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Abstract: 

The incidence of vector-borne diseases is rising as deforestation, climate change, and globalization bring 
humans in contact with arthropods that can transmit pathogens. In particular, incidence of American 
Cutaneous Leishmaniasis (ACL), a disease caused by parasites transmitted by sandflies, is increasing as 
previously intact habitats are cleared for agriculture and urban areas, potentially bringing people into contact 
with vectors and reservoir hosts. Previous evidence has identified dozens of sandfly species that have been 
infected with and/or transmit Leishmania parasites. However, there is an incomplete understanding of which 
sandfly species transmit the parasite, complicating efforts to limit disease spread. Here, we apply machine 
learning models (boosted regression trees) to leverage biological and geographical traits of known sandfly 
vectors to predict potential vectors. Additionally, we generate trait profiles of confirmed vectors and identify 
important factors in transmission. Our model performed well with an average out of sample accuracy of 86%. 
The models predict that synanthropic sandflies living in areas with greater canopy height, less human 
modification, and within an optimal range of rainfall are more likely to be Leishmania vectors. We also 
observed that generalist sandflies that are able to inhabit many different ecoregions are more likely to transmit 
the parasites. Our results suggest that Psychodopygus amazonensis and Nyssomia antunesi are unidentified 
potential vectors, and should be the focus of sampling and research efforts. Overall, we found that our machine 
learning approach provides valuable information for Leishmania surveillance and management in an otherwise 
complex and data sparse system. 
 
 
Author Summary: 
American Cutaneous Leishmaniasis (ACL) is a neglected disease caused by sandfly-transmitted parasites in the 
Americas. There is an incomplete understanding of which sandfly species transmit the parasite, complicating 
efforts to limit parasite transmission and consequently, disease burden. In this study, the authors created a 
database of sandfly traits, then used predictive models to determine important factors in parasite transmission 
and how different climate and environmental variables predict which vectors can transmit the parasites that 
cause ACL. The models suggest that transmission occurs at the interface between domestic habitats and well-
preserved forests. The authors also generate predictions of which sandflies might be transmitting the parasite 
that are not known vectors at the time, specifically Psychodopygus amazonensis and Nyssomia antunesi. This 
new knowledge can lead to a better understanding of the system of transmission, and can point to possible 
hotspots of risk. The analysis can also help direct researchers to areas of interest for sampling studies, as well 
as specific sandflies on which to focus effort. 
 
 

  



 
Introduction: 

American cutaneous leishmaniasis (ACL) is a neglected tropical disease caused by parasites in the genus 

Leishmania, and transmitted by sandflies of the subfamily Phlebotominae [1, 2]. The World Health 

Organization estimates that worldwide there are approximately 1 to 2 million new cases of leishmaniasis each 

year [3], with 700,000 to 1 million of those cases identified as cutaneous leishmaniasis cases [4]. ACL cases 

occur across the Americas, with hotspots in northeastern and southeastern states in Mexico, northern 

Nicaragua, Costa Rica, Brazil, Peru, and at the convergence of the borders of Brazil, Peru, and Bolivia [5, 6]. In 

some regions, incidence of ACL is increasing among farmers, loggers, hunters, and others working at the 

forest-human interface. Additionally, although primarily a tropical and subtropical disease [2], cases have also 

been more recently reported in the southern United States [3, 7], making it an important emerging health 

problem in temperate regions. 

 

Similar to other disease-causing parasites, Leishmania parasites are found in wild and domestic reservoir 

hosts, which are located across the Americas, and are picked up by sandfly females during their blood meal 

before laying eggs [2, 8, 9]. In the female sandfly gut, the parasite amastigotes develop into promastigotes, 

which migrate to the salivary glands and spread to other mammals or to humans during subsequent blood 

meals [2, 8, 9] (Fig 1). Once a human is infected, the incubation period typically lasts around one to ten weeks 

(but can last many years) in which promastigotes invade local tissues and transform into amastigotes, entering 

macrophages through phagocytosis [2, 8]. Clinical symptoms include lesions, rashes, open sores, ulcers, and 

small bumps covering the skin, which can lead to deformation with possible recurrences [2]. In some cases, 

ACL can evolve into diffuse or disseminated leishmaniasis, and rarely, into mucocutaneous leishmaniasis 

which can lead to severe facial mutilations and extensive disfiguring of the face, soft palate, pharynx, and 

larynx [2, 10, 11]. Overall, the disease is extremely painful and at times, severely debilitating. 



 

 

Fig 1: ACL life cycle. Female sandfly vectors pick up Leishmania parasites during their blood meal from 

reservoir hosts. Spillover events occur when a sandfly with Leishmania parasites in its salivary glands takes a 

blood meal from a human, and infects the human with the parasite. Identity of all reservoir hosts and sandfly 

vectors are still unknown, which makes it hard to model and prevent transmission. Created with 

BioRender.com. 

 

There is no recognized oral treatment of ACL, and current antimonial treatments are painful, potentially 

dangerous and expensive [2, 3, 8, 11, 12]. Therefore, ACL is best managed through ecological interventions like 

controlling vectors and preventing transmission [13]. 

 

Climate change, deforestation, travel, and natural disasters are correlated with the spread of the parasite and 

leishmaniasis [2], yet it is hard to mechanistically predict the effect of global change on leishmaniasis incidence 

and distribution due to gaps in understanding of the parasite transmission cycle. Specifically, the full suite of 

reservoir hosts and confirmed vectors has not been fully characterized, making it difficult to model 

transmission under global change. For example, the incubation period of the parasite in the vector can be 

longer at lower temperatures and shorter at higher temperatures, ultimately impacting the number of hosts 

one sandfly can infect [2, 14, 15]. However, temperature responses likely vary by sandfly species [14, 15, 16], 

and thus the effect of climate warming on Leishmania transmission cannot be predicted precisely as the full 

range of sandflies that could transmit the parasites have yet to be described. Additionally, since different 



 
sandfly species have different habitat and biting preferences, sandfly species differ in their propensity to 

respond to land use change and contact infectious reservoir hosts and humans, thereby contributing to the 

human ACL burden. These are key uncertainties that need to be resolved for a more complete understanding of 

the transmission cycle, which will help to inform these mechanisms and identify vector and disease 

management opportunities. 

 

Parasite-vector interactions can be divided into restrictive (sandflies that demonstrate specificity for the 

Leishmania species they can transmit) and permissive (sandflies that show non-specific interactions) 

groupings under laboratory conditions [17]. While restrictive pairs are well studied and linked together using 

molecular analysis methods, not much is known about permissive interactions, and they may be under-

represented in the known list of sandfly vectors [17]. Thus, the current classification criteria might overlook 

some sandfly vectors that carry several different species of Leishmania. There have been efforts to use 

modeling approaches to identify environmental factors and vectors at the local level in Colombia [18, 19] and in 

the Middle East [20], but no such models have been built using data from across the Americas. 

 

In recent years, new machine learning methods have been used to identify potential reservoir hosts, vectors, 

and important factors in transmission of other vector-borne pathogens [21, 22]. In order to fill in gaps in our 

understanding of Leishmania transmission, we use a similar approach to model the relationships between 

sandfly biology and vector status. From these models, we generate a list of sandflies predicted to transmit 

Leishmania spp. causing ACL, which we recommend should be empirically tested for vector competence and 

added to surveillance efforts.  

 

Methods: 

Data collection 

We first compiled a database on Phlebotomine sandfly vector status as well as behavioral, morphological, 

taxonomic, and ecological traits that could be used to delineate vectors from non-vectors. Past vector 

identification has typically relied on the following criteria stated by Killick-Kendrick: (i) epidemiological 

observation that the sandfly is anthropophilic, (ii) proof that the fly feeds regularly on a relevant reservoir host, 



 
(iii) repeated isolation and identification of the same species of Leishmania spp. promastigotes infecting the 

humans in the surrounding area, (iv) evidence that the fly supports the complete development of the parasite, 

(v) and experimental evidence the sandfly can transmit the parasite through blood meal bite [17, 23, 24]. We 

defined a known vector to be a sandfly that is incriminated as a Leishmania vector by these criteria, which are 

generally considered to be the gold standard for identification [23]. We directly used vector status from 

Akhoundi et al. [24], which used the above criteria for identification. Molecular methods have been discussed 

as possible evidence, but are not sufficient to incriminate a sandfly species as a proven vector [24]. Here, we 

will use the term ‘vector’ to represent the sandflies that are confirmed through the five criteria stated by Killick-

Kendrick [23]. We note that our definition of vector is specific to vectors of Leishmania spp. that can infect 

humans. We defined a ‘potential vector’ to be a sandfly that has been observed to carry Leishmania parasites in 

the wild via molecular diagnosis or dissection but not confirmed to transmit it to humans; it is important to 

note that we did not consider sandflies that have been experimentally infected with a Leishmania parasite to be 

a potential vector, and that we did not apply positive labels to potential vectors in our primary analysis. Our 

dataset comprised 512 documented sandfly species across the Americas (sample size n = 512). Thirty-seven of 

these 512 are confirmed at the time of analysis as vectors of one or more species of Leishmania causing ACL, 

and 35 additional species are potential vectors [10, 24, 25-28]. 

 

From the literature we collected thirteen female morphological traits [29-32] including but not limited to wing 

length, width, and number of teeth (Table S1), as well as vector and infection status [24, 26, 27, 30, 33-37]. We 

included genus as a variable to include a measure of taxonomic relatedness in the model. Most of the sandfly 

morphological traits and biting behavior were taken from Young & Duncan’s 1994 book [30], with additional 

biting behavior data taken from sandfly surveys using Disney and Shannon traps [25, 27, 37-78]. We paired 

occurrence points from the Global Biodiversity Information Facility (GBIF) [79, 80] and published sandfly 

sampling studies [37-78] with GIS data from Google Earth Engine to describe biogeographical features of 

sandfly habitat such as temperature, wind speed, and canopy height (Table S1). For each sampling study from 

the literature, we only included sandflies that made up more than 1% of the sampled species to account for 

possible misidentification or outliers. Habitat features were calculated for a sandfly species if there were at 

least 4 occurrence points for the species.  



 
 

We used the Google Earth Engine Python API in Jupyter Notebook to get environmental and geographical 

traits averaged over each species’ distribution, using the smallest spatial resolution possible as sandfly 

dispersal is very limited [2, 81, 82] (Table S1). Based on known sandfly-parasite interactions, we expect 

important traits to include temperature, forest integrity, and other environmental change variables [2, 4, 14, 15, 

16]. We used Copernicus Climate Change Service’s ERA5 datasets of biogeographical data to get the mean 

monthly temperature, temperature range, mean monthly total rainfall, mean monthly wind speed, and mean 

elevation [83]. All data from Google Earth Engine datasets was from 2009 to 2019. We used NASA’s Terra 

Vegetation dataset to get an enhanced vegetation index [84] and the Copernicus Global Land Cover dataset for 

tree, shrub, urban, grass, and water cover [85]. We used NOAA’s ETOPO1 dataset for elevation [86] and NASA 

and JPL’s Global Forest Canopy Height for canopy height [87]. We defined a species’ ecoregion breadth as the 

number of different ecoregions it inhabited in the RESOLVE Biodiversity and Wildlife Solutions dataset (i.e., 

how many unique ecoregions the occurrence points mapped to) [88]. A species’ presence in a biome was a 

binary trait for 10 different biomes [88]. The global human modification trait was the cumulative measure of 

human modification of terrestrial lands globally at a 1 square-kilometer resolution in the Conservation Science 

Partners gHM dataset [89]. We used the Forest Landscape Integrity Index for the average forest integrity of an 

occurrence point, determined by degree of anthropogenic modification [90]. We used temperature variance as 

an indicator of seasonality, and found the average variance across the years with each month as an observation 

time point [83]. We used the RISmed package in R to quantify citation counts of each sandfly in the PubMed 

database. Overall, we collected 12 morphological traits and 25 different ecological and biogeographical traits. 

 

Following (Evans et al. 2017, Han et al. 2019, Fischhoff et al. 2021, Han et al. 2015), variables with less than 10 

percent coverage and a correlation factor greater than 0.7 with other variables were not included in the final 

analysis to avoid overfitting and misestimating the importance of highly correlated variables. The cutoff 

removes traits for which less than 10 percent of sandflies have data, to filter out variables with low coverage to 

simplify the models a bit. In theory, a data coverage cutoff is not necessary because of the way boosted 

regression treats missing data - it views the missingness as a 'common value' to group on. If one were to 

include all of the data regardless of coverage, low coverage variables that also have "low information" (either 



 
due to low coverage or due to the feature not being consequential for prediction) have low relative importance 

scores. As such, we used the 10% cutoff to simplify the model by removing variables that are likely to not 

contribute to model performance and predictions due to "low information". In order to avoid cyclic analysis, we 

did not include the trait for biting humans in our analysis, as vectors are already defined to be anthropophilic. 

Traits with skewed distributions were normalized to avoid skewing our analysis with outlying and potentially 

influential data while training our models [92]. We used one hot encoding, which converts each categorical 

variable to a new binary variable with either a 0 or 1, to transform categorical variables into binary variables 

(eg. genus, shape of maxillary tip, or structure of hypopharyngeal teeth) [21]. 

 

Data analysis 

We used extreme boosting through the XGBoost library in Python to fit a logistic classifier boosted regression 

tree model (BRT). Extreme gradient boosted regression is a machine learning algorithm that creates an 

ensemble of weak decision trees to form a stronger prediction model by iteratively learning from weak 

classifiers and adding them to a strong classifier (i.e., boosting). Gradient boosted regression is flexible in that 

it allows for non-linearity, both among features (i.e., interactions) and between features and predictions, 

collinearity between features, and non-random patterns of missing data [21, 22, 91, 92]. XGBoost also allows 

the use of regularization parameters to prevent overfitting models to small, unbalanced datasets. XGBoost 

additionally handles unbalanced data well by weighting positive labels, an advantage when analyzing our data 

set with relatively few known vectors and sparse feature coverage. 

 

We fit two predictive models for the general Leishmania genus as there was not enough data to accurately 

make separate models for each species of Leishmania. For the primary model, only the confirmed vectors were 

used as positive labels (0: not a confirmed vector, 1: confirmed vector). We include an additional analysis in the 

supplementary materials that includes both confirmed and potential vectors as positive labels (0: no evidence 

of the sandfly carrying a Leishmania parasite, 1: confirmed vector or observed to carry a Leishmania parasite). 

As such, the secondary analysis indicates the probability a sandfly may be naturally infected with Leishmania, 

but is not necessarily infectious upon infection. 

 



 
For training and tuning analysis, the data was stratified and split into 80% training and 20% testing sets such 

that each set had an equal proportion of positive labels. To tune the hyperparameters for our XGBoost model, 

we used the hyperopt library in Python, which uses Bayesian optimization to find the best performing 

parameters for the model. We define a search space to include parameters dealing with regularization, depth, 

and learning rate of the regression trees, then run the optimization algorithm to find the best performing 

parameters. To ensure the model was generalizable, we used a 3-fold nested cross validation process for 

parameter tuning, where the training dataset was divided into three folds or subsets. In cross validation, for 3 

iterations, a combination of two of those folds was used as the training set, while the remaining fold was used 

for validation to optimize parameter estimation. The nested cross-validation approach provides conservative 

estimates of model performance when analyzing small datasets [93]. The training results are averaged over the 

folds to get the performance score of the model. Due to data sparsity, we opted for 3-fold nested cross 

validation rather than 10-fold [21]. We used the 10 best performing parameter sets (minimum log-loss) in our 

BRT models. 

 

Since results of boosted regression tree models are often dependent on test/train splits [24], we used the 10 

best performing sets of parameters, and 10 random test train splits, to train 100 total models using the 

XGBoost library in Python. We evaluated model performance across the 100 model iterations using the 

aggregate median of the Area Under the Receiver Operator Curve (AUC). Each of the models was used to 

generate a predicted probability for the sandflies by applying the trained models to the whole dataset of 

sandflies and their traits. The predicted probability ranged from 0 to 1, and we used the aggregate median 

generated across the 100 models to assess potential vector status. We define variable importance to be the 

number of times a variable is selected for splitting a regression tree, weighted by the improvement to the model 

as a result of that node. Importance was evaluated on a scale of 0 to 1, with higher numbers signifying that the 

variable had a higher impact on model training, and all the individual importances summing to 1. For the 

variables we converted from categorical to binary, the relative importance of each binary trait was summed to 

represent the importance for the overall categorical variable. 

 



 
Our secondary model, which was trained and fit identically to the primary model, used both confirmed and 

potential vectors as positive labels. More information on the secondary model can be found in the 

supplementary materials.  

 

To determine whether we were identifying traits of vectors and not only traits of well-

studied sandflies (i.e., our model was not biased by study effort), we ran a citation 

prediction model. Using the same hyperparameter tuning technique, a gradient boosted 

regressor model, and citation count as the target variable, we generated predictions of 

citations and a trait profile of well-studied species. We then compared the trait 

profiles between our vector model and citation count model to determine bias due to 

study effort. Next, to test whether our model was overfitting and fitting spurious 

correlations in the data, we performed target shuffling for 50 iterations (i.e., randomly 

shuffled the response variable, vector status, for 50 model iterations) and got the 

average performance score. Target shuffling is a way to test the statistical accuracy of 

a model, and avoid identifying false positives through false patterns in the data [94]. 

The model is considered overfit if it identifies shuffled labels with a greater accuracy 

than with a coin flip (i.e., AUC ≤ 0.5). 

 

Results: 

Our models used data on known vectors to identify which sandfly species are the most likely to carry and 

transmit Leishmania parasites causing ACL. We trained our ensemble of boosted regression tree (BRT) models 

on the trait profile of the confirmed vectors, and predicted which species might be potential vectors by 

leveraging trait similarities among species. The models achieved a high aggregate median out-of-sample AUC 

of 0.86 with a standard error of 0.008 across the 100 model iterations (Fig S1); therefore, on average, our 

models classified 86% of our observations correctly. 



 

 

Fig 2: The model accurately classifies known vectors and identifies relatively few species of 

unknown status as likely vectors. A distribution of predicted probabilities of sandfly species separated by 

vector status, and scaled by percentage. Red bars indicate the proportion of confirmed vectors that were 

predicted at that probability, while beige bars indicate the proportion of sandfly species not previously 

identified as vectors that were predicted at that probability. 

 

For each sandfly species, we generated an aggregate median predicted probability score of how likely it is to be 

a vector of ACL, and the percentile rank of that possibility. We consider sandfly species to be potential vectors if 

our models assigned them a predicted probability over 0.5 on a scale of 0 to 1, where 1 indicates that the species 

has a highest probability of being a vector. The models assigned 35 of 37 confirmed vectors with a median 

predicted probability above 0.5 and 13 of 475 sandfly species of unknown vector status with a median 

probability above 0.5 (Tables 1 and S2 and Fig 2). Two confirmed vectors (Pintomyia youngi, Pintomyia 

ovallesi) had lower probability scores, which could be due to sparsity of data for those species, thereby limiting 

our models from predicting species that otherwise might have been vectors. All of the 13 unknown sandflies 

predicted above a 0.5 probability were above the 90th percentile, and 8 of those 13 were potential vectors that 

have been observed to carry Leishmania parasites but have not yet been confirmed as vectors (Table 1). The full 

list of sandflies and their predicted probabilities, percentile rank, and status can be found in supplementary 

materials, and a map of confirmed and predicted vector species occurrence points appears in Fig 3. For our 

secondary model, which was trained on both proven and potential vectors, we generated the same types of 



 
predictions, resulting in a mean AUC of 0.86, and many of the same top predicted sandflies (Table S4, Fig S6 

and S7).  

 

Table 1: The median predicted probability, standard deviation, and percentile for sandfly 

species of unknown vector status with greater than 0.5 predicted probability of being a vector. 

The infection status column indicates whether the sandfly is a potential vector (has been observed carrying the 

parasite, but not confirmed as transmitting it to humans; ‘potential’), or that the sandfly has not yet been found 

infected with Leishmania in the wild (‘unknown’). 

 

 



 

 

Fig 3: Confirmed (A) and newly-predicted (B) vectors occur throughout the Americas. (A) 

Observed occurrences of confirmed vectors of Leishmania spp. that cause ACL, taken from GBIF and plotted in 

arcGIS (Esri, USGS | Esri, Garmin, FAO, NOAA, USGS) [79, 80]. (B) Observed occurrences of sandflies of 

unknown vector status that our models assigned a predicted probability above 0.5. Most predicted vectors are 

in Brazil due to more extensive survey efforts and availability of public data [79, 80]. Maps showing species 

richness and vector distribution for each species of Leishmania spp. can be found in the supplementary 

materials (Fig S4 and S5).  

 

The top two unknown sandflies predicted by the models were Psychodopygus amazonensis (mean probability 

= 0.868), which has been observed carrying L. naiffi in the wild, and Nyssomyia antunesi (mean probability = 

0.852), which has been observed carrying L. lindenbergi (Table 1). The model also predicted Psychodopygus 

claustrei and Psychodopygus guyanensis, both of which have not been observed to carry any species of 

Leishmania, and Pintomyia pessoai, which can carry L. braziliensis. As such, our model suggests that not only 

can these sandflies become infected with Leishmania spp. that cause ACL, but they can also transmit the 

parasites and may be important vectors transmitting Leishmania spp. to humans, as well as among reservoir 

hosts. Our secondary model, which predicted the probability that sandflies can be naturally infected with 



 
zoonotic Leishmania, predicted Psychodopygus amazonensis and Nyssomyia antunesi with probabilities 

above 0.93, along with assigning Psychodopygus claustrei, Psychodopygus guyanensis, and Pintomyia 

pessoai probability scores above 0.75 (Table S5).  

 

The four most important features in our primary model (i.e., trained on confirmed vectors) are (i) the number 

of citations in PubMed, (ii) the genus of the sandfly, (iii) number of ecoregions the sandfly inhabits , and (iv) 

mean canopy height. Partial dependence plots (Fig 4B) indicate that sandflies that have greater study effort, 

live in areas with greater canopy height, and inhabit many different ecoregions are more likely to be 

Leishmania spp. vectors. Relative importance for the top twenty features and partial dependence plots for the 

top sixteen features are in the supplementary materials (Table S3, Fig S2, Fig S3).  The trait profiles (partial 

dependence plots) of human modification index and forest land integrity index displayed opposite 

directionality, and our model assigned greater vector probabilities to sandflies that inhabit environments with 

less human modification and a greater land integrity index (Fig S2). Other important variables included 

synanthropy (the tendency of an organism to live close to people and benefit from domestic habitats), main 

habitat, number of lateral teeth, along with environmental variables like rainfall, temperature, and temperature 

range, which are worth noting as climate drivers of sandfly development and survival [2, 14, 15]. The top 

features of our secondary model (i.e., trained on confirmed and potential vectors) were (i) the genus of the 

sandfly, (ii) the sandfly’s main habitat, (iii) synanthropy, and (iv) number of ecoregions the sandfly inhabits 

(Table S6); the full list can be found in the supplementary materials. 

 

 



 
Fig 4: Human biting, study effort, and canopy height were the most important features for 

predicting vector status. (A) Partial dependence plots of the top three variables from the BRT analysis 

showing the marginal dependence of each trait (shown in order of importance) on the probability of being a 

vector of ACL. The variable along with its average importance (on a scale of 0-1) are above each plot, the trait 

value is shown on the x axis, and the effect on probability is shown on the y-axis. The colored lines represent 

the marginal dependence of the trait from the 100 BRT models, while the solid black line represents the 

average dependence. The definition of each variable can be found in Table S1. (B) Variable importance, scaled 

from 0-1, for the top 10 most important variables with 95% confidence intervals. Points represent mean gain 

value across 100 iterations. The importances for binary variables were summed up to obtain a single value for 

the entire categorical variable.  

 

Our target shuffling subanalysis returned a performance score of 0.50 (i.e., the model was no better at 

predicting shuffled labels than a coin-flip), indicating that our model is not overfit and simply finding spurious 

correlations in the data [94]. The citation prediction model was able to predict citation count to some extent 

(R2 = 0.18), but has a different trait profile than that of our original vector models, suggesting that our 

predictions of Leishmania vectors do not simply reflect study bias (Table S3, Table S4). 

 

Discussion:  

Our primary model leveraged ecological, behavioral, taxonomic, and biogeographic characteristics of sandfly 

species found across the Americas to predict the probability of a sandfly being a vector of ACL. The group of 

100 BRT models was able to classify sandfly vectors with 86% accuracy and identified several previously 

unknown species with a relatively high probability of being a vector. Similarly, our secondary model was able to 

determine which sandflies might be capable of carrying Leishmania with high accuracy. Overall, we found that 

the ecology and taxonomic features of a sandfly are most important in determining whether it has the potential 

to be a vector, followed by behavioral and morphological features. While citation count was the most important 

factor in predicting a vector, our citation count subanalysis suggested that our results were not primarily driven 

by study bias, as it performed poorly and had a different trait profile than our vector models. Study effort may 

indicate that Leishmania vectors are undersampled, but it may also indicate that vectors have a broad range 



 
that interfaces with human settlements, as it would be sampled in many different field surveys across the 

Americas. We found that both an increase in citation count and ecoregion breadth, i.e., the number of unique 

ecoregions in which the sandfly has been observed, were associated with a higher likelihood of a sandfly being a 

vector. This may suggest that the higher the species’ propensity to adapt to and live in many different 

environments, the more likely it is able to survive—and be captured and sampled—in an environment with 

human inhabitants and transmit the Leishmania parasite. 

 

Recent studies have shown that reservoir host relative abundance increases but overall mammal diversity 

decreases with human modification, while sandfly density increases with mammal diversity and decreases with 

human modification [95]. Our results support these findings as our model shows that sandflies that occupy 

areas with lower human modification and higher land integrity are more likely to be vectors. Since the opposite 

is true for the effect of human modification on reservoir host communities, this may indicate that the highest 

risk of Leishmania spillover lies at the interface between human modification and intact forests [96]. Indeed, 

synanthropic sandfly species that live in domestic habitats, but are associated with higher-integrity land cover, 

were more likely to be vectors. Interestingly, canopy height, which can be indicative of forest intactness, was 

one of the most important features in our model. An increase in canopy height suggests older forest and trees, 

as well as more space along the bark for sandflies to breed and live. Based on our model, sandflies found in 

these preserved areas with high forest integrity and low human modification are more likely to be vectors of 

Leishmania. Since sandflies in general are weak fliers and typically prefer to stay within 30 to 300 meters of 

their breeding and living environment [2, 96], our analyses support previous hypotheses that transmission can 

happen when people enter previously undisturbed areas and come into contact with sandflies [2]. Since 

synanthropic sandflies are also more likely to be vectors due to their proximity to humans, this contact and 

transmission is thought to occur at interfaces between intact forests and domestic settlements, as previously 

suggested. Additionally, canopy height was correlated with sandfly wing width, which was removed for model 

training, yet indicates that our model accounts for sandfly biology and relevant environmental interactions. It 

is difficult, however, to track spillover that occurs at these interfaces as temporal and spatial differences in 

vector and host habitat make it challenging to observe the alignment of human, reservoir host, and sandfly 

dynamics conducive to wildlife-sandfly-human transmission [97]. Further, overall data sparsity of sandfly 



 
occurrence points and traits, as well as vector and host interactions, makes modeling ACL transmission even 

more complicated. 

 

The second most important predictor of vector status was a sandfly’s genus, indicating that sandflies from 

certain genera can be more or less inclined to be a vector. This suggests certain traits that occur in these parts 

of the sandfly phylogenetic tree are important for vector status, but full sandfly phylogenies were unavailable, 

so we were unable to quantitatively asses the effect of genetic distance. This highlights the importance of 

careful taxonomic work as well as high quality genetic data for as many species as possible.  

 

We also found non-linear relationships between vector probability and climate variables. Vectors that occur in 

habitats with high temperatures and temperature ranges were less likely to be vectors, indicating that there is 

an optimal temperature range in which vector transmission occurs. Sandflies in environments with higher 

rainfall are also more likely to be vectors, indicating an optimal range of precipitation that might also support 

high sandfly population abundance. This suggests there is a landscape of differential vector transmission 

success, which is worth investigating to determine risk score across different habitats. 

 

The analysis helped to confirm that some sandfly species observed to carry Leishmania in the wild but have not 

yet been confirmed as capable of transmitting to humans (i.e., potential vectors) are likely to be infectious. 

These predicted vectors should be empirically tested to determine if they are indeed vectors, and using genomic 

blood meal analyses [98], determine what reservoir hosts they feed on. In particular, efforts should focus on 

Psychodopygus amazonensis and Nyssomia antunesi. Psychodopygus amazonensis has been observed to 

carry L. naiffi, and shares a genus with eleven sandflies that are proven vectors of L. braziliensis and L. naiffi 

[22], with the model assigning three new sandflies of genus Psychodopygus probability scores above 0.5. 

Nyssomyia antunesi is an anthropophilic sandfly observed to carry L. lindenbergi, and there is strong evidence 

that it is a vector of ACL [24, 99]. It is additionally taxonomically related to Nyssomyia whitmani and 

Nyssomyia umbratilis, both vectors of L. braziliensis and L. guyanensis [22, 100, 101]. 

 



 
Our secondary model trained on identifying potential vectors supported the sandfly predictions generated by 

our primary model. Sandflies predicted by the primary model were ranked highly by our secondary model. 

However, not all potential vectors (sandflies that have been observed to carry but not transmit Leishmania) 

were predicted to be highly likely vectors to humans, indicating that the ability to carry the parasite, while 

important, may not be representative of the sandfly’s ability to be a human vector of ACL. Rather, there are 

additional biological variables like forest integrity, canopy height, and temperature range that play important 

roles in Leishmania transmission to humans, as indicated in our analysis. Importantly, while these sandflies 

may not be vectors involved in human transmission, they may still be involved in transmitting the pathogen 

among reservoir hosts, maintaining a reservoir community, and warranting further research.  

 

The majority of occurrence points of newly identified sandfly vector species were found in Brazil. This could be 

because Brazil has the most sampling studies done on sandflies, but incidence of ACL is also highest in Brazil 

according to Pan American Health Organization (PAHO) [6]. So while Brazil is generally better studied, there is 

also high vector species richness and abundance, specifically with predicted vectors concentrated in central 

Brazil in Mato Grosso and Mato Grosso Do Sul. Certain areas in Brazil are well sampled, but there are many 

regions that are neglected and ought to be the focus of new sampling efforts in order to identify new vectors. 

Future sandfly sampling efforts should be concentrated in these areas predicted by the model, in addition to 

poorly explored regions with not many sampling surveys or efforts, such as the Caatinga biome (northeastern 

Brazil) and the western Amazon. Then, to assess vector competence and incrimination according to the Killick-

Kendrick criteria, entomological studies should be carried out in disease hotspots, followed by human disease 

notification and prevention efforts [98]. We additionally identified predicted vector occurrence points in Madre 

de Dios, Peru, another hotspot of ACL transmission, the eastern coast of French Guiana, and northwestern 

Colombia. Our analysis suggests new vectors (Psy. amazonensis, N. antunesi, Psy. claustrei, Psy. guyanensis, 

P. pessoai, Pa. bigeniculata, T. auraensis, Psy. chagasi, T. castanheirai, S. sordelli, Pa. lanei, Ev. 

infrapsinosa, W. rotundipennis) to be incorporated into surveillance efforts in these regions. 

 

Due to data sparsity and low coverage, we were unable to generate Leishmania species-specific models, as 

some species had only one or two confirmed vectors. Instead, we opted for a genus-wide model that includes all 



 
Leishmania parasites that cause cutaneous leishmaniasis in the Americas. Although it is more informative and 

reliable to have more data for training the model, we lose the Leishmania species-specific vector transmission 

information in this general model. Additional studies into the Leishmania parasites themselves as well as 

vectors that transmit them would increase the model accuracy for predicting specific Leishmania transmission 

cycles. In addition, some traits had to be removed from the final model due to low coverage (< 10%). These 

included activity throughout the day, lifespan, and which taxa they feed on, which would be valuable to future 

work in sandfly vector transmission of Leishmania. Data sparsity along with gaps in basic knowledge about 

ACL transmission contributed to model uncertainty. For instance, low trait coverage for some species could 

affect how they are predicted. While we are relatively confident in sandfly species predicted with high 

probability, additional data are required to reach similar predictive confidence for species that are currently 

predicted with low probability. We are more likely to have failed to identify an unknown and understudied 

species as a vector than an unknown but well-studied species. Additionally, although North American sandflies 

were included in the models, there were few occurrence points for these species, and they did not have high 

vector prediction scores. This is another limitation of our analysis considering the rise in North American cases 

of leishmaniasis and potential range shifts of sandfly vectors. Specifically, more data about species occurrence, 

behavior, and morphology are necessary to deepen our understanding of ACL vectors and spillover 

transmission in human populations. 

 

While our model generally performed well, it assigned two known sandfly vectors a probability score lower 

than 0.5. One of these sandflies was Pintomyia youngi, which is a confirmed vector of L. braziliensis, and a 

potential vector of L. amazonensis. Due to difficulty in taxonomic identification procedures, Pintomyia youngi 

could have been misidentified as Lutzomyia townsendi [31, 102, 103], which means that covariate and/or 

vector status data might be assigned to the wrong species. This can lead to misrepresentation in the model 

(that already relies on sparse data), which might explain the low probability score assigned to Pintomyia 

youngi. A more stringent taxonomic identification criteria will help with Leishmania studies worldwide, as well 

as with modeling efforts. The other species with a low model-predicted probability was Pintomyia ovallesi, a 

lesser-studied vector of ACL in Central America [24, 104, 105]. It is possible that our model failed to identify 

them due to a lack of data and bias towards Brazilian sandfly vectors. 



 
 

By understanding the environmental features that promote specific sandfly vector species, we can better (i) 

understand ACL transmission cycles as they impact human risk, (ii) understand the potential impacts of 

human modifications such as land use change on ACL transmission, and (iii) predict how ACL transmission 

cycles will respond to global change in the future. Based on the traits most predictive of vector status, we 

hypothesize that human risk peaks at the interface of human, vector, and host communities in intact forest 

areas with high canopies and relatively low temperature variance. Further analysis of epidemiological data and 

surveillance data on hosts, parasites, and vectors could be used to test this hypothesis. In addition, predicted 

but not yet confirmed vectors of ACL, i.e., Psychodopygus amazonensis, Nyssomyia antunesi, Psychodopygus 

claustrei, Psychodopygus guyanensis, and Pintomyia pessoai, should be empirically tested for competence in 

the laboratory. If confirmed, vector control methods should be expanded to account for the new vectors. 

Similarly, sampling and public health efforts should target central-west Brazil, where predicted vectors are 

concentrated, as well as lesser studied areas such as northeastern Brazil and the western Amazon. As ACL 

increases across the Americas, sandfly species that fit the trait profile of other confirmed vectors—including 

dwelling in forest with high canopy and high integrity, biting humans, and spanning many ecoregions—are 

important targets for Leishmania surveillance to better identify reservoir host transmission cycles and risk 

factors for human spillover and to cost-effectively target the most likely potential vectors. 
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Supplementary Legend: 

Table S1: Trait table. All traits used in the sandfly vector model, along with definitions and data sources. 

Fig S1: A histogram of AUC scores across all 100 BRT models for the primary model. The average 
AUC score was 0.851, and the median AUC score was 0.863. An AUC = 1.0 means the model is perfectly able to 
distinguish between the sandflies that are vectors and those that are not. 

Table S2: Predicted probabilities for the primary model for sandflies assigned a probability score 
greater than 0.5. 

Fig S2: Primary model partial dependence plots showing the marginal effect of each trait (shown in 
order of importance) on the probability of being a vector of ACL. The trait value is shown on the x-axis, and the 
importance is shown on the y-axis. Colored lines represent the marginal dependence of the trait from the 100 
BRT models, while the solid black line represents the average dependence. The definition of each variable can 
be found in Table S1. 

Table S3: Variable importance for the top 30 most important variables in the primary model, with 
categorical variables summed. 

Fig S3: Variable importance of the primary model for the top 20 most important variables 
predicting sandfly vector status. Points represent mean gain value across 100 iterations and error bars 
represent 95% bootstrapped confidence intervals. Categorial variables are not summed here; each variable is 
left as it’s own. 

Fig S4: Occurrence points of predicted sandflies from the primary model, taken from GBIF and 
plotted in ArcGIS (Esri, USGS | Esri, Garmin, FAO, NOAA, USGS) [79, 80], colored by species to indicate 
species richness. 

Fig S5: Occurrence points for confirmed vectors of each Leishmania species causing ACL, colored 
by sandfly species to indicate species richness. Points taken from GBIF and plotted in ArcGIS (Esri, USGS | 
Esri, Garmin, FAO, NOAA, USGS) [79, 80]. Leishmania species not mapped (e.g. L. waltoni, L. lindenbergi, L. 
enrietti) have no confirmed vectors. 

Table S4: Variable importance for the top 20 most important variables in the citation model, 
without categorical variables summed. The trait profile is different compared to the primary model trait profile, 
ensuring that our primary model is not simply predicting which sandflies are well-studied. 

Fig S6: A histogram of AUC scores for the secondary set of 100 BRT models using both potential 
and confirmed sandfly vectors as positive labels. The average AUC score was 0.867, and the median AUC score 
was 0.869. 

Fig S7: A distribution of predicted probabilities from the secondary model of sandflies separated by 
vector status, and scaled by percentage. Red bars indicate the proportion of confirmed vectors that were 
predicted at that probability, while beige bars indicate the proportion of non-vector sandflies that were 
predicted at that probability. 

Table S5: Predicted probabilities for the secondary model, for sandflies that are not confirmed vectors 
that have been assigned a probability score above the 90th percentile. 

Table S6: Variable importance for the top 30 most important variables in the secondary model, 
with categorical variables summed. 

Fig S8: Variable importance for the top 10 most important variables in the secondary model with 
95% confidence intervals. Points represent mean gain value across 100 iterations. The importances for binary 
variables were summed up to obtain a single value for the entire categorical variable. 



 
Fig S9: Variable importance for the top 20 most important variables in the secondary model 
predicting sandfly vector status. Points represent mean gain value across 100 iterations and error bars 
represent 95% bootstrapped confidence intervals. Categorial variables are not summed here; each variable is 
left as its own. 

Fig S10: Secondary model partial dependence plots showing the marginal effect (yhat) of each 
trait (shown in order of importance) on the probability of being a vector of ACL. Variable value is shown on the 
x-axis, and marginal effect is shown on the y-axis. Partial dependence plots show the dependence of the 
probability on that trait’s value, i.e., how the vector probability changes as the trait value increases. 

  



 
Supplementary Materials: 
All of the code and data used for this analysis can be found on this github repository: 
https://github.com/mudkins/ACL-vector-data-analysis  
 
Table S1: Trait table. All traits used in the sandfly vector model, along with definitions and data sources.  

trait (as 
found in the 
data) 

definition source coverage (%) 

taxonomy 

tribe Hertigiini or Phlebotomini (binary) 1 100 

subtribe Brumptomyiina, Hertigiina, Lutzomyiina, 
Psychodopygina, or Sergentomyiina (binary) 

1 100 

genus Bichromomyia, Brumptomyia, Dampfomyia, 
Deanemyia, Evandromyia, Expapillata, 
Hertigia, Lutzomyia, Martinsmyia, 
Micropygomyia, Migonemyia, Nyssomyia, 
Oligodontomyia, Pintomyia, Pressatia, 
Psathyromyia, Psychodopygus, Sciopemyia, 
Trichophoromyia, Trichopygomyia, 
Viannamyia, Warileya (binary) 

1 100 

female morphology 

labruml_wingl ratio labrum length/wing length 2 17.38 

A3_wingl ratio length antennal segment 3/wing length 2, 3 17.38 

no.lat.teeth number of lateral teeth 2, 3 21.48 

wing.length wing length 2, 3 29.88 

wingl_wingw ratio wing length/wing width 2 29.88 

wing.width wing width at widest part of wing 2 13.87 

labrum.length labrum length: part of feeding fascicle, 
determines depth of skin and penetration 

2, 3, 4 22.27 

A3 length antennal segment 3 2, 3 6.6 

number ventrad 
teeth 

number of ventrad (internal) teeth 3 20.9 

number 
cibarium teeth 

number horizontal cibarium teeth 2, 3 32.03 

dental.depth distance from tip of maxilla to most 
prominent ventral tooth 

2, 3 17.38 

max.shape shape of maxillary tip: either spear or sabre 2 22.46 

https://github.com/mudkins/ACL-vector-data-analysis


 

(binary) 

hypo.teeth structure of hypopharyngeal teeth: smooth, 
rough, or spiculate (binary) 

2 22.46 

biogeography/ecology 

biomes One or more of Tropical & Subtropical Moist 
Broadleaf Forests; Tropical & Subtropical 
Dry Broadleaf Forests; Tropical & 
Subtropical Grasslands, Savannas & 
Shrublands; Mangroves; Flooded Grasslands 
& Savannas; Deserts & Xeric Shrublands; 
Tropical & Subtropical Coniferous Forests; 
Temperate Grasslands, Savannas & 
Shrublands; Temperate Conifer Forests; 
Temperate Broadleaf & Mixed Forests, 
Montane Grasslands & Shrublands (binary) 

5 41.8 

ecoregion.bread
th 

number of distinct ecoregions the sandfly 
occurs in 

5 41.6 

temp mean monthly temperature of species range 
from 2009-2019 

6 41.6 

temp.range mean of monthly temperature range of 
species range from 2009-2019 

6 41.6 

rainfall mean monthly rainfall of species range from 
2009-2019 

6 41.6 

wind.speed mean monthly wind speed of species range 
from 2009-2019 

6 41.6 

flii forest land integrity index: measure of forest 
pressure and connectivity, index of forest 
integrity determined by degree of 
anthropogenic modification 

7 32.81 

elevation mean elevation of species range from 2009-
2019 

8 41.6 

canopy global tree heights based on a fusion of 
spaceborne-lidar data (2005) from the 
Geoscience Laser Altimeter System (GLAS) 
and ancillary geospatial data 

9 41.6 

tree.cover mean treecover of species range from 2009-
2019 

10 41.6 

ghm global human modification: the cumulative 
measure of human modification of terrestrial 
lands globally at 1 square-kilometer 
resolution 

11 41.6 

evi enhanced vegetation index: 'optimized' 12 41.6 



 

vegetation index designed to enhance the 
vegetation signal with improved sensitivity 

crops.cover percent vegetation cover for cropland land 
cover 

6 41.6 

grass.cover percent vegetation cover for herbaceous 
vegetation land cover  

6 41.6 

shrub.cover percent vegetation cover for shrubland land 
cover  

6 41.6 

urban.cover percent vegetation cover for built-up land 
cover 

6 41.6 

water.perm.cov
er 

percent ground cover for permanent water 
land cover 

6 41.6 

water.seas.cover percent ground cover for seasonal water land 
cover 

6 41.6 

activity time of day the sandfly is active: diurnal, 
noctural, crepuscular (binary) 

3 crep (1.56), noct (2.53), 
diurnal (2.73) 

habitat strata detected in canopy and/or detected on forest 
floor (binary) 

13-54 
 

canopy (13.28), floor 
(14.06) 

main habitat fallen leaves in forest soil, armadillo burrows, 
burrows of other wild animals, tree trunks 
and tabular roots, tree hollows, treetops, 
crevices in rocks, caves, forest without 
specific location, marginal areas, annexes of 
domestic animals, outer and inner walls of 
human dwellings 

51 54.3 

proximity to 
house 

captured in extra domicile, peri domicile, 
and/or intra domicile environments (binary) 

13-54 intra (9.37), peri (17.97), 
extra (21.48) 

synanthropy (1) wild: living in forests or in non-forest 
regions but only accidentally found 
associated with humans and domestic 
animals; (2) semi-domestic: living outside 
human and domestic animal habitations and 
only seeking these to obtain blood repast; 
and (3) domestic: living in association with 
humans and domestic animals inside or near 
dwellings 

13-54 wild (21.68), semi-
domestic (17.38), 
domestic (10.74) 

seasonal activity whether the sandfly is more active during the 
winter or summer (binary) 

13-54 winter (4.69), summer 
(4.88) 

synanthropy 
index 

synanthropy index, as defined by Barrios et 
al [40], on a scale from -100 (preference for 
rural environment) to 100 (preference for 

13-54 5.98 



 

urban environment) 

 
  



 
Primary model: The primary model was trained on confirmed vectors of ACL. 

 
Fig S1: A histogram of AUC scores across all 100 BRT models for the primary model. The average 
AUC score was 0.851, and the median AUC score was 0.863. An AUC = 1.0 means the model is perfectly able to 
distinguish between the sandflies that are vectors and those that are not.  



 
Table S2: Predicted probabilities for the primary model for sandflies assigned a probability score 
greater than 0.5. 

 
 
  



 
Fig S2: Primary model partial dependence plots showing the marginal effect of each trait (shown in 
order of importance) on the probability of being a vector of ACL. The trait value is shown on the x-axis, and the 
importance is shown on the y-axis. Colored lines represent the marginal dependence of the trait from the 100 
BRT models, while the solid black line represents the average dependence. The definition of each variable can 
be found in Table S1.  

 
 
 
 
 
 
  



 
Table S3: Variable importance for the top 30 most important variables in the primary model, 
with categorical variables summed. 

 

Fig S3: Variable importance of the primary model for the top 20 most important variables 
predicting sandfly vector status. Points represent mean gain value across 100 iterations and error bars 
represent 95% bootstrapped confidence intervals. Categorial variables are not summed here; each variable is 

left as it’s own.  



 
Fig S4: Occurrence points of predicted sandflies from the primary model, taken from GBIF and 
plotted in ArcGIS (Esri, USGS | Esri, Garmin, FAO, NOAA, USGS) [79, 80], colored by species to indicate 
species richness. 

 
 

Fig S5: Occurrence points for confirmed vectors of each Leishmania species causing ACL, colored 
by sandfly species to indicate species richness. Points taken from GBIF and plotted in ArcGIS (Esri, USGS | 
Esri, Garmin, FAO, NOAA, USGS) [79, 80]. Leishmania species not mapped (e.g. L. waltoni, L. lindenbergi, L. 
enrietti) have no confirmed vectors. 

 
 



 

 
 
 



 
Citation model: The citation model was trained and fit to determine whether sandfly traits were 
predicting citations or vector status. 
Table S4: Variable importance for the top 20 most important variables in the citation model, without 
categorical variables summed. The trait profile is different compared to the primary model trait profile, 
ensuring that our primary model is not simply predicting which sandflies are well-studied. 
 

 
 
Secondary Model: The secondary model was trained and fit identically to the primary model in 
the text but using predicted, rather than confirmed, sandfly vector species as positive labels. We 
compared predicted sandfly vector species and trait profiles of the primary and secondary models as well. The 
secondary model was able to generally predict which sandflies have the potential to carry Leishmania spp., 
while the primary model more specifically predicts which sandflies can transmit Leishmania spp. to humans.  
 



 

 
Fig S6 (left): A histogram of AUC scores for the secondary set of 100 BRT models using both 
potential and confirmed sandfly vectors as positive labels. The average AUC score was 0.867, and the median 
AUC score was 0.869. 
Fig S7 (right): A distribution of predicted probabilities from the secondary model of sandflies 
separated by vector status, and scaled by percentage. Red bars indicate the proportion of confirmed vectors 
that were predicted at that probability, while beige bars indicate the proportion of non-vector sandflies that 
were predicted at that probability. 
 
 
Table S5: Predicted probabilities for the secondary model, for sandflies that are not confirmed vectors 
that have been assigned a probability score above the 90th percentile. 

 
 
Table S6: Variable importance for the top 30 most important variables in the secondary model, 
with categorical variables summed. 



 

 
Fig S8: Variable importance for the top 10 most important variables with 95% confidence intervals. 
Points represent mean gain value across 100 iterations. The importances for binary variables were summed up 
to obtain a single value for the entire categorical variable.  

 
 



 
 
Fig S9: Variable importance for the top 20 most important variables predicting sandfly vector 
status. Points represent mean gain value across 100 iterations and error bars represent 95% bootstrapped 
confidence intervals. Categorial variables are not summed here; each variable is left as it’s own.

 
 
Fig S10: Secondary model partial dependence plots showing the marginal effect (yhat) of each 
trait (shown in order of importance) on the probability of being a vector of ACL. Variable value is shown on the 
x-axis, and marginal effect is shown on the y-axis. Partial dependence plots show the dependence of the 
probability on that trait’s value, i.e. how the vector probability changes as the trait value increases. 
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