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Abstract

Let G be a split, simple, simply connected, algebraic group over Q. The degree 4,
weight 2 motivic cohomology group of the classifying space BG of G is identified with
Z.. We construct cocycles representing the generator, known as the second universal
motivic Chern class. If G = SL(m), there is a canonical cocycle, defined by Goncharov
(Explicit construction of characteristic classes. Advances in Soviet mathematics, 16,
vol 1. Special volume dedicated to I.M.Gelfand’s 80th birthday, pp 169-210, 1993). For
any group G, we define a collection of cocycles parametrised by cluster coordinate
systems on the space of G-orbits on the cube of the principal affine space G/U.
Cocycles for different clusters are related by explicit coboundaries, constructed using
cluster transformations relating the clusters. The cocycle has three components. The
construction of the last one is canonical and elementary; it does not use clusters, and
provides the motivic generator of H3(G(C), Z(2)). However to lift it to the whole
cocycle we need cluster coordinates: construction of the first two components uses
crucially the cluster structure of the moduli spaces A(G, S) related to the moduli space
of G-local systems on S. In retrospect, it partially explains why cluster coordinates on
the space A(G, S) should exist. The construction has numerous applications, including
explicit constructions of the universal extension of the group G by K>, the line bundle
on Bun(G) generating its Picard group, Kac-Moody groups, etc. Another application
is an explicit combinatorial construction of the second motivic Chern class of a G-
bundle. It is a motivic analog of the work of Gabrielov et al. (1974), for any G. We
show that the cluster construction of the measurable group 3-cocycle for the group
G(C), provided by our motivic cocycle, gives rise to the quantum deformation of its
exponent.
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1 Summary

Given a regular variety X, there is the weight two motivic cohomology complex
Z;V( (X; 2). Itis defined via the Gersten resolution of the Bloch complex [13], see also
(31). One has by the very definition (31):

HY(Z5,(X;2) =H (X,K,), i>0. (1)

The definition of the complex Z$ ((X;2) extends to the case when X is a regular
simplicial scheme.

Let G be a split, simple, simply connected, algebraic group over Q. Let BG be the
classifying space of G. We use its Milnor’s simplicial model BG,. There are canonical
isomorphisms:

H*(Z 1 (BG.; 2)) = H*(BG., K,) = H'(G, K,) = Hp,(;(G, Z(2) = Z. (2)

The last is well known. The third isomorphism was established by Brylinsky—Deligne
[4]. The second is the transgression in K;-cohomology for the universal G-bundle.
The first follows from (1) when i = 2. See Lemma 2.2 for further details.

We construct cocycles C* representing the second universal motivic Chern class,
i.e. an element

¢ € HY(Z(BG.; 2)). (3)

such that 7(c2) = 1 € Z in (2). If G = SL,,,, there is a canonical cocycle, defined in
[14]. Given a representation V of G, it induces a cocycle for BG. Yet this way we can
get only multiples of ¢;, e.g. 60 - ¢, for Eg.

For any group G, we define a collection of cocycles C®, parametrised by cluster
coordinate systems on the space of G-orbits on the cube of the principal affine space
G/U. Cocycles for different clusters are related by explicit coboundaries, constructed
using cluster transformations relating the clusters.

A cocycle C*® has three components: c® @ C® . The construction of the com-
ponent C® is canonical and elementary; it does not use clusters, and provides a
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canonical cocycle for the generator of H%em(G, Z(2)). However to lift C® to a cocy-
cle C* we need cluster coordinates: the construction of the first two components uses
crucially the cluster structure of the moduli spaces Ag s, related to the G-character
varieties for decorated surfaces S [17].

In retrospect, it partially explains why the cluster coordinates on the space Ag s
should exist.

This construction has numerous applications, including an explicit construction of
the universal extension of the group G by K3, the determinant line bundle on Bung,
Kac—Moody groups, etc.

Another application is an explicit combinatorial construction of the second motivic
Chern class of a G-bundle. It is a motivic analog of the work of Gabrielov—Gelfand—
Losik [12], for any G.

The cluster construction of the second motivic Chern class also provides its quantum
deformation. In Sect.9 we explain the quantum deformation of the exponent of third
measurable cohomology class

B3 € H ., (G(C), R).

meas

2 Introduction and main results

1. The group H3(G, Z). In this paper G is a split, simple, simply connected algebraic
group over Q. Its Lie algebra g is a Lie algebra over Q. The de Rham cohomology
group H%R (G; Q) is identified with invariant bilinear symmetric forms (*, *) on g:

HpR(G; Q) = $*(6")° = Q. )
Namely, a form (x, %) € $?(g*)C gives rise to the Adg-invariant 3-form on g:
P € M@, puw(A, B,C):=(A,[B,C)). )

It determines a closed biinvariant differential 3-form on G, providing isomorphism
(4). For example, for G = SL,, we get rational multiples of the form Tr(g~'dg)3.

Let b be the Lie algebra of the Cartan group H of G, and W the Weyl group of G.
Then

§2(g")8 = 2"V, (©6)

It is known that the canonical generator of H%R (G; Z) is provided by the Killing form
normalized so that its value on the shortest coroot is equal to 1. We call it the DeRham
generator.

Denote by H the singular (Betti) cohomology of a topological space. The inte-
gration provides an isomorphism between the DeRham and Betti cohomology, and
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identifies the generators:
/ 'HPR(G; Z) —> H(G(C); Z(2)), Z(2) := 2mi)*Z. @)

Denote by BG the classifying space for the algebraic group G. It is well known
that

H'(BG, Z(2)) = H*(G, Z(2). ®)
To introduce the motivic upgrade of this isomorphism, we recall the weight two motivic

complex.

2. The K;-cohomology. Given a field F, the Milnor K»-group of F is the abelian group
given by the quotient of the wedge square A2F* of the multiplicative group F* by
the subgroup generated by the Steinberg relations (1 — x) A x, where x € F* — {1}

K>(F) := A’F* /(1 — x) A x). )

Let X be a regular algebraic variety over a field k, with the field of functions k(X).
Denote by X, the set of irreducible subvarieties of codimenion d on X. Then there is
a complex of abelian groups:

K3 = K2k(X) =5 @ k(D) % Pz (10)
_ DeX, X2

We place it in the degrees [0, 2]. The right map is the valuation map. The left map is
the tame symbol:

FYalo(8)
res: fAgr—> Z (vl () |D. (11
DeX

We denote its cohomology by H* (X, K3).

3. The Hodge regulator map. For a regular complex algebraic variety X, the group
H!(X, K,) provides some elements of H3(X(C): Z(2)) of the Hodge type (2,2),
defined as currents of algebraic—geometric origin as follows. Given a divisor D C X
and a rational function f on D, there is a 3-current ¥p_s on X (C) whose value on a
smooth differential form w is

Yp,f(w) :=2mi - / dlog(f) N w. (12)
D(C)

Its differential is the §-current, given by the integration along the codimension two
cycle on X provided by the divisor div(f) of f:

dyp. f = (2mi)*8aiv(f)- (13)
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The cycles in the complex calculating H' (X, K. ,) are given by linear combinations
D (Di. £, Y _div(fi) =0. (14)
i i

Here D; is an irreducible divisor in X, and f; a rational function on D;. The cocy-
cle condition implies that the 3-current ) ; ¥p, s, is closed, defining an element of
H3(X(C), Z(2)) of the Hodge type (2, 2). Denote the subgroup of such classes as
H%,Z(X((C), Z(2)). So we get the Hodge regulator map

regy : HI(X; K,) — H%yz(X((C); 7.(2)). (15)

Beilinson’s generalized Hodge conjecture [ 1] predicts that it is an isomorphism modulo
torsion. This generalises the Hodge conjecture isomorphism for the codimension two
cycles:

H*(X; K,) ® Q = CH*(X) ® Q — H3 ,(X(C); Q(2)). (16)

Our next goal is an explicit description of the group H3(G(C), Z(2)) via the Hodge
regulator map.

4. The generator of the group H! (G, K. ») = Z. Denote by I the set of vertices of the
Dynkin diagram for the group G. Let C;;, i, j € I, be the Cartan matrix. Recall the
Bruhat decomposition of G:

G=]]Bw By:=UHWU. (17)

weW

Here w is the canonical lift of a Weyl group element w to G. Therefore, given a Weyl
group element w € W and a character x of the Cartan group H, we get a regular
function x,, on the Bruhat cell B,,:

Xw € O (By),  xwuithwuz) = x (h). (18)

The dominant weight Ay gives rise to a regular function on the Bruhat cell ,,, denoted
by Ak w-

Recall the longest element wo of W. The Bruhat divisor By, is determined by the
equation Ay, = 0. Let us introduce the following rational function on this divisor.
Denote by iy : By, C G the natural embedding. Set

dy

. _ [
Fi=if | Ajywy [ (Aiwe)? . (19)
iel\{k}
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Here the integers {d;} are the symmetrizers: d;C;; = d;Cj;. Let us consider the
following formal sum of the pairs (a Bruhat divisor, a rational function on it):

CO = @ (Buwwo Fr)- (20)

kel

Theorem 2.1 The element C® isa I-cocycle in the complexﬁi@Z[%]. Its cohomology
class [C®)] generates the group H' (G, K. ») = Z. Its Hodge realization regH[C(3)]
generates the group H3(G(C), Z(2)).

5. An example: H3(SLy(C)). There are three ways to describe this group:

1. Betti. One has H]33(SL2((C); 7Z) = Z since SU(2) = S is a retract of SL,(C).

2. De Rham. The generator of H]%R (SLy; Z) is given by the form Tr(g~'dg)* on
SL,. The coefficient Z(2) in the comparison isomorphism (7) reflects the volume
formula vol(S3) = 272,

3. Motivic. A line L in a 2-dimensional vector space V provides a divisor By with a
function f:

BL:={¢geSLylgL=L}, gl=f(gl VgeBL, l€lL.

The 3-current /g,y generates H%(SLZ((C); 7.(2)).

Theorem 2.1 is proved in Sect.7. The group H'(G, K. ,) was described by
Brylinsky—Deligne [4]. Theorem 2.1 provides a specific cocycle for the generator
of H'(G, K. »). Such a cocycle, of course, is not unique. Our cocycle is tied up with
the cluster structure of the space Ag s. Let us elaborate on this.

6. The key feature of the cocycle C®). We identify H' (G, K. ») with the G-invariants
H'(G x G, K Z)G, for the left diagonal action of G. There are three projections

pij G — G 1<i<j<3 pijg g 8) =g 1)
We claim that
PiR[CP]+ p5[CP] = pis[c®] =0. (22)

Our goal is to prove this on the level of complexes, constructing explicitly a G-invariant
element of K»(G?) whose residue is the cocycle representing the cohomology class
on the left. This boils down to a construction of a certain G-invariant element C? in
QGH* A QGH*™.

7. The element C®, Observe that U\G/U = G\(G/U x G/U). By the construction,
the cocycle C® is invariant under the right action of the group U x U on G x G.
Note that projections (21) determine three similar canonical projections involving
A := G/U which are denoted, abusing notation, by

pij A — A 1<i<j<]. (23)
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So we are looking for an element

C? e QA" A Q(AY*

(24)
res(C?) = p[CY + p3CY — pisc®.
Explicitely, we can write
C(z) = Zgij A A Aj, A; € Q(AS)G :S“ij = —Eji €. (25)

ij

Here {A} is a collection of G-invariant regular functions on A3. So to construct C?
we must exibit a collection of such functions. This is exactly what the cluster structure
on the space Conf3(A) := G\.A? does: the functions {A j} are the cluster coordinates,
and g;; is the skew-symmetrized exchange matrix.

The element C? is defined in the end of Sect. 5, where we recall the construction of
a cluster for the space Conf3(A). Different cluster coordinate systems deliver elements
C® which differ by explicitly given sums of Steinberg relations, and therefore define
the same class in K.

Note that the cluster structure does more: it delivers elements where the number
of functions A; equals to the dimension of Conf3(.A), and these functions are regular
coordinates on this space.

On the other hand, this partially explains why the cluster coordinates on Conf3(.A)
should exist: we know that an element (24) must exist.

8. Remark. A similar problem for the deRham cocycle is much easier, and has a
canonical solution:

3
3 dTe(g1g2dgs ' dgy )= Tr(ey g’ + Tr(gs 'dg)* — Tr((g1g2) " d(120)) -
26)

To explain the general problem, and how the elements C®, C® fit in the motivic
framework, we recall two basic ingredients of the construction: the weight two motivic
complex, and Milnor’s model for BG.

9. The weight two motivic complex. Recall the cross-ratio of four points on P! (F):

(51— 52)(s3 — 54)

r(s1, 2,83, 54) 1= , 1r(o0,—1,0,2) =z. 27
(51 — 54) (52 — 53)
Given any five distinct points sg, ..., s5 on P! (F), consider the element
5
D A=r(sissip1ssiv2, si13)} € ZIF], i € Z/5Z. (28)

i=1

) Birkhauser
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Denote by Ry (F) the subgroup of Z[F* — {1}] generated by elements (28) for all
5-tuples of distinct points. The Bloch group B, (F) is the quotient

B, (F) ZIF* —{1}] (29)
2(F) 1= ————
R (F)
The key point is that there is a well defined map
8 :Bo(F) — F* AF".
2(F) (30)

{x} — (1 —x) Ax.
This complex, placed in the degrees [1, 2], is called the Bloch complex. Note that
Coker(6) = K»(F).

Let X be aregular algebraic variety over a field k. Then there is a complex of abelian
groups placed in the degrees [1, 4], and called the weight two motivic complex of X:

Z3,(X: 2) 1= Ba(k(X)) —> k(X)* A K(X)* > P k(D) v Pz ¢
DeX; X

It is a good time now to prove the following Lemma which we refer to discussing
the definition of the second motivic Chern class c;.

Lemma 2.2 There are canonical epimorphisms
HY(Zm(BG,; 2)) = H (BG., K,) = H'(G, K). (32)

Proof The second isomorphism is the transgression in the universal G-bundle on BG,.
It can be defined as follows. Consider the following diagram.

& a»* s D QD
DeX;(G?) DeX(G)
resT

K2(Q(G?))

Then the second map is given by the restriction of the cocycle on the diagonal to
its top right part.

The map t is defined similarly, by using the diagram in Sect.2, paragraph 10,
where the principal affine space A is replaced by the group G. Then the map 7 is given
by the restriction of the circled cocycle to its two-component part. The map 7 is an
isomorphism due to isomorphism (1), evident from (31). O

Recall that
H*(Q%,(BG.; 2) = H*(Q%,(G; 2)) = $*(h"" = Q. (33)
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Definition 2.3 The second universal motivic Chern class
2 € HY(BG.. Z,(2)) (34)

is the integral generator which corresponds, under isomorphisms (33), to the Killing
form on g normalized so that its values on the shortest coroot is equal to 1.

10. Milnor’s simplicial model BG, of the classifying space BG. Recall the simplicial
realization EG, of the space EG:

G3 G? G

In particular, there are the n + 1 standard maps
Sn,i :Gn+] — Gnv (807»gn) [ — (80,--«7@'7--':811)1 l=0,,n (35)

Then we set BG, := G\EG,:

G? G *

Let X — JF*(X) be an assignment to an algebraic variety X a complex of abelian
groups J*(X), contravariant under surjective maps X — Y. We define the complex
F*(EG,) as the total complex associated with the bicomplex

LA o (3 Ry o (e o YOS o (e o) WA L ) Wiy T

" . (36)
s* =) (=Disp,  FUG") — FUGM.
i=0

Applying this construction to the weight two motivic complex Z ,(x; 2), and taking
the G-invariants, we get the complex

Zm(BGa; 2) = Zq(EG.; 2)°.

Let N be a maximal unipotent subgroup. Recall the principal affine space A :=
G/N.

) Birkhauser
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The canonical projection G" —> A" induces a map of complexes, denoted ¢ 4. G:

s . 4. s . 3. s . 2. s* . . G
T T (AR 2) < T (A 2) < T (A% 2) < T, (A 2))

|

(. = T (GH ) < T8 (G 2) < 78, (G 2) < 7%, (Gs 2))

We define a degree 4 cycle in the total complex associated with the bicomplex illus-
tarted on the diagram. It is given by the encircled in the bicomplex degree 4 cocycle
Cc* =, c?, C(3)):

2
c ¢ Bz(Q(Conf4(A))), c® e /\ Q(Conf3(A)*,

3) N (37)
CY e @ Op.
DeX (Conf,(A))
The cocycle property just means that
s*Cy =0, §CV)=s(C?), res(C?)=s*C?), div(C?)=0.
(38)

The cocycle will be well defined up to a coboundary. It provides a cocycle ¢ 4, g(C®).

s s ® zZ
DeX5 (Confy (LA))
dlv[ div diVT
s* D)
DeX; (Confa(A))
I'CST
A2 Q(Confy(A)* <> < A\> Q(Conf(A)*
d d
s* . s*
B> (QConf4(A)) ) «*— Ba(Q(Conf3(A)) B> (Q(Conf>(A))

Theorem 2.4 There is a cocycle C* = (C(l), c@, C(3)) such that the induced cocycle
0 A_G(C®) represents the second motivic Chern class

¢ € HYZ \((BGa; 2). (39)

If G = SL,,, there is a canonical cocycle C®, defined in [14]. Given a non-trivial
representation V of the group G, the pull back of this cocycle via the embedding

W Birkhauser
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G — SL(V) is a non-trivial cocycle for G. However in general we can not get the
generator of the group H* this way. For example, for the group of type Eg, the closest
we get this way is 60 - c; for the adjoint representation.

11. Cluster nature of the construction. Our construction is cluster. The construction
of the components C1), C?) uses essentially the construction of the cluster structure
on the moduli space Ag s [8], closely related to the moduli space of G-local systems on
a decorated surface S, in the case when S is a triangle or a quadrilateral. For G = SL,,
this is explained in [8, Section 12].

On the other hand, the construction of the cluster structure for the general moduli
space Ag s follows immediately from the one for a triangle and rectangle, provided that
we prove that these cluster structures are invariant under the twisted cyclic rotations of
these polygons. The latter is the most challenging part of the proof in [17], which takes
about 30 pages of elaborate calculations, with the final result coming as a pleasant
surprise. Our approach explains why the cluster structure should be invariant under
the twisted cyclic shift, and establishes a key step of the proof without any elaborate
computations.

The last component C® is crucial to prove that the cohomology class [C*] coincides
with the motivic Chern class c¢.

12. Applications. This construction has numerous applications. Here are some of
them.

1. An explicit construction on the level of cocycles of the universal extension of the
group G by K».
Thus we get an explicit construction of the Kac—-Moody group G given by a central
extension of the loop group:

1 — Gy — G — G((1)) — 1. (40)

2. We get an explicit construction of the line bundle generating the Picard group of
Bung(XZ), where X is a Riemann surface with punctures. See [20] for the back-
ground on the generating line bundle.

3. Using the dilogarithm and the weight two exponential complex [15], we get an
explicit combinatorial formula for the second Chern class of a G-bundle on a
manifold, with values in the Beilinson—-Deligne complex. In particular we get a
combinatorial formula for the second integral Chern class, in the spirit of the
Gabrielov—Gelfand-Losik combinatorial formula [12] for the first Pontryagin class.

4. Given a punctured surface S, let U, s be the moduli space parametrizing framed

unipotent G-local systems on §, that is G-local systems with unipotent mon-
odromies around the punctures, equipped with a reduction to the Borel subgroup
at each puncture.
Let M be a threefold whose boundary is the surface S with filled punctures. We
prove that the subspace Mgy C Ug,s parametrising framed unipotent G-local
systems on S which can be extended to M is a K»-Lagrangian. We define the motivic
volume map on its generic part

Volpor : Mgy —> B2(C) (41)
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valued in the Bloch group of C. Its composition with the map B, (C) — R provided
by the Bloch—Wigner dilogarithm is a volume map generalising the volume of a
hyperbolic threefold. For G = GL,, these results were obtained in [6] using the
canonical cocycle for GL,,.

5. The cluster construction of the second motivic Chern class provides at the same
time its quantum deformation, see Sect.9.

3 The simplest example: G = SL,

The cocycle C® for the generator of H* (Bsi,e, Z A1(2)) has three components. Using
G = SL,, they are:
1 4\6
c® e By (")
G
c? ¢ (Q(GS)X /\@(G3)X) ’ (42)
G
c® e (Q(D)X) , D ediv(G*)O.
Fix a complex two dimensional vector space V, with an area form A. Then a flag
is a 1-dimensional subspace of V, and a decorated flag is a non-zero vector v € V5.
Two decorated flags are in generic position if A(vivy) # 0. To construct a cocycle

we pick a non-zero vector v € V.
The cycle C®. There is G-invariant divisor

D, CG*  D,:={(g1.8) € G| A(giv. gv) = O}. (43)
It carries a function

81V 2
Av(g1, 82) = P (g1, 82) € D, CG". 44)

Note that the residue of this function is equal to zero. So we set
C® = (Dy, Ay). (45)

The G-invariant divisor with a function (D,, A,) in G? is the same thing as a divisor
with a function (D), A})) for the quotient G?/G = G. Namely, we identify G with the
section {e} x G C G2.

To check that the current 27i - d log(X,)8(D),) generates H3(SL,(C), Z(2)), we
integrate it over the cycle generating the 3-dimensional homology of SL,(C), given
by the subgroup SU (2). Precisely, pick a Hermitian form (, ) in V> and an orthonornal
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basis (v, w) containing v. Then

SU(2)=<°‘— E) a.peC, la*+|p =1

_ﬁ o

al b a 0 o)
DU=<0 a)’ DUﬂSU(2)=<0 &>’Ial=1, Ay = a.

Integrating the current over SU (2) we get 2mi - f dloga = (27i)2. So its coho-
la|=1

mology class generates the group H>(SL(C), Z(2)).

The component C®, Below we use the notation v; := g;v. We define C®) by setting

SL
c® ¢ (Q(SL%)X A Q(SL%)X> ’

47
C? = A(iv2) A A@iv3) + A(V1v3) A AV2v3) + A(v203) A A(Vi2). v
Let us compute the residue of C®. The divisors supporting the residue are:
D;j = {A(vjv;) = 0}.
The residue of C® at the divisor Dy, is
resa (v uy)=0(C?)
= resA(Ulvz)zo(A(vlvz) A iig;iz;) = iEz;Z;; = (Z—;) = (D12, 21/2)-
(48)

The result does not depend on v3 since on the divisor {A(vivy) = 0} the vectors vy
and v are parallel. The total residue is

res(C?) = (D12, k172) + (D23, 22/3) + (D31, A31) = s*CH.

It splits into three parts, one for each edge of the triangle. So we can set
The component C'V, Consider the cross-ratio

A(v1v2) A(v3vg)
CV = {r2(v1, v2, v3, 1)}, = {—— : (49)
? A(vivg) A(v2v3) ) ,
The 5-term relation in the definition of the Bloch group implies that s*C() = 0.
The key step is the calculation of the differential in the Bloch complex:
M 1
61 = 8{ra(vr. v2, v3, v} = =3 Al (A@iv) A A@IY). (50)

where Alt4 means that we take the alternating sum over all permutations of vectors
v, V2, v3, v4 (Fig. 1).
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vy
A(v1vs) A(vyv2)
A(U1 4)
V3 - V2
V3
A(vov

A(vsvy) (vz0a)

vy

Fig.1 Calculating sCW for the group SLy, and the octahedron

We picture SCV) on Fig. 1 as a 3-dimensional simplex with four flags at the vertices,
and elements A (v;v;) at the centers of the corresponding edges. Each arrow represents
a summand in (50). For example the arrow A(viv2) — A(viv3) represents A(vivy) A
A(v1v3). The terms in (50) split into parts that live on the faces, i.e. depend only on
three flags.

4 The components CV, C? of the cocycle

1. Cluster varieties set-up. Let us recall quivers, also known as seeds, see [9, Defini-
tion 1.4].

Definition 4.1 A quiver c is a data {A, (x, %), {e;}, {d;}, i € I, Iy C I}, where:

e A is an integral lattice; (x, *) is a bilinear symmetric QQ-valued form form on A;
{ei}is abasis for A parametrised by a s a finite set [—we call its elements vertices,
Ip is the subset of frozen vertices; and {d;} is a set of positive integers such that:
gij = (ej,ej)d; € Zunlessi, j € lp, when g;; € %Z.

We describe a quiver geometrically by drawing a vertex for each basis element e;,
and n = ¢;; arrows from the vertex e; to the vertex e; if n > 0 or in the opposite
direction if n < 0.
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Definition 4.2 For each unfrozen vertex e, of a quiver ¢ there is a quiver mutation
W - ¢ — ¢ defined as the change of the basis for A:

_ =k
o = 7% !
' {ei + [eiklyex, i #k, [aly :=max(a,0).

Let {f;} € Hom(A, Q) be the quasidual to {e;} basis: (f;,e;) = df]zS,-j, and A°
the sublattice generated by { f;}. Consider the split torus:

Ap = Hom(A°, G,,).

It comes with cluster A-coordinates {A;} provided by the basis { f;}.
One associates with the mutation p; : ¢ — ¢’ a transformation of the cluster
coordinates, acting by

WA = Ai, i #Kk,

li/tAk — Aik 1_[ Afik + l—[ Ai—Sik

&ix>0 eir<0

(SD

The cluster variety A with the initial quiver ¢ is obtained by gluing the tori A
assigned to quivers obtained from ¢ by sequences of mutations via the corresponding
composition of the transformations (51). By the Laurent Phenomena theorem [11],
each element A; is a regular function on .A. The algebra of regular functions O(A) is
nothing else but the Fomin—Zelevinsky upper cluster algebra.

Therefore each cluster ¢ on a cluster variety A is given by a collection of cluster
coordinates (Ap, ..., Ay) and an exchange matrix &;; with the skewsymmetrizers d;.
This data is encoded in a single element

1 . y 1
W, ::E-iézldis,-j-Ai/\Aj e OX(A) A O (A)®Z[§]. (52)

Note that 2 - W, has integral coefficients, and W, has coefficients in Z if Iy is empty.
Let us assign to a cluster mutation uy : ¢ — ¢ a rational function, written in the
coordinate system {A;} for the cluster ¢ as

X =TT A% (53)
jel

Then the elements W, and W differ by the Steinberg relation [9, Proposition 6.3]:
We — We =di - (1 4+ X5) A X§. (54)
2. The moduli space Ag s. Let us recall the definition of the moduli space Ag s [8].
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Definition 4.3 Let S be a decorated surface. Let G be a simply-connected split semi-
simple group.

The moduli space Ag s parametrises twisted G-local system £ on S together with
a flat section of the local system £ x¢ .A near the special points and punctures.

According to the main result of [17], the moduli space Ag s has a cluster .A-variety
structure.
In particular, when the decorated surface S is an oriented n-gon p,,, we get the space

Ag.p, = Conf,(A) :=G\A", A:=G/U.

The isomorphism depends on the choice of a vertex of the polygon. For example, for
the triangle #:

e The space Ag; is the configuration space of three decorated flags - Conf3(A).

3. An element C®, Pick a reduced decomposition of the longest element wq of the
Weyl group:

i=031,...,00), wo=5s;...8,.

In [17], there is a construction of the cluster coordinate system on the space Conf3(A),
given by a collection of the regular functions, called the cluster coordinates

(AL, ..., An), A; € O(Confs3(A) = OWUHY, (55)

together with the exchange matrix ¢;; € %Z. We recall the construction of the cluster
assigned to the reduced decomposition of i in Sect. 5. Then the element C® is defined
(see Definition 5.6) by
1
C(z) Z=Wc=§'2di8ij~Ai/\Aj. (56)
ij

4. An element C, Consider two cluster coordinate systems ¢ 3 and ¢; 4 on the space
Conf4(A):
1. The one ¢; 4, obtained by amalgamating triangles (1, F», F3) and (F1, F3, F4).
2. The one ¢ 3, given by amalgamating triangles (F2, F3, F4) and (F1, F2, Fa).
According to one of the main results of [17], there exists an ordered sequence
of mutations u1, ..., 4, providing a cluster transformation between the two cluster
coordinate systems above. For each mutation w; there is a rational function X; on
Conf4(A). So we get a collection of rational functions

(X1,.... Xn), X; € Q(Confs(A))*. (57)

5. The first cocycle condition. Thanks to (54), the difference of the elements W
assigned to the cluster coordinate systems ¢ 3 and ¢ 4 is the sum of the Steinberg
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relations provided by functions (57):

N
Weis = Wepy = Y dic - (14 Xi) A Xy (58)
k=1

This just means that setting

N
=3 "d - (-Xi) € Bg(Q(Conf4(A))>. (59)

k=1

we get, at least modulo 2-torsion, the first cocycle identity in (38):
$(CMy = s*(C?). (60)

6. Altering the cluster transformation. According to [17], changing a reduced
decomposition i we alter the chain (C', C?,...) by a coboundary of an element of
B2(0G3).

Theorem 4.4 Changing a cluster transformation ¢1 3 — €2 4 does not affect the ele-
ment CV, since it is changed by a sum of the five-term relations, modulo an order 6
cyclic subgroup.

Proof Thanks to (58), for a different cluster transformatlon €13 —> €24 provided by

a sequence of mutations associated with the functions Y1, .. YM we have
N M
D di- (1 + X AKXk =Y di- (1+Y) AY =0, (61)
k=1 k=1

Denote by Br the kernel of the differential § : Bo(F) —> F* A F* in the Bloch
complex (30). Then identity (61) just means that we get, modulo 2-torsion, an element
of the group Br, where IF := Q(Conf4(.A)) is the function field on the configuration
space:

N M
Y odi (X} =) di- (i) € B, (62)
k=1 k=1

Let Tor(F*, F*) be the unique non-trivial extension of the group Tor(F*, F*) by

Z/27Z. By Suslin’s theorem [22], for any field F, there is an exact sequence

0 — Tor(F*, F*) — KI™(F) — g —> 0. (63)

Note that Z/2Z = Tor(Q*,Q*) = Tor(Q(t1,...,1,)>, Qt1, ..., 1,)*). Next,

Kj ind F@)) = K lnd(F) Therefore, since the conﬁguratlon spaces are rational vari-
etles the element (62) provides an element of K 1I1Cl(Q) /(Z/AZ). Suslin proved [22,
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Corollary 5.3] that the latter group is isomorphic to Z/6Z—this uses the Lee and
Szczarba theorem [21]. Therefore the element (62) belongs to the subgroup Z/6Z. O

5 Cluster structure of the space Conf3(.A)

For the convenience of the reader, we reproduce the definition of the clusters, that is
cluster coordinates and quivers, describing the cluster structure of the space Conf3(A),
borrowing the construction of the cluster coordinates from [17, Section 5], and the
construction of quivers from [17, Section 7.2].

1. The set-up. Recall that G is a split semi-simple simply-connected algebraic group
with the Cartan group H, the Weyl group W, and the Cartan matrix {C;;}; j<,, simple
positive roots ¢; and coroots a/Y:

Oll':H—>Gm, Oll-v:Gm—>H, (x,‘OOl;-/ZCU. (64)
There is a set of the fundamental weights Ay, ..., A,:
A; :H— Gy, Aioa}/=3ij. (65)

The length and reduced decomposition of the Weyl group elements induce the
Bruhat order of Bruhat cells. If elements w, w’ € W have reduced decompositions
such that the one for w’ is a substring of the one for w then w > w’. If in addition
[(w) = I(w') + 1 then the cell Bw’'B is a boundary divisor of BwB.

A pinning for a generic pair of flags {B, B~} provides maps x; : A! — U and
y; : Al — U~ for every simple root «;, where U is the maximal unipotent subgroup
of B and U™ is the maximal unipotent in B, such that each pair x;, y; can be extended
to a standard embedding y; : SL, — G. A pinning allows to lift to the group G the
generators of the Weyl group W corresponding to simple roots:

s = yi(Dx; (=Dy; (D).

These elements satisfy the braid relations. Therefore we define the lift for all other

elements of W by using any reduced decomposition w = s1 - - - - - s, setting: w =
S1 -+ Sm. Using this, we define the Bruhat decomposition of any element g € G:
g =uhnyv, heH=BNB", u,vel. (66)

Therefore any G-orbit in the space of pairs of decorated flags
(F.G) € Confr(A) = G\(G/U)* = U\G/U (©7)

has two invariants: the w —distance w(F, G) := w, and the h —distance h(F, G) :=
h, where g € G is decomposed as in (66). Each fundamental weight A; gives rise to
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a regular function on every Bruhat cell:

Aj yw(uhnygv) = A;i(h). (68)

2. Cluster .A-coordinates for the space Ag; = Conf3(.A). For each reduced word
i= (i1, ..., i) of wy there are chains of distinct positive roots and coroots:

Qb = Siy e Sy - gy Bl = Siyy - Sigyy - 0L kefl,....m}. (69)

Lemma5.1 [17, Lemma 5.3]. Given any generic pair of decorated flags {F, G}, i.e.
w(F,G) = wo, and a reduced decomposition i = {iy,....i,,} of w, there exists a
unique chain of decorated flags

(F=r L Fl 2 & =g (70)

such that that for the consequtive decorated flags, counted from the right to the left,
we have:

v [ BT
(P PN sy () e G TR mple g
1, otherwise.
We also note that
Vb)), ifpl=aY,
hy = Sty -+ - Sigas (h(}-k’]:kfl)) _ o; (bi) 1 ﬂk .051 (72)
1, otherwise.
Recall the involution * : I — I such that oi = —wo(e;"). Let w* := woww, I
Then any reduced decomposition w = s;, - - - - - 5;, provides a reduced decomposition

w* = Six - oo six. Note that wj = wo.

Definition 5.2 The cluster .A-coordinates on the space Ag ; are defined as follows.
Pick a vertex of the triangle ¢ with a decorated flag F1, and a reduced decomposition
i=(i1,...,iy) of wg. Then:

o The frozen cluster coordinates are:
Ai(Fr, Fo), Ai(F1, F3), Ai(Fz, Fa), Viel

o Leti* = (if,...,i}). By Lemma 5.1, there is a unique chain of decorated flags,
see Fig. 2, with respect to the reduced decomposition i*:

Then the unfrozen cluster coordinates are:
Ap = Ai, (Fi. Fp3)s
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F1
F1 Fi
]'—4 F: 2
Fy Fa
Fi Fa
F3
F3 F3
(c) cluster coordinates
(a) A* configuration. (b) cluster coordinates c1,3.  €2,4.

Fig. 2 Illustrating cluster coordinates choices and the flip of the configuration of for decorated flags.

Fi

Fa = F0 F} F2 Fr 1 FI' = Fs

Fig.3 The Ag  triangle

where p runs through indices 1, ..., m such that i, is not the rightmost simple
reflection i in1i, Vi € 1.

We stress that:

e Unfrozen vertices depend on all three decorated flags; we picture them inside of
the triangle.
Frozen vertices depend only on two decorated flags; we picture them on the sides
of the triangle.
Cluster coordinates on the space Conf,(.A) are labeled by the vertices i € I of the
Dynkin diagram. The twisted cyclic shift (F;, F2) —> (F2, sgF1) amounts to
the automorphism i — i* of 1.

Let us define the quiver Q(i) for Conf3(.A4), assigned to the reduced word i =
(i1, ..., im) for wo (Fig.3).

3. Elementary quivers J(i). Let us define the quiver J(i), where i € L. Its underlying
set is:

J@@) = A= {ih Ui} Ui} U{ie). (73)
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Thereis adecorationmapm : J(i) — Iwhichsendsi;, i, andi, toi, and is the identity
map on I — {i}. The multipliers on J (i) are defined by pulling back the multipliers
on I. The skew-symmetrizable matrix (i) is indexed by J (i) x J (i), and defined as
follows:

e()y,j = 2117 e()i,,j = %
@iy = eWipi, = Wiy = 15 €@ =0 ifi ¢ {j, k}. (74)

A quiver J(i) is pictured by a directed graph with vertices labelled by the set (73) and
arrows encoding the exchange matrices ¢ = (¢ ), where

€ ji = #{arrows from j to k} — #{arrows from k to j}.

Here #{arrows from a to b} is the fotal weight of the arrows from a to b, which is a
half-integer. The arrows from a to b are either dashed, and counted with the weight %,
or solid, and t counted with the weight 1. For non simply laced cases we use special
arrows, see Example 5.3.

Example 5.3 The quivers J(1), J(2) for type B3, and their amalgamation J(1) * J(2),
described below:

J( J(2) J() = J(2)
dy =2 1; L ;\lr
dr=1 2 3
dz =1 3

I
Le

4. The quiver H(i). Recall the pairing (x, *) between the root and coroot lattices, the
Cartan matrix C;; = (a;, ajy), and the multipliers d; = (oz]V, oejV) € {1, 2, 3}, so that
d; C;j is symmetric.

Given a reduced word i = (iy, . .., i;,) of wo, recall the chains of distinct positive
roots ai. and coroots ﬂ,ic in (69). Let us define first an auxiliary quiver K(i). It consists
of m frozen vertices labeled by (i1, ..., i,), with the multiplier for the kth vertex
given by dy = (ozivk , ozl.i ), and the exchange matrix

sentk—) (i pi iee
e =1__ 2 (o} ) i e, (75)
0 otherwise.

Then H(i) is a full subquiver of K(i) with the vertices k such that ,3}(, and hence
a,i{, are simple.

5. The quiver Q(i). We use the amalgamation of quivers, introduced in [10, Section
2.2].
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Definition 5.4 Given a reduced word i = (i1, ..., i,;) for wg € W, i} € I, the quiver
Qi) is the amalgamation of quivers J(ix) and H(i):

Q@) :=J(@i1) * ... x J(@in) * H@).

Precisely, the amalgamated quiver is defined as follows:

(i) For every i € I and for every j = 1,...,m — 1, the right element of J(i;) at
level i is glued with the left element of J(i;11) at level i. The extra vertex of each
J(ix) is glued with the kth vertex of H(i).

(i1) The weight of an arrow obtained by gluing two arrows is the sum of the weights
of those arrows.

The unfrozen part of the quiver Q(i) is the full subquiver obtained by deleting the
leftmost and rightmost vetices at every level i € I, and the vertices of H(i).

The following Theorem is one of the main results of [17].

Theorem 5.5 Given a reduced decomposition i of wg € W, the coordinates {A;} from
Definition 5.2 and the quiver Qi) from Definition 5.4 describe an A-cluster for the
space Conf3(A). The clusters assigned to different reduced decompositions are related
by cluster A-transformations. The obtained cluster structure is invariant under the
twisted cyclic shift (F1, Fa, F3) — (F2, F3, s0F1).

Definition 5.6 Given a reduced ecomposition i of wy, the element C%) is given by
..l 5y
C7 = EZ igij - Ai NAj, (76)
i

where {A;} are the cluster coordinates from Definition 5.2, and ¢;; is the exchange
matrix for the quiver Q(i) from Definition 5.4.

6 The tame symbol of C'?) and the component C®)

Recall the tame symbol (11), also known as the residue. The cluster coordinates { Ay}
are regular functions on Conf3(A). So for the element W, see (52), its tame symbol
is supported on the divisors {A; = 0}.
The Bruhat divisor By, 4, C Conf;(A) is determined by the equation A, = 0.
Denote by i the embedding B;,,,, C Confs(A). Recall the function Ag g4, ON
the divisor By, y,:

Al siwy = Mgy (F2, F3)),  (F2, F3) € Confa(A). )
Recall the rational function Fy on By, -

d.

. _ Cij
Fi=if | AL w0 1—[ (Ajg) 2 ) (78)
Jel\(k)
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Definition 6.1 The component C® of the cocycle C(® is defined as

c® .= Z(Bska,Fk)e @D owr (79)

kel DedivConf, (A)

Let E be an oriented edge of the triangle ¢. Then there is a map
Br : Conf3(A) — Conf,(A).

which forgets the element of A at the vertex of ¢ opposite to the edge E. It induces a
map

Br: P owyr—> PpH o)

DedivConf, (A) D' edivConf3(A) (80)

(D, fp) —> (BED, Bg fp).

We count the vertices labeled by the decorated flags counterclockwise: (Fp, F3, F2).
The edges E of the triangle are labeled by the ordered pairs of flags (F;, F;) assigned
to them: E = (i, j).

Theorem 6.2 The tame symbol of the element W, on Conf3(A) is the sum over the
edges of the triangle:

res(We) = (B} 3 + B3, — i) (CH). (81)

Corollary 6.3 div(C®) = 0.
Proof We know that div o res(W,) = 0 and

divg;5(C?) + divgs ,(CY) — divg},(C?) = 0. (82)

The codimension two cycles div,Bl.* f (C) can not share a common codimension two

component. This is clear for the pull back to A3, since a point (Fi, F2, F3) which
lies in two cycles d1v,3* (C(3)) satisfies codimension two condition for each of the
two pars of decorated ﬂags which gives the codimension > 2 intersection. Since their
sum is zero, the claim follows. O

Proof of the Theorem Recall the element W,.. Denote by i/’ ( f) the pull back of a func-
tion f to the divisor {A; = 0}. Then the tame symbol of W, is

1 .y
I‘eSAk:o(Wc) = IeSA,=0 Edigij . ZA,‘ AN Aj = i;: l_[ A?kgk'/,
i,j J#k

res(Wo) =@ [ ac=0if ] A%

k jel—{k}

(83)
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To check the last equality in the top formula here note that d; ¢;; is skew-symmetric, and
thus we count twice the contribution of %dksk iAj = Aljkskj /2
notation used here: n - A = A”".

There are two cases for the vertex vy related to the coordinate Ag.
1. The coordinate Ay corresponds to a non-frozen vertex. This is the general case,
and fortunately we can handle without going into details what is the coordinate A.
Indeed, since the coordinate Ay is non-frozen, we can mutate Ay, getting a new cluster

coordinate A,’(, which satisfies the exchange relation:

Ap- Al = l—[ A;kj i l_[ A;ekj_

8kj>0 8kj<0

; note the multiplicative

All we need to know is that there exists at least one non-trivial mutation at Ay, providing
a different regular function A;c on Conf3(A4). Restricting it to the divisor Ay = 0, we
have

o= T A%+ IT 4™

ek >0 ekj <0

Therefore
&kj __
[]A F=-1
j

This is a 2-torsion in the multiplicative group. So the residue on the divisor Ay = 0 is
a 2-torsion.

For example, for the moduli space Agy , ; with the special cluster coordinates illus-
trated on the Fig.4, the only non-frozen coordinate is the one in the center of the
triangle. The exchange relation is

Ay(er Nea, fi A fa, 81 A g2)Ay(er, f1,81)
= Ayler, ez, f1)Aw(f1, f2, 81)Aw(g1, 82, €1)
+Aw(619627 gl)Aw(fl» f29 el)Aw(gl» g27 fl) (84)

Here w is a volume form in a three dimensional vector space V, w* is the dual volume
form in V*, and F| = (ey, e1 A e2), Fo = (f1, f1 A f2) and F3 = (g1, g1 A g2) are
decorated flags in V.
2. The coordinate Ay is frozen. Then it corresponds to a vertex located on a side of
the triangle ¢. This is the difficult case. Since the definition of the quiver ¢ depends on
the choice of the vertex of the triangle, referred to as the top vertex, we consider the
residue for each of the three sides of the triangle.

We start from the right edge (F1, F3). Since the K»-class [W,] does not depend on
the choice of the reduced decomposition i of @y, and the tame symbol depends only
on the K»-class, we can assume that:

The decomposition i ends by sk. (85)
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A(ey, e, f1) ] Aler, ez, g1)

Aley, f1, f2) Aler, g1, 92)

Fi= (1) A(f f9) A(f1,91,92)  Fi=(91,92)

Fig.4 The canonical coordinates on the moduli space Agy, ; of triples of decorated flags

The elementary configuration space A(k) [17, Section 7.5]. Let k € 1. Consider the
space A(k) parametrizing G-orbits of triples of decorated flags (F, F;, ) such that

w(F, Fi) = w(F, Fr) = wo, w(Fr, Fi) = sie, h(Fr, F1) € H(spe). (86)

Fi Fr

There is a cluster A-coordinate system on the space A(k) parametrized by J (k)
defined by:

Aj(F, Fi) if j e 1— (k)
Av(F. F if j = k
V(F, Fi, F) € Ak, Aj = Aﬁﬁf f”) ifj-:ki &7)

A (h(Fr, F))  if j = ke.
If we fix a pinning in G, then we have
(F,F1, F) = (U_,hU, ghU), heH,g e @(SLy/UsL,). (88)
In particular, by [17, Lemma 7.13], for any (F, F;, F,) € A(k), we have
Aij(F, F))=A;(F,F). Yj#k. (89)

) Birkhauser



57  Page 26 of 45 A. B. Goncharov, O. Kislinskyi

There is a canonical projection
7+ A(k) —> Conf3z(AsL,). 90)

It assigns to a triple of decorated flags (F, F;, F;) the intersections of the correspond-
ing maximal unipotent subgroups with the subgroup ¢ (SL2) C G corresponding to
the simple coroot . The coordinates Ay, , Ay, , Ay, are the pull backs of the standard
coordinates on Conf3(Agp,).

Recall the matrix € (k) of J(k) in (74), and the canonical element describing cluster

(87) on A(k):

W) = Y die(k); - Ai AA;. 1)
i,jed k)

Denote by Conf; (A) the subspace of Conf3(.A) given by the condition that each
pair of the decorated flags are in the generic position. The amalgamation provides an
embedding of the space Conf (A) obtained by the amalgamation into the product of
the elementary spaces A(i ;) used for the amalgamation:

Conf} (A) < [ Adp.

j=1

Denote by ng : Conf3(A) —> A(k) the composition of this map with the projection
onto the rightmost factor A(i ;) with i; = k. Thanks to assumption (85), the cluster
coordinate A; on Conf3(A) is the pull back 1Ay of the cluster coordinate A on
A(k). This immediately implies that

resa,—0(We) = niresa,—o(W (k)). (92)

So the calculation of resa,—o(W¢) boils down to the calculation of the residue of Wy

at the divisor Ay = 0 on the elementary space A (k). Let us write W (k) as a sum, see
(93):

Wk) = W (k) + Wak), Wa(k) :=Ap, AAg, + Ay A Ag, + Ag, A Ay, (93)

Note that by the definition of the amalgamation, Ay = Ay,. Next, we evidently have:

dye(k)y;
resa W =[] ATV, (94)
J ke kr ke
. Cri 4 Cuj dks(k)kj
Since g(k)g,,j = Tl by (74), the factor (A ,) "2 in(78) match the factor A/.
in (94): '
di Cyj doe(k)y:
(Aj’wo)Tj —A .[(8( )kj. (95)

J
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Therefore the product in (94) match the product over j # k in (78). So it remains to
show that
resia =0 Wa k) = ALt o (96)

Note that Wa (k) = ;" Weonts( Asi,) and the divisor Ay = 0 on Conf3(.A4) is the pull
back of the divisor A;, = 0 on Conf3(AsL,) under the map 7;°. So parametrisation (88)
and the calculation of the residue for SL, from Sect. 3 implies (96). So we calculated
the residue for the right edge of the triangle.

For the left edge the calculation is similar. We claim that the residue corresponding
to the left edge is given by —ﬂik’z(C3), see (81). Indeed, this agrees with the fact that
ek,j = —Cxj/2 while g, j = Cg;/2 in (74), as well as with the calculation of the
residue for SL;.

Computation for the bottom side (F3,F;) follows easily using Wa(k) =
Tt Weonfs (Ast,) and (75). o

7 Proof of Theorems 2.1 and 2.4

Brylinsky-Deligne results [4, Section 4]. Let W(?) C W the subset parametrising
Bruhat cells BwB of codinension p. In particular,

WO = (wosy e Whkel; WP ={wysisj e W), i,jel i#j. (97

Let X = Hom(H, G,,) be the character group of the Cartan group H. Consider the
following complex

2
/\X—)@X—)@Z (93)

w we
Here, using the notation (w, —) for an element of EBWU) X, the differentials are:
xi Az (e a) - (wosi, x2) = (2, @) - (wosi, x1)).
iel

(@osj ) —> D ((@osis;. (5,5 (@) + @osjsi, (x,0)).
i#]

99)

Proposition 7.1 There exists a natural map of complexes

2
NX b X D Z
w w®
/\2 Q(G)* res @ @(D)* val @ 7
DeGWM G®@
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Proof The right vertical map is induced by the canonical embedding W® < G®.
We assign to a character y of the Cartan group and an element w € W a regular
function x. on the Bruhat cell B,,:

Xas(uwhv) := x (h). (100)

We warn the reader that the functions X/E’ and g from (18), are not the same since
Xa(uhwv) := x (h). We need now both since [4, Section 4] uses x~, while [17] uses
Xo-

The two left vertical maps are given by

/ /
XAY — Xao N Vo

) (101)
(Wosk, X) > Xagst

Let us prove that we get a map of complexes. The valuations of the function Xc/To ona
divisor can be non-zero only if it is a Bruhat divisor. In this case they are calculated as
follows. For every Bruhat divisor Bw;B, we can choose reduced Weyl decompositions
of w and w so that: w = &'s;0” and w; = @'w”. Using the valuation formula of
Demazure, [4, Lemma 4.2] tells:

valy, (x2) = (x, "' (@))). (102)

This is consistent with formulas (99). The Proposition is proved. O

Denote by Y, the lattice generated by the simple coroots. Consider the dual lattice
Xse C OF(H). We identify X, = @ peyn Z by x —> ZS’_ x(a;")wos;. Then we
identify the complex (98) with

2
NX — X 0X — PL. (103)
w®

By [4, Lemma in 4.4.4] or (99), the wps;sj-component of the differential of C €
X;c ® X is given by:

C — C(al-v, Ol;-/) + C(a}/, sj(ay)).

1

We write the right hand side via the quadratic form Q(y) := C(y, y) on Y, and the
associated symmetric bilinear form B(a,”, aJY) =C(a/, oejV) + C(oz]Y, ;). Namely,
using s (o)) = o) — (al.v)aly, we get:

Claf o) +Claf.5;(ef) = Bla o) —ajey) 0la)). (104

Therefore the element C is killed by the second differential if and only if the quadratic
from Q(y) on Y. is W-invariant [4, Lemma 4.5]. So the cohomology class of a cocycle
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in @ X is non-trivial if and only if the corresponding quadratic form is non-zero.
w

Now let us look at the cocycle that we constructed using the cluster coordinates:

Chi
c® = de | {Ax =0}, A]:,}ka() 1_[ A
kel iel\{k}

Here is a caveat. There are two ways to write the Bruhat decompostions of an element
g€G:

g =urhjouy or g =uwh,uz, hy, h, € H.

Following [17], we defined c® using the left one, while [4] use the right one. Since
wh, = w(h;)o, we have h; = w(h,). This impacts our formulas as follows. The
function A;(g) = A;(h;) on the Bruhat cell BawgB is equal to the function

Ai(wo(hr)) = A (hy).

Since spwp = wosy, and Ag 5.0y = Ak (hy) on the divisor BsgwoB = Bwos; B, we
have h; = sgwo(h,), and so as sy (1) = o (t)~1, we have

Ax(h)) = Ar(skao(hy)) = Ay (wo(hy)) = AR ().

Since * is an involution, we have C;; = Cj+j+,dy = di+. So the element c?® e
@W(l) X is:
Cri.
CO=>"di - | Buogser Dkwose || Piw)? |- (105)
kel iel\{k}

In the Brylinski—Deligne format the Bruhat divisor B,,,s, corresponds to wosi € w,
and identified with the basis element dual to the coroot oz,f. Then the element C® is
mapped to

diCri
COv— N d- M@ A+ Y kzk'Ak@)Ai. (106)
kel iel\{k}

Since diCy; is symmetric, we get a symmetric tensor, which is the Killing quadratic
form in the basis Ag:

C® — de (AR + Z Ak Cri - ApA;. (107)
kel i#kel
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The corresponding quadratic form at any simple coroot &, corresponding to a short
root o; (d; = 1) is:

Q(aiv) = hsc(oc,-v,oz,-v) =1.

Note that if simple roots & and 8 are not orthogonal, and « is not shorter than g, then
pla’) = —1.

Although the cocycle C® has half-integral coefficients, we can alter it by a
coboundary and get an integral cocycle. Therefore the cohomology class [C)] is
the canonical generator. Theorem 2.1 is proved.

Since we proved that C® is a cocycle by combining Theorem 6.2, formula (60),
and Theorem 4.4, and its cohomology class is a generator by Theorem 2.1 and iso-
morphisms (2), Theorem 2.4 is proved.

8 Applications

It was proved in [17] that the class [W] € K»(Conf3(A)) is dihedrally sign-invariant,
that is invariant under the cyclic shifts, and skew invariant under the permutation of
two vertices (1,2, 3) —> (2, 1, 3). Therefore the class [C?] € Kz(Confg‘ (A)) is
dihedrally sign-invariant. This implies the important

Proposition 8.1 The element
CV € B2(Q(Confs(A) ® Q (108)

is sign-invariant under the action of the permutation group Sy on Conf4(A).

Proof The dihedral sign-invariance of [C®] implies that 8CW is dihedrally sign-
invariant. Since Conf4(.A) is a rational variety, the group K é“d ® Q of its function field
is the same as for (Q, and thus trivial. O

1. The universal K,-extension of G. Its existence was proved by Matsumoto, and
revisited by Brylinsky—Deligne [4]. However no explicit cocycle description was
known before. Here is one.

Pick a decorated flag 7 € Ag. Then given a generic triple (g1, g2, g3) € G>(F)
we set

Ca(g1.82.83) :=C*(g1- F. g2 F. g3 F) € Kx(F). (109)
Then for any generic quadruple (g1, g2, g3, g4) it satisfies the 2-cocycle condition. It
is well known that a 2-cocycle of G(F) with values in K;(F), defined at the generic
point, determines the group extension

1 — K»(F) — G(F) — G(F) —> 1. (110)
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2. The Kac-Moody group extension related to a Riemann surface. Let X be a
Riemann surface with punctures. Then there is a group extension

1 — HY(Z, C*) — Gy —> G(Hol(%)) —> 1. (111)

Here Hol(X) stands for the field of all holomorphic functions with arbitrary singu-
larities at the punctures, including the functions with essential singularities at the
punctures, e.g. e€1/3+c2/ 2+ There is an algebraic variant where we take the field of
rational functions on ¥ and the corresponding group G(C(X)).

The extension is the push down of the universal extension of G(Hol(X¥)) by
K> (Hol(X)) by the Beilinson-Deligne regulator map

reg : K»(Hol(Z)) — H'(Z, C/Z(2)). (112)

Namely, following Beilinson [1, Lemma 1.3.1] and Deligne [5], given an element f A g
and a loop y on X, the value of the cohomology class reg(f A g) on the homology
class [y] is given by the integral

1
(reg(f N g),y) :=exp ol (/ log fdlogg —g(p)/dlogf) eC~.
Y Y

(113)

Here p is a point on y and the integrals start from p. The result is independent of the
choices of the branch of log f and the initial point p.

It is important for some applications that the construction works for the group
defined using all holomorphic functions on a punctured Riemann surface, rather than
just the meromorphic ones.

In particular, in the special case when X = C* and y is a loop around zero, we get
a holomorphic variant of the Kac—-Moody group extension:

1 — C* — G(Hol(C*)) —> G(Hol(C*)) —> 1, (114)

3. The determinant line bundles. Using (114), we get an explicit construction of the
determinant line bundle on the affine Grassmannian G((t)) /G(O). Similarly, we get
an explicit construction of the determinant line bundle on Bung.
4. K;>-Lagrangians in moduli spaces of G-local systems on S. Recall the moduli
space Ug, s of G-local systems on a punctured surface S, with unipotent monodromies
around the punctures, and a reduction to a Borel subgroup at each puncture, called a
framing.

Let M be a threefold whose boundary S is obtained by filling the punctures on
S. Consider the subspace Mgy C Ug,s parametrising framed unipotent G-local
systems on S which extend to M.

Theorem 8.2 (i) The moduli space Ug, s is Ka-symplectic.
(ii) The moduli subspace Mg,y is a Ko-Lagrangian subspace of the moduli space
Z/{G,S'
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(iii) There is the motivic volume map, defined at the generic point MEM of Mg M,
with values in the Bloch group of C:

Volyot : Mgy — B2(0). (115)

Proof Pick a cocycle C(® representing the class c;.

(i) Take an ideal triangulation 7 of S, i.e. a triangulation with the vertices at the
punctures. Take a generic framed G-local system £ on S. Since its monodromy around
each puncture is a regular unipotent element, there exists a unique decorated flags
Fp near every puncture p which is invariant under the monodromy around p. For
each triangle ¢ of 7, there is a configuration of three decorated flags (F!, FJ, fé) €
Conf3(Ag) obtained by restricting the £ and the three flat sections of the associated
to L local system of decorated flags near each vertex of ¢ to the triangle ¢. Then we
have an element

wi =" CO(F. 7. ) € K2QUa,5))- (116)
teT

Its tame symbol is zero. Indeed, the tame symbol of each of the terms is a sum of the
three standard terms provided by the element C®, associated with the edges of the
triangle ¢, but for each edge E, the contributions of the two triangles cancel each other.
The element WST does not depend on the choice of the triangulation 7 since a flip of
the triangulation 7 — 7 at an edge E amounts to

wi —wi =scV(F. 7. FL R, (117)

where r is the rectangle of the triangulation associated with the edge E, and
(Fi, F5, F5, F}) € Confy(Ag) is the quadruple of flags associated to the rectan-
gle.

(ii) Take a triangulation 7y of the threefold M extending the triangulation 7 of S.
Then just as above, one assigns to each tetrahedron T of this triangulation a configura-
tion of 4 decorated flags (F;, 7, F; T ]—'}) € Conf4(Ag) and apply to it the element
c®:

Vol = Z cW(FL 7L F L FL) € Ba(@Mg,m)). (118)
TeTu

This element is sign-invariant under the action of the group S4 by Proposition 8.1, and
thus does not depend on does not depend on the choice of the order of the four flags.
It also does not depend on the triangulation. Indeed, altering a triangulation by a 2 by
3 Pachner move related to the five tetrahedra whose vertices are decorated by the five
flags F1, ..., Fi, ..., F5 amounts to changing element (118) by

5
Y COEF.L..LF. ... Fs) € By QMawm)). (119)
i=1
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The cocycle property of C* implies that applying the Bloch complex differential § to
(119) we get zero:

5
SZCW(ﬂ,...,ﬁ,...,fs)=0.

i=1

Therefore (119)= 0 by a K -theoretic argument very similar to the one in the proof of
Proposition 8.1.
Next, denote by j : Mg m C Ug, s the natural inclusion. Since C®isa cocycle:

Noley = Y 5CV (7 7, 7L, 7])
TeTu
=> CO(r. 7. 7Y)
teT

def ok k
= W e A2QMam)*. (120)

The second = is because the contributions of the internal triangles cancel out. The third
equality is valid by the definition of j*. Therefore [ j* WST ] =0in K2 (B2(Q(Mg m))).
The claim ii) is proved.

(iii) Specializing the element (118) to any generic complex point of x we get the
motivic volume map (115). Its composition with the map B;(C) — R, provided
by the Bloch—Wigner dilogarithm, is a volume map, generalizing the volume of a
hyperbolic threefold. O

5. A local combinatorial formula for the second Chern class of a G-bundle. Recall
the weight two exponential complex of sheaves on a complex manifold X [15]:

2 X
72) — O(1) — A20 5P A20%, (121)

Here the second arrow is 27i ® f —— 2mi A f, and the last one is f A g —>
exp(f) A exp(g). It is a complex of sheaves in the analytic topology on X, exact
modulo torsion.

We sheafify the Bloch complex to a complex of sheaves By () — A2O* and
define a map of complexes

R2(0) Z[0] —2= A20O*
ek
QQ) (1) A20 2R 20
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To define the map L, recall the dilogarithm function, with the two accompanying
logarithms:

. *odt dt *odt *dt
Lip(x) ::/ o—, —log(l—x) :/ —, logx ::/ —.
0 t o 11—t o !

1—1
(122)

Here all integrals are along the same path from 0 to x. The last one is regularised using
the tangential base point at 0 dual to dz. Then we set, modifying slightly the original
construction of Bloch [2, 3],

(2mi)?
| 241 ’ (123)
Ly({x}p) := 2 -log(1 — x) Alogx +2mi A %Lg(x).

1
Ly(x) :=Liy(x) + 3 -log(1 — x) logx +

We keep the summand (272’ i)z in Ly (x), although it does not change 2mi A #L2 (x)

since 2mwi A % = 0 in A%C. The key fact is [15, Lemma 1.6] the map L, is well
defined on Z[O], i.e. does not depend on the monodromy of the logarithms and the
dilogarithm along the path y in (122). It evidently provides a map of complexes. So
one has IL; : Ker § — O(1). Furthermore, we have

Ly(Ker §) ¢ C(1), La(R2(0)) C Q(2). (124)

Given a G-bundle £ over a complex manifold X, pick an open by discs U; and
choose a section g; of £ over U;. Then we define a 4-cocycle for the Chech cover {U; }
with values in Q(2) by setting

5

Uy, N...N U —> Z(—l)kILZ(C(l)(gil, s 8ips ..,g,-s)) € Q(2). (125)
k=1

The main result of this paper implies that it represents the second Chern class ¢z (L).
This is a local combinatorial formula for ¢; (L), in the spirit of the Gabrielov—Gelfand—
Losik combinatorial formula [12] for the first Pontryagin class. See an elaborate
discussion of the simplest example in [15, Section 1.7].

We conclude that, although given a cocycle C*® the above constructions are very
transparent, the cocycle itself for G # SLy, is rather complicated, and can not be
written without the cluster technology. On the other hand, for G = SL,, the cocycle is
simple and canonical, see [14], [15, Sections 4.2—4.3].
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9 Quantum deformation of the cohomology group H3, .. (G(C), R).

1. Measurable cocycles of G(C). The measurable cohomology H* .. (G, R) of a Lie

meas
group G are the cohomology of the complex of G-invariants of measurable functions

on Meas(G"):

... —>Meas(G" 1% — Meas(G")® —> Meas(G"TH% — ...

n
. R (126)
df(gr. ... gn) = > (=D f(g1.-- . 8ir--- . 8n)-
i=1
Denote by {d,,} the degrees of the generators of the ring S*(h)". So, when G is
of type A,, we have (dy,...,d,) = (2,3,...,r). Then H}.,.(G(C), R) is a graded
commutative algebra generated by the classes

bG.2d,-1 € Hyeas ' (G(O), R). (127)
In particular, one always has di = 2. So we have a class

by = bg3 € H> _ (G(C), R). (128)

meas

Below we quantize the exponent of the class b3, for any G, using crucially the fact
that G\G" and Conf, (G/B) := G\(G/B)" have a cyclically invariant cluster Poisson
structure [17].

2. The quantum set-up. The cluster Poisson structure on G\G”" gives rise to an
algebra of g-deformed functions

0, (G\G").
It is the non-commutative version of the algebra Meas(G")S. There are natural maps
s¥ 1 04(G\G") —> O, (G\G"™); (129)
induced by the cluster Poisson maps
G\G"™' — G\G", i : (g1, -os gt 1) = (&1s- s 8is s Gut)-
Similarly there is a non-commutative algebra of q-deformed functions

Oy (Conf,(G/B))

together with maps
of algebras

s; + O4(Conf,(G/B)) —> O4(Conf,11(G/B)).
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These algebras and the maps between them are related by the maps of algebras
n* 1 Oy (Conf,(G/B)) — O, (G\G"). (130)

For any cluster Poisson variety &X', the completion @q(X ) is defined as collections
of formal quantum power series in each of the cluster coordinate systems, related
by quantum cluster transformations. The maps of algebras above provide maps of
completed algebras.

3. The class B3 quantizing 33 in (128). The cluster construction of the second motivic
Chern class provides at the same time its quantum deformation. Let us explain the
quantum deformation of the class

B3 € Hieas(G(C), R).

A 3-cocycle for the class B3 is a measurable G-invariant function B3(g1, ..., g4) on
G(C)*. Our construction of the element C'!) gives an explicit formula for this function
as a sum of Bloch—Wigner dilogarithms:

Bigi.....e0) =Y La(z), & €G(C). (131)
J

Here z; are certain rational functions on G\ (G/B)*. Let us define a quantum defor-
mation of this cocycle.

The quantum analog of the exponent of the cocycle B3 lies in the formal completion:
B e 0,(GH. (132)
Recall the maps of algebras
st 0,(GYH — 0,(G).

Pick a reduced decomposition i of the longest element wg of the Weyl group of G.

Theorem 9.1 There is an element Bi3 in (132) which satisfies the multiplicative quan-
tum cocycle relation

5
[[s5.8,=1. (133)
j=1

Changing the reduced decomposition i of wy amounts to changing the cocycle Bi3 by
a coboundary.
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Proof Recall the quantum dilogarithm power series, convergent if |¢| < 1 for any
ZeC:

1
S (U+q2)A+g32)(1+4¢32). ..

Yy (2)
We define the element Bg as a product of the quantum dilogarithm power series

L=[]%(Z), Zje0,(G/BYY. (134)
j

The functions {Z;} are g-deformations of functions z; in (131), limy,—1 Z; = z;,
defined as follows.

Given an oriented triangle ¢ and a choice of one of its angles, the reduced decompo-
sition i of wo provides a cluster Poisson coordinate system on the moduli space Pg 3
of triples of flags with pinnings [17] assigned to the triangle 7.

Consider a quadrilateral Q with a special side F' and a diagonal E. It has two
marked angles: the one opposite to F in the triangle with the base F, and the one
in the second triangle, opposite to E. Therefore amalgamating along the diagonal E
the cluster Poisson structures which we assigned to each of the two triangles of Q
using this data we get a cluster Poisson structure on the space Pg 4 assigned to the
quadrilateral, and thus on Conf4(B).

Take an oriented convex pentagon Ps whose vertices are decorated by the flags
Bi, ..., Bs, providing a point of Conf5 (). Take a triangulation of the pentagon. Pick
one of the diagonals and denote it by F. The diagonal F cuts the pentagon into a
quadrilateral Q r with a base F, and a triangle ¢f:

Ps = Qr Utp.

Mark the angle of the triangle 7 opposite to F, and mark the two angles in the
quadrangle QF as above, using the base F' and the diagonal E, as shown on Fig.5.
Then each of the three triangles of the pentagon has a marked angle, marked the red
point on Fig.5.

Therefore the reduced decomposition i provides a cluster Poisson coordinate system
on the space Pg 3 assigned to each of the three triangles, and hence by the amalgama-
tion a cluster Poisson system on Confs (). Now flip the triangulation at the edge F,
getting a new edge F’. Label the new edges as (E|, F}), setting E| := F', F] := E,
see Fig.6. Assign to the triangulation (E1, F1) a similar cluster Poisson coordinate
system on Confs(B) using the marked angles in each of the three triangles of the new
triangulation, and the reduced decomposition i of wy.

The flip of triangulation at the edge F alters cluster Poisson coordinates only in the
quadrileteral Q' containing the edge F' as the diagonal. It is realized as an ordered
sequence of mutations, provided by the cluster Poisson rational functions Z1, ..., Zy
on Conf4(B) related to the quadrilateral Q',. Each mutation is given by the conjugation
by W, (Z;). We use the sequence {Z} to define the element Bi3 in (134). The elements
{z;} in (131) are defined as the ¢ = 1 specialization of the elements {Z}.
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Fig.5 A triangulated pentagon
P5 with a boldface diagonal F, o
which cuts the pentagon into a
quadrilateral with a diagonal E,
and triangle. The data
(P5; F, E) determines three red
marked angles
@

el T

A

Fig.6 The five triangulations of the pentagon, related by flips of the boldface diagonals, and the red marked
angles for each triangulation

The main difference between the classical and quantum cocycles B3 and Bg is
that the elements {Z;} do not commute, and so their order is an essential part of the
definition of the element Bi3.

Traditionally each mutation is given by the conjugation by ¥, (Z) followed by a
monomial transformation, and a cluster Poisson transformation is defined as a com-
position of such elementary transformations. However one can also define a reduced
mutation as just the conjugation by W, (Z), and define the reduced cluster Poisson
transformation as the composition of reduced mutations [16, Proposition 2.4].

Performing this procedure five times, as shown on Fig. 6, we get the original tri-
angulation (E, F), and the original cluster Poisson coordinate system. The sequence
of cluster Poisson coordinates given by the sequence of mutations realizing the flip of
the diagonal F; on the step i is denoted by Z {l), ceey Z](\l,). Then the ordered sequence
of cluster Poisson coordinates we need is given by the 5N functions

(1) W, 0 M. 6 )
zZ0 Lz z0 Lz s 2P 2. (135)
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Proposition 9.2 The following product is equal to 1:
1wz H‘I’ z") l_[‘p 7 (136)
j

Proof If a reduced cluster transformation is the identity map, then the product of the
corresponding W, (Z;) in the completed q-deformed algebra is equal to 1 [18, 19], cf
[16, Theorem 3.2]. O

Therefore the element Bg satisfies the multiplicative analog of the cocycle condition

[s34B5=1. (137)

Indeed, relation (136) is equivalent to relation (137) on elements (134). Its pull back
B automatically satisfies the cocycle relation (133). The first part of Theorem 9.1 is
proved.

4. Changing the reduced decomposition i alters the cocycle Bg by a coboundary.
The element Bi3 depends on the choice of a reduced decomposition i of wg, providing
the Poisson cluster ¢; on Pg 3. Let i’ be another reduced decomposition of wg. Then
there is a sequence of cluster mutations providing a cluster Poisson transformations
¢;j — cy. Let us denote by Y7, ..., Yi the related ordered sequence of cluster Poisson
functions.

Let P4 be a convex quadrilateral with the vertices labeled cyclically by {1, 2, 3, 4}.
Forgewtting a vertex I € Z/A4Z we get a triangle with one distinguished vertex -
the one opposite to the forgotten vertex i in P4. Therefore the cluster transformation
¢ — ¢y provides the collection of quantum functions Yfl), e, Yk(') above on the
space Pg,3 provided by the triangle. Let us introduce the notation

W) = (Y)W, (V) € Oy (PG 3). (138)

Observe the key point: the elements Yl(i), .Y k(i) commute with the ones Y. 1(i+2), e,
Yk(l +2), Indeed, the factors of each of them correspond to the non-frozen cluster pois-

son coordinates in each of the triangles, and thus commute after the cluster Poisson
amalgamation. So the elements W (v;) and ¥ (v;4+2) commute:

W(v) - W(viga) = Y (vit2) - Y (v;). (139)
Therefore changing the reduced decomposition i to i’ we alter the cocycle Bg by

L BY = W(vy) " W(uy) T BEW (0)) W (v3).

We can interprete this as follows: the cocycles Bi3 and Bg differ by the non-commutative
coboundary of the element (138). Theorem 9.1 is proved. O
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Our definition of a non-commutative multiplicative cocycle is specific for 3-
cocycles. Our definition of the coboundary even more specific: we use the fact (139).

5. The relation with the dilogarithm. To justify the name quantum dilogarithm for
the formal power series W, (z), recall the following version of the classical dilogarithm
function:

* dt
Lo(x) := / log(1 +1)—.
0 t

It has a g-deformation:

0 n

Lateia) = 3 Sy

n=1

One has the identity
log Wy (x) = La(x; q).

If |g| < 1 the power series W, (x) converge, providing an analytic function in
x € C. If in addition to this [x| < 1, the g-dilogarithm power series also converge.
There are asymptotic expansions when g — 17:

La(x)
logg?’

Lz(x))‘

W, (x) ~ eXp(long

Lo(x; q) ~ (140)

Using this one can show that the quantum cocycle relation (136) implies the classical
oneifg — 1.

In the case when G = PGL, the element B3 is just the quantum dilogarithm W3 (Z),
and our cocycle relation reduces to the Faddeev—Kashaev [7] pentagon relation for the
quantum dilogarithm.

The main difference between classical and quantum cocycles is that the latter is
a sum of commutative expressions, while the former is an ordered product of non-
commuting expressions. The order is crucial, and provided by the cluster Poisson
transformation describing the flip of a triangulation [17].

Note also that there is a version of the quantum cocycle where the role of the
power series W, (Z) is played by the quantum modular dilogarithm ®(z). The main
difference is that now the cocycle is well defined for any ¢ € C, and is understood as
an operator acting in a Hilbert space.

6. Further perspectives. One can hope that there are quantum deformation of the
exponents of the cocycles representing the basic classes

bym—1 € H2 1 (PGL,,(C), R).

meas
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These cocycles are expressed via certain m-logarithm functions. The cocycle condition
is provided by the functional equation for these functions. Cocycles for the classes in
H2m 1 (PGLy (C), R) for N > m are defined once we know the ones for N = m via
the configuration of partial flag construction [14].

The simplest class after the dilogarithm class b3 is

bs € ... (PGL3(C), R).

meas

This class was defined in [13] by the following function on configurations of 6 points
(x1, ..., x¢) in CP2:

(141)

A(1,2,3)A2,3,4)A@3,1,5
Bs(x1, ..., Xe) ::A]t6£3< ( )A( VA( ))

A(1,2,4)A(2,3,5)A3,1,6)

Here L3 is the single-valued version of the trilogarithm function, A(, j, k) :=
(Q3,1; AN1j N l) where [; € C3 - {0} lifts the point x;, and €23 is a volume form
in C3. The function Bs satisfies the relation

7
> (=D Bs(xr, .. K x) =0
i=1

The 5-cocycle is defined by

bs(g1, ..., 86) = PBs(g1-x,...,8-x), xeCP? g eG().

It become clear later [8] that the mysterious triple ratio in formula (141) is a cluster
Poisson coordinate on the moduli space Confg(P?) parametrising 6-tuples points on
P2 modulo the action of PGL3. The latter is a cluster Poisson variety of the finite type
Dy. The very fact that this function is defined on a space which carries a cluster Poisson
structure suggests that one should have a quantum deformation of the exponent of Ss,
provided by an element

Bs € O, (Confg(P?)).
More generally, for any m > 1 one should have an element
Bou_1 € Og(Confy, (P"1)) (142)

which satisfies a multiplicative (2m 4 1)-term cocycle relation. Its pull back B>, :=
7*By;,—1 should be the quantum deformation of the exponent of cocycle for the class
bym—1 in (128).
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10 Cluster structures and motivic cohomology: conclusion

1. Conclusions. 1. Formula (106) tells that the cocycle C® is just the Killing form
(107), written as a bilinear form (106), translated isomorphically into the middle group
in (103), thus interpreted as a cocycle for H! (G, K »). To make the bilinear form (106)
from the quadratic form (107) we need the coefficients % in front of d;Cy;. Indeed,
the left and the right factors in the bilinear expression (106) have entirely different
meanings in (103) as, respectively, Bruhat divisors and functions on them. A posteriori
this explains why the exchange matrix ¢;; has half integral values between the frozen
variables.

2. The cluster structure of the elementary variety A(k), k € 1, is determined by the
following facts:
i) The corresponding element W (k) is decomposed into a sum of two terms

W (k) = W' (k) + Wa(k),

where Wy (k) is the pull back 7;° of the element W from the space Conf;(Asy,) for
the canonical projection

7+ A(k) — Conf3(AsL,). (143)

ii) The residue of W (k) at the “right side of the quiver” is given by the cocycle C®.

Equivalently, the cocycle C® is the residue of W, at the right side of the triangle .

Indeed, the tame symbol calculation (81) nails the shape of the quiver J (k) of A(k).
Namely, the exchange matrix for the right side of the quiver J(k) is the negative of the
one for the left edge, as the argument in the end of the proof of Theorem 6.2 shows. Itis
determined by the cocycle C3, and the latter is fixed by the Killing form, as discussed
above.

3. The element W, on Conf3(.A) determines the cluster structure on this space. The
element W, is forced onto us as the one whose tame symbol is given by formula (81).
Therefore its existence follows from H*(BG, Z M(2)) = Z.

Although such an element W, is not unique, the difference between any two W,
and W/ of them is a cocycle, providing a class [W, — W/] € H*(G?, K,)/K2(Z). Note
that K>(Z) = Z/27Z. On the other hand,

H(G?, K,)/K2(Z) = 0. (144)

This implies the crucial, and one of the most challenging, properties of the element
We: its class in the group K of the field of functions Q(Conf3(A)) is twisted cyclically
invariant [17, Section 7]. Indeed, it follows from (144), since the tame symbol of W,
given by (81), is twisted cyclic shift invariant on the nose.
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4. One also has
HY(G?, K,)/K2(Z) = 0. (145)

This makes evident another crucial fact, this time about the cluster structure of the
space Confy(A): the flip invariance of the K;-class of the element W on Conf4(A),
see paragraph 4 in Sect.4. Indeed, the vanishing (145) implies that this K»-class its
determined by its tame symbol. The latter, as follows from (81), is the sum of the
contributions of the four sides of the rectangle, and thus evidently flip invariant.

5. The cluster structure of the moduli space Ag s is constructed by starting from
the cluster structure of the space Conf3(A). Next, using its twisted cyclic invariance,
we introduce the cluster structure on Conf4(.A) via the amalgamation. The flip invari-
ance of the latter allows to extend the construction of the cluster structure by the
amalgamation to the whole surface, and guarantees its I's-equivariance. The cluster
Poisson structure of the space Pg s is deduced from this. Therefore the discussion
above explains, for the first time, why the cluster structure on the dual pair of moduli
spaces (Ag.s, Pg,s) should exist.

6. The fact that the number of functions entering W, is the same as the dimension of
Conf3(.A) is irrelevant for the motivic considerations described in this paper, although
the collection of different clusters was used essentially to prove relation (81).

However what is needed for many applications, e.g. for the cluster quantization, is
not just the fact that the K»-class [ W] is twisted cyclically invariant, but that the equiv-
alence between different elements W, is achieved by cluster transformations. This, and
the amazing fact that the number of functions entering W is equal to dimConf3(A4),
shows that the construction of the second motivic Chern class capture many, but not
all, cluster features of the space Conf3(A).

2. Generalizations. The truncated cocycle (C'?, C®) gives the second Chern class
in the K>-cohomology:

M e H*(BG., K,). (146)

For G = SL,,, there is an explicit construction of all Chern classes in the Milnor
K -theory [14]:

M e H"(BGL,, KM). (147)

Its analogs for other groups G is not known for m > 2. Note that these are the classes
M e H"(BG,, KY). me{l,... k(G (148)
where {d,,} are the exponents of G. It would be very interesting to find them. An
interesting question is whether we would need a more general notion than the cluster

structure to do this.
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Furthermore, there is an explicit construction of the third motivic Chern class, see
[15]:

c3 € HS(BGLye, Z 1 (3)). (149)

This class is crucial to understand the Beilinson regulator for the weight 3. However,
strangely enough, the class c3 did not appear yet in any geometric/Physics applications
like the ones in Sect. 1.11.

It would be interesting to construct explicitly the third motivic Chern class for any
classical group G. Note that although d; = 2, for the classical G we have dy = 3,
while otherwise dp > 3.
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