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Abstract. We consider the wave equation on a product cone and find a joint asymptotic
expansion for solutions near null and future infinities. The rates of decay seen in the expan-
sion at future infinity are the resonances of a hyperbolic cone and were computed by the
authors in [BM19]. The expansion treats an asymptotic regime not considered in the influ-
ential work of Cheeger and Taylor [CT82a, CT82b]. The main result follows the blueprint
laid out in the [BVW15, BVW18] with key new elements including propagation estimates
near the conic singularities. The proof of the propagation estimates extends prior work of
Melrose–Vasy–Wunsch [MVW08] and Gannot–Wunsch [GW18].

1. Introduction

For a given compact connected Riemannian manifold (Z, k), we say that the cone C(Z)
over Z is the manifold

(0,∞)r × Z,

equipped with the (singular) Riemannian metric

dr2 + r2k.

We consider the wave equation{
□w = (D2

t −∆C(Z))w = 0 ∈ C∞
c (R× C(Z)),

(w, ∂tw)|t=0 ∈ C∞
c (C(Z))× C∞

c (C(Z)),
(1)

on R× C(Z). Here ∆C(Z) represents the Friedrichs extension of the Laplacian on C(Z).
In order to simplify the statement of our main result, we introduce the (forward) Fried-

lander radiation field, which is given in terms of s = t− r, r, and z by

R+[w](s, z) = lim
r→∞

r(n−1)/2w(s+ r, r, z).

The function R+[w] measures the radiation pattern seen by a distant observer and is an
explicit realization of the Lax–Phillips translation representation as well as a generalization
of the Radon transform. Our main theorem can then be stated in terms of the radiation
field as s, the “lapse” parameter, tends toward infinity (a more detailed theorem is stated
later as Theorem 9.1):

Theorem 1.1. Suppose w is a solution of the wave equation on a cone with smooth ini-
tial data compactly supported away from the conic singularity, i.e., that w is a solution of
equation (1). The radiation field R+[w](s, z) of w admits an asymptotic expansion of the
form

R+[w](s, z) ∼
∑
j

aj,κ(z)s
−iσj

as s→ +∞.
1
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In short, we find a complete asymptotic expansion for the radiation field of a solution. The
exponents in the expansion are the resonances of the spectral family of the Laplacian on a
related “hyperbolic cone” and were computed in a previous paper [BM19]. In fact, the σj can
be computed explicitly in terms of the eigenvalues µ2

j of ∆k. Because each eigenvalue µ2
j leads

to an entire family of resonances, it is easier to rename them σj,k in terms of two parameters,
which we call j and k. Here j refers to the eigenvalue in question and k ∈ N = {0, 1, . . . }.

(2) σj,k = −i

1

2
+ k +

√(
n− 2

2

)2

+ µ2
j


provided that √(

n− 2

2

)2

+ µ2
j /∈

1

2
+ Z.

The resonance σj has the same multiplicity as the eigenvalue µ2
j of ∆k.

In fact, we prove a stronger theorem showing that w in fact enjoys a joint asymptotic
expansion in r and s of the form

w ∼ r−
n−1
2

∑
j

∞∑
ℓ=0

ajκλ(z)s
−iσj(s/r)ℓ.

A precise statement of the theorem is given at the beginning of Section 9 below. The hyper-
bolic cone above is naturally realized as a boundary face of the spacetime compactification
introduced below in Section 2; the joint asymptotics describe the behavior near the intersec-
tion of two faces.

We note further that the hypotheses of Theorem 1.1 may be relaxed somewhat; it is
not strictly necessary that we consider the static wave equation on a product cone; we
stick to this setting for pedagogical reasons but describe straightforward generalizations
below (see Section 2). Although the argument simplifies in the product setting, the compli-
cations arising in the general setting can be treated using more refined microlocal tech-
niques, though logarithmic terms might appear in the expansion. See for instance the
previous papers [BVW15, BVW18] for relaxing the static hypothesis and Melrose–Vasy–
Wunsch [MVW08] to relax the product hypothesis. Recent work of Yang [Yan20] further
connects this paper with the work of Cheeger–Taylor by linking the scattering matrix (whose
structure can be obtained from our result) with the principal symbol of the diffracted wave.

The results in Theorem 1.1 extend the foundational work initiated by Cheeger–Taylor
in [CT82a, CT82b], though our aim is different. Cheeger and Taylor were more interested
in the propagation of wavefront set for the wave equation on product cones; in particular
their main aim was to show the existence (and calculate the symbol) of the diffracted wave
arising from the metric singularity. In the process, they also found the asymptotic behavior of
solutions of the wave equation away from I+; we recover their result in this region. Although
in principle Theorem 1.1 can be recovered using the methods of Cheeger–Taylor [CT82a,
CT82b] provided one could extend their asymptotic expansion uniformly to the boundary of
the light cone, we provide an alternative microlocal proof.

The novelty of this paper involves several advances on existing technology for the study
of waves in a diffractive setting. Not only do we essentially finish the project of Cheeger–
Taylor in a fashion that gives a complete asymptotic description, we find that cones provide
an additional class of examples where the expansion of the radiation field can be computed
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explicitly using special functions methods as in our previous work [BM19]. In particular,
the exponents in the expansion are resonance poles of the Laplacian on the hyperbolic cone
and the coefficients in the expansion arise as boundary values of the resonant states; the
structure of the resonant states gives insight into the structure of the scattering matrix. A
similar observation underlies the work of Yang mentioned above [Yan20].

From a more technical perspective, we have extended a number of microlocal tools to our
setting. In the bulk spacetime, we adapt and extend the propagation results of Melrose–
Wunsch [MW04] and Vasy [Vas08] to our compactification. This extension requires putting
the differential–pseudodifferential interactions at the core of those papers on a more global
footing.

The technical heart of the paper, however, lies in our treatment of the normal operator
on the boundary in Section 8. We extend the differential–pseudodifferential interactions
to a class of variable order Sobolev spaces on which the boundary operator is Fredholm.
We also establish semiclassical propagation estimates on these spaces; to our knowledge
analogous results have not yet appeared in the literature. The work [GW18] of Gannot–
Wunsch establishes similar semiclassical estimates for conormal potentials, which in this
case can be viewed as a one-dimensional cone.

Finally, an additional technical novelty encountered is that solutions of the wave equation
are not polyhomogeneous on the final compactified spacetime. Indeed, they are conormal to
all boundary hypersurfaces but only polyhomogeneous at a subset of them. To this end, we
formalize the notion of partial polyhomogeneity in Definition 3.1.
In addition to advances in analysis, the results we obtain here have several direct applica-

tions to important physical models. Diffractive systems arise naturally in physical settings
where singular potentials appear, such as in the cases of inverse square potential or the
Dirac-Coulomb system. This framework has been adapted to study the long time asymp-
totics directly for the massless Dirac-Coulomb system in recent work [BBGR21]. In ad-
dition, further advances building upon this work have appeared in studying the resolvent
and/or scattering matrix for Laplacian on a manifold with conic singularities in the works
[Hin20, Hin21a, Yan20], as well as in development of propagation of singularities for conic
operators. The partial polyhomogeneity of solutions also implies a novel version of the
so-called Price’s law explored recently using similar tools in the non-diffractive setting by
Hintz [Hin21b]. In more singular settings, the observed decay rates change in an interest-
ing fashion directly related to the diffractive component of the problem. This particular
application will be explored further in a forthcoming work.

1.1. A sketch of the proof of Theorem 1.1. To prove the main theorem, we show
that solutions to equation (1) are partially polyhomogeneous on a compactification of the
spacetime R× C(Z) and then identify the exponents seen in the expansions. As this proof
is somewhat involved, we provide a sketch here.

We compactify the spacetime R× C(Z) to a manifold with corners we call M , which has
two boundary hypersurfaces: one, denoted mf, corresponds to the “boundary at infinity”,
while the other, denoted cf, corresponds to the world line of the conic singularity. We refer
the reader to Figure 1 in the next section for a fuller picture of the geometry.

An instructive example is the case of a “phantom cone”. One can view Rn as a conic
manifold by equipping it with polar coordinates; in this case the link is Z = Sn−1. The
compactification to M in this case can be blown down along cf to yield the compactification
of the Minkowski spacetime considered in previous work [BVW15, BVW18].
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The proof of the main theorem roughly follows the blueprint laid out in previous work of the
first author [BVW15, BVW18], which in turn builds on the influential work of Vasy [Vas13].
In particular, our aim is to reduce the problem of finding an asymptotic expansion to the
inversion of a family of Fredholm operators on mf; the residues of the poles of this family
generate the terms in the expansion. Showing that the family is Fredholm (and that the
argument can begin) reduces to a sequence of propagation of singularities arguments.

The forward radiation field encodes the behavior of the solution u near the intersection
of the future light cone with infinity (i.e., the face mf); we denote this intersection S+. To
find the asymptotics of the radiation field, we therefore ultimately blow up S+ in mf to
obtain a third boundary hypersurface corresponding to “future null infinity”. Locally near
the interior of this new front face (denoted I+), the blow-up amounts to introducing new
coordinates ρ = (1 + t2 + r2)−1/2, s = t− r, and z; the front face is given by ρ = 0.

We begin with the solution of equation (1); by smoothly cutting off the solution for t < 0,
we consider instead the forward solution of □w = f , where f ∈ C∞

c (M◦) vanishes identically
for t < 0. We consider then the function u = ρ−(n−1)/2w and set

L = ρ−2ρ−(n−1)/2□ρ(n−1)/2,

so that u satisfies Lu = f ′ for some other function f ′ ∈ C∞
c (M◦) vanishing for t < 0.

Note that the asymptotic properties of w and u are linked by a simple relationship. A
propagation of singularities argument (proved in Section 8) shows that u is conormal to S±.
The conormality of the solution at the conic singularity cf is one of the consequences of the
work of Melrose–Wunsch [MW04, Proposition 11.1]; we extend that result to the corners
mf ∩ cf.

We then set Pσ = N̂(L) where N̂ is the reduced normal operator, i.e., the family of
operators on mf obtained by the Mellin transform in the normal variable ρ. We set ũσ and

f̃σ to be the Mellin transforms of u and f ′, so that ũσ solves

Pσũσ = f̃σ.

In general, one would expect additional correction terms, but the dilation invariance of the
model problem simplifies the argument considerably and accounts for the absence of loga-
rithmic terms in the expansion in Theorem 1.1. We show that we can propagate regularity
from the past “radial points” of Pσ to the future ones. Away from the conic singularity, this
argument is contained in the previous papers [BVW15, BVW18, Vas13]; the main missing
piece is the propagation near the conic singularity (proved in Section 8). This argument
shows that Pσ is Fredholm on variable-order Sobolev-type spaces and P−1

σ has finitely many
poles in any horizontal strip. In fact, the poles of P−1

σ can be identified with the resonances
of the corresponding hyperbolic cone.

Once these pieces are in place, we can adapt the argument from the prequel [BVW18]
to prove the main theorem. As parts of it are somewhat more complicated in the present
context, we provide a sketch of that argument below (Section 9).

Section 2 provides an introduction to the specific geometry we consider, and Section 3
provides a brief review of the geometry of manifolds with corners and asymptotic expansions
on them. We discuss the model operators we consider in Section 4, then in Section 5 we
present the pseudodifferential calculi employed. Section 6 develops the function spaces in
which the various arguments take place. Sections 7 and 8 then establish the key propagation
of singularities results we need to prove the main theorem in Section 9.
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1.2. Notation. As the proof of this paper relies on quite a few interacting differential and
pseudodifferential objects, we provide here a short list of notational conventions employed.

We adopt the convention that D = 1
i
∂. The differential operator ∆h is the nonnegative

Laplacian for a Riemannian metric h; in a coordinate system it is given by

∆h =
∑
i,j

1√
h
Di

(
hij

√
hDj

)
.

In indexing spaces of pseudodifferential operators and Sobolev spaces, m is typically the
differential order while ℓ represents an order of growth or decay.

The L2 spaces employed in this manuscript are always taken with respect to a density
induced by a metric near x = 0; in coordinates, these densities are given by

xn−1dρ

ρ
dx dvolk in the bulk spacetime M, and xn−1dx dvolk on the boundary mf .

We aim to use the same Greek letter to denote a dual coordinate in the cotangent bundle
to a coordinate on the base; we use τ to denote a dual to ρ, ξ a dual to x, and ζ a dual
to z. We use different typographical conventions to denote covectors in different cotangent
bundle constructions. An undecorated covector (such as ξ) refers to that coordinate in the
standard cotangent bundle, an underline (ξ) is reserved for the b-cotangent bundle, and the
subscript e is used with the edge cotangent bundle.

Acknowledgments. The authors wish to thank Semyon Dyatlov, Oran Gannot, Peter
Hintz, Rafe Mazzeo, Andras Vasy and Jared Wunsch for valuable discussions. We also thank
the anonymous reviewers for many helpful suggestions that led to improving the exposition
of the manuscript. DB was supported in part by National Science Foundation (NSF) under
NSF Grant DMS-1500646 and NSF CAREER Grant DMS-1654056. The research of JLM
was supported by NSF Grant DMS-1312874 and NSF CAREER Grant DMS-1352353. Part
of this work was done while the second author was on sabbatical at Duke University and the
Mittag-Leffler Institute.

2. Conic geometry

As our primary concern is the wave equation on a cone, we describe this setting in detail.
Remark 2.1 describes natural extensions to this setting on which versions of our main result
still hold.

Let (Z, k) be a compact, connected, (n−1)-dimensional Riemannian manifold. The metric
cone C(Z) over Z is the manifold

(0,∞)r × Z

equipped with the warped product metric

dr2 + r2k.

This metric is singular and incomplete at r = 0; we refer to the natural boundary {0} × Z
as the cone point.1

Our main result concerns solutions of the wave equation on the spacetimeM◦ = Rt×C(Z),
which is equipped with the Lorentzian metric

g = −dt2 + dr2 + r2k.

1We regard the conic singularity as being purely metric; one can think of the underlying manifold as
having been previously resolved by blowing up a conic singularity.



6 D. BASKIN AND J.L. MARZUOLA

t

r
cf

mf

R× (0,∞) S2++

Figure 1. The compactification of R× (0,∞) to S2
++
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Figure 2. Regions I, II, and III in S2
++

We may regard M◦ as the interior of a compact manifold with corners. For clarity, we
first describe this compactification in the (1+1)-dimensional setting (i.e., when Z is a single
point) even though Theorem 1.1 is trivial in this case.

We compactify Rt×(0,∞)r by stereographic projection to a quarter-sphere S2
++ as depicted

in Figure 1. In other words, the map Rt × (0,∞)r → S2 ⊂ R3 given by

(t, r) 7→ (t, r, 1)√
1 + t2 + r2

sends M◦ to the interior of the quarter-sphere given by

S2
++ =

{
(z1, z2, z3) ∈ S2 ⊂ R3 | z2 ≥ 0, z3 ≥ 0

}
.

The quarter-sphere S2
++ is a manifold with corners and has two boundary hypersurfaces

defined by the boundary defining functions z2 and z3. We let cf (or the conic face) be the
hypersurface defined by the function

z2 =
r√

1 + t2 + r2

and we let mf (or the main face) be the face defined by

z3 =
1√

1 + t2 + r2
.

The boundary hypersurface mf plays an outsized role in the manuscript and is often referred
to as X when considered on its own.

Having defined the smooth structure of this compactification, it is often convenient to work
with other equivalent boundary defining functions in different regions. We define regions I,
II, and III (the shaded regions in Figure 2) as follows: We let region I denote a fixed
neighborhood in S2

++ bounded away from mf; region II is a neighborhood of mf bounded
away from cf; finally, region III is a neighborhood of the corners mf ∩ cf. For concreteness,
we can take region I to be given by {|t|, r ≤ 10}, region II to be {r ≥ 2, r ≥ |t|/2}, and
region III to be {|t| ≥ 2, |t| ≥ r/2}. Note that region III has two connected components; we
typically work with only one component at a time.
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In defining the Mellin transform below, it is useful to have a fixed boundary defining
function for mf. For this purpose, we let ρ denote a defining function for mf that is equal to
1
t
for t/r > 1/2 and equal to 1

−t
for t/r < −1/2.

We now describe several convenient boundary defining functions valid in the different
regions. For notational convenience, we always use ρ (or ρ̃) to denote a defining function
for mf and x to denote a defining function for cf. In region I, (where we are bounded away
from mf), it is convenient to take x = r, while in region II (where we are bounded away
from cf), we can take ρ̃ = 1/r. Finally, in region III (the source of most of the new technical
work in this manuscript), it is typically convenient to take ρ = ±1/t and x = r/|t|. Because
polyhomogeneity is independent of the choice of equivalent boundary defining functions, one
can typically use whichever boundary defining functions are most convenient at the time.

On the (1 + 1)-dimensional Lorentzian manifold S2
++, we employ coordinate systems spe-

cialized to the different regions. In region I, we employ x = r and use coordinates (t, x); the
Lorentzian metric here has the familiar form

−dt2 + dx2.

In region II, the metric has the form of a short-range asymptotically Minkowski metric as
employed by the first author and collaborators [BVW15]; we use (ρ̃, y) as coordinates, where
ρ̃ = 1/r and y = t/r. The metric in this coordinate system has the form

−dy
2

ρ̃2
+ 2y

dy

ρ̃

dρ̃

ρ̃2
+ (1− y2)

dρ̃2

ρ̃4
.

Near the corner (region III), in terms of (ρ, x) the metric has the form

−(1− x2)
dρ2

ρ4
− 2x

dx

ρ

dρ

ρ2
+
dx2

ρ2
.

For the more general case of M◦ = R × C(Z), we take M to be the closure of the image
of M◦ under the map R× (0,∞)× Z → S2 × Z given by

(t, r, z) 7→
(

(t, r, 1)√
1 + t2 + r2

, z

)
.

In other words, we take M = S2
++ × Z to be the compactification of M◦ to a manifold with

corners.
In region I, the metric is the spacetime metric on a conic manifold studied by Melrose–

Wunsch [MW04] (and later by Melrose–Vasy–Wunsch [MVW08]). In region II, g has the
form

(3) g = −dy
2

ρ̃2
+ 2y

dy

ρ̃

dρ̃

ρ̃2
+ (1− y2)

dρ̃2

ρ̃4
+
k

ρ̃2
,

which is again a short-range asymptotically Minkowski metric (though written in somewhat
different coordinates than those in [BVW15]).

Near the corner (region III), the metric has the form

(4) g = −(1− x2)
dρ2

ρ4
− 2x

dx

ρ

dρ

ρ2
+
dx2

ρ2
+
x2k

ρ2
.

This metric is a hybrid of a Lorentzian scattering metric (in that it is built from 1-forms of
the type dρ/ρ2 and α/ρ) and a conic type metric (in that it degenerates as x→ 0).
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S2++ [S2++;S+ ∪ S−]

cf

C+

C0

C−

S+

S−

I+

I−

C+

C0

C−

cf

Figure 3. A schematic view of the radiation field blow-up. The lapse function
s increases along I+ towards C+.

Remark 2.1. There are a number of natural extensions to the product cone setting that
require little additional work. All of the results and proofs in this manuscript (other than the
explicit characterization of exponents) apply to the setting where g is a Lorentzian metric
on M = S2

++ × Z that is

(1) a spacetime conic metric (so that the results of Melrose–Wunsch [MW04] apply) in
region I,

(2) a (long-range or short-range) asymptotically Minkowski metric in region II, and
(3) a hybrid in region III. In other words, in region III, we demand that g is built out

of dρ2/ρ2, dx/ρ, and dz/ρ and that its leading order behavior as x → 0 (in terms of
these objects) is

−dρ
2

ρ4
+
dx2

ρ2
+
x2k

ρ2
.

2.1. The radiation field blow-up. In this section we recall from previous work [BVW15,
BVW18] the construction of the manifold with corners on which the radiation field naturally
lives.

Consider the submanifold S = {ρ = 0, y = ±1} in region II (S is given by {ρ = 0, x = 1}
in region III). This submanifold naturally splits into two components according to whether
±t > 0 near the component. We use S± to denote these two pieces; they split the complement
of S in mf into three connected components. We use C0 to denote those points in mf where
y ∈ (−1, 1), while the subset of mf in region III where x < 1 has two components, denoted
C± according to whether ±t > 0 nearby.

We now blow up S inM by replacing it with its inward pointing spherical normal bundle.2

In the product cone setting, this is equivalent to blowing up a pair of points in S2
++ and then

taking the product with Z. This process replaces M with a new manifold M = [M ;S] on
which polar coordinates around the submanifold are smooth; the smooth structure of this
manifold with corners depends only on the submanifold S (and not on the particular choice
of defining functions). The blow-up is equipped with a natural blow-down map M → M ;
this map is a diffeomorphism on the interior. Figure 3 depicts this blow-up construction.

The new space M is again a manifold with corners and has six boundary hypersurfaces:
the closure of the lifts of the interiors of C0 and C± to M , which are again denoted by C0

and C±; the lift of cf, again denoted cf, and two new boundary hypersurfaces consisting of
the pre-images of S± under the blow-down map. These two new hypersurfaces are called
future/past null infinity and denoted by I±. Moreover, I± is naturally a (trivial) fiber bundle

2The reader may wish to consult Melrose’s book [Mel93] for more details of the blow-up construction.
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over S± with fibers diffeomorphic to intervals. Indeed, the interior of each fiber is naturally
an affine space (i.e., R acts by translations, but there is no natural origin). In terms of y
and ρ, the fibers of the interior of I± in M can be identified with R× Z via the coordinate
s = ±(y ∓ 1)/ρ. In other words, s = t− r provides a coordinate along I+ and s = r+ t is a
coordinate along I−.
In our setting, Friedlander’s argument [Fri80, Fri01] shows that for solutions w of the wave

equation □gw = 0 with smooth, compactly supported initial data, the restriction

R±[w](s, z) = ρ−
n−1
2 w|I±

is well-defined and smooth. This is Friedlander’s radiation field.3

3. Basics of b-geometry

The main results in this paper require an understanding of the interaction between Mel-
rose’s b-calculus and differential operators on cones. In light of the compactification de-
scribed above, we begin by recalling results about analysis on manifolds with corners.
Some of the discussion in the next few sections is adapted from prior work of the first
author [BVW15, BVW18], while a more thorough discussion of b-geometry can be found in
Melrose’s book [Mel93, Chapter 4]. In the context of manifolds with corners, we refer the
reader to Melrose’s unpublished book [Mel96] and to Vasy’s work [Vas08].

Throughout the paper we let M denote a compact (n + 1)-dimensional manifold with
corners and X a compact n-dimensional manifold with boundary. A function ρ ∈ C∞(M)
is a boundary defining function for a boundary hypersurface H of M if ρ vanishes simply at
H and is non-vanishing elsewhere. A codimension k corner is the intersection of k boundary
hypersurfaces of M . Near a codimension k corner H1 ∩ · · · ∩Hk, we may use

(ρ1, . . . , ρk, y) ∈ [0, 1)k × Rn+1−k

as coordinates on M , where ρj is a boundary defining function for Hj and y are coordinates
along the corner H1 ∩ · · · ∩Hk.

As our main applications involve corners of codimension no greater than two, we now
specialize to that case. We assume now that M has corners of codimension two and that
ρ and x are boundary defining functions (to keep consistent with notation above) in a
neighborhood of a codimension two corner. Further keeping consistent with our notation,
we use z to denote the remaining coordinates.

The space of b-vector fields on M , denoted Vb(M), is the space of smooth vector fields
on M tangent to ∂M . Near a codimension 2 corner {ρ = x = 0}, Vb(M) is spanned over
C∞(M) by the vector fields ρ∂ρ, x∂x, ∂z. The vector field ρ∂ρ is called the b-normal vector
field to the boundary hypersurface {ρ = 0} and is independent of choice of coordinate system
as an element of Vb(M)/ρVb(M).

In fact, Vb(M) is a Lie algebra and is the space of smooth sections of a vector bundle
(called the b-tangent bundle) bTM over M . The sections of its dual bundle bT ∗M are
locally spanned near a codimension 2 corner over C∞(M) by the 1-forms dρ/ρ, dx/x, and
dz.

The b-cotangent bundle bT ∗M is equipped with a canonical 1-form, which can be written

(5) τ
dρ

ρ
+ ξ

dx

x
+ ζ · dz

3Note that our definition differs from Friedlander’s by the absence of a derivative.
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in local coordinates near a codimension 2 corner. The fiber compactification bT ∗M of bT ∗M
is given by radially compactifying each fiber. A defining function for the “boundary at
infinity” of a fiber is given by

ν =
(
τ 2 + ξ2 + |ζ|2

)1/2
,

and near infinity we may use

ν, τ̂ = ντ , ξ̂ = νξ, ζ̂ = νζ

as a redundant set of coordinates on each fiber near {ν = 0, ρ = 0, x = 0}.4 We let bS∗M

denote the boundary at infinity of bT ∗M , i.e., {ν = 0}.
The b-cotangent bundle further inherits a canonical symplectic structure where the sym-

plectic form is given by the exterior derivative of the canonical 1-form. (In other words, the
natural symplectic structure on T ∗M extends to bT ∗M .) If we write covectors in bT ∗M in
local coordinates as

τ
dρ

ρ
+ ξ

dx

x
+ ζ · dz,

then the symplectic form is given by

(6) dτ ∧ dρ

ρ
+ dξ ∧ dx

x
+ dζ ∧ dz.

As Vb(M) is a Lie algebra, we also consider its universal enveloping algebra, denoted
Diff∗

b(M). Near the codimension 2 corner defined by {ρ = x = 0}, an operator A ∈ Diffm
b (M)

has the form

(7) A =
∑

j+k+|α|≤m

ajkα(ρ, x, z) (ρDρ)
j (xDx)

kDα
z ,

where ajkα ∈ C∞(M). The principal symbol of such an operator is given by

σb(A) =
∑

j+k+|α|=m

ajkα(ρ, x, z)τ
jξkζα.

The semiclassical version of Diffm
b (M), denoted Diffm

b,h(M), is similarly defined with a
parametric dependence on a small parameter h > 0. In local coordinates, an operator
A ∈ Diffm

b,h(M) has the form

(8) A =
∑

j+k+|α|≤m

ajkα(ρ, x, z;h) (hρDρ)
j (hxDx)

k (hDz)
α

where ajkα ∈ C∞(M) are bounded in h. In fact we require Diff∗
b,h only in the context of the

manifold with boundary X. The semiclassical principal symbol of such an operator captures
the leading order behavior, i.e., up to hDiffm−1

b,h (M).
While the principal symbol of a differential operator captures its high-frequency behavior,

it fails to characterize the asymptotic behavior at the boundary. At each boundary face, there
is a dilation-invariant model operator, called the normal operator that captures this behavior.
We require this operator only at the face given by {ρ = 0}, where it is obtained by freezing the

4Strictly speaking, we should regard (τ̂ , ξ̂, ζ̂) ∈ Sn and then regard (ν, τ̂ , ξ̂, ζ̂) as “polar coordinates” near

infinity.
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coefficients of ρDρ, xDx, and Dz at ρ = 0. In other words, N(A) ∈ Diffm
b ([0,∞)× {ρ = 0})

and is given by

(9) N(A) =
∑

j+k+|α|≤m

ajkα(0, x, z)(ρDρ)
j(xDx)

kDα
z .

Just as the Fourier transform is central to the study of approximately translation-invariant
operators, the Mellin transform is useful in the study of approximately dilation-invariant op-
erators. For the main application of this paper, we need only the Mellin transform associated
to a single boundary hypersurface H = {ρ = 0}. Suppose u is a distribution on M suit-
ably localized near the boundary hypersurface H defined by ρ. The Mellin transform of u
associated to H is defined by

ũσ = Mu(σ, x, z) =

∫ ∞

0

χ(ρ)u(ρ, x, z)ρ−iσ−1 dρ,

where χ is a smooth compactly supported function that is equal to 1 near ρ = 0.
The Mellin conjugate of the operator N(A) is known as the reduced normal operator.5 For

N(A) given by the formula (9) above, the reduced normal operator is the family of operators
on the boundary hypersurface H given by

(10) N̂(A) =
∑

j+k+|α|≤m

ajkα(0, x, z)σ
j(xDx)

kDα
z .

The Mellin transform is particularly useful in the study of asymptotic expansions in powers
of ρ and log ρ. We first discuss the case where M has only a single boundary hypersurface,
i.e., when M is a manifold with boundary. In particular, we recall from Melrose [Mel93,
Section 5.10] that if u is a distribution on a manifold with boundary, we say that u is
polyhomogeneous with index set E if and only if u is conormal to ∂M (in particular, u is
smooth away from the boundary), and

u ∼
∑

(z,k)∈E

ρiz(log ρ)kazk,

where azk are smooth functions on ∂M . Here the expansion should be interpreted as an
asymptotic series as ρ→ 0 and E is an index set and therefore must satisfy6

• E ⊂ C× {0, 1, 2, . . . },
• E is discrete,
• if (zj, kj) ∈ E with |(zj, kj)| → ∞, then Im zj → −∞,
• if (z, k) ∈ E, then (z, l) ∈ E for all l = 0, 1, . . . , k − 1, and
• if (z, k) ∈ E, then (z − ij, k) ∈ E for all j = 1, 2, . . . .

We refer the reader to Melrose’s book [Mel93, Section 5.10] for a discussion of the natu-
rality of these conditions. As an example, the functions that are smooth up to ∂M are
polyhomogeneous with index set E = {(−ij, 0) : j = 0, 1, 2, . . . }.
Polyhomogeneous distributions are characterized in two different ways: by the Mellin

transform and by the application of scaling (or radial) vector fields. To see the former, we
recall a characterization of this space given by Melrose [Mel93, Proposition 5.27]. For a given

5We require this construction only for differential operators, though it extends to b-pseudodifferential
operators as well.

6We have adopted the index set convention of Melrose’s unpublished book [Mel96] rather than the other
reference [Mel93] to remain consistent with the first author’s prior work [BVW15, BVW18].
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index set E, a distribution u is polyhomogeneous with index set E if and only if its Mellin
transform is meromorphic with poles of order k only at points z for which (z, k − 1) ∈ E
(together with appropriate decay estimates in σ).

Alternatively, we may test for polyhomogeneity by using radial vector fields. Let R denote
the radial vector field ρDρ. We characterize a polyhomogeneous distribution u with index
set E by the requirement that for all A, there is a γA with γA → +∞ as A→ +∞ so that

(11)

 ∏
(z,k)∈E,Im z>−A

(R− z)

u ∈ ργAH∞
b (M),

where H∞
b (M) denotes the space of distributions conormal to the boundary.

Our main theorem concerns polyhomogeneity at two boundary hypersurfaces on a manifold
with codimension 2 corners. We apply this characterization below to the manifold M , which
has six boundary hypersurfaces cf, C±, C0, and I±. The distributions we consider vanish
identically near I−, C−, and C0, so there are three hypersurfaces of interest.

In the characterization that follows, we let H1 = I+, H2 = C+, and H3 = cf denote the
relevant hypersurfaces; for now we let ρ1 define H1, ρ2 define H2, and x define H3. We now
define the space of partially polyhomogeneous distributions with index sets E = (E1, E2).

Definition 3.1. A distribution u lies in AE
pphg(M), the space of partially polyhomogeneous

distributions with index sets E , if u is conormal to all boundary hypersurfaces, and, for each
j = 1, 2, we have

u ∼
∑

(z,k)∈Ej

ajzkρ
iz(log ρ)k mod ρ∞j ρ

−A
3−jx

−BH∞
b (M),

where A is some fixed number greater than sup{Im z | (z, k) ∈ Ej, j = 1, 2}, B is some
fixed number, and ajzk are smooth at the hypersurface defined by ρj, conormal at H3, and
polyhomogeneous (with index set E3−j) at the other one.

When testing for (partial) polyhomogeneity at multiple boundary hypersurfaces, it suf-
fices to test individually at each one with uniform estimates at the others. This result is
due independently to Mazzeo [Eco93, Appendix] and Melrose [Mel96, Chapter 4] and is a
consequence of a characterization by multiple Mellin transforms. In particular, we appeal to
the following proposition.

Proposition 3.2 (cf. Mazzeo, Melrose). Let Rj denote ρjDρj , the radial vector field at the

boundary hypersurfaces defined by ρj. For E = (E1, E2), a distribution u lies in AE
pphg(M) if

and only if it is conormal to all boundary hypersurfaces and for each j = 1, 2 there are fixed
weights αj, βj and for all A, there is a γj,A with γj,A → +∞ as A→ +∞, so that ∏

(z,k)∈Ej ,Im z>−A

(Rj − z)

u ∈ ρ
γj,A
j ρ

αj

3−jx
βjH∞

b (M).

In other words, applying the test (11) above at the boundary hypersurface Hj defined
by ρj improves the decay at Hj at no cost to the growth/decay at the other hypersurfaces.
Note that there is no requirement that the coefficients be polyhomogeneous; their joint
polyhomogeneity atH1∩H2 follows automatically when the condition is imposed individually
at H1 and H2.
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4. The operators L and P̃σ

Friedlander’s argument for the existence of the radiation field motivates the definition
below of the operator

L = ρ−2−(n−1)/2□gρ
(n−1)/2,

and its reduced normal operator P̃σ = N̂(L). Because changing the boundary defining

functions by a smooth non-vanishing multiple changes L and P̃σ by a lower order term, we
freely work with whichever forms of the boundary defining functions are most convenient.

For later reference, we record the forms of the operators L and P̃σ in region III, where the
metric has the form as in equation (4).7 Indeed, we write (using D = 1

i
∂):

L = (ρDρ + xDx)
2 − ni (ρDρ + xDx)−D2

x +
(n− 1)i

x
Dx −

1

x2
∆k −

n2 − 1

4
,

P̃σ = (xDx + σ)− ni (xDx + σ)−D2
x +

(n− 1)i

x
Dx −

1

x2
∆k −

n2 − 1

4
.

In the main propagation results of Sections 7 and 8, we require an understanding of the

Hamilton flow of the principal symbols of the operators L and P̃σ. We start by describing
this flow near cf (in M) and near ∂X = mf ∩ cf (in X = mf).

4.1. Broken bicharacteristics for the operator L. We now aim to describe set of bro-
ken bicharacteristics along which singularities may propagate. Perhaps the shortest path to
their characterization involves the edge cotangent bundle, which we describe shortly. More-
over, the propagation arguments in the bulk spacetime M in Section 7 require commuting
b-pseudodifferential operators through the differential operators naturally associated to the
conic metric. It is therefore convenient to introduce a small amount of the edge calculus ma-
chinery (namely, the bundles and the differential operators) introduced by Mazzeo [Maz91].
We specialize our description to the specific setting in which we work, though the calculus
applies in much more general settings. In an abuse of notation, we use the term “edge” to
refer to objects that behave as edge objects at cf and as b-objects at mf. The reader wishing
to skip this section need only note that the space of edge differential operators Diff∗

e and the
compressed characteristic set Σ̇ are referred to later.

Our use of the edge machinery is limited to a neighborhood of the boundary hypersurface
cf corresponding to the conic singularity. This boundary hypersurface is the total space of
a trivial fiber bundle:

Z cf

I

Here I is a compactification of R to an interval; t is locally a coordinate on the interior of I
while ρ provides a coordinate near each endpoint of I.
The set of edge-vector fields, typically denoted Ve, consists of those b-vector fields that are

tangent to the leaves of the fibration. In local coordinates (ρ, x, z) where x is the boundary
defining function for cf and z is a coordinate along Z, Ve is spanned over C∞ by

x∂x, xρ∂ρ, and ∂zj .

7We do not use the explicit form of the operators in region II and instead appeal standard hyperbolic
propagation estimates as in previous work [BVW15] there.
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The Lie algebra Ve is the space of smooth sections of a vector bundle (called the e-tangent
bundle) eTM over M .8 Its dual is the e-cotangent bundle eT ∗M .

We let Diff∗
e(M) denote the universal enveloping algebra of Ve(M). An element A ∈

Diffm
e (M) near mf ∩ cf has the form

A =
∑

j+k+|α|≤m

ajkα(ρ, x, z)(xρDρ)
j(xDx)

kDα
z ,

where the ajkα are smooth on M . The operator L is an element of x−2Diff2
e(M); this

relationship is exploited below in Section 7.
Canonical coordinates on eT ∗M induced by the coordinates (ρ, x, z) are (ρ, x, z, τe, ξe, ζe),

which corresponds to writing covectors as

τe
dρ

xρ
+ ξe

dx

x
+ ζe · dz.

One then obtains a bundle map π : eT ∗M → bT ∗M given in these coordinates by

π (ρ, x, z, τe, ξe, ζe) =
(
ρ, x, z, τ = τe, ξ = xξe, ζ = xζe

)
.

In other words, the map π is given by ω 7→ xω, which is an isomorphism eT ∗M → bT ∗M
away from x = 0.
Away from x = 0, the bicharacteristics (in this case lifts of geodesics to the b-cotangent

bundle) of L are the integral curves of the b-Hamilton vector field of the b-principal symbol
of L. As (M, g) is incomplete owing to the conic singularity of C(Z), we must clarify what
we mean by bicharacteristics that hit the cone point. As we are interested in wave equations,
we restrict our attention to null bicharacteristics, i.e., those lying in the characteristic set of
L.
We define now the compressed cotangent bundle by

bṪ ∗M = π(eT ∗M)/Z, π̇ : eT ∗M → bṪ ∗M,

where the quotient by Z acts only over the boundary; the topology is given by the quo-
tient topology. Observe that bṪ ∗

cfM can be identified with bT ∗I; in terms of coordinates
(ρ, x, z, τe, ξe, ζe) on

eT ∗M , π(eT ∗
cfM) is given by points of the form (ρ, 0, z, τ , 0, 0). After the

quotient, ρ and τ provide coordinates on bT ∗I.
In an abuse of notation (but following Melrose–Vasy–Wunsch [MVW08, Section 7]), we

introduce

π(eS∗M) = (π(eT ∗M) \ 0) /R+ ⊂ bS∗M,

π̇ (eS∗M) = (π̇(eT ∗M) \ 0) /R+ ⊂ bṠ∗M,

where bS∗M and eS∗M are quotients of their respective cotangent bundles by the natural
scaling action and bṠ∗M = bS∗M/Z with the quotient acting over cf.
We now observe that x2L ∈ Diff2

e(M); near mf ∩ cf, its edge-principal symbol is

σe(x
2L) = (τe + xξe)

2 − ξ2e − |ζe|2

8Strictly speaking, as a global object, we are considering a mixed edge-b-tangent bundle, but our argu-
ments are essentially local so we do not stress this point.
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As cf is noncharacteristic for L, nonzero covectors in the edge-characteristic set of x2L
(i.e., the vanishing set for σe(x

2L)) are mapped to nonzero covectors by π and π̇. We can
thus define the compressed characteristic set

Σ̇ = π̇(Σ),

where Σ ⊂ eS∗M is the edge-characteristic set of x2L. Over x = 0, Σ̇ = bṠ∗
cfM , i.e.,

Σ̇|cf = {(ρ, x = 0, z, τ , 0, 0) | τ ̸= 0, z ∈ Z} /Z.
In the parlance of Melrose–Vasy–Wunsch, all of the points of Σ̇ lying over cf are hyperbolic.
There are many equivalent and nearly-equivalent definitions of generalized broken bichar-

acteristics (see, e.g., Melrose–Vasy–Wunsch [MVW08] or Vasy [Vas08]), but in the present
context they can instead be described more simply. Away from cf they are lifts to bS∗M of
maximally extended light-like geodesics of ρ2g. At cf, they are concatenations of bicharac-
teristics that are continuous as functions to Σ̇.

In particular, at cf, the broken bicharacteristics are concatenations of lifts of light-like
geodesics entering and exiting cf; the continuity condition requires that they enter and leave
“at the same time” (i.e., with the same ρ or t coordinate along I) and with the same “time
momentum” (i.e., the same value of τ). More precisely, straightforward ODE analysis shows
that in the edge cotangent bundle, null bicharacteristics enter eS∗

cfM with coordinates

(ρ, 0, z0, τe, ξe, 0),

with τ 2e = ξ2e . They then leave eS∗
cfM from the point

(ρ, 0, z1, τe,−ξe, 0),
where z1 is a possibly different point in Z.9 The main result of Section 7 below is to show
that singularities of L propagate only along these broken bicharacteristics.

4.2. Broken bicharacteristics for the operator P̃σ. The classical propagation for the

operator P̃σ near ∂X = {x = 0} is simpler to describe as P̃σ is classically elliptic there: there
is no propagation. On the other hand, the related semiclassical operator

P̃h = h2P̃σ, h = |σ|−1,

is not semiclassically elliptic.

We consider the characteristic set Σh of the operator P̃h near x = 0. The principal symbol

of P̃h in this region is

σb,h(P̃h) =
(
λ+ ξ

)2 − ξ2

x2
− 1

x2
|ζ|2

where λ = σ/|σ| = ±1 +O(h). Its Hamilton vector field is

2

x2
(
(x2ξ + x2λ− ξ)x∂x − (ξ2 + |ζ|2)∂ξ

)
− 1

x2
H|ζ|2 ,

where H|ζ|2 is the Hamilton vector field of the metric function k−1. Within the characteristic

set of P̃h, the only trajectories reaching x = 0 reach points of the form

(x = 0, z ∈ Z, ξ = 0, ζ = 0),

9In other words, the direction in which the bicharacteristic leaves the cone point need not have any relation
to the direction in which it entered. In the parlance of Melrose–Wunsch [MW04], these are the “diffractive”
bicharacteristics.
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i.e., the analogue of the compressed characteristic set for the semiclassical operator is the
zero section over the boundary.

An analogous construction to the one described for the operator L shows that over ∂X =
mf ∩ cf, we have

Σh|∂X =
{
(x = 0, z, ξ = 0, ζ = 0) | z ∈ Z

}
,

and that the broken bicharacteristics for the Hamilton flow of the principal symbol of P̃h

must enter and leave through a point of this form with possibly different z values.

4.3. The radial sets. We finally describe the radial sets for the Hamilton flow associated

to the operators L and P̃h; these are the sets where the Hamilton vector field of the principal
symbol is a multiple of the radial vector field ξ∂ξ + ζ∂ζ . In both cases, the radial sets are

identical to those described in prior work [BVW15]; we include them here for the purpose of
completeness but refer to that work for their characterization.

The radial sets for P̃σ and P̃h occur at N∗S±; boundary of the fiber-compactification acts
as a source or sink for the global flow. We define Λ± to be the fiber-infinity boundary of
N∗S± in bT ∗X; in our analysis below we aim to propagate regularity from the radial set
living over S− to the one living over S+.
The radial points R± of L also lie over S±; in terms of coordinates (ρ, x, z, τ , ξ, ζ) in region

III, their image ∂R± ⊂ bT ∗M in the cosphere bundle is given by{
(ρ = 0, x = 1, z, τ = 0, ξ, ζ = 0) | z ∈ Z, ξ = ±1

}
.

5. Pseudodifferential operators

The main results of this paper all rely on the interaction between spaces defined using both
b-pseudodifferential operators and conic differential operators. While these interactions were
key in the analysis of Melrose–Wunsch in [MW04], their structure was codified and explained
by Vasy in [Vas08]. We now describe the spaces of b-pseudodifferential operators employed
below as well as their interactions with the generators of the conic differential operators.

5.1. The homogeneous b-calculus. We now briefly describe the spaces Ψm
b , Ψ

m
b,∞, and

Ψm,ℓ
b of b-pseudodifferential operators on the bulk spacetimeM . Rather than provide detailed

definitions and proofs, we instead provide a list of their properties and refer the reader to
Melrose’s unpublished book [Mel96] and Vasy’s paper [Vas08] for details.

Our discussion in this section is specialized to a neighborhood of mf ∩ cf (region III) inM ;
the relevant results in region I can be quoted, while the results in region II can be recovered
by assuming that x is bounded away from 0.
The space of b-pseudodifferential operators Ψ∗

b(M) is the “quantization” of the Lie algebra
of vector fields tangent to the boundary of M and formally consists of operators of the form

b (ρ, x, z, ρDρ, xDx, Dz) ,

where b is a classical symbol (i.e., it is smooth on bT ∗M and has a complete asymptotic
expansion at fiber infinity). In terms of coordinates (ρ, x, z) near the corner mf ∩ cf, we may
write an explicit quantization of the symbol b by

Op(b)u(ρ, x, z) =
1

(2π)n+1

∫ ∫
ei(ρ−ρ′)τ+i(x−x′)ξ+i(z−z′)·ζϕ

(
ρ− ρ′

ρ

)
ϕ

(
x− x′

x

)
ψ(z)

· b(ρ, x, z, ρτ , xξ, ζ)u(ρ′, x′, z′) dτ dξ dζ dρ′ dx′ dz′,
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where ϕ ∈ C∞
c ((−1/2, 1/2)) is identically 1 near 0, ψ localizes to a region of Z where the

local coordinate z is valid, and the integrals in ρ′ and x′ are over [0,∞).

We further define the multi-filtered algebra Ψm,ℓ
b (M) = ρ−ℓΨm

b (M). The index ℓ refers
only to the filtration in ρ; we do not explicitly rely on a filtration in x later in the text.
Our regularization arguments in Section 7.2 rely (in a similar way to those of Melrose–

Vasy–Wunsch [MVW08]) on a slightly larger algebra we call Ψ∗
b,∞(M). It is defined in

the same way but with symbols satisfying Kohn–Nirenberg estimates (rather than having
complete asymptotic expansions).

The algebra Ψm,ℓ
b (M) satisfies the following properties:

i. The principal symbol of a b-differential operator, defined by

σb,m,ℓ

ρ−ℓ
∑

j+k+|α|≤m

ajkα(ρDρ)
j(xDx)

kDα
z

 = ρ−ℓ
∑

j+k+|α|=m

ajkατ
jξkζα,

extends continuously to give a map

σb,m,ℓ : Ψ
m,ℓ
b (M) → ρ−∞C∞(bS∗M).

The principal symbol map is multiplicative, i.e., σ(AB) = σ(A)σ(B).
In the case of Ψm

b,∞(M), the principal symbol instead takes values in the quotient of
the symbol spaces

Sm(bT ∗M)/Sm−1(bT ∗M),

which in the case of classical symbols can be identified with C∞(bS∗M).

The principal symbol captures the top order behavior (in m) of elements of Ψm,ℓ
b (M).

In other words, the following sequence is exact:

0 → Ψm−1,ℓ
b (M) → Ψm,ℓ

b (M) → ρ−ℓC∞(bS∗M) → 0.

(In the case of Ψm
b,∞, the symbol space must be replaced by the quotient Sm/Sm−1.)

ii. There is a (non-canonical) quantization map Op : ρ−ℓSm(bT ∗M) → Ψm,ℓ
b (M) so that

σb,m,ℓ(Op(a)) = a

as an element of ρ−ℓSm(bT ∗M)/ρ−ℓSm−1(bT ∗M).

iii. The algebras Ψm,ℓ
b (M) and Ψm

b,∞(M) are closed under adjoints, and

σ(A∗) = σ(A).

iv. If A ∈ Ψm,ℓ
b (M) and B ∈ Ψm′,ℓ′

b (M), then [A,B] = AB −BA ∈ Ψm+m′−1,ℓ+ℓ′

b (M), and

σb,m+m′−1,ℓ+ℓ′ (i[A,B]) = {σ(A), σ(B)} ,
where the right hand side denotes the Poisson bracket induced by the symplectic struc-
ture on bT ∗M as in Section 3.

v. Elements of Ψ0
b(M) are bounded on L2. In particular, given A ∈ Ψ0

b(M), there is an
A′ ∈ Ψ−1

b (M) so that

∥Au∥L2 ≤ 2 sup|σ(A)|∥u∥L2 + ∥A′u∥L2 .
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vi. If A ∈ Ψm,ℓ
b (M) (or Ψm

b,∞(M)), the microsupport (or operator wavefront set) WF′
b(A) ⊂

bS∗M of A is the set of points and directions in which the total symbol of A fails to be
rapidly decaying, and obeys the usual microlocality property:

WF′
b(AB) ⊂ WF′

b(A) ∩WF′
b(B).

The analysis below requires commuting b-pseudodifferential operators with the compo-
nents Dx,

1
x
Dz, and

1
x
of the operators on the cone. As commutators with 1

x
Dz are not

necessarily lower order, we are careful to select commutants that commute with derivatives
in z to top order. In other words, we require the notion of a basic operator introduced by
Melrose–Vasy–Wunsch [MVW08, Section 9].

Definition 5.1. We say a symbol a ∈ C∞(bT ∗M) is basic if ∂za = 0 at {x = 0, ξ = 0, ζ = 0}.
The quantization of such a symbol is called a basic operator.

We now recall from Melrose–Vasy–Wunsch [MVW08, Lemma 8.6] how the b-calculus in-
teracts with 1

x
, Dx, and

1
x
Dzj .

Lemma 5.2. If A ∈ Ψm
b (M), then there are B ∈ Ψm

b (M) and C ∈ Ψm−1
b (M) depending

continuously on A so that

i [Dx, A] = B + CDx,

with σ(B) = ∂xσ(A) and σ(C) = ∂ξσ(A).

Similarly, there are CL, CR ∈ Ψm−1
b (M) with σ(C) = ∂ξσ(A) so that

i

[
1

x
,A

]
= CL

1

x
=

1

x
CR.

If, in addition, A is a basic operator, then

i

[
1

x
Dzj , A

]
= Bj + CjDx +

∑
k

Ejk
1

x
Dzk +

1

x
Fj,

with Bj ∈ Ψm
b (M), Cj, Ejk, Fj ∈ Ψm−1

b (M), and

∂zjσ(A) + ζ
j
∂ξσ(A) = xσ(Bj) + ξσ(Cj) +

∑
k

ζ
k
σ(Ejk).

As in the work of Vasy [Vas08] and Melrose–Vasy–Wunsch [MVW08], we define

x−k Diffk
e Ψ

m
b ⊂ x−kΨk+m

b

to be the span of the products QA with Q ∈ x−k Diffk
e and A ∈ Ψm

b . By Lemma 5.2, it is
also generated by the products AQ and so the union⋃

k,m

x−k Diffk
e Ψ

m
b

is a bigraded ring closed under adjoints. This observation allows us to freely commute
elements of x−k Diffk

e through b-pseudodifferential operators at the cost of lower order terms.
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5.2. The semiclassical b-calculus. On the boundary hypersurface X = mf, we further
employ the b-calculus as well as its semiclassical variant Ψ∗

b,h. In this section we briefly
describe properties satisfied by the semiclassical b-calculus Ψ∗

b,h(X). We refer the reader
to Gannot–Wunsch [GW18, Section 3] for details. We remind the reader that X is an
n-dimensional compact manifold with boundary.10

We can obtain an explicit quantization procedure on X near its boundary in terms of
coordinates (x, z) by fixing ϕ ∈ C∞

c ((−1/2, 1/2)) so that ϕ(s) ≡ 1 near s = 0 and ψ ∈ C∞
c

localizing to a fixed coordinate chart in z. Given a semiclassical symbol a ∈ Sm
h (bT ∗X),

define Opb,h(a) ∈ Ψm
b,h(X) by

Opb,h(a)u(x, z) =

1

(2πh)n

∫ ∫
ei((x−x′)ξ+(z−z′)·ζ)ϕ

(
x− x′

x

)
ψ(z)a(x, z, xξ, ζ)u(x′, z′) dξ dζ dx′ dz′.

As in the homogeneous setting, the space of semiclassical b-pseudodifferential operators
on X satisfies the following properties:

i. There is a principal symbol map σb,h : Ψm
b,h(X) → Sm(bT ∗X)/hSm−1(bT ∗X) so that the

sequence

0 → hΨm−1
b,h (X) → Ψm

b,h(X) → Sm(bT ∗X)/hSm−1(bT ∗X) → 0

is exact. This map is multiplicative.
ii. There is a (non-canonical) quantization map Opb,h : Sm(bT ∗X) → Ψm

b,h(X) so that if

a ∈ Sm(bT ∗X), then
σb,h(Opb,h(a)) = a

as an element of Sm(bT ∗X)/hSm−1(bT ∗X).
iii. The algebra Ψ∗

b,h(X) is closed under adjoints and

σb,h(A
∗) = σb,h(A).

iv. If A ∈ Ψm
b,h(X) and B ∈ Ψm′

b,h(X), then [A,B] ∈ hΨm+m′−1
b,h (X) and has principal symbol

σb,h

(
i

h
[A,B]

)
= {σb,h(A), σb,h(B)} ,

where the Poisson bracket is taken with respect to the symplectic structure on bT ∗X.
v. Each A ∈ Ψ0

b,h(X) extends to a bounded operator on L2 and there exists A′ ∈ Ψ−∞
b,h (X)

so that
∥Au∥L2 ≤ 2 sup|σb,h(A)|∥u∥L2 +O(h∞)∥A′u∥L2 .

vi. If A ∈ Ψ∗
b,h(X), the microsupport (or operator wavefront set) WF′

b,h(A) ⊂ bT ∗X is the

set of points in the b-cotangent bundle at which A fails to lie in h∞Ψ−∞
b,h . It obeys the

standard microlocality property:

WF′
b,h(AB) ⊂ WF′

b,h(A) ∩WF′
b,h(B).

As in the homogeneous setting, we say that a basic operator is the quantization of a
symbol a with ∂za = 0 at {x = 0, ξ = 0, ζ = 0}. We also require the semiclassical analogue
of Lemma 5.2, with proof essentially identical to the one in the homogeneous setting.

10The shift in dimension arises because we employ the semiclassical calculus only on X = mf rather than
the bulk M .
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Lemma 5.3 (cf. [MVW08, Lemma 8.6] and [GW18, Lemma 3.6]). If A ∈ Ψm
b,h(X), there

are B ∈ Ψm
b,h(X) and C ∈ Ψm−1

b,h (X) so that

i

h
[hDx, A] = B + C(hDx),

with σb,h(B) = ∂xσb,h(A) and σb,h(C) = ∂ξσb,h(A).

Moreover, there are CL, CR ∈ Ψm−1
b,h (X) with σb,h(C•) = ∂ξσb,h(A) and

i

[
1

x
,A

]
=
h

x
CR = CL

h

x
.

If, in addition, A is a basic operator, then

i

h

[
h

x
Dzj , A

]
= Bj + Cj(hDx) +

∑
k

Ejk
h

x
Dzk +

h

x
Fj,

where Bj ∈ Ψm
b,h(X), Cj, Ejk, Fj ∈ Ψm−1

b,h (X), and

∂zjσb,h(A) + ζ
j
∂ξσb,h(A) = xσb,h(Bj) + ξσb,h(Cj) +

∑
k

ζ
k
σb,h(Ejk).

Just as in the homogeneous setting, Lemma 5.3 allows us to freely commute factors of
hDx,

h
x
Dzj , and

1
x
through semiclassical b-pseudodifferential operators at the cost of lower

order terms.

6. Function spaces

As described above, our analysis is based on mixed differential-pseudodifferential struc-
tures on both M and mf. The associated analytic objects we employ are therefore adapted
to the Friedrichs form domain of the conic Laplacian.

We denote by D the Friedrichs form domain of the Laplacian on the cone C(Z), i.e., the
domain of ∆1/2, where ∆ is the Friedrichs extension of the Laplacian. It is equipped with a
natural norm given by

∥u∥2D = ∥u∥2 + ⟨∆u, u⟩,
where the norm and inner product are taken with respect to the L2 space induced by the
conic metric on C(Z). Writing the Laplacian in coordinates, the norm on D is controlled by

∥v∥+ ∥∂rv∥+
∥∥r−1∇zv

∥∥,
where the pointwise magnitude of the last term is measured by the metric k on the cross-
section.

Just as in Euclidean space in three dimensions and higher, D enjoys an analogue of the
Hardy inequality:

Lemma 6.1 ([MVW08, Lemma 5.2]). If dimZ > 1, then there is some C so that for all
v ∈ C∞

c ((0,∞)× Z),∥∥r−1v
∥∥2 + ∥v∥2 +

∥∥r−1∇zv
∥∥2 + ∥∂rv∥2 ≤ C∥v∥2D.

We often appeal to Lemma 6.1 and its analogues in order to estimate terms of the form
r−1v arising in commutator estimates; the lemma asserts that they can be controlled by one
“conic derivative”. Just as the Hardy inequality fails in dimension two, Lemma 6.1 is false
when dimZ = 1. On the other hand, when dimZ = 1, the manifold Z must be a circle,
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hence modifications similar to those used by Melrose–Vasy–Wunsch [MVW08, Section 10]
allow us to recover the propagation results of Sections 7 and 8 in this case. For the purpose
of exposition, we omit these arguments in this paper.

6.1. b-Sobolev spaces on the bulkM . Although it is standard in the b-calculus literature
to define b-Sobolev spaces with respect to a fixed b-density, the proofs in Sections 7 and 8
below more naturally employ a cone-type density, i.e., a rescaling of the density reflecting
the conic structure of the problems.

In other words, on M we consider the density associated to the Lorentzian metric ρ2g,
which in local coordinates has the form

xn−1
√
k

ρ
dρ dx dz.

All L2 norms on M are taken with respect to this density.
We let Hm

b (M) denote the b-Sobolev space of order m relative to the function space
L2(M) and the algebras Diffm

b (M) and Ψm
b (M). In particular, for m ≥ 0, if A ∈ Ψm

b (M)
is a fixed invertible elliptic operator, then u ∈ Hm

b (M) if and only if u,Au ∈ L2(M).11 For
m < 0, the space Hm

b (M) is defined as the dual space of H−m
b (M) with respect to the L2(M)

pairing. We further require an additional filtration of the Sobolev spaces. For ℓ ∈ R, we set
Hm,ℓ

b (M) = ρℓHm
b (M) as defined in for instance Section 2 of [MW04].

In an abuse of notation, we use D̃ to denote a differential Sobolev space of order 1 on the
spacetime M :

Definition 6.2. We let D̃ denote the set of functions u ∈ H1
b(M) for which the norms ∥∂xu∥

and ∥x−1∇zu∥ are both finite.

Just as it is well-known (see, e.g., [MW04, Section 3]12) that D = rH1
b(C(Z)), we could

instead define D̃ as a type of weighted b-Sobolev space with only partial regularity. It is
convenient, however, for our purposes, to ensure that ρ∂ρ and ∂x are on nearly equal footing.

Away from cf, D̃ is a standard b-Sobolev space (defined with respect to the density above).
Near cf, it inherits the norm

∥u∥2D̃ = ∥u∥2 + ∥ρ∂ρu∥2 + ∥∂xu∥2 +
∥∥x−1∇zu

∥∥2,
and is closed with respect to this norm. Just as in Lemma 6.1, we have the additional
Hardy-type inequality ∥∥x−1u

∥∥ ≤ C∥u∥D̃.
As solutions of the wave equation are not typically L2 in time, we require a weighted

variant of D̃: for ℓ ∈ R, we let ρ−ℓD̃ denote the space of those u for which ρℓu ∈ D̃. The

ρ−ℓD̃ norm of a distribution u is the D̃ norm of ρℓu.
Integrating energy estimates shows that solutions of the wave equation with compactly

supported finite energy initial data13 lie in ρ−ℓD̃ for some ℓ.

11If m is a positive integer, Hm
b can be characterized in terms of Diffm

b (M). A characterization for other
values of m then follows by interpolation and duality.

12Because we adopt the convention that L2 and b-Sobolev are measured with respect to the metric density
on C(Z) rather than a b-density, this identification of D with a b-Sobolev space differs from the one in that
paper by a factor of r−n/2.

13We state and prove the result for the forward problem with smooth compactly supported initial data,
but an inspection of the proof reveals that it needs only finite energy and compact support.
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Lemma 6.3. If u is the forward solution of Lu = f , where f ∈ C∞
c (M◦), then there is some

ℓ ∈ R so that u ∈ ρ−ℓD̃.

Proof. The lemma follows by energy bounds and changing variables. Indeed, for each fixed
t, standard energy estimates show that∫

C(Z)

(
|∂tu|2 + |∂ru|2 + |1

r
∇zu|2

)√
krn−1 dr dz < C(f),

and so the Hardy-type inequality also shows that∫
C(Z)

|r−1u|2
√
krn−1 dr dz < C(f)

is uniformly bounded. Integrating these estimates in time shows that for any α > 1/2, we
have ∫

t

∫
C(Z)

(
|r−1u|2 + |∂tu|2 + |∂ru|2 + |1

r
∇zu|2

)√
krn−1 ⟨t⟩−2α dr dz dt < Cα(f),

where this new constant differs from the previous one by a factor of
∫
R ⟨t⟩

−2α dt.
By the finite speed of propagation and possibly translating the coordinate system in t, it

suffices to estimate the ρ−ℓD̃ norm of u in the region where r ≤ At for some A > 1. We may
use the boundary defining function ρ = 1/t in this region and x = r/t as a replacement for
the radial coordinate and then the region corresponds to x ≤ A. We then aim to show that
there is some ℓ for which∫ ρ0

0

∫ A

0

∫
Z

(
|u|2 + |ρ∂ρu|2 + |∂xu|2 + |x−1∇zu|2

)√
k dz xn−1 dx ρ2ℓ

dρ

ρ
<∞.

Changing coordinates back to (t, r, z), this is equivalent to estimating∫ ∞

t−1
0

∫ At

0

∫
Z

(
|u|2 + |t∂tu+ r∂ru|2 + |t∂ru|2 + | t

r
∇zu|2

)√
k dzrn−1 dr t−n+1−2ℓ dt

t
.

As r ≤ At in this region, this integral is bounded by Cℓ+n
2
−1(f), provided that ℓ− 1+n/2 >

1/2. □

The main use of the space D̃ is to act as the base level against which we measure regularity

of distributions on M . To that end, we let H1
b,D̃(M) = D̃ and define, for m ≥ 1 and ℓ ∈ R,

the finite order conormal spaces Hm,ℓ

b,D̃
(M):

Definition 6.4. Let A ∈ Ψm−1
b (M) be an invertible basic (in the sense of Section 5) elliptic

operator. For m ≥ 1, the space Hm,ℓ

b,D̃
(M) consists of those u ∈ ρℓD̃ for which Au ∈ ρℓD̃.

In other words, Hm,ℓ

b,D̃
(M) consists of those distributions conormal to mf and cf of finite

order m − 1 relative to ρℓD̃. Away from cf, they agree with the weighted b-Sobolev spaces
ρℓHm

b (M) and indeed we have the inclusion Hm
b,D̃ ↪→ Hm

b (M).

The following lemma shows that these spaces do not depend on the choice of basic A (as

in the work of Vasy [Vas08, Remark 3.6]), as basic operators of order 0 preserve D̃.
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Lemma 6.5. If A ∈ Ψ0
b(M) is a basic operator, then

A : ρℓD̃ → ρℓD̃, A : ρℓD̃′ → ρℓD̃′

are bounded.

Proof. As conjugation by ρℓ yields another basic element of Ψ0
b(M), we must prove the lemma

only for ℓ = 0.
The result follows from the commutator expressions of Lemma 5.3. Indeed, to estimate

∥Au∥D̃, it suffices to estimate the quantities

∥ρ∂ρAu∥, ∥∂xAu∥,
∥∥∥∥1x∇zAu

∥∥∥∥, ∥Au∥,
where all norms taken are with respect to L2.

We show explicitly this bound only for the term 1
x
∇zAu; the ∂xAu term is treated similarly

while the other two terms amount to the boundedness of Ψb on b-Sobolev spaces. Appealing
to Lemma 5.3, we write

1

x
∂zjAu = A

1

x
∂zju+Bju+ Cj∂xu+

∑
k

Ejk
1

x
Dzku+ Fj

1

x
u,

where Bj ∈ Ψ0
b, and Cj, Ejk, Fj ∈ Ψ−1

b . As elements of Ψs
b are bounded on L2 for s ≤ 0, we

may then estimate∥∥∥∥1x∂zjAu
∥∥∥∥
L2

≤ C

(∑
k

∥∥∥∥1x∂zku
∥∥∥∥
L2

+ ∥∂xu∥L2 +

∥∥∥∥1xu
∥∥∥∥+ ∥u∥L2

)
≤ C∥u∥D̃.

□

We finally describe a microlocal characterization of regularity, the wavefront set.

Definition 6.6. Let u ∈ Hs,ℓ

b,D̃
for some s ≥ 0 and ℓ ∈ R and suppose that m ≥ 0. We say

q ∈ bT ∗M \ 0 is not in WFm,ℓ

b,D̃
(u) if there is some A ∈ Ψm,ℓ

b (M) elliptic at q so that Au ∈ D̃.

For m = ∞, q is not in WF∞,ℓ

b,D̃
(u) if there is some A ∈ Ψm,ℓ

b (M) elliptic at q with

Au ∈ H∞,ℓ

b,D̃
.

Note that if WF∞,ℓ

b,D̃
(u) = ∅, then u is fully conormal to mf and cf relative to the space

ρℓD̃.

6.2. Variable-order Sobolev spaces on the boundary mf. We now turn our attention
to the function spaces on the boundary mf. We fix a density on mf against which we integrate
functions; away from the boundary of mf we ask only that it be smooth and nondegenerate,
while at the boundary mf ∩ cf of mf, we demand that it take the following form in local
coordinates (x, z):

xn−1
√
k dx dz.

Near mf ∩ cf (i.e., near the boundary of X = mf), the operator P̃σ is a conjugate of the

Laplacian on a hyperbolic cone (see Section 9). In fact, near the boundary P̃σ differs from the
Laplacian on C(Z) by an element of Diff2

b(mf). Lemma 6.1 applies on mf as well, motivating
the following abuse of notation:
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Definition 6.7. We let D denote the space of functions on mf that:

(1) lie in H1 away from mf ∩ cf, and
(2) lie in the Friedrichs form domain of ∆C(Z) near mf ∩ cf.

We let D′ denote the dual of D with respect to the L2 pairing.

A more patently invariant way to define D involves fixing an invertible elliptic operator
(in, e.g., Hintz’s semiclassical cone calculus [Hin20]) agreeing with (1 + ∆C(Z))

1/2 near the
boundary. As our function spaces depend on D only near the boundary, however, we need
not take this approach.

As the main propagation result in Section 8 is semiclassical, we introduce a rescaled version
of the domain norm, denoted Dh. For u supported near the boundary of mf, this norm is
given by

∥u∥2Dh
= ∥u∥2 + ∥h∂xu∥2 +

∥∥∥∥hx∇zu

∥∥∥∥2.
Lemma 6.1 then shows that ∥u∥Dh

also controls h∥x−1u∥. As above, we use D′
h to denote

the dual of Dh.
We point out that the characterization of D stemming from Lemma 6.1 shows that the

inclusions D ↪→ L2 and L2 ↪→ D′ are compact. This observation is crucial to the Fredholm
statement proved in Section 8.1. When dimZ = 1, the characterization of the Friedrichs
form domain given by Melrose–Wunsch [MW04, Equation 3.11] also shows the compactness
of these inclusions.

Just as in the bulk spacetime, pseudodifferential operators of order 0 (and their semiclas-
sical counterparts) preserve these spaces. The following lemma is proved in the same way as
its classical analogue (Lemma 6.5):

Lemma 6.8. If A ∈ Ψ0
b,h(X) is a basic operator, then

A : Dh → Dh, A : D′
h → D′

h

are bounded.

As we aim to reduce problems on the bulk spacetimeM to problems on its main boundary

hypersurface X = mf, we record the following lemma relating the spaces D and D̃. The

proof of the lemma with D̃ replaced by a Sobolev space Hk is standard; the proof for D̃
proceeds identically.

Lemma 6.9 (cf. [BVW15, Lemma 2.3]). Suppose u ∈ ρ−ℓD̃ and that χ1, χ2 ∈ C∞
c ([0,∞))

with χ2 supported in {x < 1/4}. The Mellin transform (in ρ) of χ1(ρ)χ2(x)u is a holomorphic
function for Imσ > ℓ taking values in L∞

ImσL
2
Reσ(R;D).

We now describe the Sobolev spaces on which P̃σ is a Fredholm operator. As in prior
work, these have variable orders; see [BVW15, Appendix A] for details.

We fix a future regularity function sftr :
bS∗mf → R satisfying the following:

(1) sftr is constant near Λ
± and sftr ≡ 1 in a neighborhood of the conic singularity ∂X,

(2) Along the flow in the classical characteristic set of P̃σ (oriented so as to flow from Λ−

to Λ+), sftr is monotonically decreasing, and
(3) sftr is less than the threshold exponent at Λ+ and greater than the threshold at Λ−.
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As the classical characteristic set of P̃σ lies solely over the closure of C0, the first condition
is always compatible with the second and third.

Note that the thresholds at Λ± are σ-dependent, so the spaces we consider necessarily

depend on which operators in the family P̃σ are under consideration. Indeed, as in the
previous paper [BVW15, Section 5], the thresholds are given by

1

2
+ Imσ for P̃σ,

1

2
− Imσ for P̃ ∗

σ .

We further define s∗ftr = −sftr+1. With these functions in hand, we define (as in [BVW15,
Appendix A]) the variable order Sobolev spaces Hsftr and Hs∗ftr away from the conic sin-
gularity ∂mf. Recall that standard elliptic regularity estimates still hold in these spaces;
hyperbolic propagation estimates also remain valid provided that the order function is de-
creasing along the flow.

We now fix a partition of unity ϕ, 1− ϕ ∈ C∞(mf) so that ϕ is supported near the conic
singularity where sftr ≡ 1 and 1 − ϕ ≡ 0 in a neighborhood of ∂mf. We now define the
spaces14

Ysftr−1 =
{
u = (1− ϕ)u1 + ϕu2 | u1 ∈ Hsftr−1, u2 ∈ L2

}
,

Ys∗ftr−1 =
{
u = (1− ϕ)u1 + ϕu2 | u1 ∈ Hs∗ftr−1, u2 ∈ D′} ,

where we have abused notation slightly: the spaces Ysftr and Ys∗ftr differ by how they look
near the conic singularity. As sftr = 1 near the cone points, Ysftr−1 agrees with L2 there,
while s∗ftr = 0 near these points, so Ys∗ftr−1 is a stand-in for H−1 there. We equip these two
spaces with the norms

∥u∥2Ysftr−1 = ∥(1− ϕ)u∥2Hsftr−1 + ∥ϕu∥2L2 ,

∥u∥2Ys∗
ftr

−1 = ∥(1− ϕ)u∥2
H

s∗
ftr

−1 + ∥ϕu∥2D′ .

The semiclassical versions of these norms are defined by replacing the Sobolev part of the
norm with a semiclassical Sobolev norm and replacing the D′ part of the norm with the D′

h

norm.
We again rely on the localizer ϕ to define the X sftr spaces:

X sftr =
{
u = (1− ϕ)u1 + ϕu2 | u1 ∈ Hsftr , u2 ∈ D, P̃σu ∈ Ysftr−1

}
,

X s∗ftr =
{
u = (1− ϕ)u1 + ϕu2 | u1 ∈ Hs∗ftr , u2 ∈ L2, P̃σu ∈ Ys∗ftr−1

}
.

We have abused notation in the same way as in the definitions of the Y spaces.15 Observe

also that the condition on P̃σu in the definition of the X spaces is independent of σ as σ

only appears in subprincipal (both classically and semiclassically) terms in P̃σ. The norms

14In analogy with the definition of the D̃-based function spaces on the full spacetime, we could have defined
the Ysftr space more directly using D. We take the approach above to avoid translating the variable-order
Sobolev spaces into the b-setting.

15Just as we built the Sobolev spaces in the full spacetime on top of D̃, we have built X sftr on D, Ys∗ftr−1

on D′, and the other two spaces on L2.
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on the X spaces are given by

∥u∥2X sftr = ∥(1− ϕ)u1∥2Hsftr + ∥ϕu2∥2D +
∥∥∥P̃σu

∥∥∥2
Ysftr−1

,

∥u∥2X s∗
ftr

= ∥(1− ϕ)u1∥2Hs∗
ftr

+ ∥ϕu2∥2L2 +
∥∥∥P̃σu

∥∥∥2
Ys∗

ftr
−1
,

with the semiclassical analogues obtained in the same way as for the Y spaces.
One of the main reasons for this setup is that the dual of Ysftr−1 consists of those distri-

butions of the form (1 − ϕ)u1 + ϕu2, where u1 ∈ Hs∗ftr and u2 ∈ L2. Similarly, the dual of
Ys∗−1 consists of those distributions (1− ϕ)u1 + ϕu2 with u1 ∈ Hsftr and u2 ∈ D. Moreover,
because the inclusions D ↪→ L2 and L2 ↪→ D′ are compact, the inclusions X sftr ↪→ Ysftr−1

and X s∗ftr ↪→ Ys∗ftr−1 are also compact.
As our results in Section 8 are stated entirely in terms of estimates, it is unnecessary to

define the wavefront set associated to these spaces.
In Section 9 below, we also use variable-order b-Sobolev spaces Hsftr

b not based on D. As
sftr is constant near ∂X, these spaces can be defined in the standard way (see, e.g., [BVW15,
Appendix A]). We note that, with our definitions of sftr and s

∗
ftr, we have the inclusions

X sftr ↪→ Hsftr
b (X), Ysftr−1 ↪→ Hsftr−1

b (X),

X s∗ftr ↪→ H1−sftr
b (X), Ys∗ftr ↪→ H−sftr

b (X).

7. Propagation of singularities in the bulk

The aim of this section is to prove a regularity result for forward solutions u of Lu ∈
C∞

c (M◦). In particular, we establish that u lies in a weighted Hb,D̃ space and enjoys addi-

tional regularity with respect to the Ψ0
b(M)-module

M = {A ∈ Ψ1
b(M) | σ(A)|R+ = 0}.

The main result of this section is the following proposition:

Proposition 7.1. If u ∈ ρℓD̃ satisfies Lu ∈ C∞
c (M◦) and u ≡ 0 for t ≪ 0, then there are

s, γ ∈ R so that s + γ < 1/2 and u ∈ Hs,γ

b,D̃
. Moreover, u possesses module regularity with

respect to this space, i.e., if A1, . . . , AN ∈ M, then A1 . . . ANu ∈ Hs,γ

b,D̃
.

Away from the cone points and the future radial set, standard elliptic regularity and
hyperbolic propagation arguments apply to establish H•,•

b,D̃
regularity of any order. Our aim

therefore is to establish the proposition microlocally in these regions. In Section 7.1 we
recall the propagation estimates at the radial sets R±, while in Section 7.2 we establish the
necessary estimates near the singularities.

7.1. The radial set. At R+ (i.e., at N∗S+), the Hamilton vector field of L is radial and so
we appeal to the radial point propagation estimates of Vasy [Vas13].16 Though we state the

estimates with reference to the domain D̃, this is immaterial as the estimates localize and
the radial sets are disjoint from the conic singularities.

16As we are working with the forward solution in the bulk, we have no need for the estimates at R−,
though these estimates would of course be necessary to show that □ is Fredholm on appropriate spaces.
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Proposition 7.2 (cf. [BVW18, Proposition 5.4]). If u ∈ H−∞,ℓ

b,D̃
(M) for some l, Lu ∈ Hm−1,l

b,D̃
,

and u ∈ Hm,l

b,D̃
on a punctured neighborhood U \ ∂R+ of ∂R+ in bS∗M , then for m′ ≤ m

with m′ + l < 1/2, we have w ∈ Hm′,l

b,D̃
(M) at ∂R+ and for N ∈ N with m′ + N ≤ M and

A ∈ MN , Aw is in Hm′,l

b,D̃
at ∂R+.

In particular, if Lu ∈ H∞,l

b,D̃
and u ∈ H∞,ℓ

b,D̃
on a punctured neighborhood of ∂R+, then as

long as m′ + l < 1/2, Au ∈ Hm′,l

b,D̃
at ∂R+ for A ∈ MN . We remark that as ∂R+ is disjoint

from cf, Hm′,l

b,D̃
regularity agrees with Hm′,l

b regularity.

7.2. Near the singular points. For finite times, the work of Melrose–Wunsch [MW04]
establishes the needed propagation results. We therefore prove the analogous statement
near the intersection mf ∩ cf. Recall that the compressed characteristic set is defined in
Section 4.2.

Proposition 7.3. If u ∈ ρℓD̃ is the forward solution of Lu = f for f ∈ C∞
c (M◦), then

WFm,ℓ

b,D̃
u ⊂ Σ̇. For

q0 = {(ρ = 0, x = 0, z ∈ Z, τ 0 = ±1, ξ = 0, ζ = 0)} ⊂ Σ̇ ∩ {ρ = 0}

and let U denote a neighborhood of q0 ∈ Σ̇. If

U ∩ {ξ/τ > 0} ∩WFs,ℓ

b,D̃
(u) = ∅,

then

q0 ∩WFs,ℓ

b,D̃
(u) = ∅.

As the wavefront set is closed, this proposition yields regularity at the outgoing points
(ξ/τ < 0) sufficiently near q0.

The first statement (that the wavefront set lies in the characteristic set) is the main result
of Section 7.2.1, while the diffractive theorem (the absence of “incoming” wavefront set
implies the absence of “outgoing” wavefront set) is proved in Section 7.2.2.

Throughout the rest of this section we use Qj to denote those first-order conic differential
operators not lying in Diff1

b. We set Q0 = 1/x, Q1 = Dx, and Qj =
1
x
Dzj for local coordinates

z2, . . . , zn on Z. We further assume all pseudodifferential operators and distributions are
localized to a region with x ≤ 1/4. As mentioned above, we continue to abuse notation by
using the symbol Diffe to denote differential operators that are edge-like at cf (i.e., in x)
and otherwise b-like at mf (i.e., in ρ). We measure L2 with respect to the density for the
conic-b-metric ρ2g; in local coordinates this has the form

xn−1
√
k

ρ
dρ dx dz.

With respect to this density, we observe that L has the following form:

L = (ρDρ + xDx)
∗ (ρDρ + xDx)−D∗

xDx −
(
1

x
∇z

)∗(
1

x
∇z

)
− n2 − 1

4
.
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7.2.1. Elliptic regularity. The elliptic part of Proposition 7.1 follows from a main lemma and
the ellipticity of the operator away from Σ̇. Before stating the main lemma, we introduce
for brevity the shorthand notation

|dx,zf |2 = |∂xf |2 + |x−1∇zf |2,
where the latter norm is measured with respect to the metric k on Z.
The main estimate follows by pairing Lv with v for a family of v and then integrating by

parts; its proof is essentially identical to the one given by Melrose–Vasy–Wunsch [MVW08,
Lemma 8.9] with a minor modification we will describe below.

Lemma 7.4 (cf. [MVW08, Lemma 8.9]). Suppose that K ⊂ U ⊂ bS∗M with K compact and
U open, and suppose further that Ar constitute a bounded family of basic elements of Ψb,∞
with WF′

b(Ar) ⊂ K in the sense of uniform wavefront sets of families, and Ar ∈ Ψs−1
b for all

r ∈ (0, 1). There exist G ∈ Ψ
s−1/2
b and G̃ ∈ Ψs

b with WF′
b(G),WF′

b(G̃) ⊂ U and C0 > 0 so

that for all ϵ > 0, r ∈ (0, 1), and u ∈ D̃ with WF
′s−1/2

b,D̃
(u)∩U = ∅ and WFs

b,D̃′(Lu)∩U = ∅,
we have∣∣∣∣∣
∫ (

|dx,zAru|2 +
n2 − 1

4
|Aru|2 − |(ρ∂ρ + x∂x)Aru|2

)
xn−1

√
k

ρ
dρ dx dz

∣∣∣∣∣
≤ ϵ

(
∥dx,zAru∥2L2 + ∥ρ∂ρAr∥2L2

)
+ C0

(
∥u∥2D̃ + ∥Gu∥2D̃ + ϵ−1∥Lu∥2D̃′ + ϵ−1

∥∥∥G̃Lu∥∥∥2
D̃′

)
.

After observing that for v ∈ D̃,

⟨Lv, v⟩ = ∥(ρ∂ρ + x∂x)v∥2 − ∥∂xv∥2 −
∥∥∥∥1x∇zv

∥∥∥∥2 − n2 − 1

4
∥v∥2,

the proof of Lemma 7.4 is identical to its counterpart in the work of Melrose–Vasy–Wunsch
in [MVW08] with ∂t replaced by ρ∂ρ + x∂x.
At this stage, we record a corollary useful in the next subsection:

Corollary 7.5. Under the hypotheses of Lemma 7.4, we can estimate the domain norm of
Aru by

∥Aru∥D̃ ≤ C
(
∥u∥D̃ + ∥Gu∥D̃ + ∥Lu∥D̃′ +

∥∥∥G̃Lu∥∥∥
D̃′

+ ∥(ρ∂ρ + x∂x)Aru∥L2

)
.

Corollary 7.5 allows us to replace factors of Qj with the b-differential operator ρ∂ρ + x∂x
at the cost of terms already on the right side of Lemma 7.4. In other words, we can control

the D̃ norm of Au by the H1
b norm of Au and the other terms on the right.

We conclude this section with the proof of the first part of Proposition 7.3, namely
that WFm,ℓ

b,D̃
u ⊂ Σ̇. We employ a simpler version of the argument used by Melrose–Vasy–

Wunsch [MVW08, Proposition 8.10].
Suppose q ∈ bS∗M \ Σ̇. For finite times (i.e., ρ > 0, the theorem of Melrose–Wunsch

in [MW04] applies and so we may assume q projects to ρ = 0. Likewise, standard elliptic
arguments apply away from x = 0 and so we may assume q projects to x = 0, so that

q = (ρ = 0, x = 0, z ∈ Z, τ , ξ, ζ),

where ξ2 + |ζ|2 > 0. We assume inductively that q /∈ WF
s−1/2,ℓ

b,D̃
(u) and aim to show that

q /∈ WFs,ℓ

b,D̃
(u). Let A ∈ Ψs,ℓ

b be a basic operator so that
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(1) WF′
b(A) ∩WF

s−1/2,ℓ

b,D̃
(u) = ∅, and

(2) WF′
b(A) is a subset of a small neighborhood U of q on which ξ̂

2
+ |ζ̂|2 > c > 0.

We now introduce Λr ∈ Ψ−2
b for r > 0 with symbol (1 + r(τ 2 + ξ2 + |ζ|2))−1 so that

Λr ∈ Ψ0
b,∞ uniformly and Λr → Id as r → 0. We set Ar = ΛrA so that for r > 0, we have

σ(Ar) =
a

1 + r(τ 2 + ξ2 + |ζ|2) ,

where a is the symbol of A and Arρ
ℓ and ρ−ℓu satisfy the hypotheses of Lemma 7.4.

By the Lemma 7.4, the difference

∥∂xAru∥2 +
∥∥∥∥1x∇zAru

∥∥∥∥2 + n2 − 1

4
∥Aru∥2 − ∥(ρ∂ρ + x∂x)Aru∥2 − ϵ

∥∥d(x,z)Aru
∥∥2

is uniformly bounded in r. Writing this quantity as

1− ϵ

2

(
∥∂xAru∥2 +

∥∥∥∥1x∇zAru

∥∥∥∥)+ I,

we now show I ≥ 0.
Indeed, we observe that if δ > 0 is sufficiently small, then the operator B ∈ Ψ1

b with
principal symbol given by

σb(B) =

(
1− ϵ

δ2
(
ξ2 + ζ2

)
− (1 + ϵ)

(
τ + ξ

)2)1/2

is elliptic on U .
Moreover, if A is supported in {x < δ}, then

∥∂xAru∥2 ≥
1

δ2
∥x∂xAru∥2,∥∥∥∥1x∇zAru

∥∥∥∥2 ≥ 1

δ2
∥∇zAru∥2,

and so by shrinking the support of A, I is bounded below by

I ≥ 1− ϵ

δ2

(
∥x∂xAru∥2 +

∥∥∥∥1x∇zAru

∥∥∥∥2
)

− (1 + ϵ)∥(ρ∂ρ + x∂x)Aru∥2

= ∥BAru∥2 + ⟨FAru,Aru⟩ ,

where B,F ∈ Ψ1
b and B has principal symbol given above. As F is order 1 and Au ∈ D̃, the

second term is uniformly bounded in r.
As I is bounded below, we deduce that

1− ϵ

2

(
∥∂xAru∥2 +

∥∥∥∥1x∇zAru

∥∥∥∥2
)

is uniformly bounded in r. Extracting weak limits shows that Au ∈ D̃ and proves the first
part of the proposition.



30 D. BASKIN AND J.L. MARZUOLA

7.2.2. Hyperbolic propagation. The aim of this subsection is to complete the proof of Propo-
sition 7.3. We proceed by a positive commutator estimate; the positivity essentially stems
from the commutator of L with x∂x. We treat the case of τ 0 > 0 here; the other case follows
by flipping the sign of ξ. Indeed, for

ξ̂ =
1

τ
ξ, p0 = σb(L),

the Hamilton vector field of p0 satisfies

1

2
Hp0(−ξ̂) =

1

x2
(
ξ2 + |ζ|2

)
.

As in Vasy [Vas08], we define two auxiliary functions

ω = x2 + ρ2,

and

ϕ = −ξ̂ + 1

β2
δω,

where β > 0 is a parameter to be chosen. The first function acts as a localizer near the
corner, while the second function provides the positivity in the estimate. As long as ω < δ,
we can bound

1

τ
Hp0ω = O

√
ω

(
ξ̂
2

x2
+

|ζ̂|2
x2

+ 1

)1/2
 .

We now fix three smooth functions of one variable χ0, χ1, and χ2. We demand that
χ(s) = exp(−1/s) for s > 0 so that χ′

0(s) = s−2χ0(s). We take χ1 supported in [0,∞) to be
equal to 1 on [1,∞) and so that χ′

1 ≥ 0 is compactly supported in (0, 1). Finally, for a given
parameter c1, we take χ2 ∈ C∞

c (R) supported in [−2c1, 2c1] and identically 1 on [−c1, c1].
We insist that all cut-off functions and their derivatives have smooth square roots up to sign.

With χ• in hand, we finally define the basic test symbol a by

a = χ0

(
1− ϕ

δ

)
χ1

(
−ξ̂
δ

+ 1

)
χ2

(
ξ̂
2
+ |ζ̂|2

)
,

where δ > 0 is another parameter to be chosen.
As in Melrose–Vasy–Wunsch [MVW08] and Gannot–Wunsch [GW18], we can arrange that

a is well-localized near q0 = {(ρ = 0, x = 0, z ∈ Z, τ = ±1, ξ = 0, ζ = 0)}.
Lemma 7.6. Given any neighborhood U of q0 and any β > 0, there are δ0 > 0 and c1 > 0
so that a is supported in U for all 0 < δ < δ0.

We now choose a basic operator B ∈ Ψ
1/2
b with

b = σb(B) = τ 1/2δ−1/2(χ0χ
′
0)

1/2χ1χ2,

so that, when taking derivatives of a, those falling on χ0 yield factors of b2. We further
choose C ∈ Ψ0

b with principal symbol

σb(C) =

√
2

τ
|τ + ξ|ψ,

where ψ ∈ S0(bT ∗M) is identically 1 on the support of the symbol of B.
We can now compute the commutator of A∗A and L:
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Lemma 7.7 (cf. [MVW08, Lemma 9.6 and Theorem 9.7]). There is a δ0 > 0 so that for all
0 < δ < δ0, the commutator of L and A∗A is given by

i [A∗A,L] = R′L+B∗

(
C∗C +R0 +

∑
j

RjQj +
∑
j,k

Q∗
jRjkQk

)
B +R′′ + E ′ + E ′′,

where the terms enjoy the following properties:

• all factors are microlocalized near q0,
• R0 ∈ Ψ0

b, R
′, Rj ∈ Ψ−1

b , Rjk ∈ Ψ−2
b ,

• E ′, E ′′ ∈ x−2Diff2
e Ψ

−1
b , R′′ ∈ x−2Diff2

e Ψ
−2
b ,

• the symbols r0, rj¡ and rjk of R0, Rj, and Rjk are supported in {ω ≤ 9δ2β},
• the symbols r0, τrj, and τ

2rjk are bounded by both

c

(
1 +

1

β2δ

)
, and c

(
δβ + β−1

)
,

• WF′
b(E

′) ⊂ ξ−1((0,∞)) ∩ U , and
• WF′

b(E
′′) ∩ Σ̇ = ∅.

Proof. The principal symbol of the commutator is given by the action of the Hamilton vector
field of p0 on a

2; the choice of the function χ0 ensures that when derivatives fall on this term,
we obtain the contributions sandwiched between B∗ and B. The positive term arises from
the near homogeneity (in x) of L. Indeed, we exchange the leading term in a∂ξa with L,
leaving the symbol |τ + ξ|2/τ 2 and obtaining the C∗C term as well as the R′L term.
Derivatives falling on χ1 give contributions to the E ′ term; those falling on χ2 provide

contributions to E ′′. Commuting the Qj through B also leads to contributions to E ′ and
E ′′.

The R′′ term arises as the computation occurs only at the principal symbol level; this term
is also used to further absorb other lower order commutation terms. □

We also observe that we can estimate the remainder terms via the symbol calculus:

Lemma 7.8. Given ϵ > 0, there is a δ1 ∈ (0, δ0) so that for all 0 < δ < δ1, and all v ∈ D̃,

|⟨R0Bv,Bv⟩|+
∑
j

|⟨RjQjBv,Bv⟩|+
∑
j,k

|
〈
Q∗

jRjkQkBv,Bv
〉
|

≤ ϵ∥Bv∥2 + C∥R′Bv∥2 + C

(
∥u∥2D̃ + ∥Gu∥2D̃ + ∥Lu∥2D̃′ +

∥∥∥G̃Lu∥∥∥2
D̃′

)
for some R′ ∈ Ψ−1

b .

Proof. The lemma follows from the symbol estimates of Lemma 7.7 and Corollary 7.5, to-
gether with the observation that for A ∈ Ψ0

b, there is an A′ ∈ Ψ−1
b so that for all u ∈ L2

∥Au∥ ≤ sup|σb(A)|∥v∥+ C∥A′v∥.
□

We now finish the proof of Proposition 7.3.
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Proof of Proposition 7.3. We first consider the case of ℓ = 0. Suppose s < sup{s′ : q0 /∈
WFs′

b,D̃ u}; shrinking U if necessary we may assume U ∩WFs
b,D̃(u) = ∅. Our aim is to show

q /∈ WF
s+1/2

b,D̃
(u).

As we measure regularity with respect to D̃, we know that if B ∈ Ψs
b localizes to U , then

Bu, QiBu, and ρ∂ρBu all lie in L2. By the hypothesis and Corollary 7.5, it suffices to control
ρ∂ρBu at q0. In particular, it suffices to find a b-pseudodifferential operator of order s+3/2
that is elliptic at q0 and for which Bu ∈ L2. (This explains the apparent shift in order by
one below.)

Let A, B, and C be as in the discussion preceding Lemma 7.7 and let Λr be a quantization
of

τ s+1
(
1 + rτ 2

)−(s+1)/2
, r ∈ [0, 1],

and set Ar = AΛr ∈ Ψ0
b for r > 0 and Ar is uniformly bounded in Ψs+1

b,∞. We may further
arrange that [L,Λr] = 0.
By the calculation in Lemma 7.7, we may write

i ⟨[A∗
rA

∗, L]u, u⟩ = ∥CBΛru∥2 + ⟨R′LΛru,Λru⟩+ ⟨R0BΛru,Λru⟩(12)

+
∑
j

⟨RjQjBΛru,BΛru⟩+
∑
j,k

⟨RjkQjBΛru,QkBΛru⟩

+ ⟨R′′Λru,Λru⟩+ ⟨(E ′ + E ′′)Λru,Λru⟩ .

As u ∈ D̃, the pairing on the left is well-defined:

⟨[A∗
rA,L]u, u⟩ = ⟨ArLu,Aru⟩ − ⟨Aru,ArLu⟩ .

As Lu is residual, these terms are uniformly bounded in r and so we may estimate ∥CBΛru∥2
by the other terms in equation (12). The second term is uniformly bounded because Lu is
residual, while the next three terms are estimated by Lemma 7.8. The R′′ term is bounded
by the regularity hypothesis of u on U , while the E ′′ term is bounded by elliptic regularity.
Finally, the E ′ term is bounded by the hypothesis of the theorem. We can therefore find a
constant C independent of r so that

∥CBΛru∥2 ≤ C + ϵ∥BΛru∥2 + C
(
∥R′Bv∥2 + ∥u∥2D̃ + ∥Gu∥2D̃ + ∥Lu∥2D̃′ +

∥∥∥G̃Lu∥∥∥2
D̃′

)
,

where G ∈ Ψ
s+1/2
b , G̃ ∈ Ψs+1

b are supported in U . An application of the symbol calculus
shows that ∥CBΛru∥ (and the rest of the right side) controls ∥BΛru∥. The other terms
on the right are uniformly bounded by the assumed regularity of u, so we can extract

a subsequence and conclude that BΛ0u ∈ L2, so that q0 /∈ WF
s+1/2

b,D̃
(u). By iteratively

shrinking the neighborhoods U , one can then show that in fact q0 /∈ WF∞
b,D̃(u).

Finally, we now suppose that ℓ ̸= 0. As Lu ∈ C∞
c (M◦), we can apply the above argument

to v = ρℓu and L̃ = ρℓLρ−ℓ. As L and L̃ differ only by an element of Diff1
b, the same proof

applies to v. □

8. The boundary operator P̃σ

The aim of this section is to establish the mapping properties of P̃σ (recall that Λ± are

the radial sets for P̃σ and are the fiber infinities of N∗S±):
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Proposition 8.1. The family P̃σ has the following mapping properties:

(1) P̃σ : X sftr → Ysftr−1 and P̃ ∗
σ : X s∗past → Ys∗past−1 are Fredholm.

(2) The operators P̃σ form a holomorphic Fredholm family on these spaces in

Cs+,s− =

{
σ ∈ C | s+ <

1

2
+ Imσ < s−

}
,

with sftr|Λ± = s±. The formal adjoint P̃ ∗
σ is antiholomorphic in the same region.

(3) The inverse P̃−1
σ has only finitely many poles in each strip a < Imσ < b.

(4) For all a and b, there is a constant C so that

(13)
∥∥∥P̃−1

σ

∥∥∥
Ysftr−1

|σ|−1 →X sftr
|σ|

≤ C⟨Reσ⟩−1

on a < Imσ < b, |Reσ| > C, with a similar estimate holding for (P̃ ∗
σ )

−1.

(5) The set of poles of P̃−1
σ (and (P̃ ∗

σ )
−1) is independent of the choice of sftr.

The first two parts of Proposition 8.1 follow from a sequence of propagation estimates;
the second two parts follow from semiclassical analogues of the same sorts of estimates. For
the Fredholm statement, we propagate regularity out of S− via radial point estimates (as
the X spaces are more regular than the threshold there), then rely on standard hyperbolic
propagation estimates to carry this regularity to a neighborhood of S+, where we then finish
the propagation argument with below-threshold radial point estimates. The regularity in C±
is treated by means of the elliptic theory on cones, as P̃σ is classically elliptic there. In the

semiclassical case, however, the semiclassical characteristic set of P̃σ extends into C± and we
establish a semiclassical diffractive estimate to carry the regularity of the solution through
the singularity of the operator.

Many of the microlocal estimates employed to establish Proposition 8.1 are already in the
literature; the main missing components are the Fredholm statement (Section 8.1) and the

semiclassical propagation estimate for P̃σ near the cone point (Sections 8.2.2 and 8.2.3). The
last part of Proposition 8.1 follows from standard arguments in the resonances literature.

8.1. The Fredholm property. We first show that P̃σ is Fredholm on the desired spaces
(parts 1 and 2 of Proposition 8.1). In particular, we prove the following proposition:

Proposition 8.2. Given s± and sftr/past|Λ± = s±, there is

∥u∥X sftr ≤ C

(∥∥∥P̃σu
∥∥∥
Ysftr−1

+ ∥u∥H−N

b,D̃

)
.

Away from the radial sets and the conic singularity mf ∩ cf, standard elliptic regularity
and hyperbolic propagation arguments can be pieced together. Near the singularity at the
poles, we appeal to the following elementary lemma, which follows essentially immediately
after integrating by parts:

Lemma 8.3. Fix χ ∈ C∞(mf) supported in {x < 1/4}. For any N , there is a constant C
so that

∥χu∥D ≤ C
(∥∥∥P̃σ(χu)

∥∥∥
L2

+ ∥χu∥L2

)
.
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In particular, for all s and all N , we may estimate

∥χu∥X sftr ≤ C

(∥∥∥P̃σ(χu)
∥∥∥
Ysftr−1

+ ∥χu∥Ysftr−1

)
.

The same argument provides a similar estimate for P̃ ∗
σ in the appropriate (dual) spaces.

Near the radial sets Λ±, the radial point estimates of Vasy [Vas13] (building on work of
Melrose [Mel94]) apply without change:

Lemma 8.4 ([Vas13, Propositions 2.3 and 2.4]). For all N and for s0 > m > 1
2
+ Imσ,

and for all A,B,G ∈ Ψ0
b(mf) supported near Λ− with A,G elliptic at Λ− and so that all

bicharacteristics from the microsupport of B tend to Λ− in one direction while remaining in
the elliptic set of G, we have

If Au ∈ Hm then ∥Bu∥Hs0 ≤ C
(∥∥∥GP̃σu

∥∥∥
Hs0−1

+ ∥u∥H−N
b,D

)
.

For s0 <
1
2
+ Imσ and A,B,G ∈ Ψ0

b(mf) supported near Λ+ with B,G elliptic at Λ+ so
that all bicharacteristics from WF′(B) \ Λ+ reach the microsupport of A in one direction
while remaining in the elliptic set of G, we have

∥Bu∥Hs0 ≤ C
(∥∥∥GP̃σu

∥∥∥
Hs0−1

+ ∥Au∥Hs0 + ∥u∥H−N

)
.

An analogous theorem holds for P̃ ∗
σ with σ replaced by its complex conjugate and the

direction of propagation reversed (so that the roles of Λ± are exchanged).
Taking microlocal partitions of unity as appropriate, we therefore have the two estimates

∥u∥X sftr ≤ C

(∥∥∥P̃σu
∥∥∥
Ysftr−1

+ ∥u∥Ysftr−1

)
,

∥u∥X s∗
ftr

≤ C

(∥∥∥P̃ ∗
σu
∥∥∥
Ys∗

ftr
−1

+ ∥u∥Ys∗
ftr

−1

)
.

As the inclusions X sftr ↪→ Ysftr−1 and X s∗ftr ↪→ Ys∗ftr−1 are compact, the operators P̃σ and P̃ ∗
σ

are Fredholm in the stated spaces, proving the first part of the theorem. The second part of

the theorem follows from the facts that the coefficients of P̃σ are holomorphic and that sftr
may be chosen to satisfy the desired properties for all σ in such a strip.

8.2. Semiclassical estimates. The third part of Proposition 8.2 follows from the fourth;
this rest of this section is devoted to proving the estimate there.

As the estimate (13) is a semiclassical hyperbolic estimate, we work semiclassically with

h = |σ|−1 as our semiclassical parameter and P̃h = h2P̃σ. In these terms, the estimate (13)
is immediately implied by an estimate of the form

(14) ∥u∥X sftr
h

≤ C

h

∥∥∥P̃hu
∥∥∥
Ysftr−1

h

+ Ch∥u∥X sftr
h

for some N , together with an analogous estimate for P̃ ∗
h on the appropriate spaces. Away

from Λ± and from {x = 0}, the microlocal version of the estimate follows from standard
elliptic regularity and hyperbolic propagation estimates.
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8.2.1. The radial set. Near Λ±, the estimate follows from a semiclassical version of radial
propagation estimates as in earlier work [BVW15, BVW18, Vas13].

Proposition 8.5 (cf. [Vas13, Propositions 2.8 and 2.9]). For s|Λ− > m > 1
2
+ Imσ and

A,B,G ∈ Ψ0
b,h supported near Λ− with A,G elliptic at Λ− and so that semiclassical bichar-

acteristics from the microsupport of B tend to Λ− in one direction with closure in the elliptic
set of G, we have

If Au ∈ Hm, then ∥Bu∥X sftr
h

≤ C

h

∥∥∥GP̃hu
∥∥∥
Ysftr−1

h

+ Ch∥u∥Ysftr−1 .

For s|Λ+ < 1
2
+ Imσ, and for all A,B,G ∈ Ψ0

b,h supported near Λ+ with B,G elliptic at

Λ+ and so that semiclassical bicharacteristics from WF′
b,h(B) \ Λ+ reach the microsupport

of A in one direction while remaining in the elliptic set of G, we have

∥Bu∥X sftr
h

≤ C

h

∥∥∥GP̃hu
∥∥∥
Ysftr−1

h

+ C∥Au∥X sftr
h

+ Ch∥u∥Ysftr−1 .

Analogous estimates hold for P̃ ∗
h on the dual spaces as well (with the roles of Λ± inter-

changed).

8.2.2. Elliptic regularity near the singularity. We now consider the problem in the region
{x < c0} where sftr = 1; we assume all pseudodifferential operators and distributions are

supported in this region. Here we have an explicit expression for P̃σ:

P̃σ = (σ + xDx)
2 − ni (σ + xDx)−D2

x +
(n− 1)i

x
Dx −

1

x2
∆k −

n2 − 1

4
.

After rescaling and letting λ = σ/|σ|, we have

P̃h = h2P̃σ = (λ+ hxDx)
2 − nih (λ+ hxDx)− h2D2

x +
(n− 1)ih

x
hDx −

h2

x2
∆k −

n2 − 1

4
h2.

As we are only ever concerned with Imσ ∈ [a, b] for some fixed a, b, we observe that λ =
±1 +O(h).

We prove the estimate near x = 0 in two main steps; we first consider the microlocally
elliptic region (i.e., away from the characteristic set) and then the hyperbolic region (near the
characteristic set). In this section and the next, we consider only the forward problem (for

P̃h); the adjoint problem (for P̃ ∗
h ) proceeds nearly identically, though with a shift downward

in the norms considered (i.e., Dh replaced by L2 and L2 replaced by D′
h).

The main elliptic estimate near the singularity is the following proposition:

Proposition 8.6. Suppose A ∈ Ψ0
b,h is basic and satisfies WF′

b,h(A) ∩ Σh = ∅. For any

G ∈ Ψ0
b,h with WF′

b,h(A) ⊂ ellb,h(G), there is a constant C so that

∥Au∥X sftr
h

≤ C
∥∥∥GP̃hu

∥∥∥
Ysftr−1

h

+ Ch1/2∥Gu∥X sftr
h

+O(h∞)∥u∥X sftr
h
.

By enlarging the microsupport of G, one can improve the factor of h1/2 to hN for any fixed
N .

Integration by parts allows us to prove the following lemma, which reduces the problem
of controlling the domain norm of solutions to controlling a b-norm.



36 D. BASKIN AND J.L. MARZUOLA

Lemma 8.7. Suppose A,G ∈ Ψ0
b,h with A a basic operator satisfying WF′

b,h(A) ⊂ ellb(G).
There is a constant C so that∫ (

|hDxAu|2 + |1
x
∇zAu|2 − |(hxDx + λ)Au|2

)
xn−1 dx dvolk

≤ ϵ∥Au∥2Dh
+
C

ϵ

∥∥∥GP̃σu
∥∥∥2
D′

h

+ Ch∥Gu∥2Dh
+O(h∞)∥u∥2Dh

for all u ∈ Dh.

Proof. Integration by parts shows that if v ∈ Dh, then〈
P̃hv, v

〉
=∫ (

|hDxv|2 + |1
x
∇zv|2 − |(hxDx + λ)v|2 + n2 − 1

4
h2|v|2

)
2i(Imλ) ⟨(hxDx + λ)v, v⟩ ,

where the pairing on the left side is of Dh with D′
h.

We apply this identity to v = Au ∈ Dh and then first estimate〈
AP̃h, Au

〉
+
〈
[P̃h, A]u, u

〉
− 2i(Imλ) ⟨(hxDx + λ)Au,Au⟩ .

The first term is estimated by Cauchy–Schwarz:

|
〈
AP̃hu,Au

〉
| ≤ 1

4ϵ

∥∥∥AP̃hu
∥∥∥2
D′

h

+ ϵ∥Au∥2Dh
.

Microlocal elliptic regularity lets us estimate AP̃hu in terms of GP̃hu. As Imλ = O(h), the
final term is bounded by

Ch
(
∥hxDxAu∥2 + ∥Au∥2

)
.

The additional factor of h allows these terms to be absorbed into the h∥Gu∥2Dh
term.

We now turn to the term involving [P,A]. After applying Lemma 5.3 and keeping track
of the factors lying in 1

x
Diff1

b,h but not Diff1
b,h, we can estimate this term by h∥Gu∥2Dh

. □

As we have assumed that the operators in Lemma 8.7 are supported in {x < c0}, we
obtain the following corollary, which we record for use in the hyperbolic section below:

Corollary 8.8. If A and G are as in Lemma 8.7, there are constants C0 (independent of
A) and C so that

∥Au∥Dh
≤ C0∥Au∥L2 + C

(∥∥∥GP̃hu
∥∥∥
D′

h

+ ∥Gu∥Dh

)
+O(h∞)∥u∥Dh

.

Proof. As x < c0, we can bound −|(hxDx + λ)Au|2 below by

−2c20|hDxAu|2 − 2|λ|2|Au|2.
The first of these terms can be absorbed (together with ϵ∥Au∥2Dh

) into the first term on the
left in Lemma 8.7, while the second term is moved to the right side. □

Proposition 8.6 then follows immediately by applying the following lemma and bounding∥∥∥GP̃hu
∥∥∥
D′

h

≤
∥∥∥GP̃hu

∥∥∥
L2
:
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Lemma 8.9. Suppose A and G are as in the statement of Proposition 8.6. If, in addition,
A is supported in {x < δ/

√
2} and {(ξ + λ)2 < 1

2
δ−2(ξ2 + |ζ|2)}, then

∥Au∥Dh
≤ C

∥∥∥GP̃hu
∥∥∥
D′

h

+ Ch1/2∥Gu∥Dh
+O(h∞)∥u∥Dh

.

Proof. As A is supported in {x < δ/
√
2}, we know

δ−2

∫ (
|hxDxAu|2 + |h∇zu|2

)
−
∫
|(hxDx + λ)Au|2 ≤

1

2

∫ (
|hDxAu|2 + |1

x
∇zAu|2 − |(hxDx + λ)Au|2

)
.

Our other hypothesis on the support of A shows that we can find operators B,F ∈ Ψ1
b,h with

WF′
b,h(A) ⊂ ellb,h(B) so that

Z = δ−2

(
(hxDx)

∗(hxDx) +
h2

x2
∆k − (hxDx + λ)∗ (hxDx + λ)

)
− (B∗B + hF )

satisfies
WFb,h(Zu) ∩WF′

b,h(A) = ∅.
Integrating by parts and applying Lemma 8.7 shows that

∥BAu∥2L2 +
1

2

∫ (
|hDxAu|2 + |h

x
∇zAu|2

)
≤ ϵ∥Au∥2Dh

+
C

ϵ

∥∥∥GP̃hu
∥∥∥2
D′

h

+ Ch∥Gu∥2Dh
+ Ch∥FAu∥∥Au∥+O(h∞)∥u∥2Dh

.

As B is elliptic on WF′
b(A), the left side controls ∥Au∥2D′

h
, while the right side is controlled

by

ϵ∥Au∥2Dh
+ C

∥∥∥GP̃hu
∥∥∥2
D′

h

+ Ch∥Gu∥2Dh
+O(h∞)∥u∥2Dh

.

Absorbing the first term into the left side finishes the proof. □

8.2.3. Hyperbolic propagation near the singularity. In this subsection we complete the proof
of the third and fourth parts of Proposition 8.1. In particular, we establish the following
proposition:

Proposition 8.10 (cf. [GW18, Proposition 5.8]). If G ∈ Ψcomp
b,h is elliptic at {(0, z, 0, 0) |

z ∈ Z}, then there are Q,Q1 ∈ Ψcomp
b,h with Q elliptic at {(0, z, 0, 0) | z ∈ Z} and

WF′
b,h Q ⊂ ellb,h(G),

WF′
b,h Q1 ⊂ ellb,h(G) ∩ {−ξ > 0},

so that for all u ∈ Dh,

∥Qu∥Dh
≤ C

h

∥∥∥GP̃hu
∥∥∥
D′

h

+ C∥Q1u∥Dh
+ Ch∥Gu∥Dh

+O(h∞)∥u∥Dh
.

We note that the estimate in Proposition 8.10 immediately implies the estimate

∥Qu∥X sftr
h

≤ C

h

∥∥∥GP̃hu
∥∥∥
Ysftr−1

h

+ C∥Q1u∥X sftr
h

+ Ch∥Gu∥X sftr
h

+O(h∞)∥u∥X sftr
h
,

finishing the proof of the fourth part of Proposition 8.1.
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As in Section 7.2.2, we introduce a basic operator A ∈ Ψcomp
b,h with symbol given by

a = χ0(2− ϕ/δ)χ1(2− ξ/δ)χ2(ξ
2 + |ζ|2),

where χi are the same functions as in that section and ϕ = −ξ + 1
β2δ
x2. Recall that χ2 is

supported in [−2c1, 2c1] and identically one on [−c1, c1], so that a is essentially determined
by the three parameters c1, β, and δ.
We also choose a basic operator B ∈ Ψcomp

b,h with symbol

b =
2√
δ
(χ0χ

′
0)

1/2χ1χ2,

so that factors of B arise when derivatives land on χ0 in A.
As in that section (and Melrose–Vasy–Wunsch [MVW08] or Gannot–Wunsch [GW18]),

the symbol a is well-localized:

Lemma 8.11. Given any neighborhood U of {(0, z, 0, 0) | z ∈ Z} in bT ∗mf and any β > 0,
there are δ0 > 0 and c1 > 0 so that a is supported in U for all 0 < δ < δ0.

We now compute the commutator of P̃h with A∗A:

Lemma 8.12. With Q0, Q1, and Qj denoting the conic vector fields as in Section 5.2, the

commutator of P̃h and A∗A is given by

i

h

(
P̃ ∗
hA

∗A− A∗AP̃h

)
=

−B0P̃h +B∗

(
C∗C +R0 +

∑
j

RjQj +
∑
j,k

Q∗
jRjkQk

)
B + E ′ + E ′′ + hR′,

where the terms enjoy the following properties:

• C = hxDx + λ,
• σb,h(B0) = 2∂ξ(a

2),

• R0, Rj, Rjk ∈ Ψcomp
b,h satisfy

|σb,h(R•)| ≤ C1(δβ + β−1),

• R′′ ∈ x−2Diff2
b,h Ψ

comp
b,h ,

• E ′, E ′′ ∈ x−2Diff2
b,h Ψ

comp
b,h satisfy

WF′
b,h(E

′) ⊂ {−ξ > 0}, WF′
b,h(E

′′) ∩ Σh = ∅.

Proof. We use Lemma 5.3 to commute A∗A through P̃h, using that A is basic. The main

term arising from the commutator reproduces the main terms in P̃h; indeed, it is of the form

B∗
(
(hDx)

∗(hDx) +
h2

x2
∆k

)
B.

We use the form of the operator to exchange this term for B0P̃h and B∗C∗CB. The other
terms in the expression arise in a similar way as those in Melrose–Vasy–Wunsch [MVW08]

(explained above in the proof of Lemma 5.2). The term arising from P̃ ∗
h−P̃h can be absorbed

into the R0 term as the symbol of A is estimated by
√
δb. □

We also require that the remainder terms are sufficiently small as to be estimable:
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Lemma 8.13. For any ϵ > 0, there are β > 0 and δ1 ∈ (0, δ0) so that for all 0 < δ < δ1,

|⟨R0Bu,Bu⟩|+
∑
j

|⟨RjQjBu,Bu⟩|+
∑
j,k

|
〈
Q∗

jRjkQkBu,Bu
〉
| ≤ ϵ∥Bu∥2Dh

+O(h∞)∥u∥2Dh
.

Proof. As in the proof of Lemma 7.8, we rely on the symbol estimates in Lemma 8.12.
Indeed, we bound

∥R•v∥L2 ≤ 2 sup|σb,h(R•)|∥v∥L2 +O(h∞)∥v∥L2

≤ 2C1

(
δβ + β−1

)
∥v∥L2 +O(h∞)∥v∥L2 .

We now fix β > 0 sufficiently large and then take δ1 ∈ (0, δ0) sufficiently small to make
2C1(δ1β + β−1) < ϵ/3.

We now consider the individual terms. For the R0 term, we apply the above inequality
with v = Bu and appeal to Cauchy–Schwarz. The Rj and Rjk terms are nearly identical,
e.g.,

|⟨QjRjkQkBu,Bu⟩| = |⟨RjkQkBu,QjBu⟩|
≤ 2C1(δβ + β−1)∥Bu∥2Dh

≤ ϵ∥Bu∥2Dh
.

□

We now finish the proof of Proposition 8.10.

Proof of Proposition 8.10. Given u ∈ Dh, we apply Lemma 8.12 to write

2

h
Im
〈
AP̃hu,Au

〉
=
i

h

〈(
P̃ ∗
hA

∗A− A∗AP̃h

)
u, u
〉

= ∥CBu∥2L2 + ⟨R0Bu,Bu⟩+
∑
j

⟨RjQjBu,Bu⟩

+
∑
j,k

⟨RjkQkBu,QjBu⟩+ ⟨E ′u, u⟩+ ⟨E ′′u, u⟩+ h ⟨R′u, u⟩ − ⟨B0Pu, u⟩ .

As shown above in Lemma 6.8, A,B, and CB preserve Dh, while B0 preserves D′
h.

By Corollary 8.8 and the ellipticity of C on WF′
b,h(B), there is a constant c > 0 so that

c∥Bu∥2Dh
≤ ∥CBu∥2L2 + C

∥∥∥GP̃hu
∥∥∥2
D′

h

+ Ch∥Gu∥2Dh
+O(h∞)∥u∥2D′

h
,

where c > 0 is independent of β and δ and G is elliptic on WF′
b,h(B).

We now take G ∈ Ψcomp
b,h to be elliptic on WF′

b,h(B) and Q1 ∈ Ψcomp
b,h to be elliptic on

WF′
b,h(E

′) with WF′
b,h(Q1) ⊂ ellb,h(G)∩{−ξ > 0}. Applying Lemma 8.13 yields an estimate

of the form
c

2
∥Bu∥2Dh

≤ 2

h
|
〈
AP̃hu,Au

〉
|+ C

∥∥∥GP̃hu
∥∥∥2
D′

h

+ Ch∥Gu∥2Dh

+ |⟨(E ′ + E ′′)u, u⟩|+ h|⟨R′u, u⟩|+ |
〈
B0P̃hu, u

〉
|+O(h∞)∥u∥2Dh

.

We estimate the E ′ term by Q1 via microlocal elliptic regularity and the E ′′ term by Propo-
sition 8.6. The second line is therefore bounded by

C

h

∥∥∥GP̃hu
∥∥∥2
D′

h

+ Ch∥Gu∥2Dh
+ C∥Q1u∥2Dh

+O(h∞)∥u∥2Dh
.



40 D. BASKIN AND J.L. MARZUOLA

Because WF′
b,h(A) ⊂ ellb,h(G), we can further estimate

2

h
|
〈
AP̃hu,Au

〉
| ≤ C

h2ϵ

∥∥∥GP̃hu
∥∥∥2
D′

h

+ Cϵ∥Au∥2Dh
+O(h∞)∥u∥2Dh

.

By construction, χ0(s) = s2χ′
0(s) for s > 0, and so

a =
1

2
δ1/2(2− ϕ/δ)b.

We may therefore write A = FB + hF ′ for some F, F ′ ∈ Ψcomp
b,h in order to estimate Au by

Bu. Putting the above together yields the estimate

∥Bu∥Dh
≤ C

h

∥∥∥GP̃hu
∥∥∥
D′

h

+ C∥Q1u∥Dh
+ Ch1/2∥Gu∥Dh

+O(h∞)∥u∥Dh
.

Taking Q = B finishes the proof. □

9. Proof of Theorem 1.1

This section is devoted to a sketch of the proof of the main theorem, which is implied by
the more refined theorem below:

Theorem 9.1. Suppose w is a solution of the wave equation on a cone. If the initial data
of w are smooth and compactly supported away from the conic singularity, i.e.,

□w = 0 on R× C(Z),

(w, ∂tw)|t=0 ∈ C∞
c (C(Z))× C∞

c (C(Z)),

then, viewed as a distribution on [M ;S+ ∪ S−],

(1) w is conormal to all six boundary hypersurfaces, and
(2) w is partially polyhomogeneous (i.e., w ∈ AE

pphg([M ;S+ ∪ S−])) at all boundary hy-
persurfaces other than cf with index sets

E =


∅ at C0{(

−i
(
n−1
2

+ j
)
, 0
)
| j = 0, 1, 2, . . .

}
at I+, I−{(

−i
(

n
2
+ k +

√(
n−2
2

)2
+ µ2

j

)
, 0

)
| j, k = 0, 1, 2, . . .

}
at C+, C−

,

where µ2
j are those eigenvalues of ∆k on Z so that√(

n− 2

2

)2

+ µ2
j /∈

1

2
+ Z.

In terms of the radiation field R+[w], the expansion at C+ implies the expansion in Theo-
rem 1.1. Theorem 9.1 is stronger than Theorem 1.1, as it implies a joint asymptotic expansion
at C+ ∩ I+.
The proof follows the same outline as in the setting of asymptotically Minkowski spaces

to obtain the existence of the asymptotic expansion; the key missing steps require extending
the propagation and Fredholm statements near the conic singularities and are formalized in
Propositions 7.1 and 8.1. As the same approach works here, we provide only an abbreviated
sketch.

Our strategy is to show first that the solution is partially polyhomogeneous. As the initial
data are compactly supported, finite speed of propagation implies that the solution is trivial
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near C0. The finite speed of propagation also allows us to replace w with χw, where χ is a
smooth cutoff function to a neighborhood of C+ in M ; χw is then the forward solution of an
inhomogeneous wave equation on R×C(Z). We show that χw is partially polyhomogeneous
on the blown-up space [M ;S+] and an identical argument near C− then establishes the claim
for w. Establishing the partial polyhomogeneity of w has as its byproduct a proof that the
index sets at I± are as stated. Finally, we establish that the exponents seen in the expansion
at C± can be characterized as resonances associated to the hyperbolic cone with the same
link. It suffices to show this for the forward solution as the backward solution has the same
form near I− ∪ C−.

We therefore begin by considering the equation

□gw = f ′

on M◦, where f ′ ∈ C∞
c and suppose w is the forward solution. By translating in time and

replacing w with χw, we may assume that f ′ (and therefore w) is supported in the forward
light cone {t > r} and in {t > 1}. With ρ denoting a defining function17 for mf and x a
defining function for cf, we consider the conjugated equation

Lu = f,

where

L ≡ ρ−
n−1
2

−2□gρ
n−1
2 ,

u = ρ−
n−1
2 w ∈ C−∞(M),

f = ρ−
n−1
2

−2f ′ ∈ C∞
c (M◦).

This conjugation and rescaling transform □g into L, a “wedge-b-differential-operator”, i.e.,
a b-differential operator at mf and a wedge-type operator at cf. Note that the partial
polyhomogeneity of u implies that of w with index sets shifted by (n− 1)/2.
Due to the scaling invariance (in the variable ρ) of the metric, L agrees with its normal

operator, so N(L) ≡ L. This observation greatly simplifies the analysis of the problem by
eliminating remainder terms and thus allows us to avoid an additional iterative argument;
the lack of remainder terms accounts for the absence of logarithmic terms in the expansions
of Theorem 9.1.18

For convenience, we recall from Section 4 the form of the operator L in a neighborhood
of C+ in the coordinate system given by (ρ = 1/t, x = r/t, z). As we eventually pass to
the blown-up space [M ;S+], it is often convenient to include a coordinate defining S+. We
therefore also include the coordinate systems (ρ = 1/t, v = (t− r)/t, z), which are valid in a
neighborhood of S+.
Near S+, in the coordinate system given by (ρ = 1/t, x = r/t, z), L has the following form:

L = (ρDρ + xDx)
2 − ni (ρDρ + xDx)−D2

x +
(n− 1)i

x
Dx −

1

x2
∆k −

n2 − 1

4
.

Similarly, in terms of (ρ = 1/t, v = (t− r)/t, z), L takes the form

L = (ρDρ − (1− v)Dv)
2 − ni (ρDρ − (1− v)Dv)−D2

v −
(n− 1)i

1− v
Dv −

1

(1− v)2
∆k −

n2 − 1

4
.

17Near S+, the primary region of interest, we recall that ρ = t−1.
18If we instead perturb the spacetime metric, the remainder terms can be handled as in the asymptotically

Minkowski setting [BVW18].
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After applying the Mellin transform to the identity Lu = f , we obtain a family of equa-
tions19

P̃σũσ = f̃σ,

where P̃σ = N̂(L) is the reduced normal operator of L. As w vanishes near C− in M , we
may arrange that ũσ also vanishes in a neighborhood of C− in X = mf. In fact, as we are
able to assume that f ′ and w are supported in the interior of the forward light cone {t > r},
we may further assume that f̃σ and ũσ are supported in C+.
We start by showing that ũσ lies in the following space of conormal distributions:

Definition 9.2. Suppose ũ is a distribution on X = mf. We say that ũ ∈ I(s)(S+) if

(1) ũ ∈ Hs
b(X),

(2) away from S+, ũ ∈ H∞
b (X), and

(3) if V1, . . . , Vr are b-vector fields on X with principal symbols vanishing on N∗S+, then
V1 . . . Vrũ ∈ Hs

b(X).

In other words, ũ ∈ I(s)(S+) if it lies in H
s
b and lies in H∞

b (X) away from S+.
One consequence of Proposition 7.1 and mapping properties of the Mellin transform is the

following proposition:

Proposition 9.3. There are ς0, s so that ũσ is holomorphic on the upper half-plane Imσ >
−ς taking values in I(s−0)(S+) and obeys the following estimate for each N and each semi-
norm ∥•∥ on I(s)(S+):

sup
Imσ>−ς0

∫
Imσ=C

∥ũσ∥2⟨σ⟩N d(Reσ) <∞.

In order to aid in bookkeeping, we introduce a compact name for these spaces. In what
follows, H(Ω) refers to the space of holomorphic functions on the domain Ω ⊂ C.

Definition 9.4. For ς, s,∈ R, we let Cς denote the upper half-plane Imσ > −ς and then
define

B(ς, s) = H(Cς) ∩ ⟨σ⟩−∞L∞
ImσL

2(RReσ; I
(s)(S+)).

In other words, B(ς, s) consists of those gσ holomorphic in σ ∈ Cς taking values in I(s)(S+)
so that for each seminorm on I(s)(S+),∫ ∞

−∞
∥gµ+iν∥2•⟨µ⟩2k dµ

is uniformly bounded in ν > −ς.
Observe that because f ∈ C∞

c (M◦), we have

f̃σ ∈ B(C, s′) for all C, s′.
Proposition 9.3 can be restated as saying that there are ς0, s so that ũσ ∈ B(ς0, s− 0). We

now turn our attention to its proof.

19Recall that u has already been localized to {ρ < 1}, so it is unnecessary to include an additional cut-off
function here.
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Proof of Proposition 9.3. Because ρ(n−1)/2u lies in some Hs,γ

b,D̃
(M), we have

(15) ũσ ∈ H(Cς0) ∩ ⟨σ⟩max(0,−s)L∞L2(R, Hs(mf)),

where ς0 = γ − (n− 1)/2. By reducing γ, we may assume that s+ γ < 1/2 so as to be able
to apply the regularity results of Proposition 7.1. We may also arrange that ũσ vanishes in
a neighborhood of C− in mf because u vanishes near C− in M .

Proposition 7.1 implies that w is jointly conormal to S+ and cf and so by the mapping
properties of the Mellin transform (see, e.g., an earlier work in this series [BVW15, Lemma
2.3]),

ũσ ∈ B(ς0,−∞).

Interpolating with equation (15) yields the result. □

Having placed ũσ in the holomorphic conormal space B(ς0, s − 0), we may begin the
inversion procedure. Because

P̃σũσ = f̃σ,

our aim is to invert P̃σ and employ a contour-shifting argument to enlarge the domain of
meromorphy for ũσ.

By Proposition 8.1, P̃−1
σ forms a meromorphic family in any strip in the complex plane

(though its domain and range are dependent on the location of the strip). As f̃σ is entire,

writing ũσ = P̃−1
σ f̃σ, we see that ũσ is meromorphic in any upper half-plane taking values in

the X spaces. More precisely, we shift the contour N units to see that ũσ is meromorphic
in the half plane Imσ > −ς0 − N with values in X sftr , where sftr|Λ+ < 1

2
− ς0 − N . In

particular, ũσ is meromorphic with values in ⟨σ⟩−∞L∞L2(R;Hmin(s−0, 1
2
−ς0−N)

b ). On the other

hand, since P̃σ maps the expression to a conormal space, it must in fact take values in the
conormal space

⟨σ⟩−∞L∞L2(R; I(min(s−0, 1
2
−ς0−N−0))),

by propagation of the propagation results of Section 8.2 as well as the first case of Theorem 6.3
of Haber–Vasy [HV15], which concerns the propagation of Lagrangian regularity into conic
Lagrangian submanifolds of radial points.

We have therefore shown that for any N ,

ũσ ∈ B(ς0 +N,min(s− 0, 1/2− ς0 −N − 0)) +
∑

(σj ,mj)∈E0
−ς0>Imσj>−ς0−N

(σ − σj)
−mjaj,

where E0 is the set of poles of P−1
σ and

aj ∈ B(ς0 +N, Imσj + 1/2− 0).

After inverting the Mellin transform, we conclude that u enjoys a partial asymptotic
expansion. In fact, on M , we have

u =
∑

(σj ,k)∈E0
−ς0>Imσj>−ℓ

ρiσj(log ρ)kbjk + u′, ,

where, for some C = s+ ς0 (with s as in Proposition 9.3),

u′ ∈ ρℓH
min(C−ℓ−0,1/2−ς0−ℓ−0)
b (M).
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The coefficients bjk are smooth functions of ρ taking values in I(1/2+Imσj−0). Looking further
into the asymptotic expansion of u, one finds that the coefficients and the remainder term
are growing more singular owing to the radiation field “hiding” at S+.

In fact, after blowing up S+, Proposition 3.2 implies that the same arguments in the
preceding discussion provide one step toward the joint partial polyhomogeneity of u. Indeed,
u enjoys an asymptotic expansion at C+ uniformly up to the corner mf ∩I+ in [M ;S+].

The other needed step involves estimates at I+. This argument relies on the observa-
tion that on M , the operators L and 2Dv (ρDρ + vDv) differ only by terms with additional
vanishing at N∗S+. The vector field ρDρ + vDv lifts to the b-normal vector field for I+ in
[M ;S+]. Writing

R = ρDρ + vDv,

the other step establishing the polyhomogeneity of u requires that u enjoy additional van-
ishing after the application of (R + ik) . . . (R + i)R.

We ignore for now the additional terms in L20 and suppose L = 2Dv(ρDρ+vDv) = 4DvR.
As these statements are local to S+, a simple argument with cut-off functions shows we are
free to ignore the differentiation near the conic singularity (x = 0).
As Lu is smooth and compactly supported, and u ∈ Hs,γ

b , we know that DvRu ∈ Hs,γ
b .

Because Dv is elliptic on WFb(u), it is microlocally invertible and so Ru ∈ Hs+1,γ
b , i.e., Ru

is one order better than u.
To continue this iterative process, observe that RDv = Dv(R + i), so that(

k−1∏
j=0

(R + ij)

)
L =

(
k−1∏
j=0

(R + ij)

)
DvR = Dv

(
k∏

j=0

(R + ij)

)
.

An inductive argument then shows that(
k∏

j=0

(R + ij)

)
u ∈ Hs+k+1,γ

b (M),

so that (R + ik) . . . (R + i)Ru enjoys k + 1 additional orders of regularity at S+.
As u is already conormal to S+, measure of regularity there are essentially based on

applications of Dv. The vector field vDv is tangent to S+ (and so can be applied to u
as many times as we like), so we may interpret additional regularity at S+ as additional
vanishing at S+.

21 This extra vanishing is precisely what is needed for the application of
Proposition 3.2 and completes the bulk of the proof of Theorem 1.1.

We finally characterize the exponents seen in Theorems 1.1 and 9.1. As noted above, these

exponents are the poles of P̃−1
σ acting as an operator X sftr → Yspast .

As P̃σ is the Mellin conjugate of L, we may write

P̃σ = −(1− x2)D2
x − i(n+ 1 + 2iσ)xDx +

n− 1

x
iDx −

1

x2
∆k + σ2 − niσ +

n2 − 1

4
.

20Of course, these additional terms are always there. Managing these terms forms a sizable part of
Section 9.2 of the previous paper [BVW18] and we refer the reader there for a thorough discussion.

21This interpretation can be formalized by an integration argument and requires keeping track of the
factors of the module for which w already possesses regularity; see [BVW18, Section 9.2] for details.
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In particular, in C+ we have the following identity:(
1− x2

)n−1
4

+iσ
2
+1
P̃σ

(
1− x2

)−n−1
4

−iσ
2 =

−
(
(1− x2)Dx

)2
+ i

n− 1

x
(1− x2)Dx −

1− x2

x2
∆k +

(
n− 1

2

)2

+ σ2.

Taking x = tanh r identifies C+ with the hyperbolic cone Chyp(Z) over (Z, h); the conjugation
above yields(

1− x2
)n−1

4
+iσ

2
+1
P̃σ

(
1− x2

)−n−1
4

−iσ
2 = −

(
∆Chyp(Z) −

(
n− 1

2

)2

− σ2

)
.

Using this identification, for f̃σ compactly supported in C+, a straightforward adaptation
of the arguments22 in previous work [BVW15, Section 7] shows that

P̃−1
σ f |C+ = −

(
1− x2

)−n−1
4

−iσ
2 RChyp(Z)(σ)

(
(1− x2)1+

n−1
4

+iσ
2 f
)
.

Here RChyp(Z)(σ) = (∆Chyp(Z) − (n−1)2

4
− σ2)−1 is the resolvent of the Laplacian on the hy-

perbolic cone that is invertible for Imσ ≫ 0. The exponents appearing in the expansion
of u are therefore the poles of the resolvent on the hyperbolic cone; these poles were found
explicitly in a previous paper of the authors [BM19].
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