 3).

These effects are caused by the flap, which alters the vortex dynamics throughout the pitching motion. Figure 4
shows the vorticity around the airfoil for several time steps around # = 1. A lift-producing (clockwise) vortex forms just
downstream of the flap directly after pitching begins, leading to higher lift via a low pressure area that grows with the
vortex. There is no analogous vortex on the reference airfoil during this time period, hence the smaller lift coefficient.
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Fig. 4 Vorticity and pressure near the start of pitch-up for the airfoil with the flap (top) and the reference case
(bottom).

Figure 5 shows vorticity plots for the end of pitch-up around ¢ = 3. For the reference case with no flap, there are two
flow features beginning to form around ¢ = 2.5: a leading-edge vortex (LEV) and a secondary clockwise vortex just
upstream of the trailing edge. In the flap case, there is also an LEV but the secondary clockwise vortex is replaced by
the clockwise vortex that previously formed downstream of the flap. As a result, the secondary vortex in the flap case is
significantly larger than the one in the reference case at ¢ = 2.5 since it developed much earlier. The LEV and secondary
vortex continue to grow for the remainder of pitch-up. At every time instance the LEVs are nearly identical in size but
the secondary vortex is always larger in the flap case, indicating that its growth is responsible for the change in lift at the
end of pitch-up.
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Fig. 5 Vorticity and pressure near the end of pitch-up for the airfoil with the flap (top) and the reference case
(bottom).

Closer observation of the secondary vortex in the flap case shows that a small region of reverse flow has formed
underneath the vortex. This region is also present in the reference case with no flap, but it is larger and has begun to
roll up with the secondary vortex in the flap case. This roll-up behavior could be attributed to the natural growth of
the secondary vortex, but is also influenced by (1) the presence of the flap, which is deployed just enough to block a



portion of reverse flow from traveling upstream; and (2) the motion of the flap, which closes towards the airfoil surface
from t = 2.5 — 3.3 (c.f,, Figure 6). The latter effect imposes a jet-like momentum forcing on the secondary vortex
downstream, which allows more reverse flow up the airfoil.

We briefly note from the lift curve in Figure 3a that the C, values are quite different between the flap and flap-less
cases during the post pitching period. There is a sharp drop in lift for the flap case at + = 3.3 that is not present in
the reference case. This behavior is followed by short discrete periods of lift improvement, correlated with the LEV
advecting downstream. Commensurate with the downstream advection and interaction of these flow features, figure 6
shows a sudden deployment of the flap to a much larger angle. The focus in this article is the fluid-structure interaction
that occurs during the pitch process; the complex interplay post-pitch is a subject of future study.
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Fig. 6 Flap deflection over time during the pitch-up maneuver relative to the surface of the airfoil.

VI. Conclusions

We performed high-fidelity fully coupled fluid-structure interaction simulations of a bio-inspired flap hinged by a
torsional spring onto an airfoil undergoing a pitch-ramp maneuver. The results demonstrate that the flap was able to
generate a 5% increase in lift during the pitch process. The flap yields a significant lift increase near the start of pitch-up
by causing a lift-producing vortex to form much earlier during the pitching motion (compared with the flap-less case).
Conversely, the early growth of this vortex leads to an early advection at the end of pitch-down which results in a loss of
lift during that time interval compared with the flap-less case. Nevertheless, the flap yielded an overall lift improvement
during the pitch process at a negligible expense of additional drag. This outcome indicates that these bio-inspired flaps
have benefits as passive, adaptive control strategies during dynamic airfoil motions.
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