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A bio-inspired, passively deployable flap attached to an airfoil by a torsional spring of
fixed stiffness can provide significant lift improvements at post-stall angles of attack. In
this work, we describe a hybrid active–passive variant to this purely passive flow control
paradigm, where the stiffness of the hinge is actively varied in time to yield passive
fluid–structure interaction of greater aerodynamic benefit than the fixed-stiffness case.
This hybrid active–passive flow control strategy could potentially be implemented using
variable-stiffness actuators with less expense compared with actively prescribing the flap
motion. The hinge stiffness is varied via a reinforcement-learning-trained closed-loop
feedback controller. A physics-based penalty and a long–short-term training strategy
for enabling fast training of the hybrid controller are introduced. The hybrid controller
is shown to provide lift improvements as high as 136% and 85% with respect to the
flapless airfoil and the best fixed-stiffness case, respectively. These lift improvements are
achieved due to large-amplitude flap oscillations as the stiffness varies over four orders of
magnitude, whose interplay with the flow is analysed in detail.

Key words: flow–structure interactions, machine learning

1. Introduction
For aerodynamic flows, a passive flow control device (flap) inspired by self-actuating
covert feathers of birds has been shown to improve lift at post-stall angles of attack
(Bramesfeld & Maughmer 2002; Duan & Wissa 2021). In particular, when the flap is
mounted via a torsional spring, further aerodynamic benefits can be obtained compared
with a free (zero hinge stiffness) or static configuration (Rosti, Omidyeganeh & Pinelli
2018). These added benefits arise from rich fluid–structure interaction (FSI) between the
flap and vortex dynamics (Nair & Goza 2022a). This outcome teases a question: Could
additional lift enhancement be achieved if the flap motion was controlled to yield more
favourable flapping amplitudes and phase relative to key flow processes?
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To address this question, we propose a hybrid active–passive flow control method to
adaptively tune the flap stiffness. That is, the flap dynamics are passively induced by the
FSI, according to the actively modulated hinge stiffness. This hybrid approach could incur
less expense as compared to a fully active control method where the flap deflection is
controlled using a rotary actuator. Our focus is on the design of a control algorithm that
can actuate the hinge stiffness to provide aerodynamic benefits without accounting for how
these stiffness changes are implemented, and on explaining the physical mechanisms that
drive these benefits. We note, however, that there are various ways of achieving stiffness
modulation in practice via continuous variable-stiffness actuators (VSAs) (Wolf et al.
2015), used extensively in robotics (Ham et al. 2009), wing morphing (Sun et al. 2016),
etc. A discrete VSA restricts the stiffness to vary discretely across fixed stiffness levels,
but it weighs less and requires lower power (Diller, Majidi & Collins 2016).
Historically, linear approximations of fundamentally nonlinear systems are used to

design optimal controllers (Kim & Bewley 2007). While these linear techniques have been
effective in stabilizing separated flows at low Reynolds number, Re ∼ O(102), where the
base state has a large basin of attraction, its effectiveness is compromised at larger Re
(Ahuja & Rowley 2010). These challenges are exacerbated by the nonlinear FSI coupling
between the flap and vortex shedding of interest here. Model predictive control (MPC) uses
nonlinear models to make real-time predictions of the future states to guide the control
actuations. The need for fast real-time predictions necessitates the use of reduced-order
models where the control optimization problem is solved using a reduced system of
equations (Peitz, Otto & Rowley 2020). Machine learning in fluid mechanics has provided
further avenues of deriving more robust reduced nonlinear models to be used with
MPC (Baumeister, Brunton & Kutz 2018; Mohan & Gaitonde 2018; Bieker et al. 2020).
However, these reduced-order modelling efforts remain an area of open investigation, and
would be challenging for the strongly coupled flow–airfoil–flap FSI system. We therefore
utilize a model-free, reinforcement learning (RL) framework to develop our controller.
RL has recently gained attention in fluid mechanics (Garnier et al. 2021), and is used
to learn an effective control strategy by trial and error via stochastic agent–environment
interactions (Sutton & Barto 2018). Unlike MPC, the control optimization problem
is completely solved offline, thereby not requiring real-time predictions. RL has been
successfully applied to attain drag reduction (Rabault et al. 2019; Fan et al. 2020; Paris,
Beneddine & Dandois 2021; Li & Zhang 2022), for shape optimization (Viquerat et al.
2021) and understanding swimming patterns (Verma, Novati & Koumoutsakos 2018; Zhu
et al. 2021).
In this work, we develop a closed-loop feedback controller using deep RL for our

proposed hybrid control approach consisting of a tunable-stiffness covert-inspired flap.
We train and test this controller using high-fidelity fully coupled simulations of the
airfoil–flap–flow dynamics, and demonstrate the effectiveness of the variable-stiffness
control paradigm compared with the highest-performing passive (single-stiffness) case.
We explain the lift-enhancement mechanisms by relating the large-amplitude flap
dynamics to those of the vortex formation and shedding processes around the airfoil.

2. Methodology

2.1. Hybrid active–passive control
The problem set-up is shown in figure 1, which consists of a NACA0012 airfoil of chord c
at an angle of attack of 20◦ and Re = 1000, where significant flow separation and vortex
shedding occur. A flap of length 0.2c is hinged on the upper surface of the airfoil via
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Flaps for hybrid flow control via reinforcement learning

Sensors measuring flap
deflection and wake vorticity

Environment: FSI solver
Torsional

spring Flap

Action ~ πθ(·)
10–4 10–3 10–2

Controller (πθ)

State: sm = {ω,β}m

Reward: rm = C–lm

am = kβm

Agent

Figure 1. Schematic of the problem set-up and RL framework.

a torsional spring with stiffness kβ , where β denotes the deflection of the flap from the
airfoil surface. The FSI problem considered here is two-dimensional (2-D), similar to
most studies on covert-inspired flaps (Bramesfeld & Maughmer 2002; Duan & Wissa
2021) and applicable to high-aspect-ratio, bio-inspired flows largely dominated by 2-D
effects (Taira & Colonius 2009; Zhang et al. 2020). In the passive control approach
(Nair & Goza 2022a), kβ was fixed and maximum lift was attained at kβ = 0.015. In our
hybrid active–passive control, the stiffness is a function of time, kβ(t), determined by an
RL-trained closed-loop feedback controller described in § 2.2.While the stiffness variation
is allowed to take any functional form, it is restricted to vary in kβ(t) ∈ [10−4, 10−1],
similar to the range of stiffness values considered in the passive control study. The mass
and location of the flap are fixed at mβ = 0.01875 and 60% of the chord length from
the leading edge, chosen here since they induced the maximal lift benefits in the passive
(single-stiffness) configuration (cf. figure 5(e–h) for vorticity contours at four time instants
in one periodic lift cycle for this highest-lift single-stiffness case).

2.2. Reinforcement learning (RL)
A schematic of the RL framework is shown in figure 1, where an agent (with a controller)
interacts with an environment. At each time step, m, the agent observes the current state
of the environment, sm ∈ RNs (where Ns is the number of states), implements an action,
am ∈ R, and receives a reward, rm ∈ R. The environment then advances to a new state,
sm+1. This process is continued for Mτ time steps and the resulting sequence forms a
trajectory, τ = {s0, a0, r0, . . . , sMτ , aMτ , rMτ }. The actions chosen by the agent to generate
this trajectory are determined by the stochastic policy of the controller, πθ (am|sm),
parametrized by weights θ . This policy outputs a probability distribution of actions, from
which am is sampled, am ∼ πθ (am|sm), as shown in figure 1.
In policy-based deep RL methods, a neural network is used as a nonlinear function

approximator for the policy, as shown in figure 1. Accordingly, θ corresponds to the
weights of the neural network. The goal in RL is to learn an optimal control policy that
maximizes an objective function J( · ), defined as the expected sum of rewards as

J(θ) = Eτ∼πθ

[ Mτ∑

m=0

rm

]

. (2.1)
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Here, the expectation is performed over Nτ different trajectories sampled using the
policy, τ ∼ πθ . The maximization problem is then solved by gradient ascent, where
an approximate gradient of the objective function, ∇θJ(θ), is obtained from the policy
gradient theorem (Nota & Thomas 2019).
In this work, we use the PPO algorithm (Schulman et al. 2017) for computing the

gradient, which is a policy-based RL method suitable for continuous control problems,
as opposed to Q-learning methods for discrete problems (Sutton & Barto 2018). PPO has
been used successfully to develop RL controllers for fluid flows (Rabault et al. 2019),
and is chosen here among other policy-based methods due to its relative simplicity in
implementation, better sample efficiency and ease of hyperparameter tuning.
In our hybrid control problem, the environment is the strongly coupled FSI solver of Nair

& Goza (2022b), where the incompressible Navier–Stokes equation for the fluid coupled
with Newton’s equation of motion for the flap are solved numerically. The state provided
as input to the controller are sensor measurements consisting of flow vorticity in the wake,
ωm, and flap deflection, βm. The action is the time-varying stiffness, am = kβm ∈ R+.
Similar to Rabault et al. (2019), when advancing a single control time step from m to
m+ 1, the flow–airfoil–flap system is simulated for Nt numerical time steps of the FSI
solver. In this duration, the chosen value of the stiffness is kept constant. The reason for
introducing these two time scales – control and numerical – is to allow the FSI system to
meaningfully respond to the applied stiffness and achieve faster learning.
The reward for the lift maximization problem of our hybrid control approach is

rm = 1
2
C̄l

2
m + p1

(
1 − p2u/umax

p2

)
. (2.2)

The first term is the mean lift coefficient of the airfoil, C̄lm, evaluated over theNt numerical
time steps. The second term, where p1 > 0 and p2 & 1 are constants whose values are
given in § 3, is a physics-based penalty term that provides an exponentially growing
negative contribution to the reward if the flap remains undeployed for several consecutive
control time steps (intuitively, one wishes to avoid periods of prolonged zero deployment
angle). Accordingly, u denotes the current count of consecutive control time steps that the
flap has remained undeployed and umax is the maximum number of consecutive time steps
that the flap may remain undeployed. The flap is deemed undeployed if βm < βmin.
The reward (2.2) can be augmented with additional penalty terms to achieve goals

of fluctuation minimization, drag reduction or improving aerodynamic efficiency. For
minimizing lift fluctuations about the mean, the penalty term could take the form of
the time derivative of lift, −dC̄lm/dt2, the difference between the instantaneous lift and
target lift, −(C̄lm − Cltarget)

2, or the running average of lift evaluated at previous time
steps, −(C̄lm − C̄lrun)

2. For drag minimization or improving aerodynamic efficiency, the
airfoil drag, −C̄2

dm , could be incorporated into the reward. In this work, we do not consider
these additional penalty terms because the hybrid control approach is inspired from
covert feathers in birds, which are used as high-lift devices in stalled large-angle-of-attack
scenarios. The primary aerodynamic aim in this setting is to attain increased lift, at the
potential cost of drag, efficiency or fluctuations (Rosti et al. 2018; Nair & Goza 2022a).
The RL algorithm is proceeded iteratively as shown in Algorithm 1. Each iteration

consists of sampling trajectories spanning a total of Mi control time steps (lines 4 and
5) and using the collected data to optimize θ (line 19). We also define an episode as either
the full set of Mi time steps or, in the case where the parameters yield an undeployed flap,
the time steps until u = umax. Note that an episode and iteration coincide only if an episode
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Flaps for hybrid flow control via reinforcement learning

Algorithm 1 The PPO RL algorithm applied to hybrid control

Require: Set of initial conditions, S0

Ensure: Optimization parameters, θ
1: Initialize state, s0 ∼ S0

2: Initiate a vector of counters for each trajectory, u[1 : Nτ ] ← 0, count[1 : Nτ ] ← 0
3: for iterations ← 1, 2, . . . do
4: for window ← 1, 2, . . . , k do {multi-window optimization}
5: for m ← 1, 2, . . . ,Mτ (= Mi/k) do {perform trajectory sampling}
6: for trajectory:j ← 1, 2, . . . ,Nτ do {parallel trajectory sampling}
7: am[j] ∼ πθ (am[j]|sm[j])
8: rm[j], sm+1[j] = FSI(sm[j], am[j])
9: count[j] ← count[j]+ 1
10: if βm+1[j] < βmin then
11: u[j] ← u[j]+ 1
12: end if
13: if u[j] = umax || count[j] = Mi then {episode termination}
14: Reset to initial condition, sm+1[j] ∼ S0

15: u[j] ← 0, count[j] ← 0
16: end if
17: end for
18: end for
19: Optimize θ using gradient ascent
20: end for
21: end for

is not terminated early. The state is only reset after an episode terminates (line 14), which
could occur within an iteration if the episode terminates early (line 13).
We also use a modified strategy to update θ in a given iteration. In policy-based methods,

the weights update step is performed after trajectory sampling. Generally, in one iteration,
trajectories are collected only once. This implies that (a) typically the weights are updated
once in one training iteration and (b) the length of the trajectory is equal to the iteration
length, Mτ = Mi. However, in our work, we perform k > 1 number of weight updates in
a single iteration by sampling k trajectories each of length Mτ = Mi/k. This procedure
is found to exhibit faster learning since the frequent weight updates sequentially cater to
optimizing shorter temporal windows of the long-time horizon. We therefore refer to this
procedure as the long–short-term training strategy and demonstrate its effectiveness in § 3.
As shown in Algorithm 1, each iteration is divided into k optimization windows (line 4)
and θ is updated at the end of each window (line 19). Finally, for computing more accurate
estimates of the expected values used in (2.1) and for evaluating gradients, the mth time
advancement (line 5) is performed Nτ times independently (line 6) (Schulman et al. 2017).
For accelerated training, this set ofNτ trajectories is sampled in parallel (Rabault & Kuhnle
2019; Pawar & Maulik 2021).

3. Results

3.1. RL and FSI parameters
The parameters of the FSI environment are the same as in Nair & Goza (2022b),
which contains the numerical convergence details. The spatial grid and time-step sizes
are ∆x/c = 0.00349 and ∆t/(c/U∞) = 0.0004375, respectively. For the multi-domain
approach for far-field boundary conditions, five grids of increasing coarseness are used,
where the finest and coarsest grids are [−0.5, 2.5]c × [−1.5, 1.5]c and [−23, 25]c ×
[−24, 24]c, respectively. The airfoil leading edge is located at the origin. For the
subdomain approach, a rectangular subdomain that bounds the physical limits of flap

956 R4-5

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 3/

�
��

��
��

�	
��

��
�2:

1.
��

7�
�2�

.�
�!

��
��

��
2�

0.
�


�2
 .

�:
2�!

��
�.

::

https://doi.org/10.1017/jfm.2023.28


N.J. Nair and A. Goza

displacements, [0.23, 0.7]c × [−0.24, 0.1]c, is utilized. The FSI solver is parallelized and
simulated across six processors.
For the states, Ns = 65 sensor measurements are used, which measure vorticity at 64

locations distributed evenly across [1, 2.4]c × [−0.6, 0.1]c and flap deflection as denoted
by the red markers in figure 1. To ensure unbiased stiffness sampling across [10−4, 10−1],
a transformation between stiffness and action is introduced: kβm = 10am . Accordingly, am
is sampled from a normal distribution, N (am, σ ) in the range [−4,−1], so that kβm is
sampled from a log-normal distribution. The neural network consists of fully connected
layers with two hidden layers. The size of each hidden layer is 64 and the hyperbolic
tangent (tanh) function is used for nonlinear activations. The parameters in the reward
function (2.2) are p1 = 0.845, p2 = 10 000, umax = 20 and βmin = 5◦.
The initial state for initializing every episode corresponds to the limit cycle oscillation

solution obtained at the end of a simulation with a constant kβ = 0.015 spanning 40
convective time units (t = 0 in this work denotes the instant at the end of this simulation).
In advancing one control time step, Nt = 195 numerical time steps of the FSI solver are
performed, or approximately 0.085 convective time units. That is, the control actuation
is provided every 5% of the vortex-shedding cycle. The various PPO-related parameters
are the discount factor γ = 0.9, learning rate α = 0.0003, ne = 10 epochs and clipping
fraction ε = 0.2. Refer to Schulman et al. (2017) for the details of these parameters. The
Nτ = 3 trajectories are sampled in parallel. The PPO RL algorithm is implemented by
using the Stable-Baselines3 library (Raffin et al. 2021) in Python.
We test the utility of our long–short-term strategy described in § 2.2 against

the traditional long-term strategy. In the latter, the controller is optimized for a
long-time horizon of 10 convective time units (Mi = 120) spanning approximately
six vortex-shedding cycles, and weights are updated traditionally, i.e. only once in
an iteration (Mτ = 120, k = 1 window). On the other hand, in the long–short-term
strategy, while the long-time horizon is kept the same (Mi = 120), the optimization is
performed on two shorter optimization windows (Mτ = 60, k = 2). For all cases, a single
iteration comprisingMi = 120 control time steps, and Nτ = 3 simultaneously running FSI
simulations, each parallelized across six processors, takes approximately 2.7 hours to run
on a Illinois Campus Cluster node consisting of 20 cores and 128 GB memory.

3.2. Implementation, results and mechanisms
To demonstrate the effectiveness of the long–short-term strategy, the evolution of the
mean reward (sum of rewards divided by episode length) versus iterations for the two
learning strategies as well as the passive case of kβ = 0.015 (for reference) are shown in
figure 2. Firstly, we note that the evolution is oscillatory because of the stochasticity in
stiffness sampling during training. Next, it can be seen that, with increasing iterations,
for both cases, the controller gradually learns an effective policy as the mean reward
increases beyond the passive reference case. However, the long–short-term strategy is
found to exhibit faster learning as well as attain a larger reward at the end of 90 iterations
as compared to the long-term one. This is because splitting the long-time horizon into
two shorter windows and sequentially updating the weights for each window alleviates
the burden of learning an effective policy for the entire long horizon as compared to
learning via a single weight update in the long-term strategy. The remainder of the results
focus on the performance of the control policy obtained after the 90th iteration of the
long–short strategy. A deterministic policy is used for evaluating the true performance of
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Figure 2. Evolution of mean rewards with iterations for different training strategies.
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Figure 3. Temporal plots for flapless (no control), passive and hybrid flow control cases: (a) airfoil lift
coefficient, (b) hinge stiffness and (c) flap deflection.

the controller, where the actuation provided by the neural network is directly used as the
stiffness instead of stochastically sampling a suboptimal stiffness in training.
The airfoil lift of the flapless, maximal passive control and hybrid control cases are

plotted in figure 3(a). For hybrid control, the lift is plotted not only for t ∈ [0, 10], for
which the controller has been trained, but also for t ∈ [10, 20]. It can be seen that the hybrid
controller trained using the long–short-term strategy is able to significantly increase the lift
in the training duration and beyond. Overall, in t ∈ [0, 20], a significant lift improvement of
136.43% is achieved as compared to the flapless case. For comparison, the corresponding
lift improvement of the best passive case is 27% (Nair & Goza 2022a). We note that this
large lift improvement is, however, attained at the cost of increased lift fluctuations, the
cause for which will be discussed at the end of this section. We emphasize that, while the
maximum peak-to-trough fluctuation in a vortex-shedding cycle for the hybrid case has
increased by 376% as compared to the baseline flapless case, the standard deviation of
lift in the pseudo-steady regime, t > 10, has increased by a relatively smaller amount of
104%. For reference, the corresponding maximum lift fluctuations and standard deviation
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Figure 4. Time variation in various quantities during the lone periodic cycle for the passive case, and the first
and sixth cycles of the hybrid case (highlighted in figure 3a): (a) lift coefficient, (b) flap deflection, (c) stiffness,
(d) TEV strength and (e) LEV strength (magnitude).

for the passive case are 43.8% and 44.2%, respectively. The standard deviation provides
a more representative measure of the magnitude of fluctuations since the spikes occur in a
smaller time scale. When lift fluctuation minimization is of importance, additional penalty
terms can be incorporated into the reward, as described in § 2.2.
We also show the lift of the hybrid controller trained using the long-term strategy. While

it is able to provide similar large lift improvements as compared to the long–short-term
strategy in the training duration, the lift drops considerably in the duration beyond training,
implying that more training iterations are required for robustness. Hereafter, we discuss the
results obtained from the long–short-term strategy only. The stiffness actuations outputted
by the controller and the resulting flap deflection are plotted in figure 3(b) and 3(c),
respectively. It can be observed for hybrid control that the stiffness varies across four orders
of magnitude (as compared to fixed kβ = 0.015 in passive control) and often reaching its
bounding values of kβ = 10−4 and 10−1. Owing to these large stiffness variations, the flap
oscillates with an amplitude that is more than twice that in passive control, indicating that
larger-amplitude flap oscillations can yield larger lift benefits when timed appropriately
with key flow processes.
To understand the physical mechanisms driving lift benefits for the hybrid case, we show

various quantities during the first and sixth vortex-shedding cycles (cf. figure 3a). These
distinct cycles allow for a comparison of the transient and quasi-periodic regimes. The
perfectly periodic dynamics of the passive kβ = 0.015 case are also shown for reference.
Firstly, from figure 4(c), we can see that initially, in t/T ∈ [0, 0.16], the controller actuation
is lower (kβ = 10−4) than the constant passive actuation (kβ = 0.015). This low stiffness
prompts the hybrid flap in the first cycle to undergo a slightly larger deflection until β ≈
50◦ in figure 4(b). The decisive actuation occurs at t/T ≈ 0.21 when the largest kβ =
10−1 is prescribed (cf. figure 4c), which forces the flap to oscillate downwards within a
short time span until t/T = 0.4 (cf. figure 4b). The flap then begins to rise only after the
actuation is reduced back to kβ = 10−4 by t/T = 0.5 (cf. figure 4c). For comparison, the
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rising and falling of the single-stiffness flap in the same duration of t/T ∈ [0, 0.5] occurs
gradually (cf. figure 4b).
To understand the effect of such an aggressive flapping mechanism on airfoil lift,

we plot the circulation strengths of the trailing- and leading-edge vortices (TEV and
LEV, respectively) in figures 4(d) and 4(e), respectively. Here, ΓTEV and ΓLEV are
the magnitudes of positive and negative circulation strengths evaluated in bounding
boxes, [0.85, 1.1]c × [−0.35,−0.1]c and [0, 1.1]c × [−0.35, 0.2]c, respectively. It can be
observed that, after t/T ≈ 0.18 when the flap strongly oscillates downwards in the first
cycle, ΓTEV and ΓLEV for the hybrid case are decreased and increased, respectively, as
compared to the passive case. The overall effect on performance is that the lift of the
hybrid case in the first cycle begins to increase at t/T ≈ 0.4 after an initial dip, as seen in
figure 4(a).
Now, as time progresses, this aggressive flapping mechanism continues, but with

increasing amplitude, as observed in figure 3(c). Eventually, by the sixth cycle, the
switching in stiffness occurs at delayed time instants of t/T ≈ 0.53 and 0.7 (cf. figure 4c).
As a consequence, the flap oscillates upwards until t/T = 0.5 and attains a large deflection
of β ≈ 100◦ (cf. figure 4b). Then, as the stiffness switches to high kβ = 10−1, the flap
deflection suddenly drops to β ≈ 5◦ within a short time span. Similar to the first cycle, this
strong downward motion mitigates the TEV and enhances the LEV, as seen in figures 4(d)
and 4(e), respectively, but now to a much stronger degree.
To visualize these effects, vorticity contours at four time instants in the sixth cycle are

plotted in figures 5(a)–5(d) and compared to passive control in figures 5(e)–5(h). The
TEV, which is clearly decipherable for the passive case in figure 5(g), is now limited to
a much smaller size in the hybrid case in figure 5(c). This is because the strong angular
velocity of the downward-oscillating flap sheds away the TEV quickly and restricts its
growth. This downward motion further contributes to a reduced width of the separated
recirculation region in the airfoil-normal direction in figure 5(a) as compared to passive
control in figure 5(e). Owing to the TEV mitigating, LEV enhancing and separation width
reducing mechanisms of hybrid flow control, the airfoil attains a much higher lift by the
sixth cycle as compared to the passive case (cf. figure 4a).
Now, we briefly discuss the occurrence of the spikes observed in the lift signal in

figure 3(a) by focusing on the spike in the sixth cycle in figure 4(a), visualized via Cp
contours at four time instants surrounding the occurrence of the spike in figures 6(a)–6(d).
We note that the spike initiates at t/T ≈ 0.53 when the flap attains its highest deflection
(cf. figures 4a and 4b). Preceding this instant, as the flap oscillates upwards, it induces the
fluid in the vicinity to move upstream due to its no-slip condition. When the flap comes
to a sudden stop, as the stiffness switches from 10−4 to 10−1 at t/T ≈ 0.53 (cf. figure 4c),
the moving fluid in the region post-flap abruptly loses its momentum. This momentum
loss is manifested as a strong rise in post-flap pressure (cf. figure 6b). The fluid in the
pre-flap region, however, does not experience a barrier in its upstream motion, and instead
continues to roll up and builds up the suction pressure. The flap dividing the high-pressure
post-flap and low-pressure pre-flap regions can be clearly seen in figures 6(a) and 6(c),
respectively. This large pressure difference across the flap contributes to the large spikes
in the airfoil lift.
Finally, we remark on the effectiveness of the control strategy learned in 2-D

conditions on three-dimensional (3-D) flows past a wing. At similar Reynolds numbers,
for sufficiently high aspect ratio (AR ≥ 3) and a large angle of attack of 20◦, the separation
process is similar to that in 2-D, where vortex shedding from the leading and trailing edges
is more dominant than the wing-tip vortices (Taira & Colonius 2009; Zhang et al. 2020).
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Figure 5. Vorticity contours for hybrid control during the sixth cycle and passive single-stiffness control at
four instants indicated by the markers in figure 4(a). Hybrid: (a) t = 0T , (b) t = 0.27T , (c) t = 0.55T and
(d) t = 0.82T . Passive: (e) t = 0T , ( f ) t = 0.27T , (g) t = 0.55T and (h) t = 0.82T .
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Figure 6. The Cp contours at four time instants in the sixth cycle of hybrid control. Hybrid: (a) t = 0.45T ,
(b) t = 0.55T , (c) t = 0.64T and (d) t = 0.73T .

In this regime, it is plausible that the actuation strategy learnt in 2-D would provide lift
benefits in the 3-D flow, though these would presumably be alleviated by tip-vortex effects.
For smaller aspect ratios (AR = 1), the tip vortex dominates and qualitatively changes the
separated flow behaviour. In this case, the 2-D-trained controller is unlikely to yield lift
benefits. However, such aspect ratios are significantly smaller than the bio-inspired flows
of interest. Moreover, actuation with flaps has the potential to be a useful paradigm in this
regime as well (Arivoli & Singh 2016), due to similar length scales of flow separation,
vortex formation and interaction processes between 2-D and 3-D. We also emphasize that
the RL framework is agnostic to the environment, and provided that a 3-D solver were
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developed to simulate the dynamics, the same training procedure could be performed
without modification.

4. Conclusions
A hybrid active–passive flow control method was introduced as an extension of the
covert-inspired passive flow control method, consisting of a torsionally mounted flap
on an airfoil at post-stall conditions involving vortex shedding. This hybrid strategy
consisted of actively actuating the hinge stiffness to passively control the dynamics of
the flap. A closed-loop feedback controller trained using deep RL was used to provide
effective stiffness actuations to maximize lift. The RL framework was described, including
modifications to the traditional RL methodology that enabled faster training for our hybrid
control problem. The hybrid controller provided lift improvements as high as 136% and
85% with respect to the flapless airfoil and the maximal passive control (single-stiffness)
cases, respectively. These lift improvements were attributed to large flap oscillations due
to stiffness variations occurring over four orders of magnitude. Detailed flow analysis
revealed an aggressive flapping mechanism that led to significant TEV mitigation, LEV
enhancement and reduction of separation region width. We remark that, since the stiffness
changes can be well approximated by a small number of finite jumps, a discrete VSA could
be a pathway to realizing this actuation strategy.
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