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Abstract
Let G be a split, simple, simply connected, algebraic group over Q. The degree 4,
weight 2motivic cohomology group of the classifying space BG of G is identifiedwith
Z. We construct cocycles representing the generator, known as the second universal
motivicChern class. IfG = SL(m), there is a canonical cocycle, defined byGoncharov
(Explicit construction of characteristic classes. Advances in Soviet mathematics, 16,
vol 1. Special volumededicated to I.M.Gelfand’s 80th birthday, pp169–210, 1993). For
any group G, we define a collection of cocycles parametrised by cluster coordinate
systems on the space of G-orbits on the cube of the principal affine space G/U.
Cocycles for different clusters are related by explicit coboundaries, constructed using
cluster transformations relating the clusters. The cocycle has three components. The
construction of the last one is canonical and elementary; it does not use clusters, and
provides the motivic generator of H3(G(C),Z(2)). However to lift it to the whole
cocycle we need cluster coordinates: construction of the first two components uses
crucially the cluster structure of themoduli spacesA(G,S) related to themoduli space
of G-local systems on S. In retrospect, it partially explains why cluster coordinates on
the spaceA(G,S) should exist. The construction has numerous applications, including
explicit constructions of the universal extension of the group G by K2, the line bundle
on Bun(G) generating its Picard group, Kac–Moody groups, etc. Another application
is an explicit combinatorial construction of the second motivic Chern class of a G-
bundle. It is a motivic analog of the work of Gabrielov et al. (1974), for any G. We
show that the cluster construction of the measurable group 3-cocycle for the group
G(C), provided by our motivic cocycle, gives rise to the quantum deformation of its
exponent.
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1 Summary

Given a regular variety X , there is the weight two motivic cohomology complex
Z•
M(X; 2). It is defined via the Gersten resolution of the Bloch complex [13], see also

(31). One has by the very definition (31):

Hi+2(Z•
M(X; 2)) = Hi (X , K 2), i ≥ 0. (1)

The definition of the complex Z•
M(X; 2) extends to the case when X is a regular

simplicial scheme.
Let G be a split, simple, simply connected, algebraic group over Q. Let BG be the

classifying space of G.We use its Milnor’s simplicial model BG•. There are canonical
isomorphisms:

H4(ZM(BG•; 2)) τ= H2(BG•, K 2) = H1(G, K 2) = H3
Betti(G,Z(2)) = Z. (2)

The last is well known. The third isomorphism was established by Brylinsky–Deligne
[4]. The second is the transgression in K2-cohomology for the universal G-bundle.
The first follows from (1) when i = 2. See Lemma 2.2 for further details.

We construct cocycles C• representing the second universal motivic Chern class,
i.e. an element

c2 ∈ H4(ZM(BG•; 2)). (3)

such that τ(c2) = 1 ∈ Z in (2). If G = SLm , there is a canonical cocycle, defined in
[14]. Given a representation V of G, it induces a cocycle for BG. Yet this way we can
get only multiples of c2, e.g. 60 · c2 for E8.

For any group G, we define a collection of cocycles C•, parametrised by cluster
coordinate systems on the space of G-orbits on the cube of the principal affine space
G/U. Cocycles for different clusters are related by explicit coboundaries, constructed
using cluster transformations relating the clusters.

A cocycle C• has three components: C(1),C(2),C(3). The construction of the com-
ponent C(3) is canonical and elementary; it does not use clusters, and provides a
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canonical cocycle for the generator of H3
Betti(G,Z(2)). However to lift C(3) to a cocy-

cle C• we need cluster coordinates: the construction of the first two components uses
crucially the cluster structure of the moduli spaces AG,S, related to the G-character
varieties for decorated surfaces S [17].

In retrospect, it partially explains why the cluster coordinates on the space AG,S

should exist.
This construction has numerous applications, including an explicit construction of

the universal extension of the group G by K2, the determinant line bundle on BunG,
Kac–Moody groups, etc.

Another application is an explicit combinatorial construction of the second motivic
Chern class of a G-bundle. It is a motivic analog of the work of Gabrielov–Gelfand–
Losik [12], for any G.

The cluster construction of the secondmotivicChern class also provides its quantum
deformation. In Sect. 9 we explain the quantum deformation of the exponent of third
measurable cohomology class

β3 ∈ H3
meas(G(C),R).

2 Introduction andmain results

1. The group H3(G,Z). In this paper G is a split, simple, simply connected algebraic
group over Q. Its Lie algebra g is a Lie algebra over Q. The de Rham cohomology
group H3

DR(G;Q) is identified with invariant bilinear symmetric forms 〈∗, ∗〉 on g:

H3
DR(G;Q) = S2(g∗)G ∼= Q. (4)

Namely, a form 〈∗, ∗〉 ∈ S2(g∗)G gives rise to the AdG-invariant 3-form on g:

ϕ〈∗,∗〉 ∈ �3(g∗)G, ϕ〈∗,∗〉(A, B,C) := 〈A, [B,C]〉. (5)

It determines a closed biinvariant differential 3-form on G, providing isomorphism
(4). For example, for G = SLm we get rational multiples of the form Tr(g−1dg)3.

Let h be the Lie algebra of the Cartan group H of G, and W the Weyl group of G.
Then

S2(g∗)G = S2(h∗)W . (6)

It is known that the canonical generator of H3
DR(G;Z) is provided by the Killing form

normalized so that its value on the shortest coroot is equal to 1. We call it the DeRham
generator.

Denote by H∗
B the singular (Betti) cohomology of a topological space. The inte-

gration provides an isomorphism between the DeRham and Betti cohomology, and
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identifies the generators:

∫
: H3

DR(G;Z)
∼−→ H3

B(G(C);Z(2)), Z(2) := (2π i)2Z. (7)

Denote by BG the classifying space for the algebraic group G. It is well known
that

H4(BG,Z(2)) = H3(G,Z(2)). (8)

To introduce themotivic upgrade of this isomorphism,we recall theweight twomotivic
complex.

2. The K2-cohomology.Given a field F, theMilnor K2-group of F is the abelian group
given by the quotient of the wedge square �2F× of the multiplicative group F× by
the subgroup generated by the Steinberg relations (1 − x) ∧ x , where x ∈ F× − {1}:

K2(F) := �2F×/〈(1 − x) ∧ x〉. (9)

Let X be a regular algebraic variety over a field k, with the field of functions k(X).
Denote by Xd the set of irreducible subvarieties of codimenion d on X . Then there is
a complex of abelian groups:

K •
2 := K2(k(X))

res−→
⊕
D∈X1

k(D)× val−→
⊕
X2

Z. (10)

We place it in the degrees [0, 2]. The right map is the valuation map. The left map is
the tame symbol:

res : f ∧ g 
−→
∑
D∈X1

(−1)valD( f )valD(g) f
valD(g)

gvalD( f )
|D. (11)

We denote its cohomology by H∗(X , K2).

3. The Hodge regulator map. For a regular complex algebraic variety X , the group
H1(X , K 2) provides some elements of H3(X(C);Z(2)) of the Hodge type (2, 2),
defined as currents of algebraic–geometric origin as follows. Given a divisor D ⊂ X
and a rational function f on D, there is a 3-current ψD, f on X(C) whose value on a
smooth differential form ω is

ψD, f (ω) := 2π i ·
∫
D(C)

d log( f ) ∧ ω. (12)

Its differential is the δ-current, given by the integration along the codimension two
cycle on X provided by the divisor div( f ) of f :

dψD, f = (2π i)2δdiv( f ). (13)
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The cycles in the complex calculating H1(X , K 2) are given by linear combinations

∑
i

(Di , fi ),
∑
i

div( fi ) = 0. (14)

Here Di is an irreducible divisor in X , and fi a rational function on Di . The cocy-
cle condition implies that the 3-current

∑
i ψDi , fi is closed, defining an element of

H3(X(C),Z(2)) of the Hodge type (2, 2). Denote the subgroup of such classes as
H3
2,2(X(C),Z(2)). So we get the Hodge regulator map

regH : H1(X; K 2) −→ H3
2,2(X(C);Z(2)). (15)

Beilinson’s generalizedHodge conjecture [1] predicts that it is an isomorphismmodulo
torsion. This generalises the Hodge conjecture isomorphism for the codimension two
cycles:

H2(X; K 2) ⊗ Q = CH2(X) ⊗ Q
∼−→ H4

2,2(X(C);Q(2)). (16)

Our next goal is an explicit description of the group H3(G(C),Z(2)) via the Hodge
regulator map.

4. The generator of the group H1(G, K 2) = Z. Denote by I the set of vertices of the
Dynkin diagram for the group G. Let Ci j , i, j ∈ I, be the Cartan matrix. Recall the
Bruhat decomposition of G:

G =
∐

w∈W
Bw, Bw := UHwU. (17)

Here w is the canonical lift of a Weyl group element w to G. Therefore, given a Weyl
group element w ∈ W and a character χ of the Cartan group H, we get a regular
function χw on the Bruhat cell Bw:

χw ∈ O×(Bw), χw(u1hwu2) := χ(h). (18)

The dominant weight�k gives rise to a regular function on the Bruhat cellBw, denoted
by �k,w.

Recall the longest element w0 ofW . The Bruhat divisor Bskw0 is determined by the
equation �k,w0 = 0. Let us introduce the following rational function on this divisor.
Denote by ik : Bskw0 ⊂ G the natural embedding. Set

Fk := i∗k

⎛
⎝�−1

k,skω0

∏
i∈I\{k}

(�i,w0)
Cki
2

⎞
⎠

dk

. (19)
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Here the integers {di } are the symmetrizers: diCi j = d jC j i . Let us consider the
following formal sum of the pairs (a Bruhat divisor, a rational function on it):

C(3) =
⊕
k∈I

(
Bskw0 , Fk

)
. (20)

Theorem 2.1 The elementC(3) is a 1-cocycle in the complex K •
2⊗Z[ 12 ]. Its cohomology

class [C(3)] generates the group H1(G, K 2) = Z. Its Hodge realization regH[C(3)]
generates the group H3(G(C),Z(2)).

5. An example: H3(SL2(C)). There are three ways to describe this group:

1. Betti. One has H3
B(SL2(C);Z) = Z since SU (2) = S3 is a retract of SL2(C).

2. De Rham. The generator of H3
DR(SL2;Z) is given by the form Tr(g−1dg)3 on

SL2. The coefficient Z(2) in the comparison isomorphism (7) reflects the volume
formula vol(S3) = 2π2.

3. Motivic. A line L in a 2-dimensional vector space V provides a divisor BL with a
function f :

BL := {g ∈ SL2 | gL = L}, gl = f (g)l, ∀g ∈ BL , l ∈ L.

The 3-current ψBL , f generates H3
B(SL2(C);Z(2)).

Theorem 2.1 is proved in Sect. 7. The group H1(G, K 2) was described by
Brylinsky–Deligne [4]. Theorem 2.1 provides a specific cocycle for the generator
of H1(G, K 2). Such a cocycle, of course, is not unique. Our cocycle is tied up with
the cluster structure of the space AG,S. Let us elaborate on this.

6. The key feature of the cocycle C(3). We identify H1(G, K 2) with the G-invariants
H1(G × G, K 2)

G, for the left diagonal action of G. There are three projections

pi j : G3 −→ G2, 1 ≤ i < j ≤ 3, pi j (g1, g2, g3) := (gi , g j ). (21)

We claim that

p∗
12

[
C(3)]+ p∗

23

[
C(3)]− p∗

13

[
C(3)] = 0. (22)

Our goal is to prove this on the level of complexes, constructing explicitly aG-invariant
element of K2(G3) whose residue is the cocycle representing the cohomology class
on the left. This boils down to a construction of a certain G-invariant element C(2) in
Q(G3)∗ ∧ Q(G3)∗.

7. The element C(2). Observe that U\G/U = G\(G/U×G/U ). By the construction,
the cocycle C(3) is invariant under the right action of the group U × U on G × G.
Note that projections (21) determine three similar canonical projections involving
A := G/U which are denoted, abusing notation, by

pi j : A3 −→ A2 1 ≤ i < j ≤ j . (23)
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So we are looking for an element

C(2) ∈ Q(A3)∗ ∧ Q(A3)∗

res(C(2)) = p∗
12C

(3) + p∗
23C

(3) − p∗
13C

(3).
(24)

Explicitely, we can write

C(2) =
∑
i, j

ε̃i j · Ai ∧ A j , Ai ∈ Q(A3)G ε̃i j = −̃ε j i ∈ Z. (25)

Here {A j } is a collection of G-invariant regular functions onA3. So to construct C(2)

wemust exibit a collection of such functions. This is exactly what the cluster structure
on the space Conf3(A) := G\A3 does: the functions {A j } are the cluster coordinates,
and ε̃i j is the skew-symmetrized exchange matrix.

The element C(2) is defined in the end of Sect. 5, where we recall the construction of
a cluster for the space Conf3(A). Different cluster coordinate systems deliver elements
C(2) which differ by explicitly given sums of Steinberg relations, and therefore define
the same class in K2.

Note that the cluster structure does more: it delivers elements where the number
of functions Ai equals to the dimension of Conf3(A), and these functions are regular
coordinates on this space.

On the other hand, this partially explains why the cluster coordinates on Conf3(A)

should exist: we know that an element (24) must exist.

8. Remark. A similar problem for the deRham cocycle is much easier, and has a
canonical solution:

3 · dTr
(
g1g2dg

−1
2 dg−1

1

)
= Tr(g−1

1 dg1)
3 + Tr(g−1

2 dg2)
3 − Tr

(
(g1g2)

−1d(g1g2)
)3

.

(26)

To explain the general problem, and how the elements C(2),C(3) fit in the motivic
framework, we recall two basic ingredients of the construction: the weight twomotivic
complex, and Milnor’s model for BG.

9. The weight two motivic complex. Recall the cross-ratio of four points on P1(F):

r(s1, s2, s3, s4) := (s1 − s2)(s3 − s4)

(s1 − s4)(s2 − s3)
, r(∞,−1, 0, z) = z. (27)

Given any five distinct points s1, . . . , s5 on P1(F), consider the element

5∑
i=1

{−r(si , si+1, si+2, si+3)} ∈ Z[F], i ∈ Z/5Z. (28)



   57 Page 8 of 45 A. B. Goncharov, O. Kislinskyi

Denote by R2(F) the subgroup of Z[F∗ − {1}] generated by elements (28) for all
5-tuples of distinct points. The Bloch group B2(F) is the quotient

B2(F) := Z[F∗ − {1}]
R2(F)

. (29)

The key point is that there is a well defined map

δ :B2(F) −→ F∗ ∧ F∗.
{x} 
−→ (1 − x) ∧ x .

(30)

This complex, placed in the degrees [1, 2], is called the Bloch complex. Note that
Coker(δ) = K2(F).

Let X be a regular algebraic variety over a field k. Then there is a complex of abelian
groups placed in the degrees [1, 4], and called the weight two motivic complex of X :

Z•
M(X; 2) := B2(k(X))

δ−→ k(X)∗ ∧ k(X)∗ res−→
⊕
D∈X1

k(D)× val−→
⊕
X2

Z. (31)

It is a good time now to prove the following Lemma which we refer to discussing
the definition of the second motivic Chern class c2.

Lemma 2.2 There are canonical epimorphisms

H4(ZM(BG•; 2)) τ= H2(BG•, K 2) = H1(G, K 2). (32)

Proof The second isomorphism is the transgression in the universal G-bundle on BG•.
It can be defined as follows. Consider the following diagram.

⊕
D∈X1(G2)

Q(D)× ⊕
D∈X1(G)

Q(D)×

K2(Q(G2))

s∗

res

Then the second map is given by the restriction of the cocycle on the diagonal to
its top right part.

The map τ is defined similarly, by using the diagram in Sect. 2, paragraph 10,
where the principal affine spaceA is replaced by the group G. Then the map τ is given
by the restriction of the circled cocycle to its two-component part. The map τ is an
isomorphism due to isomorphism (1), evident from (31). ��

Recall that

H4(Q•
M(BG•; 2) = H3(Q•

M(G; 2)) = S2(h∗)W = Q. (33)
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Definition 2.3 The second universal motivic Chern class

c2 ∈ H4(BG•,ZM(2)) (34)

is the integral generator which corresponds, under isomorphisms (33), to the Killing
form on g normalized so that its values on the shortest coroot is equal to 1.

10. Milnor’s simplicial modelBG• of the classifying spaceBG.Recall the simplicial
realization EG• of the space EG:

· · · G3 G2 G

In particular, there are the n + 1 standard maps

sn,i : Gn+1 −→ Gn, (g0, . . . , gn) 
−→ (g0, . . . , ĝi , . . . , gn), i = 0, . . . , n. (35)

Then we set BG• := G\EG•:

· · · G2 G ∗

Let X 
−→ F•(X) be an assignment to an algebraic variety X a complex of abelian
groups F•(X), contravariant under surjective maps X → Y . We define the complex
F•(EG•) as the total complex associated with the bicomplex

· · · s∗←− F•(G4)
s∗←− F•(G3)

s∗←− F•(G2)
s∗←− F•(G)

s∗←− F•(∗).

s∗ :=
n∑

i=0

(−1)i s∗
n,i : F•(Gn) −→ F•(Gn+1).

(36)

Applying this construction to the weight two motivic complex Z•
M(∗; 2), and taking

the G-invariants, we get the complex

ZM(BG•; 2) := ZM(EG•; 2)G.

Let N be a maximal unipotent subgroup. Recall the principal affine space A :=
G/N.
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The canonical projectionGn −→ An induces amap of complexes, denoted ϕA→G:

(
. . . Z•

M(A4; 2)s∗
Z•
M(A3; 2)s∗

Z•
M(A2; 2)s∗

Z•
M(A; 2)

)Gs∗

(
. . . Z•

M(G4; 2)s∗
Z•
M(G3; 2)s∗

Z•
M(G2; 2)s∗

Z•
M(G; 2)

)Gs∗

We define a degree 4 cycle in the total complex associated with the bicomplex illus-
tarted on the diagram. It is given by the encircled in the bicomplex degree 4 cocycle
C• = (C(1),C(2),C(3)):

C(1) ∈ B2

(
Q(Conf4(A))

)
, C(2) ∈

2∧
Q(Conf3(A))×,

C(3) ∈
⊕

D∈X1(Conf2(A))

O×
D.

(37)

The cocycle property just means that

s∗(C(1)) = 0, δ(C(1)) = s∗(C(2)), res(C(2)) = s∗(C(3)), div(C(3)) = 0.

(38)

The cocycle will be well defined up to a coboundary. It provides a cocycle ϕA→G(C•).

. . . . . .
⊕

D∈X2(Conf2(A))

Z

. . .
⊕

D∈X1(Conf3(A))

Q(D)× ⊕
D∈X1(Conf2(A))

Q(D)×

∧2 Q(Conf4(A))× ∧2 Q(Conf3(A))× ∧2 Q(Conf2(A))×

B2
(
Q(Conf4(A))

)
B2
(
Q(Conf3(A))

)
B2
(
Q(Conf2(A))

)

s∗ s∗

s∗ s∗

s∗ s∗

s∗ s∗

div

res

δ

div

res

δ

div

res

δ

Theorem 2.4 There is a cocycle C• = (C(1),C(2),C(3)) such that the induced cocycle
ϕA→G(C•) represents the second motivic Chern class

c2 ∈ H4ZM(BG•; 2). (39)

If G = SLm , there is a canonical cocycle C•, defined in [14]. Given a non-trivial
representation V of the group G, the pull back of this cocycle via the embedding
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G ↪→ SL(V) is a non-trivial cocycle for G. However in general we can not get the
generator of the group H4 this way. For example, for the group of type E8, the closest
we get this way is 60 · c2 for the adjoint representation.
11. Cluster nature of the construction. Our construction is cluster. The construction
of the components C(1),C(2) uses essentially the construction of the cluster structure
on themoduli spaceAG,S [8], closely related to themoduli space ofG-local systems on
a decorated surface S, in the case when S is a triangle or a quadrilateral. For G = SLm

this is explained in [8, Section 12].
On the other hand, the construction of the cluster structure for the general moduli

spaceAG,S follows immediately from the one for a triangle and rectangle, provided that
we prove that these cluster structures are invariant under the twisted cyclic rotations of
these polygons. The latter is the most challenging part of the proof in [17], which takes
about 30 pages of elaborate calculations, with the final result coming as a pleasant
surprise. Our approach explains why the cluster structure should be invariant under
the twisted cyclic shift, and establishes a key step of the proof without any elaborate
computations.

The last component C(3) is crucial to prove that the cohomology class [C•] coincides
with the motivic Chern class c2.

12. Applications. This construction has numerous applications. Here are some of
them.

1. An explicit construction on the level of cocycles of the universal extension of the
group G by K2.
Thus we get an explicit construction of the Kac–Moody group Ĝ given by a central
extension of the loop group:

1 −→ Gm −→ Ĝ −→ G((t)) −→ 1. (40)

2. We get an explicit construction of the line bundle generating the Picard group of
BunG(�), where � is a Riemann surface with punctures. See [20] for the back-
ground on the generating line bundle.

3. Using the dilogarithm and the weight two exponential complex [15], we get an
explicit combinatorial formula for the second Chern class of a G-bundle on a
manifold, with values in the Beilinson–Deligne complex. In particular we get a
combinatorial formula for the second integral Chern class, in the spirit of the
Gabrielov–Gelfand–Losik combinatorial formula [12] for the first Pontryagin class.

4. Given a punctured surface S, let UG,S be the moduli space parametrizing framed
unipotent G-local systems on S, that is G-local systems with unipotent mon-
odromies around the punctures, equipped with a reduction to the Borel subgroup
at each puncture.
Let M be a threefold whose boundary is the surface S with filled punctures. We
prove that the subspace MG,M ⊂ UG,S parametrising framed unipotent G-local
systems on Swhich can be extended toM is a K2-Lagrangian.We define themotivic
volume map on its generic part

Volmot : M◦
G,M −→ B2(C) (41)
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valued in the Bloch group ofC. Its composition with themap B2(C) → R provided
by the Bloch–Wigner dilogarithm is a volume map generalising the volume of a
hyperbolic threefold. For G = GLm these results were obtained in [6] using the
canonical cocycle for GLm .

5. The cluster construction of the second motivic Chern class provides at the same
time its quantum deformation, see Sect. 9.

3 The simplest example: G = SL2

The cocycle C(•) for the generator of H4(BSL2•,ZM(2)) has three components. Using
G = SL2, they are:

C(1) ∈ B2

(
Q(G4)

)G
,

C(2) ∈
(
Q(G3)×

∧
Q(G3)×

)G
,

C(3) ∈
(
Q(D)×

)G
, D ∈ div(G2)G.

(42)

Fix a complex two dimensional vector space V2 with an area form �. Then a flag
is a 1-dimensional subspace of V2, and a decorated flag is a non-zero vector v ∈ V2.
Two decorated flags are in generic position if �(v1v2) �= 0. To construct a cocycle
we pick a non-zero vector v ∈ V2.
The cycle C(3). There is G-invariant divisor

Dv ⊂ G2, Dv := {(g1, g2) ∈ G2 | �(g1v, g2v) = 0}. (43)

It carries a function

λv(g1, g2) := g1v

g2v
, (g1, g2) ∈ Dv ⊂ G2. (44)

Note that the residue of this function is equal to zero. So we set

C(3) := (Dv, λv). (45)

The G-invariant divisor with a function (Dv, λv) in G2 is the same thing as a divisor
with a function (D′

v, λ
′
v) for the quotient G

2/G = G. Namely, we identify G with the
section {e} × G ⊂ G2.

To check that the current 2π i · d log(λ′
v)δ(D

′
v) generates H

3(SL2(C),Z(2)), we
integrate it over the cycle generating the 3-dimensional homology of SL2(C), given
by the subgroup SU (2). Precisely, pick a Hermitian form 〈, 〉 in V2 and an orthonornal
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basis (v,w) containing v. Then

SU (2) =
(

α β

−β α

)
α, β ∈ C, |α|2 + |β|2 = 1.

D′
v =

(
a−1 b
0 a

)
, D′

v ∩ SU (2) =
(

α 0
0 α

)
, |α| = 1, λ′

v = α.

(46)

Integrating the current over SU (2) we get 2π i · ∫
|α|=1

d logα = (2π i)2. So its coho-

mology class generates the group H3(SL2(C),Z(2)).
The component C(2). Below we use the notation vi := giv. We define C(2) by setting

C(2) ∈
(
Q(SL3

2)
× ∧ Q(SL3

2)
×)SL2

C(2) = �(v1v2) ∧ �(v1v3) + �(v1v3) ∧ �(v2v3) + �(v2v3) ∧ �(v1v2).

(47)

Let us compute the residue of C(2). The divisors supporting the residue are:

Di j = {�(viv j ) = 0}.

The residue of C(2) at the divisor D12 is

res�(v1v2)=0(C
(2))

= res�(v1v2)=0

(
�(v1v2) ∧ �(v1v3)

�(v2v3)

)
= �(v1v3)

�(v2v3)
=
(v1

v2

)
= (D12, λ1/2).

(48)

The result does not depend on v3 since on the divisor {�(v1v2) = 0} the vectors v1
and v2 are parallel. The total residue is

res(C(2)) = (D12, λ1/2) + (D23, λ2/3) + (D31, λ3/1) = s∗C(3).

It splits into three parts, one for each edge of the triangle. So we can set
The component C(1). Consider the cross-ratio

C(1) := {r2(v1, v2, v3, v4)}B2 =
{
−�(v1v2)�(v3v4)

�(v1v4)�(v2v3)

}
B2

. (49)

The 5-term relation in the definition of the Bloch group implies that s∗C(1) = 0.
The key step is the calculation of the differential in the Bloch complex:

δC(1) = δ{r2(v1, v2, v3, v4)} = −1

2
Alt4

(
�(v1v2) ∧ �(v1v3)

)
. (50)

where Alt4 means that we take the alternating sum over all permutations of vectors
v1, v2, v3, v4 (Fig. 1).
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Fig. 1 Calculating δC(1) for the group SL2, and the octahedron

We picture δC(1) on Fig. 1 as a 3-dimensional simplex with four flags at the vertices,
and elements�(viv j ) at the centers of the corresponding edges. Each arrow represents
a summand in (50). For example the arrow�(v1v2) → �(v1v3) represents�(v1v2)∧
�(v1v3). The terms in (50) split into parts that live on the faces, i.e. depend only on
three flags.

4 The components C(1),C(2) of the cocycle

1. Cluster varieties set-up. Let us recall quivers, also known as seeds, see [9, Defini-
tion 1.4].

Definition 4.1 A quiver c is a data {�, (∗, ∗), {ei }, {di }, i ∈ I, I0 ⊂ I}, where:
• � is an integral lattice; (∗, ∗) is a bilinear symmetric Q-valued form form on �;

{ei } is a basis for� parametrised by a is a finite set I—we call its elements vertices,
I0 is the subset of frozen vertices; and {di } is a set of positive integers such that:
εi j = (ei , e j )d j ∈ Z unless i, j ∈ I0, when εi j ∈ 1

2Z.

We describe a quiver geometrically by drawing a vertex for each basis element ei ,
and n = εi j arrows from the vertex ei to the vertex e j if n > 0 or in the opposite
direction if n < 0.
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Definition 4.2 For each unfrozen vertex ek of a quiver c there is a quiver mutation
μk : c → c′ defined as the change of the basis for �:

e′
i =

{
−ek, i = k

ei + [εik]+ek, i �= k, [a]+ := max(a, 0).

Let { fi } ∈ Hom(�,Q) be the quasidual to {ei } basis: 〈 fi , e j 〉 = d−1
i δi j , and �◦

the sublattice generated by { fi }. Consider the split torus:

A� := Hom(�◦,Gm).

It comes with cluster A-coordinates {Ai } provided by the basis { fi }.
One associates with the mutation μk : c → c′ a transformation of the cluster

coordinates, acting by

μ∗
k Ai = Ai , i �= k,

μ∗
k Ak = 1

Ak

⎛
⎝ ∏

εik>0

Aεik
i +

∏
εik<0

A−εik
i

⎞
⎠ .

(51)

The cluster variety A with the initial quiver c is obtained by gluing the tori A�

assigned to quivers obtained from c by sequences of mutations via the corresponding
composition of the transformations (51). By the Laurent Phenomena theorem [11],
each element Ai is a regular function onA. The algebra of regular functions O(A) is
nothing else but the Fomin–Zelevinsky upper cluster algebra.

Therefore each cluster c on a cluster variety A is given by a collection of cluster
coordinates (A1, . . . ,Am) and an exchange matrix εi j with the skewsymmetrizers di .
This data is encoded in a single element

Wc := 1

2
·
∑
i, j∈I

diεi j · Ai ∧ A j ∈ O×(A) ∧ O×(A) ⊗ Z

[
1

2

]
. (52)

Note that 2 · Wc has integral coefficients, and Wc has coefficients in Z if I0 is empty.
Let us assign to a cluster mutation μk : c → c′ a rational function, written in the

coordinate system {Ai } for the cluster c as

X̂ c
k :=

∏
j∈I

A
εi j
j . (53)

Then the elements Wc and Wc′ differ by the Steinberg relation [9, Proposition 6.3]:

Wc′ − Wc = dk · (1 + X̂ c
k

) ∧ X̂ c
k . (54)

2. The moduli space AG,S. Let us recall the definition of the moduli space AG,S [8].
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Definition 4.3 Let S be a decorated surface. Let G be a simply-connected split semi-
simple group.

The moduli space AG,S parametrises twisted G-local system L on S together with
a flat section of the local system L ×G A near the special points and punctures.

According to the main result of [17], the moduli spaceAG,S has a clusterA-variety
structure.

In particular, when the decorated surface S is an oriented n-gon pn , we get the space

AG,pn = Confn(A) := G\An, A := G/U.

The isomorphism depends on the choice of a vertex of the polygon. For example, for
the triangle t :

• The space AG,t is the configuration space of three decorated flags - Conf3(A).

3. An element C(2). Pick a reduced decomposition of the longest element w0 of the
Weyl group:

i = (i1, . . . , in), w0 = si1 . . . sin .

In [17], there is a construction of the cluster coordinate system on the space Conf3(A),
given by a collection of the regular functions, called the cluster coordinates

(A1, . . . ,Am), Ai ∈ O(Conf3(A)) := O(A3)G, (55)

together with the exchange matrix εi j ∈ 1
2Z. We recall the construction of the cluster

assigned to the reduced decomposition of i in Sect. 5. Then the element C(2) is defined
(see Definition 5.6) by

C(2) := Wc = 1

2
·
∑
i, j

diεi j · Ai ∧ A j . (56)

4. An element C(1).Consider two cluster coordinate systems c1,3 and c2,4 on the space
Conf4(A):

1. The one c2,4, obtained by amalgamating triangles (F1,F2,F3) and (F1,F3,F4).
2. The one c1,3, given by amalgamating triangles (F2,F3,F4) and (F1,F2,F4).
According to one of the main results of [17], there exists an ordered sequence

of mutations μ1, . . . , μn providing a cluster transformation between the two cluster
coordinate systems above. For each mutation μi there is a rational function X̂i on
Conf4(A). So we get a collection of rational functions

(X̂1, . . . , X̂n), X̂i ∈ Q(Conf4(A))×. (57)

5. The first cocycle condition. Thanks to (54), the difference of the elements W
assigned to the cluster coordinate systems c1,3 and c2,4 is the sum of the Steinberg
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relations provided by functions (57):

Wc1,3 − Wc2,4 =
N∑

k=1

dk · (1 + X̂k) ∧ X̂k . (58)

This just means that setting

C(1) :=
N∑

k=1

dk · {−X̂k} ∈ B2

(
Q(Conf4(A))

)
. (59)

we get, at least modulo 2-torsion, the first cocycle identity in (38):

δ(C(1)) = s∗(C(2)). (60)

6. Altering the cluster transformation. According to [17], changing a reduced
decomposition i we alter the chain (C1,C2, . . .) by a coboundary of an element of
B2(OG3).

Theorem 4.4 Changing a cluster transformation c1,3 → c2,4 does not affect the ele-
ment C (1), since it is changed by a sum of the five-term relations, modulo an order 6
cyclic subgroup.

Proof Thanks to (58), for a different cluster transformation c1,3 → c2,4 provided by
a sequence of mutations associated with the functions Ŷ1, . . . , ŶM we have

N∑
k=1

dk · (1 + X̂k) ∧ X̂k −
M∑
k=1

dk · (1 + Ŷk) ∧ Ŷk = 0. (61)

Denote by βF the kernel of the differential δ : B2(F) −→ F× ∧ F× in the Bloch
complex (30). Then identity (61) just means that we get, modulo 2-torsion, an element
of the group βF, where F := Q(Conf4(A)) is the function field on the configuration
space:

N∑
k=1

dk · {X̂k} −
M∑
k=1

dk · {Ŷk} ∈ βF, (62)

Let T̃or(F×,F×) be the unique non-trivial extension of the group Tor(F×,F×) by
Z/2Z. By Suslin’s theorem [22], for any field F, there is an exact sequence

0 −→ T̃or(F×,F×) −→ K ind
3 (F) −→ βF −→ 0. (63)

Note that Z/2Z = Tor(Q×,Q×) = Tor(Q(t1, . . . , tn)×,Q(t1, . . . , tn)×). Next,
K ind
3 (F(t)) = K ind

3 (F). Therefore, since the configuration spaces are rational vari-
eties, the element (62) provides an element of K ind

3 (Q)/(Z/4Z). Suslin proved [22,
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Corollary 5.3] that the latter group is isomorphic to Z/6Z—this uses the Lee and
Szczarba theorem [21]. Therefore the element (62) belongs to the subgroup Z/6Z. ��

5 Cluster structure of the space Conf3(A)

For the convenience of the reader, we reproduce the definition of the clusters, that is
cluster coordinates and quivers, describing the cluster structure of the space Conf3(A),
borrowing the construction of the cluster coordinates from [17, Section 5], and the
construction of quivers from [17, Section 7.2].
1. The set-up. Recall that G is a split semi-simple simply-connected algebraic group
with the Cartan group H, the Weyl group W , and the Cartan matrix {Ci j }i, j≤r , simple
positive roots αi and coroots α∨

j :

αi : H → Gm, α∨
i : Gm → H, αi ◦ α∨

j = Ci j . (64)

There is a set of the fundamental weights �1, . . . , �r :

�i : H → Gm, �i ◦ α∨
j = δi j . (65)

The length and reduced decomposition of the Weyl group elements induce the
Bruhat order of Bruhat cells. If elements w,w′ ∈ W have reduced decompositions
such that the one for w′ is a substring of the one for w then w � w′. If in addition
l(w) = l(w′) + 1 then the cell Bw′B is a boundary divisor of BwB.

A pinning for a generic pair of flags {B,B−} provides maps xi : A1 → U and
yi : A1 → U− for every simple root αi , where U is the maximal unipotent subgroup
of B and U− is the maximal unipotent in B−, such that each pair xi , yi can be extended
to a standard embedding γi : SL2 → G. A pinning allows to lift to the group G the
generators of the Weyl group W corresponding to simple roots:

si := yi (1)xi (−1)yi (1).

These elements satisfy the braid relations. Therefore we define the lift for all other
elements of W by using any reduced decomposition w = s1 · · · · · sm , setting: w =
s1 · · · · · sm . Using this, we define the Bruhat decomposition of any element g ∈ G:

g = uhnwv, h ∈ H = B ∩ B−, u, v ∈ U . (66)

Therefore any G-orbit in the space of pairs of decorated flags

(F ,G) ∈ Conf2(A) = G\(G/U)2 = U\G/U (67)

has two invariants: theω−distance ω(F ,G) := w, and the h−distance h(F ,G) :=
h, where g ∈ G is decomposed as in (66). Each fundamental weight �i gives rise to
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a regular function on every Bruhat cell:

�i,w(uhnwv) := �i (h). (68)

2. Cluster A-coordinates for the space AG,t = Conf3(A). For each reduced word
i = (i1, . . . , im) of w0 there are chains of distinct positive roots and coroots:

αi
k := sim . . . sik+1 · αik , β i

k := sim . . . sik+1 · α∨
ik , k ∈ {1, . . . ,m}. (69)

Lemma 5.1 [17, Lemma 5.3]. Given any generic pair of decorated flags {F ,G}, i.e.
ω(F ,G) = w0, and a reduced decomposition i = {i1, . . . .im} of w, there exists a
unique chain of decorated flags

{F = F0 si1←− F1 si2←− · · · sim←− Fm = G} (70)

such that that for the consequtive decorated flags, counted from the right to the left,
we have:

ω
(
Fk,Fk−1) = sik , h

(
Fk,Fk−1) ∈

{
α∨
ik
(Gm), if β i

k is simple,

1, otherwise.
(71)

We also note that

hk := sim . . . sik+1

(
h(Fk,Fk−1)

)
=
{

α∨
i (bi ), if β i

k = α∨
i ,

1, otherwise.
(72)

Recall the involution ∗ : I → I such that α∨
i∗ = −ω0(α

∨
i ). Let w∗ := ω0wω−1

0 .
Then any reduced decomposition w = si1 · · · · · sik provides a reduced decomposition
w∗ = si∗1 · · · · · si∗k . Note that ω∗

0 = ω0.

Definition 5.2 The cluster A-coordinates on the space AG,t are defined as follows.
Pick a vertex of the triangle t with a decorated flag F1, and a reduced decomposition
i = (i1, . . . , im) of w0. Then:

• The frozen cluster coordinates are:

�i (F1,F2), �i (F1,F3), �i (F3,F2), ∀i ∈ I.

• Let i∗ = (i∗1 , . . . , i∗m). By Lemma 5.1, there is a unique chain of decorated flags,
see Fig. 2, with respect to the reduced decomposition i∗:

{F2 = F0
23 ←− F1

23 ←− . . . ←− Fm
23 = F3}.

Then the unfrozen cluster coordinates are:

Ap = �i p

(
F1,F p

23

)
,
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Fig. 2 Illustrating cluster coordinates choices and the flip of the configuration of for decorated flags.

Fig. 3 The AG,t triangle

where p runs through indices 1, . . . ,m such that i p is not the rightmost simple
reflection i in i, ∀i ∈ I.

We stress that:

• Unfrozen vertices depend on all three decorated flags; we picture them inside of
the triangle.
Frozen vertices depend only on two decorated flags; we picture them on the sides
of the triangle.
Cluster coordinates on the space Conf2(A) are labeled by the vertices i ∈ I of the
Dynkin diagram. The twisted cyclic shift (F1,F2) 
−→ (F2, sGF1) amounts to
the automorphism i 
−→ i∗ of I.

Let us define the quiver Q(i) for Conf3(A), assigned to the reduced word i =
(i1, . . . , im) for w0 (Fig. 3).

3. Elementary quivers J(i). Let us define the quiver J(i), where i ∈ I. Its underlying
set is:

J (i) := (I − {i}) ∪ {il} ∪ {ir } ∪ {ie}. (73)
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There is a decorationmapπ : J (i) → I which sends il , ir and ie to i , and is the identity
map on I − {i}. The multipliers on J (i) are defined by pulling back the multipliers
on I. The skew-symmetrizable matrix ε(i) is indexed by J (i) × J (i), and defined as
follows:

ε(i)il , j = −Ci j

2
, ε(i)ir , j = Ci j

2
,

ε(i)ir ,il = ε(i)il ,ie = ε(i)ie,ir = 1; ε(i) jk = 0 if i /∈ { j, k}. (74)

A quiver J(i) is pictured by a directed graph with vertices labelled by the set (73) and
arrows encoding the exchange matrices ε = (ε jk), where

ε jk = #{arrows from j to k} − #{arrows from k to j}.

Here #{arrows from a to b} is the total weight of the arrows from a to b, which is a
half-integer. The arrows from a to b are either dashed, and counted with the weight 1

2 ,
or solid, and t counted with the weight 1. For non simply laced cases we use special
arrows, see Example 5.3.

Example 5.3 The quivers J(1), J(2) for type B3, and their amalgamation J(1) ∗ J(2),
described below:

d1 = 2

d2 = 1

d3 = 1

J(1) J(2) J(1) ∗ J(2)

1l 1r

2

3

1e

2l 2r

1

3

2e

1l 1r

2l 2r

3

1e 2e

4. The quiver H(i). Recall the pairing (∗, ∗) between the root and coroot lattices, the
Cartan matrix Ci j = (αi , α

∨
j ), and the multipliers d j = 〈α∨

j , α
∨
j 〉 ∈ {1, 2, 3}, so that

diCi j is symmetric.
Given a reduced word i = (i1, . . . , im) of w0, recall the chains of distinct positive

roots αi
j and coroots β i

k in (69). Let us define first an auxiliary quiver K(i). It consists
of m frozen vertices labeled by (i1, . . . , im), with the multiplier for the kth vertex
given by dk = 〈α∨

ik
, α∨

ik
〉, and the exchange matrix

ε jk =
{

sgn(k− j)
2

(
αi
j , β

i
k

)
if i j , ik ∈ I,

0 otherwise.
(75)

Then H(i) is a full subquiver of K(i) with the vertices k such that β i
k , and hence

αi
k , are simple.

5. The quiver Q(i). We use the amalgamation of quivers, introduced in [10, Section
2.2].
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Definition 5.4 Given a reduced word i = (i1, . . . , im) for w0 ∈ W , ik ∈ I, the quiver
Q(i) is the amalgamation of quivers J(ik) and H(i):

Q(i) := J(i1) ∗ . . . ∗ J(im) ∗ H(i).

Precisely, the amalgamated quiver is defined as follows:
(i) For every i ∈ I and for every j = 1, . . . ,m − 1, the right element of J(i j ) at

level i is glued with the left element of J(i j+1) at level i . The extra vertex of each
J(ik) is glued with the kth vertex of H(i).

(ii) The weight of an arrow obtained by gluing two arrows is the sum of the weights
of those arrows.

The unfrozen part of the quiver Q(i) is the full subquiver obtained by deleting the
leftmost and rightmost vetices at every level i ∈ I, and the vertices of H(i).

The following Theorem is one of the main results of [17].

Theorem 5.5 Given a reduced decomposition i of w0 ∈ W, the coordinates {Ai } from
Definition 5.2 and the quiver Q(i) from Definition 5.4 describe an A-cluster for the
spaceConf3(A). The clusters assigned to different reduced decompositions are related
by cluster A-transformations. The obtained cluster structure is invariant under the
twisted cyclic shift (F1,F2,F3) 
−→ (F2,F3, s0F1).

Definition 5.6 Given a reduced ecomposition i of w0, the element C(2) is given by

C(2) := 1

2
·
∑
i, j

diεi j · Ai ∧ A j , (76)

where {Ai } are the cluster coordinates from Definition 5.2, and εi j is the exchange
matrix for the quiver Q(i) from Definition 5.4.

6 The tame symbol of C(2) and the component C(3)

Recall the tame symbol (11), also known as the residue. The cluster coordinates {Ak}
are regular functions on Conf3(A). So for the element Wc, see (52), its tame symbol
is supported on the divisors {Ak = 0}.

The Bruhat divisor Bskw0 ⊂ Conf2(A) is determined by the equation �k,w0 = 0.
Denote by ik the embedding Bskw0 ⊂ Conf2(A). Recall the function �k,skω0 on

the divisor Bskw0 :

�k,skω0 = �k(hskω0(F2,F3)), (F2,F3) ∈ Conf2(A). (77)

Recall the rational function Fk on Bskw0 :

Fk := i∗k

⎛
⎝�−1

k,skω0

∏
j∈I\{k}

(� j,w0)
Ckj
2

⎞
⎠

dk

. (78)
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Definition 6.1 The component C(3) of the cocycle C(•) is defined as

C(3) :=
∑
k∈I

(
Bskw0 , Fk

)
∈

⊕
D∈divConf2(A)

O(D)∗. (79)

Let E be an oriented edge of the triangle t . Then there is a map

βE : Conf3(A) −→ Conf2(A).

which forgets the element of A at the vertex of t opposite to the edge E . It induces a
map

β∗
E :

⊕
D∈divConf2(A)

O(D)∗ →
⊕

D′∈divConf3(A)

O(D′)∗,

(D, fD) 
−→ (β∗
E D, β∗

E fD).

(80)

We count the vertices labeled by the decorated flags counterclockwise: (F1,F3,F2).
The edges E of the triangle are labeled by the ordered pairs of flags (Fi ,F j ) assigned
to them: E = (i, j).

Theorem 6.2 The tame symbol of the element Wc on Conf3(A) is the sum over the
edges of the triangle:

res(Wc) = (β∗
1,3 + β∗

3,2 − β∗
1,2

)
(C(3)). (81)

Corollary 6.3 div(C(3)) = 0.

Proof We know that div ◦ res(Wc) = 0 and

divβ∗
1,3(C

(3)) + divβ∗
3,2(C

(3)) − divβ∗
1,2(C

(3)) = 0. (82)

The codimension two cycles divβ∗
i, j (C

(3)) can not share a common codimension two

component. This is clear for the pull back to A3, since a point (F1,F2,F3) which
lies in two cycles divβ∗

i, j (C
(3)) satisfies codimension two condition for each of the

two pars of decorated flags, which gives the codimension> 2 intersection. Since their
sum is zero, the claim follows. ��
Proof of the Theorem Recall the elementWc. Denote by i∗k ( f ) the pull back of a func-
tion f to the divisor {Ak = 0}. Then the tame symbol of Wc is

resAk=0(Wc) = resAk=0

⎛
⎝1

2
diεi j ·

∑
i, j

Ai ∧ A j

⎞
⎠ = i∗k

∏
j �=k

A
dkεk j
j ,

res(Wc) =
⊕
k

⎛
⎝{Ak = 0}, i∗k

∏
j∈I−{k}

A
dkεk j
j

⎞
⎠ .

(83)
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To check the last equality in the top formula here note that diεi j is skew-symmetric, and

thus we count twice the contribution of 1
2dkεk j · A j = A

dkεk j /2
j ; note the multiplicative

notation used here: n · A = An .
There are two cases for the vertex vk related to the coordinate Ak .

1. The coordinate Ak corresponds to a non-frozen vertex. This is the general case,
and fortunately we can handle without going into details what is the coordinate Ak .
Indeed, since the coordinate Ak is non-frozen, we can mutate Ak , getting a new cluster
coordinate A′

k , which satisfies the exchange relation:

Ak · A′
k =

∏
εk j>0

A
εk j
j +

∏
εk j<0

A
−εk j
j .

Allweneed to know is that there exists at least one non-trivialmutation at Ak , providing
a different regular function A′

k on Conf3(A). Restricting it to the divisor Ak = 0, we
have

0 =
∏

εk j>0

A
εk j
j +

∏
εk j<0

A
−εk j
j .

Therefore
∏
j

A
εk j
j = −1.

This is a 2-torsion in the multiplicative group. So the residue on the divisor Ak = 0 is
a 2-torsion.

For example, for the moduli spaceASL3,t with the special cluster coordinates illus-
trated on the Fig. 4, the only non-frozen coordinate is the one in the center of the
triangle. The exchange relation is

�ω∗(e1 ∧ e2, f1 ∧ f2, g1 ∧ g2)�ω(e1, f1, g1)

= �ω(e1, e2, f1)�ω( f1, f2, g1)�ω(g1, g2, e1)

+ �ω(e1, e2, g1)�ω( f1, f2, e1)�ω(g1, g2, f1). (84)

Here ω is a volume form in a three dimensional vector space V , ω∗ is the dual volume
form in V ∗, and F1 = (e1, e1 ∧ e2), F2 = ( f1, f1 ∧ f2) and F3 = (g1, g1 ∧ g2) are
decorated flags in V .
2. The coordinate Ak is frozen. Then it corresponds to a vertex located on a side of
the triangle t . This is the difficult case. Since the definition of the quiver c depends on
the choice of the vertex of the triangle, referred to as the top vertex, we consider the
residue for each of the three sides of the triangle.

We start from the right edge (F1,F3). Since the K2-class [Wc] does not depend on
the choice of the reduced decomposition i of ω0, and the tame symbol depends only
on the K2-class, we can assume that:

The decomposition i ends by sk . (85)
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Fig. 4 The canonical coordinates on the moduli space ASL3,t of triples of decorated flags

The elementary configuration space A(k) [17, Section 7.5]. Let k ∈ I. Consider the
spaceA(k) parametrizing G-orbits of triples of decorated flags (F ,Fl ,Fr ) such that

w(F ,Fl) = w(F ,Fr ) = w0, w(Fr ,Fl) = sk∗ , h(Fr ,Fl) ∈ H(sk∗). (86)

F

Fl Fr

sk∗

There is a cluster A-coordinate system on the space A(k) parametrized by J (k)
defined by:

∀(F ,Fl ,Fr ) ∈ A(k), A j :=

⎧⎪⎪⎨
⎪⎪⎩

� j (F ,Fl) if j ∈ I − {k}
�k(F ,Fl) if j = kl
�k(F ,Fr ) if j = kr
�k∗(h(Fr ,Fl)) if j = ke.

(87)

If we fix a pinning in G, then we have

(F ,Fl ,Fr ) := (U−, hU, ghU), h ∈ H, g ∈ ϕk(SL2/USL2). (88)

In particular, by [17, Lemma 7.13], for any (F ,Fl ,Fr ) ∈ A(k), we have

� j (F ,Fl) = � j (F ,Fr ). ∀ j �= k. (89)
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There is a canonical projection

τk : A(k) −→ Conf3(ASL2). (90)

It assigns to a triple of decorated flags (F ,Fl ,Fr ) the intersections of the correspond-
ing maximal unipotent subgroups with the subgroup ϕk(SL2) ⊂ G corresponding to
the simple coroot α∨

k . The coordinates Akl ,Akr ,Ake are the pull backs of the standard
coordinates on Conf3(ASL2).

Recall the matrix ε(k) of J(k) in (74), and the canonical element describing cluster
(87) on A(k):

W(k) :=
∑

i, j∈J (k)

diε(k)i j · Ai ∧ A j . (91)

Denote by Conf×3 (A) the subspace of Conf3(A) given by the condition that each
pair of the decorated flags are in the generic position. The amalgamation provides an
embedding of the space Conf×3 (A) obtained by the amalgamation into the product of
the elementary spaces A(i j ) used for the amalgamation:

Conf×3 (A) ↪→
m∏
j=1

A(i j ).

Denote by ηk : Conf3(A) −→ A(k) the composition of this map with the projection
onto the rightmost factor A(i j ) with i j = k. Thanks to assumption (85), the cluster
coordinate Ak on Conf3(A) is the pull back η∗

kAk of the cluster coordinate Ak on
A(k). This immediately implies that

resAk=0(Wc) = η∗
k resAk=0(W (k)). (92)

So the calculation of resAk=0(Wc) boils down to the calculation of the residue of Wk

at the divisor Ak = 0 on the elementary space A(k). Let us write W (k) as a sum, see
(93):

W (k) = W ′(k) + W�(k), W�(k) := Akr ∧ Akl + Akl ∧ Ake + Ake ∧ Akr . (93)

Note that by the definition of the amalgamation, Ak = Akl . Next, we evidently have:

res{Ak=0}W′(k) =
∏

j /∈{kl ,kr ,ke}
A
dkε(k)k j
j . (94)

Since ε(k)kr , j = Ckj
2 by (74), the factor (� j,w0)

dkCk j
2 in (78) match the factor A

dkε(k)k j
j

in (94):

(� j,w0)
dkCk j

2 = A
dkε(k)k j
j . (95)
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Therefore the product in (94) match the product over j �= k in (78). So it remains to
show that

res{Ak=0}W�(k) = �−1
k,skω0

(96)

Note thatW�(k) = τ ∗
k WConf3(ASL2 ), and the divisorAk = 0 onConf3(A) is the pull

back of the divisor Air = 0 onConf3(ASL2) under themap τ ∗
k . So parametrisation (88)

and the calculation of the residue for SL2 from Sect. 3 implies (96). So we calculated
the residue for the right edge of the triangle.

For the left edge the calculation is similar. We claim that the residue corresponding
to the left edge is given by −β∗

1,2(C3), see (81). Indeed, this agrees with the fact that
εkl , j = −Ck j/2 while εkr , j = Ck j/2 in (74), as well as with the calculation of the
residue for SL2.

Computation for the bottom side (F3,F2) follows easily using W�(k) =
τ ∗
k WConf3(ASL2 ) and (75). ��

7 Proof of Theorems 2.1 and 2.4

Brylinsky–Deligne results [4, Section 4]. Let W (p) ⊂ W the subset parametrising
Bruhat cells BwB of codinension p. In particular,

W (1) = {w0sk ∈ W }, k ∈ I; W (2) = {w0si s j ∈ W }, i, j ∈ I, i �= j . (97)

Let X = Hom(H,Gm) be the character group of the Cartan group H. Consider the
following complex

2∧
X −→

⊕
W (1)

X −→
⊕
W (2)

Z. (98)

Here, using the notation (w,−) for an element of
⊕

W (1) X , the differentials are:

x1 ∧ x2 
−→
∑
i∈I

(
〈x1, α∨

i 〉 · (w0si , x2) − 〈x2, α∨
i 〉 · (w0si , x1)

)
.

(ω0s j , x) 
−→
∑
i �= j

(
(ω0si s j , 〈x, s j (α∨

i )〉) + (ω0s j si , 〈x, α∨
i 〉)
)
.

(99)

Proposition 7.1 There exists a natural map of complexes
2∧
X

⊕
W (1)

X
⊕
W (2)

Z

∧2
Q(G)∗ res ⊕

D∈G(1)

Q(D)∗ val ⊕
G(2)

Z
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Proof The right vertical map is induced by the canonical embedding W (2) ↪→ G(2).
We assign to a character χ of the Cartan group and an element w ∈ W a regular
function χ ′

ω on the Bruhat cell Bw:

χ ′
ω(uwhv) := χ(h). (100)

We warn the reader that the functions χ ′
ω, and χω from (18), are not the same since

χω(uhwv) := χ(h). We need now both since [4, Section 4] uses χ ′
ω, while [17] uses

χω.
The two left vertical maps are given by

χ ∧ ψ 
−→ χ ′
ω0

∧ ψ ′
ω0

(w0sk, χ) 
−→ χ ′
ω0sk

(101)

Let us prove that we get a map of complexes. The valuations of the function χ ′
ω0

on a
divisor can be non-zero only if it is a Bruhat divisor. In this case they are calculated as
follows. For every Bruhat divisor Bω1B, we can choose reducedWeyl decompositions
of ω and ω1 so that: ω = ω′siω′′ and ω1 = ω′ω′′. Using the valuation formula of
Demazure, [4, Lemma 4.2] tells:

valω1(χ
′
ω) = 〈χ,ω′′−1(α∨

i )〉. (102)

This is consistent with formulas (99). The Proposition is proved. ��
Denote by Ysc the lattice generated by the simple coroots. Consider the dual lattice

Xsc ⊂ O∗(H). We identify Xsc = ⊕
D∈W (1) Z by x 
−→ ∑

si x(α
∨
i )ω0si . Then we

identify the complex (98) with

2∧
X −→ Xsc ⊗ X −→

⊕
W (2)

Z. (103)

By [4, Lemma in 4.4.4] or (99), the ω0si s j -component of the differential of C ∈
Xsc ⊗ X is given by:

C −→ C
(
α∨
i , α∨

j

)+ C
(
α∨
j , s j

(
α∨
i

))
.

We write the right hand side via the quadratic form Q(y) := C(y, y) on Ysc and the
associated symmetric bilinear form B(α∨

i , α∨
j ) = C(α∨

i , α∨
j ) + C(α∨

j , α
∨
i ). Namely,

using s j (α∨
i ) = α∨

i − α j (α
∨
i )α∨

j , we get:

C
(
α∨
i , α∨

j

)+ C
(
α∨
j , s j

(
α∨
i

)) = B
(
α∨
i , α∨

j

)− α j
(
α∨
i

)
Q
(
α∨
j

)
. (104)

Therefore the element C is killed by the second differential if and only if the quadratic
from Q(y) on Ysc isW-invariant [4, Lemma 4.5]. So the cohomology class of a cocycle
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in
⊕
W (1)

X is non-trivial if and only if the corresponding quadratic form is non-zero.

Now let us look at the cocycle that we constructed using the cluster coordinates:

C(3) =
∑
k∈I

dk ·
⎛
⎝{Ak = 0}, �−1

k,skω0

∏
i∈I\{k}

A
Cki
2

i

⎞
⎠ .

Here is a caveat. There are two ways to write the Bruhat decompostions of an element
g ∈ G:

g = u1hlωu2 or g = u1ωhru2, hl , hr ∈ H.

Following [17], we defined C(3) using the left one, while [4] use the right one. Since
ωhr = ω(hr )ω, we have hl = ω(hr ). This impacts our formulas as follows. The
function �i (g) = �i (hl) on the Bruhat cell Bω0B is equal to the function

�i (ω0(hr )) = �i∗(hr ).

Since skω0 = ω0s∗
k , and �k,skω0 = �k(hl) on the divisor Bskω0B = Bω0s∗

k B, we
have hl = skω0(hr ), and so as skα∨

k (t) = α∨
k (t)−1, we have

�k(hl) = �k(skω0(hr )) = �−1
k (ω0(hr )) = �−1

k∗ (hr ).

Since ∗ is an involution, we have Ci j = Ci∗ j∗ , dk = dk∗ . So the element C(3) ∈⊕
W (1) X is:

C(3) =
∑
k∈I

dk ·
⎛
⎝Bω0sk , �k,ω0sk

∏
i∈I\{k}

(�i,w0)
Cki
2

⎞
⎠ . (105)

In the Brylinski–Deligne format the Bruhat divisorBw0sk corresponds toω0sk ∈ W (1),
and identified with the basis element dual to the coroot α∨

k . Then the element C(3) is
mapped to

C(3) 
−→
∑
k∈I

dk · �k ⊗ �k +
∑

i∈I\{k}

dkCki

2
�k ⊗ �i . (106)

Since dkCki is symmetric, we get a symmetric tensor, which is the Killing quadratic
form in the basis �k :

C(3) 
−→
∑
k∈I

dk · (�k)
2 +

∑
i �=k∈I

dkCki · �k�i . (107)
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The corresponding quadratic form at any simple coroot α∨
i corresponding to a short

root αi (di = 1) is:

Q
(
α∨
i

) = hsc
(
α∨
i , α∨

i

) = 1.

Note that if simple roots α and β are not orthogonal, and α is not shorter than β, then
β(α∨) = −1.

Although the cocycle C(3) has half-integral coefficients, we can alter it by a
coboundary and get an integral cocycle. Therefore the cohomology class [C(3)] is
the canonical generator. Theorem 2.1 is proved.

Since we proved that C(•) is a cocycle by combining Theorem 6.2, formula (60),
and Theorem 4.4, and its cohomology class is a generator by Theorem 2.1 and iso-
morphisms (2), Theorem 2.4 is proved.

8 Applications

It was proved in [17] that the class [W ] ∈ K2(Conf3(A)) is dihedrally sign-invariant,
that is invariant under the cyclic shifts, and skew invariant under the permutation of
two vertices (1, 2, 3) 
−→ (2, 1, 3). Therefore the class [C(2)] ∈ K2(Conf

×
3 (A)) is

dihedrally sign-invariant. This implies the important

Proposition 8.1 The element

C(1) ∈ B2(Q(Conf4(A))) ⊗ Q (108)

is sign-invariant under the action of the permutation group S4 on Conf4(A).

Proof The dihedral sign-invariance of [C(2)] implies that δC(1) is dihedrally sign-
invariant. Since Conf4(A) is a rational variety, the group K ind

3 ⊗Q of its function field
is the same as for Q, and thus trivial. ��
1. The universal K2-extension of G. Its existence was proved by Matsumoto, and
revisited by Brylinsky–Deligne [4]. However no explicit cocycle description was
known before. Here is one.

Pick a decorated flag F ∈ AG. Then given a generic triple (g1, g2, g3) ∈ G3(F)

we set

C2(g1, g2, g3) := C2(g1 · F , g2 · F , g3 · F) ∈ K2(F). (109)

Then for any generic quadruple (g1, g2, g3, g4) it satisfies the 2-cocycle condition. It
is well known that a 2-cocycle of G(F) with values in K2(F), defined at the generic
point, determines the group extension

1 −→ K2(F) −→ Ĝ(F) −→ G(F) −→ 1. (110)
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2. The Kac–Moody group extension related to a Riemann surface. Let � be a
Riemann surface with punctures. Then there is a group extension

1 −→ H1(�,C∗) −→ Ĝ� −→ G(Hol(�)) −→ 1. (111)

Here Hol(�) stands for the field of all holomorphic functions with arbitrary singu-
larities at the punctures, including the functions with essential singularities at the
punctures, e.g. ec1/z+c2/z2+.... There is an algebraic variant where we take the field of
rational functions on � and the corresponding group G(C(�)).

The extension is the push down of the universal extension of G(Hol(�)) by
K2(Hol(�)) by the Beilinson-Deligne regulator map

reg : K2(Hol(�)) −→ H1(�,C/Z(2)). (112)

Namely, followingBeilinson [1, Lemma 1.3.1] andDeligne [5], given an element f ∧g
and a loop γ on �, the value of the cohomology class reg( f ∧ g) on the homology
class [γ ] is given by the integral

〈reg( f ∧ g), γ 〉 := exp
1

2π i
·
(∫

γ

log f d log g − g(p)
∫

γ

d log f
)

∈ C×.

(113)

Here p is a point on γ and the integrals start from p. The result is independent of the
choices of the branch of log f and the initial point p.

It is important for some applications that the construction works for the group
defined using all holomorphic functions on a punctured Riemann surface, rather than
just the meromorphic ones.

In particular, in the special case when � = C× and γ is a loop around zero, we get
a holomorphic variant of the Kac–Moody group extension:

1 −→ C× −→ Ĝ(Hol(C×)) −→ G(Hol(C×)) −→ 1, (114)

3. The determinant line bundles. Using (114), we get an explicit construction of the
determinant line bundle on the affine Grassmannian Ĝ((t))/G(O). Similarly, we get
an explicit construction of the determinant line bundle on BunG.
4. K2-Lagrangians in moduli spaces of G-local systems on S. Recall the moduli
space UG,S of G-local systems on a punctured surface S, with unipotent monodromies
around the punctures, and a reduction to a Borel subgroup at each puncture, called a
framing.

Let M be a threefold whose boundary S is obtained by filling the punctures on
S. Consider the subspace MG,M ⊂ UG,S parametrising framed unipotent G-local
systems on S which extend to M.

Theorem 8.2 (i) The moduli space UG,S is K2-symplectic.
(ii) The moduli subspaceMG,M is a K2-Lagrangian subspace of the moduli space

UG,S.
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(iii) There is the motivic volume map, defined at the generic pointM◦
G,M ofMG,M,

with values in the Bloch group of C:

Volmot : M◦
G,M −→ B2(C). (115)

Proof Pick a cocycle C(•) representing the class c2.
(i) Take an ideal triangulation T of S, i.e. a triangulation with the vertices at the

punctures. Take a generic framed G-local systemL on S. Since its monodromy around
each puncture is a regular unipotent element, there exists a unique decorated flags
Fp near every puncture p which is invariant under the monodromy around p. For
each triangle t of T , there is a configuration of three decorated flags (F t

1,F t
2,F t

3) ∈
Conf3(AG) obtained by restricting the L and the three flat sections of the associated
to L local system of decorated flags near each vertex of t to the triangle t . Then we
have an element

WT
S :=

∑
t∈T

C(2)(F t
1,F t

2,F t
3

) ∈ K2(Q(UG,S)). (116)

Its tame symbol is zero. Indeed, the tame symbol of each of the terms is a sum of the
three standard terms provided by the element C(3), associated with the edges of the
triangle t , but for each edge E , the contributions of the two triangles cancel each other.
The element WT

S does not depend on the choice of the triangulation T since a flip of
the triangulation T → T ′ at an edge E amounts to

WT
S − WT ′

S = δC(1)(Fr
1 ,Fr

2 ,Fr
3 ,Fr

4

)
, . (117)

where r is the rectangle of the triangulation associated with the edge E , and
(Fr

1 ,Fr
2 ,Fr

3 ,Fr
4 ) ∈ Conf4(AG) is the quadruple of flags associated to the rectan-

gle.

(ii) Take a triangulation TM of the threefold M extending the triangulation T of S.
Then just as above, one assigns to each tetrahedron T of this triangulation a configura-
tion of 4 decorated flags (FT

1 ,FT
2 ,FT

3 ,FT
4 ) ∈ Conf4(AG) and apply to it the element

C(1):

Volmot :=
∑
T∈TM

C(1)(FT
1 ,FT

2 ,FT
3 ,FT

4

) ∈ B2(Q(MG,M)). (118)

This element is sign-invariant under the action of the group S4 by Proposition 8.1, and
thus does not depend on does not depend on the choice of the order of the four flags.
It also does not depend on the triangulation. Indeed, altering a triangulation by a 2 by
3 Pachner move related to the five tetrahedra whose vertices are decorated by the five
flags F1, . . . , F̂i , . . . ,F5 amounts to changing element (118) by

5∑
i=1

C(1)(F1, . . . , F̂i , . . . ,F5) ∈ B2(Q(MG,M)). (119)
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The cocycle property of C• implies that applying the Bloch complex differential δ to
(119) we get zero:

δ

5∑
i=1

C(1)(F1, . . . , F̂i , . . . ,F5) = 0.

Therefore (119)= 0 by a K -theoretic argument very similar to the one in the proof of
Proposition 8.1.

Next, denote by j : MG,M ⊂ UG,S the natural inclusion. Since C(•) is a cocycle:

δVolmot =
∑
T∈TM

δC(1)(FT
1 ,FT

2 ,FT
3 ,FT

4

)

=
∑
t∈T

C(2)(F t
1,F t

2,F t
3

)

def= j∗WT
S ∈ �2Q(MG,M)∗. (120)

The second= is because the contributions of the internal triangles cancel out. The third
equality is valid by the definition of j∗. Therefore [ j∗WT

S ] = 0 in K2(B2(Q(MG,M))).
The claim ii) is proved.

(iii) Specializing the element (118) to any generic complex point of x we get the
motivic volume map (115). Its composition with the map B2(C) −→ R, provided
by the Bloch–Wigner dilogarithm, is a volume map, generalizing the volume of a
hyperbolic threefold. ��

5. A local combinatorial formula for the second Chern class of a G-bundle. Recall
the weight two exponential complex of sheaves on a complex manifold X [15]:

Z(2) −→ O(1) −→ �2O ∧2exp−→ �2O∗. (121)

Here the second arrow is 2π i ⊗ f 
−→ 2π i ∧ f , and the last one is f ∧ g 
−→
exp( f ) ∧ exp(g). It is a complex of sheaves in the analytic topology on X , exact
modulo torsion.

We sheafify the Bloch complex to a complex of sheaves B2(O) −→ �2O∗ and
define a map of complexes

R2(O) Z[O] δ

L2

�2O∗

=

Q(2) O(1) �2O ∧2exp
�2O∗
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To define the map L2, recall the dilogarithm function, with the two accompanying
logarithms:

Li2(x) :=
∫ x

0

dt

1 − t
◦ dt

t
, − log(1 − x) =

∫ x

0

dt

1 − t
, log x :=

∫ x

0

dt

t
.

(122)

Here all integrals are along the same path from 0 to x . The last one is regularised using
the tangential base point at 0 dual to dt . Then we set, modifying slightly the original
construction of Bloch [2, 3],

L2(x) := Li2(x) + 1

2
· log(1 − x) log x + (2π i)2

24
,

L2({x}2) := 1

2
· log(1 − x) ∧ log x + 2π i ∧ 1

2π i
L2(x).

(123)

We keep the summand (2π i)2

24 in L2(x), although it does not change 2π i ∧ 1
2π i L2(x)

since 2π i ∧ 2π i
24 = 0 in �2C. The key fact is [15, Lemma 1.6] the map L2 is well

defined on Z[O], i.e. does not depend on the monodromy of the logarithms and the
dilogarithm along the path γ in (122). It evidently provides a map of complexes. So
one has L2 : Ker δ −→ O(1). Furthermore, we have

L2(Ker δ) ⊂ C(1), L2(R2(O)) ⊂ Q(2). (124)

Given a G-bundle L over a complex manifold X , pick an open by discs Ui and
choose a section gi ofL over Ui . Then we define a 4-cocycle for the Chech cover {Ui }
with values in Q(2) by setting

Ui1 ∩ . . . ∩ Ui5 
−→
5∑

k=1

(−1)kL2

(
C(1)(gi1, . . . , gik , . . . , gi5)

)
∈ Q(2). (125)

The main result of this paper implies that it represents the second Chern class c2(L).
This is a local combinatorial formula for c2(L), in the spirit of the Gabrielov–Gelfand–
Losik combinatorial formula [12] for the first Pontryagin class. See an elaborate
discussion of the simplest example in [15, Section 1.7].

We conclude that, although given a cocycle C• the above constructions are very
transparent, the cocycle itself for G �= SLm is rather complicated, and can not be
written without the cluster technology. On the other hand, for G = SLn the cocycle is
simple and canonical, see [14], [15, Sections 4.2−4.3].
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9 Quantum deformation of the cohomology group H3
meas(G(C),R).

1. Measurable cocycles of G(C). The measurable cohomology H∗
meas(G,R) of a Lie

group G are the cohomology of the complex of G-invariants of measurable functions
on Meas(Gn):

. . . −→Meas(Gn−1)G −→ Meas(Gn)G −→ Meas(Gn+1)G −→ . . .

d f (g1, . . . , gn) :=
n∑

i=1

(−1)i f (g1, . . . , ĝi , . . . , gn).
(126)

Denote by {dm} the degrees of the generators of the ring S∗(h)W . So, when G is
of type Ar , we have (d1, . . . , dr ) = (2, 3, . . . , r). Then H∗

meas(G(C),R) is a graded
commutative algebra generated by the classes

bG,2dm−1 ∈ H2dm−1
meas (G(C),R). (127)

In particular, one always has d1 = 2. So we have a class

b3 = bG,3 ∈ H3
meas(G(C),R). (128)

Below we quantize the exponent of the class b3, for any G, using crucially the fact
that G\Gn and Confn(G/B) := G\(G/B)n have a cyclically invariant cluster Poisson
structure [17].

2. The quantum set-up. The cluster Poisson structure on G\Gn gives rise to an
algebra of q-deformed functions

Oq(G\Gn).

It is the non-commutative version of the algebra Meas(Gn)G. There are natural maps

s∗
i : Oq(G\Gn) −→ Oq(G\Gn+1); (129)

induced by the cluster Poisson maps

G\Gn+1 −→ G\Gn, si : (g1, . . . , gn+1) 
−→ (g1, . . . , ĝi , . . . , gn+1).

Similarly there is a non-commutative algebra of q-deformed functions

Oq(Confn(G/B))

together with maps
of algebras

s∗
i : Oq(Confn(G/B)) −→ Oq(Confn+1(G/B)).
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These algebras and the maps between them are related by the maps of algebras

π∗ : Oq(Confn(G/B)) −→ Oq(G\Gn). (130)

For any cluster Poisson variety X , the completion Ôq(X ) is defined as collections
of formal quantum power series in each of the cluster coordinate systems, related
by quantum cluster transformations. The maps of algebras above provide maps of
completed algebras.

3. The classB3 quantizing β3 in (128). The cluster construction of the secondmotivic
Chern class provides at the same time its quantum deformation. Let us explain the
quantum deformation of the class

β3 ∈ H3
meas(G(C),R).

A 3-cocycle for the class β3 is a measurable G-invariant function β3(g1, . . . , g4) on
G(C)4. Our construction of the element C(1) gives an explicit formula for this function
as a sum of Bloch–Wigner dilogarithms:

β3(g1, . . . , g4) =
∑
j

L2(z j ), gi ∈ G(C). (131)

Here zi are certain rational functions on G\(G/B)4. Let us define a quantum defor-
mation of this cocycle.

The quantumanalog of the exponent of the cocycleβ3 lies in the formal completion:

Bi
3 ∈ Ôq(G

4). (132)

Recall the maps of algebras

s∗
i : Ôq(G

4) −→ Ôq(G
5).

Pick a reduced decomposition i of the longest element w0 of the Weyl group of G.

Theorem 9.1 There is an element Bi
3 in (132) which satisfies the multiplicative quan-

tum cocycle relation

5∏
j=1

s∗
2 j+1Bi

3 = 1. (133)

Changing the reduced decomposition i of w0 amounts to changing the cocycle Bi
3 by

a coboundary.
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Proof Recall the quantum dilogarithm power series, convergent if |q| < 1 for any
Z ∈ C:

�q(Z) = 1

(1 + qZ)(1 + q3Z)(1 + q5Z) . . .

We define the element Bi
3 as a product of the quantum dilogarithm power series

Bi
3 =

∏
j

�q(Z j ), Z j ∈ Oq((G/B)4). (134)

The functions {Z j } are q-deformations of functions z j in (131), limq→1 Z j = z j ,
defined as follows.

Given an oriented triangle t and a choice of one of its angles, the reduced decompo-
sition i of w0 provides a cluster Poisson coordinate system on the moduli space PG,3
of triples of flags with pinnings [17] assigned to the triangle t .

Consider a quadrilateral Q with a special side F and a diagonal E . It has two
marked angles: the one opposite to F in the triangle with the base F , and the one
in the second triangle, opposite to E . Therefore amalgamating along the diagonal E
the cluster Poisson structures which we assigned to each of the two triangles of Q
using this data we get a cluster Poisson structure on the space PG,4 assigned to the
quadrilateral, and thus on Conf4(B).

Take an oriented convex pentagon P5 whose vertices are decorated by the flags
B1, . . . ,B5, providing a point of Conf5(B). Take a triangulation of the pentagon. Pick
one of the diagonals and denote it by F. The diagonal F cuts the pentagon into a
quadrilateral QF with a base F , and a triangle tF :

P5 = QF ∪ tF.

Mark the angle of the triangle tF opposite to F , and mark the two angles in the
quadrangle QF as above, using the base F and the diagonal E , as shown on Fig. 5.
Then each of the three triangles of the pentagon has a marked angle, marked the red
point on Fig. 5.

Therefore the reduced decomposition i provides a cluster Poisson coordinate system
on the space PG,3 assigned to each of the three triangles, and hence by the amalgama-
tion a cluster Poisson system on Conf5(B). Now flip the triangulation at the edge F ,
getting a new edge F ′. Label the new edges as (E1, F1), setting E1 := F ′, F1 := E ,
see Fig. 6. Assign to the triangulation (E1, F1) a similar cluster Poisson coordinate
system on Conf5(B) using the marked angles in each of the three triangles of the new
triangulation, and the reduced decomposition i of w0.

The flip of triangulation at the edge F alters cluster Poisson coordinates only in the
quadrileteral Q′

F containing the edge F as the diagonal. It is realized as an ordered
sequence of mutations, provided by the cluster Poisson rational functions Z1, . . . , ZN

onConf4(B) related to the quadrilateral Q′
F . Eachmutation is given by the conjugation

by �q(Zi ). We use the sequence {Z j } to define the element Bi
3 in (134). The elements

{z j } in (131) are defined as the q = 1 specialization of the elements {Z j }.
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Fig. 5 A triangulated pentagon
P5 with a boldface diagonal F ,
which cuts the pentagon into a
quadrilateral with a diagonal E ,
and triangle. The data
(P5; F, E) determines three red
marked angles

Fig. 6 The five triangulations of the pentagon, related by flips of the boldface diagonals, and the red marked
angles for each triangulation

The main difference between the classical and quantum cocycles β3 and Bi
3 is

that the elements {Zi } do not commute, and so their order is an essential part of the
definition of the element Bi

3.
Traditionally each mutation is given by the conjugation by �q(Z) followed by a

monomial transformation, and a cluster Poisson transformation is defined as a com-
position of such elementary transformations. However one can also define a reduced
mutation as just the conjugation by �q(Z), and define the reduced cluster Poisson
transformation as the composition of reduced mutations [16, Proposition 2.4].

Performing this procedure five times, as shown on Fig. 6, we get the original tri-
angulation (E, F), and the original cluster Poisson coordinate system. The sequence
of cluster Poisson coordinates given by the sequence of mutations realizing the flip of
the diagonal Fi on the step i is denoted by Z (i)

1 , . . . , Z (i)
N . Then the ordered sequence

of cluster Poisson coordinates we need is given by the 5N functions

Z (1)
1 , . . . , Z (1)

N ; Z (1)
1 , . . . , Z (1)

N ; . . . ; Z (5)
1 , . . . , Z (5)

N . (135)
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Proposition 9.2 The following product is equal to 1:

∏
j

�q
(
Z (5)
j

) ·
∏
j

�q
(
Z (4)
j

) · . . . ·
∏
j

�q
(
Z (1)
j

) = 1. (136)

Proof If a reduced cluster transformation is the identity map, then the product of the
corresponding �q(Zi ) in the completed q-deformed algebra is equal to 1 [18, 19], cf
[16, Theorem 3.2]. ��

Therefore the elementBi
3 satisfies themultiplicative analog of the cocycle condition

5∏
j=1

s∗
2 j+1Bi

3 = 1. (137)

Indeed, relation (136) is equivalent to relation (137) on elements (134). Its pull back
Bi
3 automatically satisfies the cocycle relation (133). The first part of Theorem 9.1 is

proved.

4. Changing the reduced decomposition i alters the cocycle Bi
3 by a coboundary.

The element Bi
3 depends on the choice of a reduced decomposition i of w0, providing

the Poisson cluster ci on PG,3. Let i′ be another reduced decomposition of w0. Then
there is a sequence of cluster mutations providing a cluster Poisson transformations
ci → ci′ . Let us denote by Y1, . . . ,Yk the related ordered sequence of cluster Poisson
functions.

Let P4 be a convex quadrilateral with the vertices labeled cyclically by {1, 2, 3, 4}.
Forgewtting a vertex I ∈ Z/4Z we get a triangle with one distinguished vertex -
the one opposite to the forgotten vertex i in P4. Therefore the cluster transformation
ci → ci′ provides the collection of quantum functions Y (i)

1 , . . . , Y (i)
k above on the

space PG,3 provided by the triangle. Let us introduce the notation

�(vi ) := �q
(
Y (i)
1

) · . . . · �q
(
Y (i)
k

) ∈ Ôq(PG,3). (138)

Observe the key point: the elements Y (i)
1 , . . . ,Y (i)

k commute with the ones Y (i+2)
1 , . . . ,

Y (i+2)
k . Indeed, the factors of each of them correspond to the non-frozen cluster pois-

son coordinates in each of the triangles, and thus commute after the cluster Poisson
amalgamation. So the elements �(vi ) and �(vi+2) commute:

�(vi ) · �(vi+2) = �(vi+2) · �(vi ). (139)

Therefore changing the reduced decomposition i to i′ we alter the cocycle Bi
3 by

Bi
3 
−→ Bi′

3 = �(v2)
−1�(v4)

−1Bi
3�(v1)�(v3).

Wecan interprete this as follows: the cocyclesBi
3 andBi′

3 differ by the non-commutative
coboundary of the element (138). Theorem 9.1 is proved. ��
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Our definition of a non-commutative multiplicative cocycle is specific for 3-
cocycles. Our definition of the coboundary even more specific: we use the fact (139).

5. The relation with the dilogarithm. To justify the name quantum dilogarithm for
the formal power series�q(z), recall the following version of the classical dilogarithm
function:

L2(x) :=
∫ x

0
log(1 + t)

dt

t
.

It has a q-deformation:

L2(x; q) :=
∞∑
n=1

xn

n(qn − q−n)
.

One has the identity

log�q(x) = L2(x; q).

If |q| < 1 the power series �q(x) converge, providing an analytic function in
x ∈ C. If in addition to this |x | < 1, the q-dilogarithm power series also converge.
There are asymptotic expansions when q → 1−:

L2(x; q) ∼ L2(x)

log q2
, �q(x) ∼ exp

(L2(x)

log q2

)
. (140)

Using this one can show that the quantum cocycle relation (136) implies the classical
one if q → 1.

In the casewhenG = PGL2, the elementB3 is just the quantum dilogarithm�3(Z),
and our cocycle relation reduces to the Faddeev–Kashaev [7] pentagon relation for the
quantum dilogarithm.

The main difference between classical and quantum cocycles is that the latter is
a sum of commutative expressions, while the former is an ordered product of non-
commuting expressions. The order is crucial, and provided by the cluster Poisson
transformation describing the flip of a triangulation [17].

Note also that there is a version of the quantum cocycle where the role of the
power series �q(Z) is played by the quantum modular dilogarithm ��(z). The main
difference is that now the cocycle is well defined for any q ∈ C, and is understood as
an operator acting in a Hilbert space.
6. Further perspectives. One can hope that there are quantum deformation of the
exponents of the cocycles representing the basic classes

b2m−1 ∈ H2m−1
meas (PGLm(C),R).
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These cocycles are expressed via certainm-logarithm functions. The cocycle condition
is provided by the functional equation for these functions. Cocycles for the classes in
H2m−1
meas (PGLN (C),R) for N > m are defined once we know the ones for N = m via

the configuration of partial flag construction [14].
The simplest class after the dilogarithm class b3 is

b5 ∈ H5
meas(PGL3(C),R).

This class was defined in [13] by the following function on configurations of 6 points
(x1, . . . , x6) in CP2:

β5(x1, . . . , x6) := Alt6L3

(
�(1, 2, 3)�(2, 3, 4)�(3, 1, 5)

�(1, 2, 4)�(2, 3, 5)�(3, 1, 6)

)
. (141)

Here L3 is the single-valued version of the trilogarithm function, �(i, j, k) :=
〈�3, li ∧ l j ∧ lk〉 where li ∈ C3 − {0} lifts the point xi , and �3 is a volume form
in C3. The function β5 satisfies the relation

7∑
i=1

(−1)iβ5(x1, . . . , x̂i , . . . , x7) = 0.

The 5-cocycle is defined by

b5(g1, . . . , g6) := β5(g1 · x, . . . , g6 · x), x ∈ CP2, gi ∈ G(C).

It become clear later [8] that the mysterious triple ratio in formula (141) is a cluster
Poisson coordinate on the moduli space Conf6(P2) parametrising 6-tuples points on
P2 modulo the action of PGL3. The latter is a cluster Poisson variety of the finite type
D4. The very fact that this function is defined on a spacewhich carries a cluster Poisson
structure suggests that one should have a quantum deformation of the exponent of β5,
provided by an element

B5 ∈ Ôq(Conf6(P
2)).

More generally, for any m > 1 one should have an element

B2m−1 ∈ Ôq(Conf2m(Pm−1)) (142)

which satisfies a multiplicative (2m+1)-term cocycle relation. Its pull backB2m−1 :=
π∗B2m−1 should be the quantum deformation of the exponent of cocycle for the class
b2m−1 in (128).
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10 Cluster structures andmotivic cohomology: conclusion

1. Conclusions. 1. Formula (106) tells that the cocycle C(3) is just the Killing form
(107), written as a bilinear form (106), translated isomorphically into themiddle group
in (103), thus interpreted as a cocycle for H1(G, K 2). To make the bilinear form (106)
from the quadratic form (107) we need the coefficients 1

2 in front of dkCk j . Indeed,
the left and the right factors in the bilinear expression (106) have entirely different
meanings in (103) as, respectively, Bruhat divisors and functions on them. A posteriori
this explains why the exchange matrix εi j has half integral values between the frozen
variables.

2. The cluster structure of the elementary varietyA(k), k ∈ I, is determined by the
following facts:

i) The corresponding element W (k) is decomposed into a sum of two terms

W (k) = W ′(k) + W�(k),

where W�(k) is the pull back τ ∗
k of the element W from the space Conf3(ASL2) for

the canonical projection

τk : A(k) −→ Conf3(ASL2). (143)

ii) The residue ofW (k) at the “right side of the quiver” is given by the cocycle C(3).
Equivalently, the cocycle C(3) is the residue ofWc at the right side of the triangle t .
Indeed, the tame symbol calculation (81) nails the shape of the quiver J(k) ofA(k).

Namely, the exchange matrix for the right side of the quiver J(k) is the negative of the
one for the left edge, as the argument in the end of the proof of Theorem 6.2 shows. It is
determined by the cocycle C3, and the latter is fixed by the Killing form, as discussed
above.

3. The elementWc on Conf3(A) determines the cluster structure on this space. The
element Wc is forced onto us as the one whose tame symbol is given by formula (81).
Therefore its existence follows from H4(BG,ZM(2)) = Z.

Although such an element Wc is not unique, the difference between any two Wc
andW ′

c of them is a cocycle, providing a class [Wc −W ′
c] ∈ H0(G2, K 2)/K2(Z). Note

that K2(Z) = Z/2Z. On the other hand,

H0(G2, K 2)/K2(Z) = 0. (144)

This implies the crucial, and one of the most challenging, properties of the element
Wc: its class in the group K2 of the field of functionsQ(Conf3(A)) is twisted cyclically
invariant [17, Section 7]. Indeed, it follows from (144), since the tame symbol of Wc,
given by (81), is twisted cyclic shift invariant on the nose.
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4. One also has

H0(G3, K 2)/K2(Z) = 0. (145)

This makes evident another crucial fact, this time about the cluster structure of the
space Conf4(A): the flip invariance of the K2-class of the element W on Conf4(A),
see paragraph 4 in Sect. 4. Indeed, the vanishing (145) implies that this K2-class its
determined by its tame symbol. The latter, as follows from (81), is the sum of the
contributions of the four sides of the rectangle, and thus evidently flip invariant.

5. The cluster structure of the moduli space AG,S is constructed by starting from
the cluster structure of the space Conf3(A). Next, using its twisted cyclic invariance,
we introduce the cluster structure on Conf4(A) via the amalgamation. The flip invari-
ance of the latter allows to extend the construction of the cluster structure by the
amalgamation to the whole surface, and guarantees its �S-equivariance. The cluster
Poisson structure of the space PG,S is deduced from this. Therefore the discussion
above explains, for the first time, why the cluster structure on the dual pair of moduli
spaces (AG,S,PG,S) should exist.

6. The fact that the number of functions enteringWc is the same as the dimension of
Conf3(A) is irrelevant for the motivic considerations described in this paper, although
the collection of different clusters was used essentially to prove relation (81).

However what is needed for many applications, e.g. for the cluster quantization, is
not just the fact that the K2-class [Wc] is twisted cyclically invariant, but that the equiv-
alence between different elementsWc is achieved by cluster transformations. This, and
the amazing fact that the number of functions entering Wc is equal to dimConf3(A),
shows that the construction of the second motivic Chern class capture many, but not
all, cluster features of the space Conf3(A).

2. Generalizations. The truncated cocycle (C(2),C(3)) gives the second Chern class
in the K2-cohomology:

cM2 ∈ H2(BG•, K 2). (146)

For G = SLm , there is an explicit construction of all Chern classes in the Milnor
K -theory [14]:

cMm ∈ Hm(BGL•, KM
m ). (147)

Its analogs for other groups G is not known form > 2. Note that these are the classes

cMdm ∈ Hdm (BG•, KM
dm ). m ∈ {1, . . . , rk(G)}. (148)

where {dm} are the exponents of G. It would be very interesting to find them. An
interesting question is whether we would need a more general notion than the cluster
structure to do this.
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Furthermore, there is an explicit construction of the third motivic Chern class, see
[15]:

c3 ∈ H6(BGLm•,ZM(3)). (149)

This class is crucial to understand the Beilinson regulator for the weight 3. However,
strangely enough, the class c3 did not appear yet in any geometric/Physics applications
like the ones in Sect. 1.11.

It would be interesting to construct explicitly the third motivic Chern class for any
classical group G. Note that although d1 = 2, for the classical G we have d2 = 3,
while otherwise d2 > 3.
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