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Translating transcriptomic findings from cancer
model systems to humans through joint dimension
reduction
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Model systems are an essential resource in cancer research. They simulate effects that we

can infer into humans, but come at a risk of inaccurately representing human biology. This

inaccuracy can lead to inconclusive experiments or misleading results, urging the need for an

improved process for translating model system findings into human-relevant data. We pre-

sent a process for applying joint dimension reduction (jDR) to horizontally integrate gene

expression data across model systems and human tumor cohorts. We then use this approach

to combine human TCGA gene expression data with data from human cancer cell lines and

mouse model tumors. By identifying the aspects of genomic variation joint-acting across

cohorts, we demonstrate how predictive modeling and clinical biomarkers from model sys-

tems can be improved.

https://doi.org/10.1038/s42003-023-04529-3 OPEN

1 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 2Department of Genetics, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA. 3 Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA. ✉email: parkerjs@email.unc.edu

COMMUNICATIONS BIOLOGY | (2023)6:179 | https://doi.org/10.1038/s42003-023-04529-3 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04529-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04529-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04529-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-023-04529-3&domain=pdf
http://orcid.org/0000-0002-2478-2081
http://orcid.org/0000-0002-2478-2081
http://orcid.org/0000-0002-2478-2081
http://orcid.org/0000-0002-2478-2081
http://orcid.org/0000-0002-2478-2081
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
mailto:parkerjs@email.unc.edu
www.nature.com/commsbio
www.nature.com/commsbio


In cancer genomics research, model systems such as cell lines
and mouse models are used to permit experimentation that is
impossible to do in humans. However, a major concern in

utilizing these models is the translational barriers that exist when
inferring effects from model system to the human in vivo context.
These barriers are one of the sources of variation that contribute
to ~91% of preclinical drugs failing to reach the market due to
low efficacy in humans1. This presents a pressing need to better
identify the aspects of model system genomics that can be con-
fidently translated to humans.

To address these challenges, the application of large, public
repositories of high-dimensional multi-omics data has become an
essential resource for translational studies. Specific to cancer
biology, The Cancer Genome Atlas (TCGA) and the Cancer Cell
Line Encyclopedia (CCLE) provide invaluable multi-omics pro-
filing across thousands of tumor samples and human cancer cell
lines respectively2,3. Studies have sought to combine the various
data types within a single cohort (vertical integration) to better
understand the interactions between the biological systems and
robust subtype tumors4,5. While results from these multi-omic
integration studies are promising for investigating more complex
genetics, in the context of translating model system effects, the
inherent differences between the model and human are not
considered.

More recently, methods to integrate data across cohorts (hor-
izontal integration) have been presented as a means to address
these differences. The joint analysis techniques used in these
studies come from a variety of statistical and machine learning
domains6,7. From these, dimension reduction-based methods
have been shown to be successful in both clustering and capturing
relevant correlation structure7–9. Joint dimension reduction (jDR)
approaches decompose input data blocks into lower dimensional
spaces that minimize redundant variation and tend to eliminate
spurious sampling noise10. Correlations among the low-
dimension representations are then determined using a range of
statistical techniques to determine shared components of varia-
tion. Generally, any non-shared variation is removed from the
downstream analysis as noise. However, jDR methods such as
Joint and Individual Variation Explained (JIVE)11, Multi-study
Factor Analysis12, and Multi-Omic Factor Analysis13, parse non-
shared variation from noise, isolating variation that acts in a
specific manner to a cohort. This cohort-specific variation can
then be leveraged to allow a more informed analysis for identi-
fying the drivers behind genomic effects.

Specific to translating cell line or mouse variation to human
datasets, methods such as Celligner14, PRECISE15, and
TRANSACT16 (a nonlinear implementation of PRECISE) have
shown success in clustering model systems and tumor biopsy
pairings. These methods have successfully shown how integration
can be used to generate more informed hypotheses from model
system datasets. However, only TRANSACT has demonstrated an
improvement in drug response prediction, but these predictive
models have not been validated on clinical datasets outside of the
integration (i.e., out-of-sample validation). As a result, the ability
for jDR to be used for clinical translation remains uncertain.

Here, we present an approach utilizing the jDR technique
Angle-based Joint and Individual Variation Explained (AJIVE)17,
to identify the shared and individual behavior of genes across
model systems and humans. We integrate cell line and mouse
gene expression with TCGA to demonstrate how jDR can sepa-
rate joint-acting and cohort-specific variation, and be employed
to isolate cell line and mice gene expression signals pertinent to
human biology. Clinical trial cohorts, independent of the inte-
gration and training, provide evidence supporting how jDR can
significantly improve response prediction from cell lines, in
addition to improving biomarker discovery from mouse models.

Results
AJIVE integration captures biologically joint-acting and
cohort-specific variation. AJIVE is an extension of JIVE that
employs the use of thresholded Singular Value Decomposition
(SVD) to create low-dimension approximations of input data
matrices (Fig. 1). Then, through utilizing Principal Angle Ana-
lysis, identifies low-dimension subspace bases that either share
variation structure (Joint) or contains variation that is unique to a
specific input matrix (Individual). By reprojecting the original
data (OA, OB) through these subspace bases, we can create joint
(JA, JB) and individual (IA, IB) representations of the original
inputs. These matrices contain only the shared or unique-acting
variation, respectively.

To determine if we could discriminate joint and individual
gene expression effects, we conducted a gene-wise integration of
RNA-seq data from 1102 human primary breast tumor samples
from TCGA (TCGA-BRCA) with RNA-seq from 935 cancer cell
lines from CCLE. We evaluated how well the datasets represent
one another (Fig. 2a) by comparing the decomposition of the
original input data (OTCGA-BRCA, OCCLE) into the resulting joint
(JTCGA-BRCA, JCCLE) and individual (ITCGA-BRCA, ICCLE) approx-
imation matrices. We calculated the proportion of joint variation
in OCCLE to estimate how much of the variation structure can be
captured by OTCGA-BRCA, thus giving us a measure for how well
observations can be translated from cell lines to primary tumors.

We found the majority of variation across all CCLE cell lines to
be shared with TCGA-BRCA (JCCLE= 50.33%) with a smaller
portion acting specifically to the cell lines (ICCLE= 12.15%).
Grouping cell line measures by tissue reveals that breast-tumor-
derived cell lines have, on average, the highest proportion of
JCCLE relative to ICCLE, making them the most well-represented
population of cell lines by OTCGA-BRCA according to this
proportion metric (Fig. 2b). When integrating CCLE with other
TCGA tumor type datasets (i.e., tumors from different anatomic
sites), we found this metric to be highly consistent in identifying
expected biologically relevant cell lines (Supplementary Fig. S1).
Since CCLE consists of clonal tumor cell lines, we examined how
tumor purity may affect the amount of captured joint variation in
TCGA-BRCA samples (Supplementary Fig. S2). We observed
primary tumor purity had a significant correlation to joint
variation proportion (r= 0.42, p < 0.001).

Clustering cell lines and primary tumors using O, J (Fig. 2c–f)
and I (Supplementary Fig. S3a, b) show how TCGA-BRCA
relevant breast cell lines are clearly captured in the joint
component. We observed that after AJIVE integration (Fig. 2d),
breast cell lines were not only visibly separated from the
remaining cell lines, but also defined within TCGA-BRCA
molecular subtypes18 (Fig. 2f). Furthermore, we observed that
tumors continued to cluster according to molecular subtype in
the individual variation (Supplementary Fig. S3b). This indicates
that there are aspects of primary tumor molecular subtype
variation that act specific to TCGA-BRCA and are not being
captured by the breast cell lines of CCLE. Similar clustering
effects were observed when integrating pan-cancer TCGA
samples with CCLE (Supplementary Fig. S3c–e).

Since the primary goal of our analysis was improving the
translation of gene expression effects coming from model systems
to human breast tumor populations, we prioritized maximizing
the amount of translatable joint variation from the cell line
components. To do so, we reintegrated TCGA-BRCA with just
the 50 breast-tumor-derived cell lines from CCLE (CCLE-BRCA,
OCCLE-BRCA) expecting a stronger joint component. Integrating
OTCGA-BRCA with only breast cell lines resulted in more joint
variation (JCCLE-BRCA= 64.68%), as well as a significant decrease
in cell line individual variation (ICCLE-BRCA= 4.52%, Fig. 3a).
Thus, we continued our cell line analysis using the CCLE-BRCA
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integration; a parallel analysis using the integration with all CCLE
cell lines is provided in supplementary information (Supplemen-
tary Fig. S4).

In addition, we integrated TCGA-BRCA with a collection of
290 mouse specimens from multiple genetically engineered
mouse models (GEMMs, OGEMM) of mammary cancers19–21 to
compare how well GEMMs represent human tumors against cell
lines (Fig. 3b). We observed an increase in JTCGA-BRCA variation
(28.60%), but also a significant increase in IGEMM variation
(28.82%). This indicates that the GEMMs dataset may be
capturing more aspects of variation within TCGA-BRCA.

However, it also suggests that there is a large portion of genomic
variation uniquely behaving in mice that, without AJIVE
integration, could interfere with an analysis.

We investigated how well-characterized gene expression signa-
tures were being parsed into joint and individual components by
observing the variances of genes in O, J, and I from four previously
published TCGA-BRCA signatures (one of luminal subtype
tumors22, one of basal-like subtype tumors23, one of immunoglo-
bulin Bcell/IgG expression23, and one of general immune-related
activity23) (Fig. 3c). We expected molecular subtype variation to
exist in both breast cell lines and primary breast tumor

Fig. 1 Schematic of joint dimension reduction cohort integration using AJIVE. Human and model system input data are integrated across the gene axis to
produce joint and individual projection matrices used in downstream analysis. The original input datasets (OA, OB) are decomposed through an initial low-
rank SVD using a set initial rank parameter (r) that removes residual (i.e., noise) variation. Selection of this parameter is detailed in the Methods section.
Right singular vectors are then concatenated. Principal angle analysis is performed through an additional SVD step that identifies a “Joint” subspace basis
consisting of significant joint-acting components in addition to a corresponding “Individual” subspace basis that consists of input dataset-specific
components. The original input data are reprojected through these bases to produce Joint (JA, JB) and Individual (IA, IB) projection matrices. By calculating
a joint statistic for each gene in the projection matrices, we can then identify significantly joint-acting genes across both datasets.
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Fig. 2 Joint dimension reduction integration captures relevant cell lines. a Percent of variation identified as Joint, Individual, or Residual (Noise) by AJIVE
after integrating derived cell lines from CCLE with TCGA-BRCA. b Boxplot of the joint-individual proportion ratio for CCLE cell lines grouped by tissue type.
High joint proportion and low individual proportion indicates well-represented samples across datasets. 2D projections of combined cell line and breast
tumor expression data before integration (Original) and after integration (Joint) using UMAP (n= 935 cell lines, n= 1102 primary breast tumors). Samples
were colored based on tissue type (c, d) and PAM50 molecular subtype calls18 (e, f).
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populations18, therefore be present in the joint component. In
contrast, we did not expect gene variation involved in immune
response to be in the joint component since OCCLE-BRCA does not
model the tumor immune microenvironment.

We observed a small fraction of the luminal (3.2%) and basal-
like (3.3%) subtype gene variation persisted from OCCLE-BRCA to

ICCLE-BRCA with the majority of variation persisting into JCCLE-
BRCA (luminal: 84.3%, basal-like: 80.2%). This indicates most the
molecular subtype variation in the cell lines is shared with human
tumors. However, in TCGA-BRCA, we found a larger proportion
of luminal (25.5%) and basal-like (30.6%) variation remained in
ITCGA-BRCA, suggesting there are primary tumor-specific aspects
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of subtype variation that the cell lines do not fully capture. Genes
involved in immunoglobulin and immune signatures had
variation predominantly present in ITCGA-BRCA (74.7%) with
only 1.1% of immune-related variation present in JTCGA-BRCA,
confirming our expectation that immune-related tumor variation
would not be captured by the cell lines.

Integrating the TCGA-BRCA data with GEMMs (Fig. 3d),
revealed that the immune-related tumor variation was better
captured by the GEMMs collection (73.6%). In addition, we
found basal-like gene variation to be disproportionately joint-
acting compared to luminal variation in TCGA-BRCA (basal-like
JTCGA-BRCA: 24.0%, luminal JTCGA-BRCA: 12.2%). This agrees with
previous research finding these GEMMs do not well represent
luminal breast tumors19.

To generalize this approach of determining joint gene
expression behavior, we developed a statistic based on the ratio
of a gene variance between the joint and individual matrices. The
statistic was used to evaluate the proportion between joint and
individual gene expression with positive statistics indicating joint
behavior and negative indicating individual. Using the permuta-
tion approach proposed by ref. 24, we set an FDR threshold to
determine significantly joint-behaving genes between the inte-
grated datasets (Fig. 3e, f). If a gene’s joint statistic was observed
to be greater than both FDR thresholds, it was defined as being
fully joint-behaving or translatable between datasets. If a gene’s
statistic was greater than only one FDR threshold, then this
indicates partial joint behavior where the variation seen in one
dataset may not be fully represented by the samples in the other.
These genes have the potential to be translated unidirectionally.

When integrating TCGA-BRCA with breast cell lines (Fig. 3e),
we observed over half of both luminal (31 out of 53 genes, 58.5%)
and basal-like (55 out of 94 genes, 58.5%) subtype genes were
significantly joint-behaving between both datasets at a 5% FDR
threshold. However, when only considering the CCLE FDR
threshold, we observed many more subtype genes (91.5% luminal,
81.1% basal) to, at a minimum, be unidirectionally joint-acting
(i.e., the variation observed in these cell line genes are fully
captured by samples in TCGA-BRCA, but the same genes in
TCGA-BRCA are not being completely represented by the cell
lines). This agrees with our previous finding that molecular
subtype variation is largely shared between cell lines and primary
tumors, but there are aspects of subtype variation specific to
primary tumors that are not found within the breast cell lines.
Furthermore, we found all genes in the previously used
immunoglobulin signature to not be joint-acting in either dataset.
Conversely, these genes were in the top 1% of negative TCGA-
BRCA gene statistics indicating significant primary tumor-
specific behavior (p < 0.001). Integrating TCGA-BRCA with
GEMMs (Fig. 3f) revealed that immune-related homologs in
mouse were significantly joint-behaving with TCGA-BRCA. In
addition, we observed more basal-like genes (67%) than luminal
(43.4%) to be unidirectionally joint-acting with only 19 basal-like
genes being significantly translatable between both datasets.

Utilizing joint variation improves the identification of lapati-
nib response factors. By identifying gene variation that is well
characterized and common between TCGA-BRCA and CCLE-

BRCA, we anticipated that the joint variation could be utilized to
improve the knowledge derived from cell lines. Drug response
data of cell lines are known to be highly variable and challenging
to train predictive models on due to cell line nuisance variation
resulting from both technical and in vitro artifacts25. Using
AJIVE integration, we explored if this nuisance variation could be
mitigated to produce more accurate models of human variation.

To investigate how AJIVE integration captures known genetic
associations of drug response, we evaluated how known
gene targets of lapatinib, a tyrosine kinase inhibitor of ERBB2
(HER2) and EGFR, correlate to the joint, individual, and original
versions of the CCLE-BRCA expression data (Fig. 4a). We found
both OCCLE-BRCA and JCCLE-BRCA adjusted data matrices to have a
significant correlation of ERBB2 expression with lapatinib
sensitivity (p= 0.009, p= 0.02). However, ERBB2 had an opposite
correlation within ICCLE-BRCA (p= 0.003), suggesting potential
aspects of cell line-specific variation may mask tumor sample
effects. This masking effect can be better seen in our full CCLE
analysis (Supplementary Fig. S4D) where the inclusion of non-
breast cell lines resulted in ERBB2 expression having a greater
correlation to lapatinib resistance in ICCLE. Removal of this
variation strengthened the correlation to lapatinib sensitivity in
JCCLE (OCCLE vs. JCCLE correlation difference p value= 0.04,26).

Improving clinical ERBB2-targeting response prediction
through jDR. Investigation of the joint and individual effects
supports the notion that tumor expression signatures and drug
response associations are contained within the joint component.
We then hypothesized that AJIVE integration could benefit pre-
dictive modeling of cell line drug response data by removing
nuisance variation. We developed three elastic net models of
ERBB2-targeting response using the original, joint, and individual
approximations of CCLE-BRCA when integrated with TCGA-
BRCA.

The elastic net models were applied to breast cancer samples
from CALGB 40601 (NCT00770809); this neoadjuvant trial of
HER2+ breast cancer encompassed three arms treated with a
combination of paclitaxel+ trastuzumab, paclitaxel+ lapatinib,
and paclitaxel+ lapatinib+ trastuzumab. Measurements of
mRNA-seq expression were collected from the 305 patients27,
and pathological complete response (pCR) was used as the
primary outcome. Combining all trial arms together, we predicted
ERBB2-targeting response and pCR status for each sample and
generated a receiver operating characteristic (ROC) curve
(Fig. 4b). By comparing the mean area under each model’s
ROC curve, we found training our model using the joint variation
significantly improved (p= 0.03) our predictive performance over
training over the full, unintegrated CCLE-BRCA dataset (Fig. 4c).
Examining the model performance by clinical trial arm
(Supplementary Fig. S5) revealed improvement occurred in the
paclitaxel+ trastuzumab (TH) arm and paclitaxel+ trastuzu-
mab+ lapatinib (THL) arms; we note here that the paclitaxel+
lapatinib (TL) arm was stopped early due to lack of efficacy and
thus has a smaller sample size than the other arms. To test the
extent to which integration improves the success of the models, a
retrospective analysis was performed bootstrapping the AJIVE
integration and elastic net modeling procedures at varying breast

Fig. 3 Comparing jDR integrations of breast cell lines and breast GEMMs with TCGA-BRCA. Integrations were performed between TCGA-BRCA with
CCLE-BRCA (a, c, e), and TCGA-BRCA with a collection of GEMMs of mammary cancer19–21 (b, d, f). a, b Percent of variation identified as Joint, Individual, or
Residual (Noise) by AJIVE after integration. c, d Boxplots of gene variances of published luminal, basal, immunoglobulin, and immune cell activity gene sets
grouped by unintegrated (Original), Joint, and Individual projection matrices. Boxplot elements are defined by upper and lower quartiles, median, and 1.5x
interquartile range. Data points outside of 1.5× interquartile range are marked and defined as outliers. e, f Scatterplots comparing joint statistics for each gene in
the integrated datasets. Genes involved in gene sets from c and d are highlighted. 5% FDR thresholds for each dataset are noted by the red dashed lines.
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cell line sample sizes (Supplementary Fig. S7). By adding more
breast cell lines to the integration, the amount captured joint
variation was increased, leading to improved predictive model
performance using the joint matrix.

To compare with our AJIVE-based jDR approach, we repeated
the experiment using TRANSACT16. We found applying the
TRANSACT-trained model had no significant change in
predictive performance over using the original, unintegrated
CCLE-BRCA data (Fig. 4b, c).

Joint integration captures clinically translatable gene variation
in GEMMs. As with our cell line experiment, we hypothesized
that AJIVE integration would provide benefit in translating
genomic effects of mice to human clinical data through removing
noise and isolating clinically informative variation. In a study by
Hollern et al., a large collection of mammary tumor GEMMs was
used to discover a B cell/T cell co-cluster signature that was
predictive of immune checkpoint inhibitor (ICI) sensitivity in
human melanoma patients, and predictive of response to che-
motherapy and/or trastuzumab therapy in human breast cancer
patients19. Given this known translatable biomarker, we assessed
the joint behavior of the signature between GEMMs and TCGA-
BRCA, and tested if the signature could be further refined
through joint integration.

The B cell/T cell co-cluster signature uses a collection of 22
genes. We observed the joint statistic for each of these genes

against the background between TCGA-BRCA and the GEMMs
dataset (Fig. 5a). We set an FDR threshold to select significant
joint-acting genes between the two datasets. At an FDR threshold
of 1%, 16 of the 22 genes in the signature were significantly joint-
acting. We tested both the full 22 genes and reduced 16 gene
signatures in two breast cancer clinical trials, CALGB 40601
(NCT 00770809)28 and MADRID (NCT 01560663)29 (Fig. 5b, c).
We found both signatures were equally enriched with patients
that responded to therapy. In both trials, the six genes filtered out
possessed no informative value between response groups.

In a human melanoma study of anti-CTLA4 therapy30, the
signature was enriched in responsive samples. We built elastic net
models of anti-PD1, anti-CTLA4 therapy response from the
integrated and unintegrated versions of the GEMM dataset with
TCGA-BRCA. These models were then used to predict ICI
response in the human melanoma study (Fig. 5d). We found
training our models on the AJIVE integrated joint variation to
have equivalent performance to using the entirety of the original
GEMM dataset (Original ROC-AUC= 0.73 ± 0.06,
Joint= 0.76 ± 0.07).

To test how the integrated dataset affects predictive perfor-
mance, we reintegrated the GEMM dataset with different
subtypes of TCGA and retrained our elastic net models. After
applying these models to the human melanoma study (Fig. 5e),
we determined integration with TCGA-BRCA performed best
(Mean AUC= 0.76 ± 0.07) and integration with TCGA-GBM

Fig. 4 Modeling lapatinib response from cell lines using joint and individual matrices. a Spearman correlation coefficients of ERBB2 (HER2) and EGFR
expression to lapatinib dose-response AUC in CCLE-BRCA. b Receiver operating characteristic (ROC) curve of elastic net ERBB2-targeting response
models trained from Original, Joint, and Individual CCLE-BRCA AJIVE projection matrices in addition to TRANSACT-derived principal vectors. Models were
tested on CALGB 40601 using pathological complete response (pCR) as the positive class. c Boxplot of ROC-AUCs. Empirical p-values were derived from
differences between bootstrapped predictions.
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(Glioblastoma) performed the worst (Mean AUC= 0.68 ± 0.05)
compared to the unintegrated model.

Discussion
Model systems, be they cell lines or animal models, are essential
tools for cancer research. However, it is often challenging to
translate model system findings into human tumor findings,
especially for predicting sensitivities to drugs. Barriers to this
translation are many including inherent biological differences,

but often these differences are more technical in nature. To
address this challenge, we implemented a jDR integration tech-
nique across different RNA-seq datasets, which allowed us to
identify shared and non-shared components of gene variation
between model systems and humans. The shared, joint-acting,
variation can be used to better identify genes that will translate to
a target human population. The non-shared, individual-acting,
variation can be used to either remove biases from downstream
analysis or identify unique aspects of each cohort.

Fig. 5 Integrating GEMMs data with TCGA-BRCA. a Scatterplot of joint statistics of each gene in mouse and TCGA-BRCA joint datasets. Genes involved
in the B cell/T cell co-cluster signature described in ref. 19 are highlights. Red dashed line indicates 1% FDR threshold of significant joint behavior.
b, c Boxplots of B cell/T cell signature using all genes, significant joint genes, or filtered genes, applied to CALGB 40601, trastuzumab arm28 and
pretreatment samples from the TNBC MADRID NCT 011560663 clinical trial27–29. Signature was calculated as median expression of genes. Both datasets
split by pCR. Two-tailed p values calculated from standard T-tests as in ref. 19. d Receiver operating characteristic (ROC) curve of anti-PD1/anti-CTLA4
response models trained from Original, Joint, and Individual GEMMs data AJIVE projection matrices. Models were tested in Gide et al., 2019 human
melanoma study using pathological complete response (pCR) as the positive class30. e Boxplot describing ROC-AUCs of alternative anti-PD1/anti-CTLA4
response models trained on GEMMs data integrated with other TCGA subtype data.
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We found analyzing joint variation within genome-wide gene
expression datasets lends higher confidence to finding genuine
effects occurring in both datasets. This allows predictive models
to be better translated from one dataset to another in a more
assured manner. When training Elastic Net regression models
using joint variation, we found out-of-sample clinical predictive
performance to significantly improve when modeling ERBB2-
targeting response in cell lines (ROC-AUC= 0.66), suggesting
drug prediction models could be made more clinically relevant by
applying jDR integration with an external dataset that represents
the target clinical population. To reinforce this notion, we
modeled immunotherapy response from breast GEMMs and
applied these models to a human melanoma study. Although
performance remained the same after jDR integration with
TCGA-BRCA, the choice of integrated dataset had a significant
effect on the model’s predictive performance and could poten-
tially be improved by selecting datasets that better represent both
the model system population and clinical population. In scenarios
where representative datasets are not available, our findings using
jDR to integrate pan-cancer cell lines from CCLE and all tumor
types of TCGA (Supplementary Fig. S4) suggest that jDR inte-
gration could be used to identify relevant subpopulations within
large public data repositories. Furthermore, we found TCGA-
BRCA sample purity correlated with the amount of joint varia-
tion, indicating that jDR is capturing the translatable aspects of
both high and low-purity samples. As a result, we hypothesize
that jDR integration could be used to help remove the con-
founding effects of purity level from an analysis31.

The application of horizontal integration presents a promising
avenue for training drug response prediction models. Work by
Mourragui et al. has demonstrated how different drug prediction
modeling strategies could improve training after horizontal
integration, with median ROC-AUC’s averaging between 0.56
and 0.62 across 17 drugs and 4 modeling strategies16. While these
performance measures were validated on one of the datasets used
in the integration, we have demonstrated successful application of
horizontal integrated drug prediction models to out-of-sample
clinical trials. This was done using Elastic Net models that could
potentially be improved through implementing non-linear mod-
eling strategies as done by Mourragui et al.

The use of jDR integration provides a semi-supervised
approach for identifying clinically-translatable gene variation.
By creating a statistic to formalize this identification, we
demonstrated how genes of clinical importance can be better
identified from mouse data. For clinical biomarkers, filtering out
untranslatable genes could prove to be immensely beneficial by
permitting a more precise measurement or better understanding
of the biomarker’s biology. In addition, biomarker discovery
could be improved by removing genes that would otherwise
create noise in an association analysis.

In conclusion, we provide evidence that AJIVE-based jDR
integration can be used to improve the translation of cell lines
and mouse genomics to human clinical data. Through integra-
tion, we have begun to address the potential blind spots in model
system research by objectively identifying shared features with
human specimens.

Methods
Dataset collection and processing. TCGA-BRCA (https://portal.gdc.cancer.gov/
projects/TCGA-BRCA), CCLE (GEO: GSE36139), CALGB 40601 (dbGaP Study
Accession: phs001570.v2.p1 and GEO: GSE116335), and (dbGaP Study Accession:
phs001427.v2.p1)30 gene expression data were obtained and processed through an
identical pipeline aligning to human reference genome hg38 using STAR and
quantified with Salmon. Expression values were upper quantile normalized and
log-transformed. Hematopoietic and lymphoid tissue cell lines were removed from
CCLE. Genes with no expression in any dataset were removed and an intersecting
gene list across datasets was used. Genes were mean-centered as required by AJIVE.

GEMM RNA-seq data were obtained from GEO: GSE12482119 and was
processed as detailed in the article.

Lapatinib response AUC data for the CCLE cell lines were taken from the
Cancer Therapeutics Response Portal available at https://ctd2-data.nci.nih.gov/
Public/Broad/CTRPv2.1_2016_pub_NatChemBiol_12_109/. In cell lines where
multiple AUCs were reported, a mean AUC was used instead.

All analysis and plotting were done in Jupyter using python 3.6.7 with NumPy
v1.18.5, SciPy v1.5.2, pandas v1.1.2, matplotlib v3.3.1, seaborn v0.9, and scikit-learn
v0.23.2 packages. AJIVE was run using the py_jive package (https://github.com/
idc9/py_jive).

Angle-based Joint and Individual Variation Explained (AJIVE). Joint and
Individual Variation Explained (JIVE)11 is a dimension reduction algorithm that
extends PCA to multi-block data. Given K data matrices (blocks), JIVE decom-
poses each matrix into joint (J), individual (I), and residual noise (E) structures:

Xk ¼ Jk þ Ik þ Ek ð1Þ
AJIVE extends this approach to utilize singular value decomposition (SVD) and

Principal Angle Analysis. An initial SVD step decomposes each matrix into rk low-
rank approximations, i.e., Xk ¼UkDkV

T
k where U and V are orthogonal across rk

and D is a diagonal matrix. Right singular vectors (Vk) are then concatenated and
principal angle analysis is performed through an additional SVD step:

M ¼
VT

1

..

.

VT
k

2
664

3
775 ¼ UMDMVT

M ð2Þ

where singular values σM , on the diagonal of DM , are used to calculate the principal
angles ϕj;k between row (Xj) and row (Xk):

ϕi ¼ arccos σM;i

� �2
� 1

� �
ð3Þ

for each i 2 1; ¼ ; rj ^ rk . Ranks are labeled as joint if the angle is small enough
when compared to randomly generated distribution of principal angles within the
random subspaces.

Selection of initial signal ranks. To determine AJIVE initial rank parameters (rk),
we implemented a bootstrap approach on each input dataset to find the optimal
ranks at which AJIVE correctly identifies joint variation. Samples within one input
data matrix were randomly divided into two equal halves. AJIVE was repeatedly
applied on the two halves while increasing the initial rank parameter. Percentage of
variation (sum of squares) explained by joint and individual structure were cal-
culated on the output matrices of each rank. Residual variation was defined as any
variation not explained by joint or individual structure. The process was repeated
(n= 10) with joint and individual percentages being collected and plotted (Sup-
plementary Fig. S6). The rank at which joint variation was maximized while
minimizing individual variation was selected as the optimal initial rank for each
input data matrix.

AJIVE integration between cancer cell line and human data. RNA-seq
expression data from 935 cell lines from CCLE and 1102 breast tumor biopsies
from The Cancer Genome Atlas (TCGA-BRCA) were horizontally integrated
across genes using AJIVE17. By integrating the datasets across genes, the right
singular vectors of the decomposition now represent ranks of “metagenes” across
the datasets. Each metagene contains partial combinations of genes that AJIVE
then compares and identifies as joint or individually behaving.

For integrating TCGA-BRCA with breast cell lines, we repeated the same
integration process using the 50 cell lines from CCLE derived from breast tissue
(CCLE-BRCA). AJIVE was run with CCLE and TCGA-BRCA setting initial signal
ranks of 150 and 275 respectively. For integrating CCLE-BRCA and TCGA-BRCA,
initial signal ranks were set to 35 and 135.

Sample-wise joint and individual explained variation. To quantify how the
variation of each sample was divided into joint, individual, and residual compo-
nents, we multiplied the right singular vectors of the final reprojected SVDs of each
data block by the diagonal matrix. This maintains orthonormality such that we can
calculate percentage of explained variation by the sum of squares with each matrix
from the original. We evaluated how well represented a group of cell lines was in an
integration (Fig. 2b, Supplementary Fig. S1) by calculating the ratio of joint var-
iation explained by individual variation explained for each cell line and grouping
them by tissue.

Calculating joint statistic. We developed a statistic to determine the “joint
behavior” of a gene. This is represented by the log-ratio of each gene g, variance in
the joint matrix σ2J by the variance in the individual matrix σ2I . If the variance of a
gene in either joint or individual matrix is not larger than a manually set threshold
s, then the statistic is set to zero. This threshold is determined through observing
the distribution of summed variances and prevents artifacts due to low-variance
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genes. For our analysis, s was set to 0.5.

log
max σ2Jg; s

� �

max σ2Ig; s

� �
0
@

1
A ð4Þ

P values were computed from an expected distribution through random
permutations of combining the joint and individual matrices and shuffling joint/
individual labels. FDR values were calculated according to the permutation
approach described by ref. 24.

Lapatinib association testing. To evaluate if human-relevant aspects of cell line
drug response biology can be captured in joint structure, we calculated Spearman
rank correlation coefficients of each gene in the original, joint, and individual
matrices to lapatinib response AUC (area under the drug response curve) data for
the cell lines with response data. In cases where multiple AUC values were pro-
vided for a single cell line, the median was used.

Modeling method and parameters. We chose to use Elastic Net due to a long
history of success in the drug response prediction literature, demonstrating
equivalent success to complex models32–34. We trained a linear elastic net model
on the cell lines that had lapatinib dose-response AUC data from the original, joint,
and individual CCLE (n= 551) and CCLE-BRCA (n= 32) matrices. The following
procedure was conducted on each matrix using scikit-learn.ElasticNet parameter
definitions:

1. 100 alpha values were calculated at each l1_ratio of 0.1, 0.5, 0.7, 0.9, 0.95,
and 1 by computing the elastic net path (sklearn.linear_model.enet_path).

2. We split the data into 20 iterations of training (67%) and test (33%). In
CCLE, splits were stratified according to cell line tissue of origin.

3. For each iteration, we fit elastic net models on the training set using an
exhaustive grid search over all alpha and l1_ratio combinations.

4. We applied each model to its respective test set and calculated an R2.
5. Final model was selected using the best mean R2 across the 20 iterations.

Applying models to CALGB 40601. The final original, joint, and individual elastic
net models were applied to CALGB 40601 gene expression data for samples in each
arm of the trial. In each arm, a ROC curve was computed using pathological
complete response (pCR) as the positive class. Performance was measured by area
under the ROC curve (ROC-AUC).

Comparison with TRANSACT. TRANSACT16 is a nonlinear implementation of
PRECISE15 that utilizes kernel-PCA to derive nonlinear principal components that
are then geometrically compared into principal vectors. Vectors that best balance
the contributions of the input datasets are called consensus features and are used to
project the datasets into a reduced-dimension joint space. To compare with our
AJIVE approach, we repeated our experiment integrating CCLE-BRCA and
TCGA-BRCA using TRANSACT and applied the trained predictive model on
CALGB 40601. Code to run the integration was used from the TRANSACT
package: https://github.com/NKI-CCB/TRANSACT. TRANSACT elastic net
models were trained on consensus features using the same modeling procedure as
detailed above.

AJIVE integration between cancer mouse and human data. Mouse and TCGA-
BRCA RNA-seq data were analyzed through an identical AJIVE pipeline using
initial rank selections of 60 and 135, respectively. Prior to integration, genes were
matched by capitalizing gene labels and translating any homologous genes
according to the Jackson Laboratory human-mouse homolog map available at
http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.
rpt.

Mouse predictive modeling. Predictive models of anti-PD1/anti-CTLA4 response
were trained from the GEMMs dataset using logistic regression with elastic net
penalty (sklearn.linear_model.SGDClassifier). Four models were trained using the
GEMMs samples integrated with TCGA-BRCA, TCGA-SKCM, TCGA-GBM, and
the unintegrated GEMMs dataset (Original). An identical cross-validation proce-
dure was implemented as detailed above. Final selected models from cross-
validation were tested on a human melanoma immunotherapy study as described
in ref. 30.

Statistics and reproducibility. All information on the statistical analyses per-
formed in this work has been included in the related figures, figure legends, results,
and methods. All statistical tests used to evaluate significance in addition to error
bar definitions are described in the figure legends or methods. Statistical calcula-
tions were performed using the related functions in the pandas, SciPy and scikit-
learn python packages. R2 values were calculated from the linregress function
in SciPy.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TCGA-BRCA, CCLE, and mouse data used in this article before and after integration can
be downloaded at https://webshare.bioinf.unc.edu/public/baprice/AJIVE_jDR_
Integration/. All relevant processed data used in figures in this study and supplementary
information files can be downloaded at https://webshare.bioinf.unc.edu/public/baprice/
AJIVE_jDR_Integration/FigureData. Processed data for eight other TCGA subtypes
(TCGA-BLCA, TCGA-COAD, TCGA-GBM, TCGA-KIRC, TCGA-LUAD, TCGA-
LUSC, TCGA-READ, TCGA-SKCM) are also provided at the link. Remaining clinical
data are available as noted in the article or in the jupyter notebook upon reasonable
request, and according to data use guidelines of each particular data set.

Code availability
Step-by-step code to perform AJIVE integration and calculate gene joint statistics are
available as Jupyter notebooks at https://github.com/baprice/AJIVE-jDR-Integration.
https://doi.org/10.5281/zenodo.7309384.
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