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ABSTRACT. The Dirac equation in R with potential Z/r is a rela-
tivistic field equation modeling the hydrogen atom. We analyze the
singularity structure of the propagator for this equation, showing that
the singularities of the Schwartz kernel of the propagator are along an
expanding spherical wave away from rays that miss the potential singu-
larity at the origin, but also may include an additional spherical wave of
diffracted singularities emanating from the origin. This diffracted wave-
front is 1 — € derivatives smoother than the main singularities, for all
€ > 0, and is a conormal singularity.

1. INTRODUCTION

In this paper we study the structure of the propagator for the Dirac—
Coulomb equation on R'3. This equation, a description of the hydrogen
atom with a relativistic electron, was explicitly solved by Darwin [11] in
1928 using separation of variables, giving a mode-by-mode description of
the solutions with the radial functions defined by infinite series. Such an
approach, while computationally useful for the spectral theory of the hy-
drogen atom, yields little concrete information about the structure of the
Schwartz kernel of the propagator.

In this paper we derive the following results about the structure of the
propagator. Notation involving the Dirac equation will be explained in
detail below. Let 7 denote the (mostly plus) Minkowski metric on R*, whose
coordinates are t = 20, zt, 2%, 23. Let r = r(z) = ((z1)? + (2?)? + (2%)?) 1/2
denote radius in the space coordinates.
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FIGURE 1. The “geometric” (G) and “diffracted” (D) wave-
fronts for the fundamental solution with initial pole at y.
Note that the main and diffracted fronts intersect along a sin-
gle ray, the continuation of the null geodesic from y straight
through the potential singularity.

Theorem 1. Consider a real-valued vector potential A = (Ay = Z/r +
V, Ay, Ag, A3) with V, Ay, Ay, A3 € C®(R3), and let m,Z € R, with |Z| <
1/2.

Let ¢ be the admissible fundamental solution of the Dirac equation mini-
mally coupled to the electric potential V :

(i(10(00 +iAo) +7;(9; +i4;)) —m)y =0,
with initial condition
Vz0—0 = Yooy
for some four-spinor v and point y € R3.
For z° > r(y),
WFy Cc GuD

with G = N*{n.p(z® — y*)(z? — y®) = 0} given by the “geometric” (i.e.,
directly propagated) light cone emanating from y and D = N*{r(x) = 20 —
r(y)} a secondary “diffracted” wavefront. The singularity on D\G is conor-

mal and is 1 — 0 derivatives smoother than the singularity at G.

(Here, as throughout the paper, we use the notation @ — 0 to mean “a — ¢
for all e > 0.”) The notion of admissibility of solutions, which simply refers
to lying in the scale of energy spaces defined by the self-adjoint Hamiltonian,
is defined in §4.2] below.
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The proof uses tools originally developed for the analysis of diffraction by
cone and edge singularities |32, [30]. In particular, the analysis proceeds in
two main steps:

(1) We show that the singularities of ¢ can at most lie in G U D. This
proceeds by a positive commutator argument using commutants in
Melrose’s b-calculus of pseudodifferential operators, inspired by the
methods of Vasy [42].

(2) We show that the diffracted singularity is conormal and weaker than
the main front. This uses methods of Melrose and the second au-
thor from [32], involving Mazzeo’s edge calculus of pseudodifferential
operators, and a propagation of module regularity (as employed by
Melrose—Vasy—Wunsch [30])) to obtain both the conormality and the
regularity of the diffracted front.

The Dirac—Coulomb equation describes spin—% particles (such as electrons

and positrons) in the presence of a point charge Z. Much of the literature
about the Dirac—Coulomb system and related operators focuses on charac-
terizing its eigenvalues and eigenstates. This description is unfortunately
insufficient to describe diffractive phenomena. Darwin [11] used separation
of variables to characterize the generalized eigenfunctions of the exact Dirac—
Coulomb system in terms of confluent hypergeometric functions and spinor
spherical harmonics. One could in principle derive our theorem in that set-
ting by a careful analysis of the special functions but to our knowledge this
has not been done.

Kato in his book [21] provided one of the first results showing that the
Hamiltonian governing the evolution of the Dirac-Coulomb system is essen-
tially self adjoint in the range |Z| < 1/2 (corresponding to atomic charge
less than 68.5). Weidmann [44] extended this result to |Z| < v/3/2; be-
yond this value of Z the Hamiltonian is no longer self-adjoint. We provide
in Section [4.1] another proof of the essential self-adjointness in this optimal
range.

Other interest in the Dirac—Coulomb system as an evolution equation has
come from the dispersive equations community. Their work has largely fo-
cused on proving dispersive and Strichartz estimates for solutions by treating
the components as solving systems of coupled wave equations. We mention
here the work of D’Ancona and collaborators [5,6,10] as well as the work of
Cacciafesta—Séré 7] and Erdogan—Green—Toprak [13].

There is now a significant body of work describing the propagation of
singularities on singular spaces, where diffraction occurs; the problem of
the wave equation on conic manifolds (or the wave equation with an in-
verse square potential) is the singular setting most closely resembling the
Dirac—Coulomb problem. The first diffraction problems were rigorously an-
alyzed by Sommerfeld [37], with many other examples subsequently studied
by Friedlander [14] and Keller [23]. The use made by these authors of sepa-
ration of variables and Bessel function analysis was generalized to cones of



4 DEAN BASKIN AND JARED WUNSCH (*)

arbitrary cross section by Cheeger—Taylor [8,9], who established the analo-
gous result to Theorem [1]in the setting of “product cones,” where the met-
ric on the link does not vary with the radius. The non-product situation,
where scaling invariance in r is lost, requires different methods, and in con-
sequence the b-pseudodifferential analysis used in this paper can be viewed
as a continuation of a line of work beginning with Melrose—Sjostrand [28}29)],
Melrose [27], and Taylor [40] describing the propagation of singularities on
manifolds with smooth boundary. Melrose and the second author [32] used
such commutator methods to generalize the results of Cheeger—Taylor to the
non-product setting (see also Qian |35] in the case of inverse square poten-
tials). This work was expanded to include corners and edge singularities by
Vasy [42] and Melrose-Vasy—Wunsch [31], [30]. The functional framework
for our estimates is especially inspired by Vasy’s work.

One of the original applications for the careful analysis of singularity
propagation was to the problem of wave decay. Indeed, in certain settings
Lax—Phillips [24] and Vainberg [41] (later generalized by Tang—Zworski [39])
provided a blueprint for obtaining decay estimates on “perturbations” of
odd-dimensional Euclidean spaces from propagation estimates using as input
the weak Huygens principle, which dictates that a solution with compactly
supported Cauchy data eventually becomes smooth in a fixed compact set.
More recent approaches to wave decay applying to spacetimes with ends that
are not flat Minkowski space (again following the work of Vasy [43]) give
new ways to extract decay rates for solutions of wave equations from prop-
agation estimates. Work of the authors and Vasy [3,|4] and the first author
and Marzuola [2] use related techniques to describe the radiation field on
asymptotically Minkowski spaces and on product cones, respectively. Simi-
lar techniques played a key role in the work of Hintz—Vasy [18] establishing
the global stability of the Kerr—de Sitter spacetime.

We thus hope to use the results obtained here to study the decay rates
and asymptotics of the Dirac equation with one or more Coulomb-type sin-
gularities. Additionally, there are potential applications of our results to
quantum field theory, viz., the construction of Hadamard states for the
Dirac—Coulomb problem (see, e.g., [15]). These physically acceptable states
are characterized by their wavefront sets, with the separation between 7 2 0
components (with 7 dual to ¢) playing an essential role.

Even though the square of the Dirac-Coulomb system is principally scalar,
the Dirac-Coulomb problem poses a number of difficulties not present with
scalar wave equations on singular backgrounds. Many of these can be de-
scribed in terms of the form of the second order equation obtained by (ap-
proximately) squaring the system (described in Section below). In the
case of the exact Dirac—Coulomb system, this second order operator has the
form

.ZQ 2 A 0 Or
_(at‘i‘Z;) —A—-m —22< 0>,

r Oy
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where A is the (positive) Laplacian on R? and o, are 2x2 Pauli-type matrices
that square to the identity. The equation differs from the Klein—Gordon
equation in two significant ways. The first way is that the potential is
coupled via the “minimal coupling” formalism, which introduces cross terms
of the form %Dt; this does not present much additional difficulty, although
it does need to be controlled in the b-calculus propagation arguments. More
significant is the second difference, namely the order zero term

_Z'E (0 UT)
72 Oy 0 '

As the Hardy inequality on R? suggests that factors of 1/r should be treated
as derivatives, this term is principal from the point of view of scaling. More-
over, it is anti-self-adjoint and cannot have a sign because o, has eigenval-
ues +1. Dealing with it directly can cause significant headaches. In trying
to prove the diffractive theorem (Theorem |21| below) for the second order
equation, this anti-self-adjoint term creates what should be viewed as the
top order term and cannot be controlled by the positive terms in the com-
mutator estimate. This term even makes global energy estimates difficult,
as the derivative of the energy can no longer be controlled by the energy.

The complications of the Klein—Gordon system suggest that one ought to
work with the first order system directly. On the other hand, the “energy
estimates” obtained via the first order system are not as simple to work
with as those arising from the second order equation. We therefore use
both equations in this paper. For the elliptic part of the diffractive theorem
(Section and the geometric improvement (Section we work with
the second order equation, but for the “hyperbolic” part of the diffractive
theorem (Section [5.2.3)) we work directly with the first order equation.

Studying the massive (rather than massless) Dirac equation introduces
further complications. In the massive case, the equations involving the 4 x 4
Dirac matrices cannot be substantially simplified; in the massless (m = 0)
setting, the equations effectively decouple into two systems involving 2 x 2
matrices. More significantly, the presence of the mass term disrupts the
commutation of the equation with the scaling vector field. In the massless
setting, it is possible to show that the diffracted wave has a leading order
polyhomogeneous term but even this statement seems to be considerably
more difficult in the massive case.

In Section 2] we introduce the Dirac—Coulomb equation and fix some nota-
tion. Section[3|provides an introduction to the b- and edge-pseudodifferential
calculi and describes the interaction of the b-calculus with differential op-
erators on R3. In Section [4| we return to the equation and provide some
preliminary results: we show that the Hamiltonian governing the evolution
is essentially self-adjoint for |Z| < v/3/2, discuss the available energy esti-
mates, introduce the second order operator, and describe how singularities
propagate away from the origin. Sections[5]and [6] are the heart of the paper;
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Section [5| proves the diffractive theorem in which we show that singulari-
ties propagating through the origin must lie on the union of the diffracted
and propagated fronts and Section [6] shows that the singularity along the
diffracted front is 1 — 0 orders smoother than along the propagated one.

2. THE DIRAC—COULOMB EQUATION

2.1. Notation. We use coordinates %, o = 0,...,3 on RY3; when refer-
ring to spatial coordinates (indices 1,2,3) we use Latin rather than Greek
superscripts. When appropriate, we employ the notation ¢t = z° and use
polar coordinates r € (0,00), § € S? in the spatial variables. Below and in
what follows, we use A to denote an electromagnetic potential with A, its
components, i.e., A = (Ao, A1, Az, A3). We are most interested in the case
when Ay has Coulomb-like singularities; in this case we write
Ag = z

r

+V,

where V' € C*.
The Dirac operator on R!3 is given by

(3 = ’Yaaou

where v* are the 4 x 4 matrices

I 0
0 _

. 0 O
J — J
! _<—Uj 0>’

and o; are the Pauli matrices,

(01 (0 —i (1 0
1=\10)>27\i o) "o -1)"

The v matrices satisfy the anticommutation relatiorﬂ

and

VoyP 4Py = —2n*P 1dy,

where 11%? are the components of the Minkowski metric, i.e.,

-1 a=5=0
n?={1 a=pe{1,2,3}.
0 a#p
The free Dirac equation then reads
(1) (i@ —m)y = 0.

IReaders consulting other references should be aware that there are at least two conven-
tions in the literature. Indeed, many physics texts (e.g., Akhiezer and Berestetsky [1] and
Rose [36]) ask that the gamma matrices satisfy a Riemannian anticommutation relation
and then set xg = ict.
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With an electromagnetic potential A = (Ag, A1, A2, A3), we replace @ by
Fa =100 +iAo) + 17 (0; +iA));

this is the “minimal coupling” convention.

Other notational conventions that we employ are as follows. We use
a boldface Greek letter (such as o) to denote the associated 3-vector of
matrices (such as (o1,02,03)). We then set

2) zz<g 3)

and, in keeping with physics notation, we also write

B=4,
and let a be defined by

v = By,
hence

a= <0 ") .
o 0

Letting
(3) Vs z$¢fﬁ-<& %»
we then obtain

a = y52.

When using spherical coordinates, we will require radial versions of vari-
ous of the matrix quantities discussed above. To this end, we set

(4) Z aj, oy = Z aj, P —Zﬁﬁj,

2.2. Spherical spinors and separation. Let

L=rxp,
where as usual
Zflawl
p=|i10,
2713363
Let
J=L+ L b))
o 2

denote the total angular momentum operators (orbital angular momentum
and spin together.) Following Dirac, we also let

K=81+X%-L).
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Lemma 2. Suppose Ag is radial and A; = 0. The following operators are
mutually commuting:
da, J?, J3, K.
Moreover,
B, K] = 0.

(See e.g. [36], Section 12 for proofs.) In the case where the potential Ag
is exactly radial, we could separate variables explicitly and study the action
of @5 on the common eigenfunctions of the remaining operators. Although
we do not take this approach, we include a discussion of the eigenfunctions
because some of the calculations below are easier to verify on individual
eigenspaces. These eigenfunctions are well known to be described blockwise
by two component spinor spherical harmonics as follows. Following e.g.,
[38], we set for 6 € S?

u(6) = (SgnW)(“Ei!ff “)Y QYz,u-uM))
R, - K 1/2 9
g ( +1/2+“) / Yir1/2(0)

2k+1
where
(5) K € Z\{0},
(6) we{—=|kl+1/2,... |kl —1/2},
(7) l=|k+ ;‘ - %,

and where Y},,, are the standard spherical harmonics (see [38, (2.1.9)—(2.1.10)]
for normalization conventions). Then by [38, (3.2.3)], we obtain

(0 -L+1)Q, = —rQu,
hence
af) —ak§?
8 K PR = e
® (i) = (i)
and eigenvectors of K are given by the span of

Qy 0
" s ,,u,;/E{—|/€|+1/2,,|/€|—1/2},
0 )\

the eigenvalue of K on this eigenspace is —k. Note that

aldiy \ [ —af)_ sy
®) > <bQ—w’> a <_b9fw’> ’
where X, is defined in above.
We further record here the relationship between K and Ag:
Ay = K? — BK.
This follows from the identity (see Rose [36]):
(X-A)X-B)=A-B+iX- (A xB).
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Applying this to > - L yields
(B-L?=Ag—%L,

so that
(10) K = (3 -L+1)2=A0p+% -L+1=A7q+pK.

In particular, note that

[Ag, K] = [K? — BK, K] = 0,

i.e., K commutes with Ay.

We now describe the separation of variables for a stationary Dirac equa-

tion: The massive Dirac equation with an electromagnetic potential A =
(A(), Al, AQ, Ag) reads

(ida —m) = (i(v° (0 + ido) + 17 (9; +i4;)) —m)y =0,
hence multiplying by 8 = 4" we obtain
((1(80 +iAp) + Zﬂ’}/j(({)j + iAj)) — mﬂ)w =0,
i.e.,
(11) O = (i(0o + iAo) + ic;(0; + iA;) — mB)y = i) — B =0,

where this is taken as a definition of the operator d and

3
1 )
B= Zajg(aj +iA;) + Ag + mp;
j=1

here we have, exceptionally, written out the summation explicitly here to
remind the reader that it is only over spatial indices 1, 2, 3.

Thus we are concerned with the unitary group generated by the operator
B.

Now we compute, in the notation of [36],
1
a--V=a-p
i
=7°S-p
1 .
= 7527" (ar + 22 ’ L)
i r
) 1
= —jay, <8T — ;(BK — Id))
1 1
= —iq, (87« + - — BK) .
roor
More detail for the above calculation can be found in Rose [36, p. 158,

eq (2.47)].
Thus, finally, in polar coordinates,

(12) B:(—iOéT <8r+i—iﬂK>+Ag+ZajAJ+mﬁ)
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3. b- AND EDGE-GEOMETRY

Owing to the need to microlocalize solutions finely at the potential sin-
gularity, it is natural to introduce a new space obtained by blowup from our
Minkowski space. In the simple case under consideration here, the blowup
amounts to substituting the space

X =[R3{0}] = [0,00), x S
for the Euclidean space R?, with the blowdown map
b: X — R3

being the polar coordinate map (r,0) — r0; this is a diffecomorphism away
from the boundary r = 0 (which is referred to as the front face of the
blowup). We will use the same notation for the blowdown map in the full
Minkowski space, where we introduce polar coordinates in spatial variables
only, hence set

M = [RY3R x {0}] =R; x X.

Both X and M are manifolds with boundary. (That they are noncompact
as well will play no essential role in our analysis, owing to the local nature
of the propagation of singularities.) We will need to consider two separate
calculi of pseudodifferential operators on M, yielding microlocalizations of
two different Lie algebras of vector fields. The first, Melrose’s b-calculus [33],
contains as first order operators the vector fields tangent to the boundary
of M. The second, Mazzeo’s edge calculus [26], contains instead the vector
fields that are tangent to the fibers of the blowdown map as well as to the
boundary, hence in particular, we obtain rd; rather than 0; in the latter
calculus. We describe the important features of these two calculi below.

3.1. b-calculus. Full technical details on the b-calculus can be found in the
book of Melrose [33]; see also the introductory article by Grieser [17].

The space of b-vector fields, denoted V,, (M), is the vector space of vector
fields on M tangent to OM; they are spanned over C*°(M) by the vector
fields r0,, O, and Jy. We note that r0, is well-defined, independent of choices
of coordinates, modulo V(M ); one may call this the b-normal vector field
to the boundary. One easily verifies that Vi, (M) forms a Lie algebra. The
set of b-differential operators, Diff; (M), is the universal enveloping algebra
of this Lie algebra: it is the filtered algebra consisting of operators of the
form

(13) A= > ajra(rt,0)(rD,) DED§ € Diff (M)
lal+j+k<m
(locally near M) with the coefficients a; . € C*°(M).
The b-pseudodifferential operators Wy (M) are the “microlocalization” of

this Lie algebra, formally consisting of (properly supported) operators of the
form

b(’l", tu 07 TDT) Dta D@)
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with b(r,t,0,0,7,m) a Kohn-Nirenberg symbol.

The space V(M) is in fact the space of sections of a smooth vector bundle
over M, the b-tangent bundle, denoted PT' M. The sections of this bundle are
of course locally spanned by the vector fields 70, 0¢, 9. The dual bundle to
PTM is denoted PT* M and has sections locally spanned over C*°(M) by the
one-forms dr/r,dt, db.

The symbols of operators in Wi (M) are thus Kohn-Nirenberg symbols
defined on T M. The principal symbol map, denoted oy, maps the classical
subalgebra of WI"(M) to homogeneous functions of order m on PT*M. In
the particular case of the subalgebra Diff7' (M), if A is given by we have

op(A) = Z @ oo (T, t, 0)0d T
|| +5+k=m

where o, 7,7 are “canonical” fiber coordinates on "T* M defined by specifying
that the canonical one-form be

dr do
o— +T1dt+n-—.
r r

As homogeneous functions of a given order on R™ \ 0 can be identified with
smooth functions on S"~!, we sometimes view o}, as a smooth function on
bS*M.

We also identify a subalgebra of Uy(M) that will be essential for the
commutator argument in Section [f]

Definition 3. We say A € W*(M) is invariant if it is scalar and invariant
under the action of SO(3) on functions, i.e., if A is scalar and R"'AR = A
for all R € SO(3), where the action of SO(3) on functions is simply Rf(x) =

f(R 'x).

Any scalar symbol invariant under the (lifted) action of SO(3) on PT*M
may be quantized to an invariant operator.

Lemma 4. Invariant operators commute with Ay and K.

Proof. Let A be invariant. For each j € {1,2,3}, [A,L;] = 0 since the
flowout of L; is in SO(3). Since A=L-Land K = (1+X-L) (and A is
scalar) we obtain the desired commutation. O

Remark 5. Although invariant operators commute with Ay and K, they do
not commute with the matrices o, (defined in (4f)). Because o, is indepen-
dent of r, though, the terms arising from commuting an invariant operator
with o, will be microsupported away from the characteristic set and so will
be handled by the elliptic estimate in the course of the hyperbolic estimate
of Section below.

In addition to the principal symbol map, describing the leading order
behavior of elements of Wi (M) in terms of the filtration, there is a second
map that measures the leading order behavior of the operators at the front
face r = 0, and which, together with the principal symbol, measures the
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obstruction to compactness of b-operators. We will refer to this notion
below only in the simple case of b-differential operators, where it is simple
to describe, and we will work in just spatial variables on X rather than in
spacetime. Then this extra symbol, which is operator-valued, is simply the
new operator obtained by freezing coefficients of powers of b-vector fields at
the boundary. If A is given by

Z aja(r,d) (rDT)ng‘

laf+j<m

we thus define the indicial operator

I(A)= Y a;a(0,0)(rD,) D
lal+j<m

I is a homomorphism. Operators in the range of I, which in terms of r
are now simply polynomials in (rD,), are thus further simplified by Mellin
transform in r, hence the same information is contained in the indicial family

I(A,0)= > a;a(0,0)07Df.

la|+j<m
The boundary spectrum of A is then defined as
specy(A) = {o € C: I(A, o) is not invertible on C>(5?)}.

This set plays an important role in establishing the mapping properties of b-
operators—see [33, Chapter 5]. It also is a key ingredient in the identification
of the domain of the essentially self-adjoint Hamiltonian in Section[f.I]below.

Let L2(M) denote the space of square integrable functions with respect
to the b-density

dr dtde.
r

Note in particular that this space differs from L2(M), which here denotes
the space with the usual metric density, and in particular

L2(M) = r32L2(M).
When emphasizing the use of the metric density, we will in fact write
LA(M) = L*(M)

for added clarity. We let H{"*(M) denote the Sobolev space of order m
relative to L2 (M) corresponding to the algebras Diff["(M) and ¥7*(M). In
other words, for m > 0, fixing A € W{*(M) elliptic, one has w € H*(M) if
w € LE(M) and Aw € LZ(M); this is independent of the choice of the elliptic
A. For m negative, the space is defined by duality. (For m a positive integer,
one can alternatively give a characterization in terms of boundedness of
elements of Diff7'(M).) Let Hgn’l(M) = ! H™ (M) denote the corresponding
weighted spaces. We will also use all these notions on X rather than M,
simply omitting the t variable. Sometimes it will be convenient to use the
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Sobolev spaces defined with respect to the metric density rather than the b
density we have used here, and to that end we set (on either M or X)

H = 52 H
Associated to an operator A € W' (M) is its microsupport,
WF(A) C PS*M.

This closed subset is the essential support of the total symbol, just as in the
usual pseudodifferential calculus, and obeys the usual microlocality property

WF} (AB) C WF},(A) N WF,(B).

Conversely, there is a notion of b-ellipticity at a point, obtained from the
invertibility of the principal symbol. Note that global ellipticity is not suf-
ficient to make an operator Fredholm over a compact set in X; additional
decay at r = 0 is required to ensure that the remainder term in a parametrix
argument is compact.

While there is a notion of wavefront set (lying in PS* M) associated to
the b-calculus, we will require a slight variant of this wavefront set in our
estimates, hence we postpone discussion of WF}, until we have introduced
differential-b-pseudodifferential operators.

3.2. Edge Calculus. Full technical details on the edge calculus can be
found in Mazzeo [26].

The space of edge-vector fields, denoted Vo(M), is the vector space of
vector fields on M tangent to OM as well as to the fibers of the fibration
b : M — R* they are spanned over C*°(M) by the vector fields r0,, ro;,
and Jy. Like the b vector fields, Vo(M) forms a Lie algebra. The set of
e-differential operators, Diff; (M), is the universal enveloping algebra of this
Lie algebra: it is the filtered algebra consisting of operators of the form

(14) A= > ajralrt,0)(rD,) (rDy)Df € Diff (M)
o +j+k<m

(locally near 0M) with the coefficients a; ko € C(M).

The edge-pseudodifferential operators WU’ (M) are the “microlocalization”
of this Lie algebra, formally consisting of (properly supported) operators of
the form

b(r,t,0,rD,,rDy, Dy)

with b(r,t,0,&,7,17) a Kohn-Nirenberg symbol. The (non-canonical) map
from total symbols to operators will be denote Opy, .

For the commutator arguments below, we will require a doubly-filtered
version of the edge calculus, where we also track variable growth or decay
at r = 0. In particular, if we set

V(M) = (M),
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then this is a doubly filtered algebra. We remark that the operators that
are residual in the sense of both decay and regularity are

W, oo (M);

the reader is cautioned that different conventions exist in the literature for
the sign convention on the [ index.

The space Ve(M) is in fact the space of sections of a smooth vector bundle
over M, the edge tangent bundle, denoted °T'M. The sections of this bundle
are locally spanned by the vector fields r9,., 79, dp. The dual bundle to *T'M
is denoted T M and has sections locally spanned over C*°(M) by the one-
forms dr/r,dt/r,df.

The symbols of operators in Wi (M) are thus Kohn-Nirenberg symbols
defined on °T* M. The principal symbol map, denoted o, maps the classical
subalgebra of WI" (M) to r~! times homogeneous functions of order m on
PT*M. In the particular case of the subalgebra Diff™! (M), if A is given by

we have

Ue(TlA) = Z ajk,a (r,t, e)gj)\kga
laf+j+k=m
where €, A, ( are “canonical” fiber coordinates on ®T™* M defined by specifying
that the canonical one-form be
£ dr + )\@ +¢-do
r r
As before we let LZ(M) denote the space of square integrable functions

with respect to the b-density
dr

o dtde.

We let H"(M) denote the Sobolev space of order m relative to LE(M)
corresponding to the algebras Diff* (M) and ¥[*(M). In other words, for
m > 0, fixing A € U7(M) elliptic, one has w € H™(M) if w € LE(M)
and Aw € L%(M ); this is independent of the choice of the elliptic A. For
m negative, the space is defined by duality. (For m a positive integer,
one can alternatively give a characterization in terms of Diff]*(M).) Let
H ’Z(M ) = r!H™(M) denote the corresponding weighted spaces.

There is a notion of edge microsupport

WFL(A) C °S*M,

as well as of edge ellipticity satisfying the usual properties.

We recall also that associated to the calculus We™ (M) is associated a
notion of Sobolev wavefront set: WEF”!(w) C ¢S*M is defined only for
w e Hg ™ (since Wo(M) is not commutative to leading order in the decay
index); the definition is then o ¢ WE?"!(w) if there is Q € Wo'(M) elliptic
at a such that Qu € HI"'(M), or equivalently if there is Q' € W™ (M)
elliptic at o such that Q'w € LZ(M). See [32, Section 5] for a fuller list of
the properties of the edge calculus and wavefront set.
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3.3. The differential-pseudodifferential b-calculus. The crux of the
proof of the diffractive theorem in Section [5| below lies in understanding
the interaction between differential operators and the pseudodifferential b-
calculus. A crucial ingredient below will be the Hardy inequality

Lemma 6. If u € H'(R") with n > 3, then

—9)2 2
(n4)/|:f|2dx§/\Vu|2dx.

We will use this inequality in R?, where it reads
(15) 7~ | < 2(|8rull.

As the Dirac operator is not a b-operator, it is convenient to measure
regularity with respect to the classical Sobolev space H', pulled back to X.

Lemma 7. The pullback b*(H*') agrees with D = T’IH%Q = T_I/QH]; locally
near r = 0, and this pullback is injective.

Proof. We take all functions below to be supported in the unit ball.

The injectivity of the pushforward is assured by the fact that for all
u € HY(R3), if x(r) is a cutoff function equal to 1 for » > 2 and 0 for r < 1,
the approximation x(r/€)u converges to u in H!(R3) norm, i.e. elements
supported away from the origin are dense in H', and it suffices to show that
the pushforward is bounded above and below as a Hilbert space map when
acting on these distributions. Since Vu ~ (9,u,7 1dypu), the H' norm of
u is bounded by the TH& 4 norm of b*u; the Hardy inequality ensures that
|[r~Lb.ul ;2 is controlled by the H! norm of u, which then shows that the
TH& , horm of b*u is controlled by the H' norm of u. O

In Section we let H'(M) be the closure in the H'(R'*3) norm (identi-
fied via the blowdown b) of C2°(M). The lemma above can be rephrased as
the statement that

H'(M) = b"H'(R'),
HY(X) = b*"H'(R?).

In this paper we will only be dealing with functions compactly supported

in a fixed (large) neighborhood of = 0, and we note that on such functions,

D] + || Dot + ||~ Vgul)?

is equivalent to ||[ul|3;:. We will use this equivalence heavily.
To facilitate the accounting of error terms in Section [5, we will use the
terminology
A € Diff "}
if
A= > rIDjAj,

Jj+k<m
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with A, € U§. (Cf. |42, Definition 2.3]; here we allow powers of r~! in
addition to differentiations.) For such operators, we write

WF{) A= Uk WF{) Aj,k'
Vasy [42] made extensive use of these spaces of operators in the setting of
manifolds with corners; many of the results below have analogues in that

paper.
The following lemma from [30, Lemma 8.6] (cf. also |42, Lemma 2.8])
shows that Diff* W} forms an algebra.

Lemma 8. Let A € V(M) and let a = o,(A). Then
[D,,A] = B+ CD,,

with
Bewy(M), Cewpn),
1 1
op(B) = =0ra, op(C) = =0sq;
i i
moreover,

[r1, Al =r~'Cr=Cpr 1,
where Cy € U1 (M) with

As we will measure b-regularity with respect to H', we also need to know
that \Ifg is bounded on this space.

Lemma 9. Given A € ‘l’%, there is some C > 0 so that for all u € H*',
| Aul s < Clu] .

Proof. We begin by proving boundedness on H'. By Lemma [8, [D,, A] =
S+ TD,, where S € ¥{ and T € ¥ !, so that

D, Aull 3 < |AD,ull5 + Dy Alul
< | AD,ull 3 + Sulz + ITDyull 2
< C (1Dl 3 + Jull3 ) < Cllul .
Similarly, we may use Lemma [§] to write
1 1 1 1 1
|:-D95A:| = - [DQ,A] + |:’A:| D@ = 7S+T (D9> )
r r r r r

where S € \Ifg and T' € ¥ ! so that by the pseudodifferential calculus and
the Hardy inequality we may bound

1
HDQAU
r

< Cllull 1.
L3

The boundedness on H~! now follows by duality. O
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The previous two lemmas then motivate a definition of H' (and H~1)-
based b-wavefront set.

Definition 10. Let u € HT'(M). Let p € "T*M\o. We define
p ¢ WESy
if there exists A € WI"(M), elliptic at p, such that Au € H*L.
Similarly, for p € "T*M\o, we define
p & WFi u
if there exists A € W'(M), elliptic at p, such that Au € Lg.

Remark 11. At this moment we provide the reader with two notes of cau-
tion: First, observe that we measure b-regularity with respect to Lg rather
than L2b; we adopt this convention because it makes applications of the
Hardy inequality more straightforward and allows us to avoid introducing
the weighted b-calculus. Second, be aware that although WFé’m and WFem’l
each have seem to have two superscripts, homologous indices have different
meanings in these two objects. Indeed, one should think of WF%)’m as having
only the index m and therefore measuring Wi'-regularity with respect to H L

On the other hand, WF(T’Z measures \Ilgn’l-regularity with respect to L% and
thus has two indices corresponding to those of the edge algebra.

As with other pseudodifferential algebras, it is convenient to know that
we can microlocalize our estimates:

Lemma 12. If A,G € ¥} with WF| A C ell G, then for all v with
WFE u N WF, G = 0,

we may bound
[Aul| g1 < C([|Gull g1 + llull g21) -

Proof. The proof is a standard microlocal elliptic parametrix argument: let
E € ¥ ° with WF, E C WFy, G so that

R=1-EG €9}, WF, RNWF} A=.
We may then write
Au = A(EG + R)u,
so that
[Aul[ g1 < [[(AE)Gull g1 + [ARul| g1 < C (|Gul g1 + [Jull 1) -
O
In Section |5 we repeatedly use the algebra properties of Diff*W§ and the

following lemma to allow easy estimates on error terms by doing commuta-
tions freely.
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Lemma 13. Suppose E € Diffl\Ili”*l +\Ilf)”. There are pseudodifferential
operators A € Ui~! and B € U} with WF; AUWF} B C WF} E so that for
allw € H' and v € L? with WF, E N (WF* " UWE o) = 0,

[(Bu, o)) < © (| Aull a1 Bl g + Nl o1l ) -

Similarly, if £ € Diff2\I'f)+r_2+Diff1\Ilsb+r_1—i—\Ile'H", we may find A € \Ifz_l
and B € \Ilgfl so that

(B, v)| < C([[Au]| g || B[l o + N[l graf[oll ) -

Proof. Let T4, € \Ilgr be elliptic, self-adjoint b-operators which are inverses
of one another modulo a smoothing error, so that 7,7, = Id+R with
R € U, . Setting A=T_,F and B =T, € ¥} finishes the proof. O

4. ANALYTIC PRELIMINARIES

We return to the Dirac-Coulomb equation (i 5 —m)u = 0. In this section
we discuss several preliminary results needed in the main proofs below.

4.1. Self-adjoint extension. Recall that
M = [R173;R; x 0]
denotes the blowup of our spacetime at the spatial origin, and
X = [R3; x0]

denotes its spatial cross section, with b denoting the blowdown map in either
case.

We shall abuse notation later on in confusing X with all of R?, but will
begin by distinguishing these two spaces for the purposes of describing do-
mains and Sobolev spaces precisely before proving that the confusion is safe.

We now examine the indicial roots of the formally self-adjoint operator
B (defined in Section Whereﬂ Ag =Z/r+V and V,A; € C™, i.e., the
boundary spectrum given by the points of non-invertibility of I(rB, ).

By , if o denotes the dual to D, in PT*X,

I(rB,&) = Z1d —i7°S, (ic + 1 — BK).
To study the equation I(rB,§)y = 0 we split
_ 1/1“)
1/] - <wl

into upper and lower spinors, and, as above, expand each in the basis of
spherical spinors of the form

<95“> | <Q_Ou> |

2More generally, we remark that we can replace the smooth term by a term that is
smooth on the blowup of the origin with no change in the arguments of this section.



DIFFRACTION FOR THE DIRAC-COULOMB PROPAGATOR 19

Thus, once again using , @D, we obtain

108.9) (50 ) = (s~ (oo i)
Hence there is only nullspace when
2% = k* + (0 — )%,
i.e. when
o=i+iVk?—22

Because k takes values in Z\ {0}, we can explicitly calculate these indicial
roots for small values of Z. Indeed, if |Z| < v/3/2, we are assured that

(16) Im specy, (rB) N [1/2,3/2] = 0.
Now sincd?]
B:r V2HY(X) = rS2LH(X) = L2(X)
is continuous, we certainly find that r—'/2H}! (X) is contained in the minimal
domain of B. On the other hand, implies by work of Lesch [25, Corollary
1.3.17] (see also Melrose [33 Chapter 5] for a parametrix construction, as
well as Gil-Mendoza [16] for a general discussion of self-adjoint extensions

of operators of this type) that the maximal and minimal domains must in
fact coincide, hence B is essentially self-adjoint, with domain given by

(17) D=r"12H},

(Cf. [22, Theorem V.5.10, Remark V.5.12] for the essential self-adjointness
of Dirac operators.)
Having established the self-adjointness of B with domain D, we now define

D* = Dom(Id +B82)*/2,

with the powers of the operator being defined by the spectral theorem. Note
that away from the origin, these simply agree with Sobolev spaces:

Lemma 14. For all s e R
DN E(R3\{0}) = H* N &' (R¥\{0}).

Proof. For s an even integer, the result follows inductively from the charac-
terization of D = D!, which does agree with H' away from the origin. Thus
for any ¢ € C2°(R3\{0}), whenever Re s € 2N,

(18) ou € D° < (Id+A)*pu € L?,

since the pure imaginary powers of (Id +8%) and of (Id +A?) are both uni-
tary. Then by interpolation and duality holds for all s. O

3Recall that b-Sobolev spaces are by default defined with respect to the b-density rather
than the metric density.
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4.2. Admissible solutions and energy estimates.

Definition 15. A solution to (i@, — m)u = 0 is admissible if it lies in
C(R;D?)

for some s € R.

In the propagation theorems in this paper, we deal only with admissible
solutions. Note that there is a unique admissible fundamental solution, since
the initial data 6(z — x¢) lies in D~"/2~0 by Lemma

Given Cauchy data ug € D?, there exists a unique admissible solution

efitBuO
by Stone’s theorem; the propagator is of course unitary on D? for all s € R.
More generally, we will have use for the following energy estimate:

Lemma 16. Let u solve (idy, —m)u = 0 on [to, t1] x X and lie in C>°(R; D).
For any operator @Q : C*°(R; D>) — C*(R; D),

1d .

5 7:11Qullps = Re (i[B, Qlu, Qu).

Proof. This follows by self-adjointness of B and the definition of the D® norm
in terms of its powers. O

For purposes of shifting regularity of solutions up and down conveniently,
we now define, for s € R, ©4 € ¥*(R) to be a parametrix for (D;)* whose
Schwartz kernel is properly supported; thus ©;,0_5; — Id is a smoothing
operator with properly supported Schwartz kernel. We then note by t-
translation invariance of the Dirac equation that if u € C(R; D¥) is a solution
to the Dirac equation, then (by ellipticity of the spatial part of the Dirac
operator)

Osu € C(R; DF=*) n H*
is another solution (up to a smooth remainder), and

O_s05u —u € C(R; D).

It is helpful in what follows to be able to pass freely among different
notions of solution: viewing a solution as lying in locally H*(R x R3) is
most natural in dealing with microlocal analysis away from r = 0, while the
energy spaces L?(IR;D?) or C(R;D?) are natural from the point of view of
global energy estimates.

Lemma 17. An admissible solution of the Dirac equation in C(R;D?) lies
in HY (M°).

loc

Proof. For such a solution (with all norms below local ones, for ¢ in a finite
interval, and over a compact set in the interior of X)

O,u € C(R; L?) c L?,

hence
u € H¥(R; L*) N L*(R; H®) C H?,
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by the local Fourier characterization of Sobolev regularity (and since |7]° +
IC]* ~ |(7,¢)|® outside the unit ball). O

4.3. Reduction to Klein—Gordon. Some of the arguments below are con-
siderably simplified by considering a related principally scalar second-order
operator obtained essentially by squaring the Dirac operator.

Consider a four-spinor solution u to

(ida —m)u =0,
where A = (A, A1, Ag, A3), ie.,
(i(v° (0o + iAo) + 17 (9; +iA;)) — m)u = 0.
Applying (i@a + m) we obtain immediately
0= (—31 —m?)u
= —(7%(80 + o) + ¥ (9; +iA;)) (v°(8o + iAo) +7*(Ok + i A))u — mPu
= —((00 + i40)*u — (9j + iA;)*u ++/7°(i9;(Ao) )u + 7" (i0; A )u) — m*u
= —(o +i40)%u+ (9; +iA;)*u — m*u — i 700, (Ao)u — iV v O (A u — m2u.
For Ag radial,
—i777°9;(Ao) = in°+7 9j(Ao)
= i7"7:0,(Ao)

hence, for Ay radial and A; = 0,

— (Do + iAg)%u + 6]2u —m?u+i <£ %T> Or(Ap)u = 0.
More generally, assume A; € C* and
z
Ao=—-+7V,
r

where V' € C*°. We now lump the extra terms together as perturbations, and
multiply through by ~° rewrite the first order equation in a more convenient
form as

3
Z 1 1
_ . z o, (0,11 _ A —mp,
(19) 5_z(at+zr+zV)+za <8 +r Tﬁk) jg_loz] j—mp

0 oy

where we recall that 8 = 7° and o = (
o; 0

>. The corresponding oper-
ator of Klein—-Gordon type
(20) P=(iga +m)(ida —m)
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then satisfies the following hypotheses:

Klein—-Gordon Hypotheses. P is a second-order operator of the following
form:

AL 2 2 L [0 o
(21) P=—(0+i) +> 07 —m —is <Jr 0>+R
with
W
(22) R= ZTO + WS, + W,

where W, € C°°(R3) but are not necessarily scalar.

These assumptions on the operator will suffice for most of our propagation

results below.
L (0 o
¢ r2 \o, O

Note that the term
is, in contrast to the other main terms in the equation, formally anti-self-
adjoint rather than self-adjoint. This creates significant technical difficulties
in the b-propagation arguments, since, while lower order in terms of differ-
entiation, this anti-self-adjoint term is large. If we estimate it in pairings
by the Hardy inequality, is larger than the second-order terms in the equa-
tion. This obstacle is why we use the first order equation directly in the
hyperbolic part of the b-propagation argument below.

The presence of the charge parameter multiplying Wy is in fact inessential
here, as its size will play no role in the analysis of that term.

4.4. Interior propagation. In this section, we discuss the propagation
away from r = 0 of singularities (or, dually, of regularity) and also of iterated
regularity under the angular test operators Dy as well as the spacetime
scaling vector field

(23) R = ’I”D»,« + tDt

First, we remark that away from the potential singularity at the origin,
the standard theory of propagation of singularities applies:

Proposition 18. Let u satisfy (ida — m)u = 0. Then WFu C ¥ =
{naﬂgagﬁ = 0} and is a union of maximally extended integral curves of
the Hamilton flow generated by n®P¢“€P | i.e., lifts of straight lines.

Here (and here alone) we have used &, to denote the dual cotangent
variable to the Minkowski coordinate x®.

Proof. Applying (i@s + m) yields Pu = 0. Since P is an operator of real
principal type (away from the potential singularity), the result follows from
the theorem of Hérmander [12]. O
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Now we turn to propagation of iterated regularity under R, Dy. Note
that this is a simple case of propagation of test module regularity, with
Dy together with P being generators of a module of operators testing for
coisotropic regularity relative to the manifold

C={r*=& n=0}CcT"M°
(using coordinates 7,&,n dual to t,r, 6 respectively) and with Dy, R, P to-
gether testing for regularity relative to the Lagrangian submanifold(s)

L=N{t=+r}ccC

Proposition 19. Let u be an admissible solution to the Dirac equation.
Let py € {o(P) =0} C T*(M°) and let p1 lie on the mazimally extended
null bicharacteristic through py in T*M°.
If po ¢ WF® Dgu for all |a| < N then p1 ¢ WE® Dgu for all |of < N.
Likewise, if po ¢ WF® RIDgu for all j + || < N then p1 ¢ WF® R/ D§u
for all j +|a] < N.

Proof. The proof is a standard exercise in propagation of “test module reg-
ularity” and is essentially an easier version of the b- and edge-calculus ar-
guments employed below to obtain propagation through the potential sin-
gularity, hence we merely sketch it (cf. [30, Proposition 6.11]).

By Taylor’s theorem and the symbol calculus, for a solution to Pu € C*°,
the regularity hypothesis po ¢ WF® Dgu for all |a] < N is microlocally
equivalent to the assertion that for any Aj,... Ay € U}(M°®) with proper
support, characteristic on C,

Ay...Ayu e H®.

Now by [19, Theorem 21.2.4], we may find a homogeneous symplectomor-
phism @, defined on a neighborhood of py, mapping from coordinates (y, z, 7, )
such that o(P) o ® = (3¢ with ¢ elliptic and ®~(C) = {¢ = 0}. We may
also assume ®(pg) = 0 and hence ®(p;) lies on the z;-axis.

We may then quantize ® to a microlocally unitary FIO T such that TP =
QD., T + E with E € U= and where @ € ¥! is elliptic. Then Pu = 0
implies QD,, Tu € C*, hence D,, T'u € C* by ellipticity. The hypotheses are
equivalent to D3T'u € H® near ®(pp) for all || < N. Solving the equation
D, ,Tu € C* then guarantees that the same holds near any ®(p;) along the
zZ1-axis.

The second part of the result, dealing with Lagrangian regularity, follows
via the same kind of proof: here we conjugate instead to a coordinate system
(z,() so that the operators P, R, Dy, whose symbols cut out the Lagrangian
L, become multiples of the model operators D,; and proceed as before. [

5. DIFFRACTIVE THEOREM

5.1. Main theorem. In this section, we prove the diffractive theorem, which
tells us that the only wavefront set emanating from the singularity of the
potential arises at the time of interaction with a singularity of the solution.
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In making our propagation arguments in the b-calculus we will study the
Dirac equation directly. It turns out to be simplest to deal with the Klein—
Gordon operator P, however, in making the elliptic estimates that constrain
where the b-wavefront set may lie. We thus employ both equations in turn
in proving the diffractive theorem.

In both settings, we deal with large potential terms by employing the
Hardy inequality, with the result that our results only hold for |Z] < 1/2.

Definition 20. A diffractive geodesic is a geodesic that is either
(1) a lightlike geodesic not passing through r = 0, or
(2) a continuous concatenation of two lightlike geodesics, both passing
through t = tg, r = 0 for some ty € R, hence in polar coordinates a
geodesic passing through the origin at time ¢t =ty with

0_, t<t
r=lt—to|, 6=4" 0
0+, t>to.

(Geodesic here refers to a geodesic with respect to the Minkowski metric,
hence a straight line.) Note that in the latter case, when the geodesic is
broken, there is no need for the arriving and departing spatial directions
of the geodesic to match up as it enters and leaves the origin, though the
direction in time must be conserved.

We will abuse notation by using the term geodesic interchangeably for the
curve in M° and for its lift to T*M°.

A simple version of the diffractive propagation theorem, making no ref-
erence to b-wavefront set, says that the wavefront set of a solution to the
Dirac equation is, away from the spatial origin, given by a union of lifts of
diffractive geodesics to T*R3. To prove the theorem, however, requires prov-
ing uniform estimates at the time the geodesic reaches r = 0, which requires
analysis of the b-wavefront set; Proposition takes care of propagation
away from r = 0.

In order to describe wavefront sets conveniently, we will use coordinates
associated to the canonical one-form

(24) Uﬂ+n-d0+7dt
r

on PT*M. We may canonically identify this cotangent bundle with T*R*
away from r = 0 : this follows from the observation that b is a diffeomor-
phism away from r = 0 (identifying T*R*and T*M there) and that the
natural map 7*M — PT*M is an isomorphism in this region.

In the coordinates given by , for the radial geodesics (i.e., integral
curves of the Hamilton flow of the metric), dr/dt = —o/r7, hence the set
where ¢ and 7 have the same sign should be viewed as “incoming” toward
r = 0 under the bicharacteristic flow, while the set where they have opposite
signs is outgoing. Thus the following theorem describes propagation into and
then back out of the singular point of the Coulomb potential.
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Theorem 21. Let A = (Ag = Z/r + V, A1, Az, A3) with V, A; € C®(R3),
and |Z| < 1/2.
Whenever u is an admissible solution of

(ida —m)u =0,
if
{(r=to—t,0,t,0,7,n=0):t<tg,0 € S* 0,7 R, 720,06 20}NWFu=10
then
{(r=t—tg,0,t,0,7,n=0):t>1t9,0 €S> 0,7 cR,720,0<0}NWFu = 0.

Thus, no wavefront set arriving at »r = 0 at time ¢t = ty implies no
wavefront set emanating from r = 0 at time ¢ = ¢y, and we have established
propagation on diffractive geodesics. Moreover the sign of 7 is conserved in
this interaction.

We will prove Theorem [21| by obtaining a stronger result, uniformly true
across r = 0, concerning the propagation of b-wavefront set.

5.2. Propagation of b-regularity. The following treatment of the prop-
agation of b-regularity is heavily influenced by the work of Vasy in the
context of manifolds with corners [42], which gave in turn a new perspective
on previous results of Melrose-Sjéstrand in the boundary case [28], [29).
The main propagation results take place inside the compressed character-
istic set, which is the appropriate extension of the ordinary characteristic set
to the boundary setting. In coordinates associated to the canonical one-form

Tdt + odr +n-df
on T*"M, ¥ is given by

1, 2
22{@1&@@@1) |IQ_Q2_T*2‘Q‘ }

The compressed characteristic set 3, originally due to Melrose-Sjostrand [28
29], is the image of the characteristic set under the natural map T*M —
PT*M . In the coordinates associated to the canonical one-form

Tdt+a%+77-d9

on PT*M, ¥ has the following form over r = 0:
Yo ={(r=0,0,t,0 =0,n=0,7) |0 € S, 7 # 0}.

We will obtain Theorem [21] by proving the following more precise state-
ment. Recall from equation that 9 is a Dirac—Coulomb operator with
additionally a smooth vector potential, multiplied through by ~°.

Theorem 22. Assume u is an admissible solution of du = 0, and assume
that |Z] < 1/2.

For each m, WFllo’m uwC Y. Away fromr =0, WFé’m u is invariant under
the bicharacteristic flow.
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Fiz po = {(r =0,0 € S tg,0 = 0,m = 0,70)} C Y and let U denote a
neighborhood of pg in X. If

Un{o/r>0}NWF "™ u =0,

then
po NWEL v = 0.

Note that the openness of the complement of WFé’mu means that the
theorem yields regularity at the outgoing points (where o /7 < 0) sufficiently
near po.

In fact, we prove a stronger statement for the inhomogeneous problem, in
which

WEF " u C 3 UWEP (Ju),
and if
UNWEY"™ (8u) = 0
and
Un{o/T >0} ﬂWFé’mu =0,

then pg ﬂWFé’m u = (), with analogous statements with the additional factors
included.
We also prove a statement about the propagation of coisotropic regularity.

Theorem 23. The same statements hold with u replaced by K'u or Rtu,
where K is Dirac’s K-operator and R = (t — to)D; + rD, is the scaling
vector field. More precisely, for each ¢, WFllo’m(Kju) and WFll)’m(Rju) are
invariant under bicharacteristic flow away from r =0 for j =0,...,¢ and
if

Un{o/r >0} NWF ™ (S7u) =0
for S=K orS=R and all j < {, and poﬂWF?“(S’jﬁu) forj=0,...,¢,
then

po NWEL™ (S7u) = )

for all j < ¥£.

Remark 24. The statement for K provides a proof of the propagation of
Lagrangian regularity through the singularity. It immediately follows that
a similar statement (with hypotheses modified as needed) holds for K*R*u;
this shows that coisotropic regularity (in the b-sense) also propagates through
the singularity.

Since WFllg’m is closed, this theorem implies Theorem |21| as follows:

Proof of Theorem [21] using Theorem [23. Assuming the hypotheses of The-
orem [2I] we first can use ordinary propagation of singularities and elliptic
regularity over M° to conclude that a neighborhood of

{(r=0,0,t =ty,sgno =sgnr): 6 € 5}
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over M° is disjoint from the wavefront set, since the backward bicharacter-
istic flowout of any of these points lies in the region where our hypotheses
yield regularity, provided we take a sufficiently small such neighborhood.
Without loss of generality, we will focus on the component 7 < 0, with the
other component to be treated mutatis mutandis.

Now we find that since ordinary and b wavefront sets coincide for r > 0,
over a neighborhood of (r = 0,0 € S2 tg), WFé’mu N{r >0, sgnor =
1, n = 0} = 0; since XN {r = 0} € {o = 0}, this suffices to establish
the existence of U as in the hypotheses of Theorem where we have taken
fixed a sign of 7. Thus Theoremﬁimplies that pg ﬂWFllj’m = (J; since WFé’m
is closed, this implies the existence of an open neighborhood of pg in 3 that
is disjoint from WFé’m u, and in particular, there is a such neighborhood in
>N {o>0,7>0}.

This is then the projection of an open neighborhood in ¥, the usual
characteristic set, that is disjoint from WFllo’mu and where 7o < 0, and

in particular contains a point in every bicharacteristic (r = t — tg,t >
to,sgnto = —1,n1 = 0); this completes the proof of Theorem (since
WFu =J,, WF™ u). O

We now proceed with the proof of Theorem To this end, we begin
with preliminary estimates on commutators, with a crucial role played by
commutators between [J and b-operators that are rotationally symmetric in
the space variables.

5.2.1. b-Commutators. We record for our use below the form of the com-
mutator of an invariant (defined above in Definition [3) b-pseudodifferential
operator with the second order operator P and the first order operator 0.

Lemma 25. Let C € V(M) be invariant, with principal symbol ¢ scalar
and real-valued. Then, for P satisfying the Klein-Gordon hypotheses of Sec-

tion[4.3,
1
[P,C] = BOT—QAQ + By,
where
e Byc \Ifgl_l and
e By € Diff? P~ + Diff ' w7 + Ut
Both By and By are microsupported in WF}, C.

Proof. The term containing By arises by commuting C' through the T%Ag
term in P. The remaining terms in P contribute to the B; term; as

1
P+ — Ay € Diff? ¥y,
T

Lemmashows that this commutator lies in Diffz\I'Z”H. O
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Lemma 26. Let C € V(M) be invariant, with principal symbol ¢ scalar
and real-valued. Then
(25)

1-[570] = Ao (ar (i@r T 15}() _
1 r r

where

i) +Bo+a, By +B2%+B3DT+B4+B5%+B6DT,
Ay € U (M), with o,(As) = —05(c),

By € \I/}T(M), with Ub(Bo) = 6t(c),

B; € U with 0'b<B1) = 87«(0),

By € U7'(M), with supp o, (Bg) C supp 9,(c),

B; € U 1(M), with supp oy,(B3) C supp 9y(c),

B, € U Y(M), and

B;, Bg € U] %(M).

Remark 27. Non-scalar pseudodifferential operators are in bold in the ex-
pressions above; roman terms are scalar.

Proof. We write

Z 1 1
5:i8t—;+iar (8r+ BK) —OéoV—OéjAj,

roor
where we use the convention that oo = 1.

We begin with the angular term. Because o, and K depend only on
the angular variables, their commutators with the invariant operator C' are
microsupported in the support of d,c. Writing

St BK, C) = —a, [BK, €] — [y, CIK — [, Clau K,
we see that the first two terms give contributions to Bo, while the last term
yields the angular part of the Ay term above. (Indeed, we take this to define
the operator Ay.)
We now turn to the terms involving the commutator with i0; — % The
[0, C] term gives By, while the % term contributes to the Ay and Bjs terms.
We now consider the term involving i, (0, + %) We observe that because
a, depends only on the angular variables, its commutator with C' is micro-
supported in the support of J,(c), yielding a contribution to the Bg term.

Since
—%[DT,C] =S+1TD,,
where
Sewl  op(S)=0(c),
and
Te \I’{)nil’ ob(T) = 05(c),

we see that the rest of this term yields contributions to the terms involving
Ao, Bl, and Bﬁ. ‘

Finally, the commutator of —agV — o’ A; with C' yields the By term. [
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5.2.2. Elliptic estimate. The estimates in this section are very close to those
in [42, Section 4], hence we will be somewhat brief in the proofs; the main
difference here is in the potential terms, which need to be controlled using
the Hardy inequality. Unlike in the proof of the hyperbolic estimate in the
next section, we work here with the second order equation in order to obtain
more direct control over the H' norm.

Lemma 28. If|Z| < 1/2 then for allu € H', WFy™u € WEF, "™ (Pu)UX..

Following the treatment in [42, Section 4], we begin with a lemma con-
cerning the quadratic form associated to P. (Cf. Lemma 4.2 of [42].)
In what follows, we split P as

P=PFP+R
with
: L (0 o
2 2 2 r
Py=—(0p+iZ/r) —i—E 0; —m~ —i ( O)'

7’72 Or
Lemma 29. Let K C PS*M be compact, U C PS*M open, K C U. Let
Ay be a bounded family of invariant elements in Wi with WFy Ay C K
(in the sense of uniform wavefront set of families), and Ay € \I’ffl for

A€ (0,1). Then there exist G € \Ilfj_l/Q, Ge W both microsupported in U,
and Cy so that for all e > 0, A € (0,1), uw € H' with WF;)’S_I/QU NU =0,

WE, " (Pu) N U =0,

1(D: + Z/r) Axul® = |V Axull® = m? | Axul” + Re(RAxu, Ayu)|
~ 2
< Gy (qmwuiﬂ Flul? + 1Gul2 + € | Pull? s + EIHGPUHH1> .

The estimate is uniform for bounded Z (which is not required to be small).

Remark 30.

e The LHS of the inequality is given by the absolute value of the
Re(PAju, Ayu); the non-scalar term in P is anti-self-adjoint, hence
does not contribute.

e If Ay commuted with P the G term would not appear; as it is, this
term is lower order than A, since it arises as a commutator.

Proof. FiX~G,é of the appropriate order, microsupported in U, so that
op(G),op(G) =1 0on K.
The pairing
Re(PA,\u, A,\u>

is finite for all A > 0 by our wavefront set assumption, which implies that
PAyu € H™" and Ayu € H'. First write

[Re (PAxu, Ayu)| < [([P, AxJu, Axu)| + [(AxPu, Ayu).
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We first estimate the term
|{AxPu, Ayu)|.
Indeed, we observe that

[(ArPu, Ayu)| < | AxPul g [ Avull g < ell Az + € APullf .

Elliptic regularity for G then shows that
~ 2
(ArPu, Ayu)| < el Ayul % + Ce™! (||pu\|§,1 + HGPuHH1> .

We now turn our attention to the commutator term. Indeed, Lemma
allows us to write

1
([P, A\]u, Ayu) = <702AgBou,A,\u> + (Bju, Ayu),

where By € ¥ and By € Diff?¥; ! + Diff' U5 + Uit both satisfying
uniform (in \) estimates in these spaces.
Lemmas [13] and [12] show that we may bound

([P, AxJu, Anu)| S [lullzp + | Gull,
finishing the proof. U

Proof of Lemma[28 (Cf. the proof of [42, Proposition 4.6].) We aim to
show that if WF}, AN = @ and WF,, """ (Pu) "\WF} A = (), then Au € H'.

We in fact show this iteratively, assuming by induction that WFé"S_l/ 2u
is disjoint from a(n arbitrarily small neighborhood of) WF} A and then
showing Au € H'. To pass to s = 0o, one must guarantee that the supports
of the operators in each iteration do not shrink too quickly, but this can be
guaranteed as in the end of the proof of |42, Proposition 6.2].

We will use the notation

R o A n
o= N=i7
] 7]
in discussing symbol constructions below.

Since WF, AN Y = (), without loss of generality (since the lemma is
standard over M°), 6% + |ﬁ\2 > €2 > 0 on WF} A; moreover, by a partition
of unity in x (again using elliptic regularity over M°), we may take r < ¢
over WF} A, where we may specify § independently from e above. Now we

letf]
45 =0p, (L4 A2 + 0%+ [n?) ") 4,
so that A is uniformly bounded in ¥} and converges to A in the topology

of \Ifffo, while for each A > 0, 4, € \Iff)_Q. We may apply Lemmato such

4We assume our quantization is arranged so that it yields properly supported operators.
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an A, so that for all € > 0,

(26)

— (D + Z/r) Asul* + [V Axu|? + m? | Axul|* = [(RAxu, Ayu)|
(27)

~ 2
< G (vl + ully, + 16l + @) Pulf-o+ @ Graf) ).
Since 72 < € 2(02 + |n|*) and r < § on WF}, A, we estimate
|DiAul* < (72 0p(0® + [n*) A, Axu) + | Gul 3

= 2 (Il-D) Axul® + Vo Axull®) + | Gul 3
< S22V ANl + | Gull3s

< 8% | Agulli + || Gul| 3

Here again G € \Ili_l/ ? is an error term (which we allow to change from

line to line as needed); we use it to estimate terms of the form ||BuHQLz with
+1/2
Bew/”
We also recall from that
_ 2
=" Axul|” < 4l AxulFs
thus for any € > 0,
|(De+ V) Asul* < O 2| Axullin + (4 +€)Z |V Ayull” + || Gul 5.
We also use repeatedly the fact that ||Ayu| < C|Guly: together with
Cauchy—Schwarz to estimate
[(RAxu, Ayu)| < €| Ayul[fn + C||Gul[31.
(The constant on the right side depends on both Z and ¢€'.)
Adding ||D;Ayul® + ||(Ds + V) Ayul|® to equation (26) now yields
(28)

IDiAxull® + |V Axul|? < (C6%2 + 2¢) | Ayul® + (4 + ) 22| V Ayul®
2 2 n—1 2 nN—11|~ 2
+ Co | lullzn + Gl + () [ Pullf- + (€)™ || GPy| ) -

Assuming now that |Z| < 1/2, taking ¢’ and § sufficiently small (and drop-
ping €’-dependence of the constants on the right side), we absorb the ||V Ayul|?
and ||Ayul|3: terms on the right into the left side. (For the latter term, we
recall that up to || Ayul|32, which is controlled by ||Gul/31, |V Axul|® is com-

parable to the squared H! norm of Ayu.)
We thus obtain

~ 2
(20)  JlAsulZn <© (Hurip + 1Gull + 1Pl + HGPuHH_) -
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The right side is uniformly bounded as A | 0 by our inductive assumption.
Now taking A — 0 and employing a standard weak-convergence argument
(see, e.g., [42, Lemma 3.7]) shows that Au € H!. This concludes the proof
of Lemma 28] O

We now record two corollaries of the previous lemma; the first is elliptic
regularity for O:

Corollary 31. If |Z| < 1/2, then for allu € H', WFy™ u € WFP(3u) U3,
More precisely, if A € W is properly supported and microsupported near

po ¢ 2, then there are G € W?_l and G € U also microsupported in ye
so that

lAully < € (lull e + 1 Gull s + | Gou| )
Proof. The final estimate in the proof of Lemma shows that we may
bound
lAulls < C (Il + 1Grall s + 1 Pull s + |[GPu|| ),

for G1 € Wg_l/Q. We first estimate ||Pul ;-1 and HéPuHH_1 in terms of

|5l )
We recall that we may write P = L0, where

L= (i@ a + m)’yo,
which maps L? — H~! continuously. We may therefore bound
[1Pull -1 < C[Ou]| 2-
Turning to HéPuHHil, we write
GPu = GLdu = LGAu + |G, L]du.
As Hzéc’)uHHil < CH@&LHB, we turn our attention to [G,L]. As L €

7"_1\1111), Lemma (8| and basic properties of the b-calculus show that [é, E] €
r~10™. Elliptic regularity of (a slightly enlarged) G’ then shows that

w)

We now repeat the whole argument up to this point with G replacing A;
this allows us to replace (at the cost of slightly enlarging the microsupports)

the operator G € \Ifg%l/Q with G € \Ifgn_l. O

H[é, E](V’“HHA < O (ljoull + Hé’5u‘

Remark 32. By iteration, we may replace G € \Ifrbnfl in the statement of
the above corollary by an operator of any order, though we do not need this
stronger statement below.

The second corollary has the same proof as Lemma[28 without an estimate
on |[|DyAyull:
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Corollary 33. If|Z| < 1/2 and A € ¥} is invariant and properly supported,
then for G € U1 and G € U with WF](A) C ellG NellG, we have

|Aull g < € (I|DeAul + [Gull s +||Gou| |+ lullzn )

5.2.3. Proof of Theorems[29 and[23. We now turn our attention to the proof
of the b-propagation theorems. We first record a consequence of the elliptic
estimates of the previous section:

Lemma 34. Suppose u € H', du = 0. Then
<WF]13’m u)c = {p e PT*M: there exists A € \I"g“rl, elliptic at p, Au € L2} .

(Cf. Lemma 6.1 of |42].)
More precisely, if u € H' and po ¢ WF"1(du), then

po € WFé’m u if and only if py € WFH a.

Proof. Suppose py ¢ WFé’m u. We may use a microlocal partition of unity
in the b-calculus to break u into pieces on each of which one of the the
operators 7D, Dy, or Dy, is b-elliptic. If A € \I/g”l and G € U is elliptic
on WF} u, we thus obtain by microlocal ellipticity

2 2 2 2 2 2 2
[Aul|” < [lr DrGull™ + | DeGull” + [[VoGull™ + |ullgn S 1Gullz + llullf -

and we obtain one direction of the lemma.
The other direction of the lemma follows immediately from Corollary
O

We now turn to the proof of Theorem [22] Let us first consider the case
when M = 0 and let U denote a neighborhood of py in ¥ with

UNn{o>0tnWF2y = 0 nWF2(0u) = 0.
For our inductive hypothesis we assume that pg ¢ WEF} u; we aim to show
po ¢ VVFffl/2 u.
Let w =12 + (t — t0)?, and let
R 1
(ZS = —0 + %w.
Fix a small neighborhood U of (t = tg,z = 0) in PS*M and choose cutoff
functions xo, x1, and x2 with the following properties:
e Yo is supported in [0,00), with xo(s) = exp(—1/s) for s > 0,
e X1 is supported in [0, 00), with x1(s) =1 for s > 1 and x' > 0, and
e Y2 is supported in [—2¢cq, 2¢1], and is equal to 1 on [—cq, ¢1].
Here ¢; is chosen so that 2 + ﬁ2 <c1 <2in Y NU.
Now set

(30) a = |7 2x0(2 = ¢/6)x1(2 = 6/8)x2(67 + |*) Lsgn r=sgn o
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and let A be its quantization to an invariant element of \I/SbH/ % Note that

(31) suppa C {|6] < 26,w < 46%3%},

hence the support of a in PT*M can be taken to be inside any desired
neighborhood of pg.

In the following symbol construction and subsequent argument, we will
omit a standard regularization argument, described in detail in [42, (6.19)
et seq.].

Lemma 35. For A defined as above,
(32)
- 1 1
i1, A*A] = R5—Sgn<T0)Q*Q+R1;+R2DT+R3;5K+R+BO+O¢7«B1+E/+E”,

where

L ONS \II{’;Jrl/2 is invariant and self-adjoint with

Ub(Q) = \/§‘T|s+1/26_1/2 (X6X0)1/2X1X2 1sgn T=SgNn 70

Re ¥,
2s—1
Rj € \I/bs ,
R € U,
By, By € \II%S'H with |on,(B.)| equal to an order zero symbol times
CH1on(Q)?,
o B € U with WF| E' C {6 < & < 20,w < 4825}, and
o B¢ Lyt 4 Diff U2 4 U with WF) B N X = §.

All terms above have microsupport within supp a.

Proof. We apply Lemma [26] and employ the notation therein. The term A
arising there has principal symbol —d,(a?) and arises from d being nearly
homogeneous in r of degree —1. We may rewrite the Ag term in as
Ap(0 + D), modulo Ay times smooth lower-order terms (which are then
absorbed into R). We now split the symbol of Aj into three terms: those
terms where the derivative falls on yo can be written in the form szDt,
which we write as the product of sgn(mg) times squares Q? modulo a lower
order error we that we absorb into R. Meanwhile, those terms where the o
derivative falls on y; we absorb into E’ and those on which it falls on yo we
absorb into E”. Thus, modulo further commutators (again absorbed into
the error terms R, R;) we have written the first term on the RHS of
as RO — sgn(79)Q*Q.

The B; term arising in Lemma enjoys the asserted symbol bounds
because r derivatives on a? may only fall on the xo term, giving

272 (xhxo)xix3 (—2r) (B72672);
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since 0 < r < 284 on the support of a, this term is estimated by a multiple
of 7167|712 1\t xox3 X3, which in turn is a multiple of 37 1oy,(Q)?. Like-
wise, the By term in Lemma [26] becomes the By term here and is estimated
similarly, as the ¢ derivative may also only hit the xo term.

Finally, the By and B3 terms from Lemma [26] have symbols proportional
to 9,(a?), so the derivative must fall on ys and these terms are absorbed
into E”. The Bs term is also absorbed into R. O

We now return to the main argument. We pair i 1[0, A* AJu with u and
employ a regularization argument as in the elliptic setting. On the one hand,
we may bound

([0, A* Au, w)| = |{Au, ADu) — (ADu, Au)| < 2| Aul|| ABul| < el Aul*+¢ || Adul.

On the other hand, we apply Lemma
The main term is —sgn(70)(Q*Qu,u) = —sgn(m)||Qu|/*, which has a
definite sign. We may then bound

~ 1
|mmm2senAuW—+e4uA6mF+¢<Rauﬂ§\+\<Rdfmu>‘+G@L»uﬂw
1
+ ‘<R3T/8Ku,u> + [(Ru,w)| + [(Bou, u)| + |[{ay Biu, u)|

+ [(Ew,w)| + (B, ).

As R e W25, the ‘<}~25u, u>‘ term is bounded by ||Gs0u||||Gsu| for some

G, € ¥y. Similarly, the terms involving R can be estimated by ||Gs—1u| g1 || Gsul|
for some G4_1 € \I/f)_l and G; € ¥§. As R € \I/%S, the term (Ru,u) is
bounded by ||Gsu|®. This leaves the terms involving By and B; as well as
the E' and E” terms.

The following lemma allows us to bound the terms involving By and Bj:

Lemma 36. There exists G € Ui with WFy, G N WF} u = 0 so that for
J=0,1,
(Byu,u)l < B~ Qul* + ClIGullza + Clullz.

Proof of Lemma[36 By the pseudodifferential calculus, we may write B; =
QC1C5Q + R, where C; € WY satisfies |01,(C;)| < CA~7Y/2 and R € ¥3*, and

(VVF]'D RUWFY C’i) NWEF} u = 0.
For any w € L? with WF% w N WFL C; = 0, our symbol estimate gives
(33) ICiwll 2 < CB7Y|Gowl| 2 + CllGowll 1 + Cllwll

for some microlocalizer Gy € \Ilg with WFL(1 — Go) N WFLC; = 0. In
particular, then, setting w = Qu yields
ICiQull < CB2|Qul i1 + Cl|Gull 2 + Cllull 1,

for G = GoQ as in the statement of the lemma.
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An application of Cauchy-Schwarz to (Bju,u) then yields the stated es-
timate and concludes the proof of Lemma O

The term involving E’ is bounded by HGHl/QuW, where Gy 1/ € \IJEH/2

has WF}, Gep1/2 C{0 <6 <26,w < 4/3262}. The hypothesis that U N {o >

0} N VVF]/OLS_I/2 u = ) implies that this term is finite.

Finally, we estimate the term involving E”. As the microsupport of E”
is contained in the elliptic set of 3, we may use Corollary [31] to bound this

term by
2
r2)’
where Gs_1 € \Ilf)*l and és € U} are microsupported in the elliptic region

within U.
Thus,

c (nun%{l Gl + | Gl

~ 2
(34) 1Qu|® < el Aul® + e 2| Adu) + HGﬁuHLQ + finite,

where the terms labeled finite have been estimated by our inductive assump-
tions on u. Since 03(A)/0p(Q) < C, we may absorb the first term on the
right into the left side modulo finite terms, provided ¢ is sufficiently small;

|Qul| is thus bounded. As @ is elliptic at po, po ¢ VVFISDH/2 u (and hence, by

Lemma not in WFé’S_l/ 2 u). This completes the proof of Theorem

We now turn to the proof of Theorem The arguments of Section
imply the propagation result away from the » = 0, so we need only prove

the result through the singularity. We first describe the commutators of 0
with R and K:

Lemma 37. The commutators of  with R® K¢ are as follows:

(1) [0, RY] can be written as a linear combination of OR7 (or, indeed,
R’8) and R'F; (or FjR?), where j = 0,1,...,£ —1 and F; € C*
(but not necessarily scalar).

(2) [0, K*] is a linear combination of terms of the form KIBK‘~1=7
where j = 0,1,...,£ —1 and B € Diﬁ’ll) only differentiates in the
angular variables.

Proof. To prove the first statement, we write 0 = i7°@; /r+ R, where d7 /r s
the Dirac operator with potential A = (Z/r,0,0,0) and R = — Zi:o auAy.
Because @y /r is homogeneous of degree —1 in (t,r), we see that

1 1
[0,R] = ;(5 —R)+ [R,R] = 25%— Fy.
We then observe that
[0, R*] = [3, RJR*! + R[, RF1].

The first term on the right is then of the correct form by our calculation of
[0, R], while the second term is a linear combination of terms of the form



DIFFRACTION FOR THE DIRAC-COULOMB PROPAGATOR 37

RORJ and RFR’, where j = 0,1,...,k — 2 by the inductive hypothesis. As
we can commute R with 0 and F; at the cost of lower order terms of the
same form, this proves the first statement.
We prove the second statement similarly. Because K commutes with @5 Ir
and 7", we can see that
{—1
0,K1 = R,K|=> K/[R,K|K" .
§=0
As R is non-scalar, [R, K| € Diff}lg is only a first order differential operator,

but differentiates only in the angular variables. Taking B = [R, K| finishes
the proof. (Il

We now proceed inductively to prove Theorem the case £ = 0 is
handled above in the proof of Theorem Setting S = K or S = R as
appropriate, we proceed using the commutants

W, = SPA*ASY,
where A is the commutant employed above. Commuting d with W, yields
(35) [0, W,] = S°[0, A*A]S* + [3, S| A*AS* + S¢A*A[B, S1].

After applying the operator and pairing with w, the first term yields the
same terms in the argument above with ¢ = 0 (sandwiched between factors
of S). Our aim is therefore to absorb or otherwise bound the terms arising
from commuting d with S¢ and pairing with .

In the case of S = R, Lemma allows us to bound the remaining two
terms by

eHARZuH2 +Ce? ez_% (HAijiuH2 + HARijuHQ) )
=0

F; € C°°. The first term in this bound can be absorbed into the main term
arising from the commutator [0, A*A] in equation , while the second
term is finite by the hypothesis on du. The third term is finite by the
inductive hypothesis.

We now consider the case of S = K. By Lemma the remaining two
terms are bounded by

/—1
2 . X 2
eHAKqu +CetS HAKJBKf—l—JuH.
s

Each of these terms will ultimately be absorbed into the main term by

choosing § sufficiently small using the following lemma:
Lemma 38. Suppose A is defined as above and QQ € \Ilf)+1/2 is invariant
with symbol

Ub(Q) = \/§‘T|s+1/26_1/2 (X6X0)1/2X1X2 1sgn T=8gNn 70"
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There ezists some C (independent of §) and some G € \I/f)_l/2 so that

JAull < © (VollQul + IGull + ull)

Proof. The proof is nearly identical to the one in Lemma because op,(A)
is a multiple of o,(Q), we may write A = CQ + R, where C € ¥ has
principal symbol

on(C) = (2= ¢/6) V5/V2.

Introducing the microlocalizer G as in Lemma [36] finishes the proof. (]

We now claim that we can bound “AKJBKIZ*I*ju|‘ by HAKEUH and
terms that are finite by the inductive hypothesis. Given this claim, Lemma
then allows us to absorb these terms into the main one by choosing § suffi-
ciently small, finishing the proof.

The rest of the section is devoted to the proof of the claim. First observe
that because B and K are differential operators acting only in the angular
variables, we may replace them by scalar operators in these variables, i.e.,
we may first bound

HAKJ’BKZ*HUH <C'y |Adgul,
<O

where C' is independent of u. All but the terms with |a| = ¢ are finite by
the inductive hypothesis. Because A and J§ are scalar operators, we again
appeal to the inductive hypothesis so that it suffices to bound ||0§ Aul| for
|a| = €. For ¢ = 2m even, it suffices to control ||Af*Aul| + ||Au||, while
for £ = 2m + 1, the following lemma shows that it is enough to control
| A Aul] + || Aul.

Lemma 39. There is a constant C' so that for any u € H&g,
IVoull < C([[Kull + [lul])
where the norms are taken with respect to L?.

Proof. Note that because K contains only angular derivatives, ||Kul|| <
C||[Vgul||. We then use that Ay = K? — BK to see that

IVoull* = (Agu,u) = ((K? — BK)u, u)
< || K2l + I Kulllull < € (I1Kul + |lul?)

We now rely on Lemma [4] and the following observation: Because K2 =
A@ + /BK7

(36) K> = A+ Lop, K™ = AT'K + Lo 11,

where Lo, is a constant linear combination of Ay, . . ., A;”_l and BK, AgBK, ..., Ag‘_lﬁK,
while L2,,41 is a linear combination of 8Ag, ..., BAf and K, AgK, ..., AglflK.
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For ¢ = 2m, we obtain (using Lemma 4]
|AF Aul = |AAFu] < [|AK?™u| + | ALamull,

where the second term is finite by the inductive hypothesis. Likewise for
odd £ =2m + 1,

(37) IAF K Aull = AK A ul| < |AK*™ ]| + || AL vul),

where again by the inductive hypothesis the last term is finite. This finishes
the proof of the claim and thus the proof of Theorem

6. GEOMETRIC IMPROVEMENT

In this section we prove the second part of Theorem [1} i.e., we show that
the part of the singularity of the fundamental solution lying on the diffracted
wave front D and away from the geometrically propagated light cone G is
1 — 0 derivatives smoother than the singularity along G.

There are two main steps to this argument. In the first (Section , we
describe the propagation of edge regularity, which allows us to propagate
coisotropic regularity along the geometric geodesics under a “non-focusing”
condition. In the second part (Section , we show that we can apply the
arguments of the first to a propagator.

6.1. Propagation of edge regularity. In this section we establish the
propagation of edge regularity. The propagation argument in this setting
is somewhat less sensitive to lower-order terms and so we are able to work
with the second order operator in this section.

Let P be an operator satisfying the Klein-Gordon Hypotheses in Sec-
tion recall that this means

_ L.y 2 2 L (0 o

with
W
(39) R = 270 + W0, + Wa,

where the W7 coefficients are smooth but non-scalar.
As before, let X = [R3;0] and M = [R'T3;R; x {0}]. We now view P as
an operator in the edge calculus on M :

P € r 2 Diff2(R x X)
with , ) ,
A2 g2
The associated Hamilton vector field is then
2 1
H= 2 <(§2 + ’C’%z) Og + X0\ +&r0y — /\rat) — T—QHsg,

where Hg> denotes the geodesic flow in (6,¢) € T*S?. Let ¥ C ¢S*(R x X)
denote the characteristic set of P.
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Recall that we have defined the edge Sobolev spaces be defined with

respect to the b-weight as in [32], [30]. Thus

L% =320
Likewise this is the scale on which we measure Sobolev-based edge wavefront
set WF .

We let M denote the graded module generated by angular derivatives
V2. Let A* denote the filtered algebra over W)(M) generated by M. Hence
A is locally generated by the operators Dy, .

We will additionally be interested in testing for conormal regularity along

N*({t = r +r'}). In addition to iterated regularity under vector fields
Dy € M, this involves regularity under the operator

(40) R=(t—1r")D¢+rD,;

cf. where this operator appears with v’ = 0. We will often take advantage
of time-translation invariance and tacitly set ' = 0 in computing with this
vector field.

The fact that, unlike the Dp,’s, R is not an edge vector field entails some
minor technical complication in what follows.

The commutator properties of P with R and with the generators of A play
an important role in what follows. As we are working in a simpler geometric
setting than that of |30, we revert to the simple expedient of using Ay, the
angular Laplacian, as a test operator for regularity in A.

1
Lemma 40. [P,Ag] = QoD, + Qi Dy + 7 2Qy and [P,R] = —2iP + -Q3
.
where
Q; € Diff'(S?), j=0,1,2, and Q3 € Diff}(M).

Proof. All terms in the model operator P — R with exact Coulomb potential
(see ) commute with Ay, except for the matrix valued term

_Z'EOUT.
r2\o, 0/’

commuting this with Ay gives the 772Q term above, while the terms in R
contribute to the remaining error terms in [P, Ay].
Additionally, by exact scaling symmetry in ¢, r

[P+m? —R,R] = (—2i)(P+m?-R),

hence lumping the remaining terms in the r~'Qs term gives the desired
expression for [P, R]. O

As above, let the canonical one form on ¢T*M be

it d
AE e 4 ¢ah.
T T

Let
ICi(tQ,QO) = {t = th r= 0) 0= 907 A= :l:]-) 5 = :l:]-) C = O} - eS[EX@X(M)’
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OGi(t(]aOO) = {t =19, 7 =0, 0= 90a A= 1, {=F1, (= O} - eSﬂEX@X(M)‘
These are the endpoint of the closures of bicharacteristic reaching the front
face of the blowup (i.e., the origin in the blown-down space) from the interior
as time increases (“incoming”) resp. as times decreases (“outgoing”). Note
indeed that ICU QG accounts for all the radial points of the edge Hamilton
vector field H.

We now let F denote the backward resp. forward flowouts of boundary
points: if p = 1C4 (9, 00), let

Filp)={t=to—r, re(0,e), 0 =0, \==+1, E==+1, (=0} C °S*(M),
and if p = OG(tg,0p), let

Folp)={t=to+r, r€(0,e), 0 =6y, A\==£1, £ =F1, (=0} C °S*(M).
These are the unique interior bicharacteristics containing the corresponding
radial points in their closures.

We now state a theorem about propagation of edge wavefront set, together
with module regularity.

Theorem 41. Suppose u € Hg (M) solves
Pu=0
with P satisfying the Klein-Gordon Hypotheses from {4.3.

(1) Let m > 1+ 1. Set p = IC4(to, 6). If Fr(p) " WET(ADu) = 0 for all

j=0,...,k then
p & WE (Aju)
forall j=0,...,k and all I" <.

(2) Let m < 1+1. Set p = 0G4 (to,00). Let U denote a punctured neigh-
borhood of p in °Sk,oy(R x X). If U N WE! Agu = 0 for all
7=0,...,k then

p & WE (Aju)
forallj=0,... k.
(3) For allm, and I’ <1,
WEZ w0 S ox (M)
1s a union of maximally extended null bicharacteristics.

(4) Suppose additionally that R7u € H®! and that p € OGL(tg, 6p) has
a neighborhood U C ¢S5 o5 (R x X) such that U N WF?"'u C OG.
Then for 0 < j' < j, p ¢ WFML(RIu) for j € N, provided M < m— j
and M <[+ 1.

As shown [32, Section 6], the propagation along null bicharacteristics
within OM (part above) connects points in IC and points in OG lying
over points 6y, 01 that are separated by geodesics of length 7 with respect to
the metric on 0X. Here 0X is simply S2, so this means that the propagation
is from a point fy to its antipodal point 8, = —6y.

The theorem thus says that regularity propagates
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(1) From the interior of M into incoming radial points in OM (a.k.a.
the lift of » = 0 under blowup) along bicharacteristics, above some
threshold regularity dictated by the weight in r

(2) Across OM along bicharacteristics, from incoming radial points to
antipodal outgoing radial points (instantaneously)

(3) From outgoing radial points back into the interior of M, up to some
threshold regularity dictated by the weight in .

Owing to the limits in regularity in the outgoing part of the theorem (which
is typical in radial point problems—cf. [34]), this result does not in fact say
that regularity arrives at the boundary, propagates across it, and leaves, at
any given Sobolev order. Obtaining regularity (and, ultimately, conormal-
ity) at the outgoing wavefront will require subtler arguments involving Dy
and R regularity, hence the need for these factors to propagate through our
estimates as well.

Proof. The proof is the same as that of Theorem 8.1 of [32]. We sketch
the first part here in order to verify that the passage to a slightly different
class of operators under consideration here (with cross term involving 19y,
inverse square potential terms, a principally scalar system with a large anti-
self-adjoint 0’th order term) do not vitiate the arguments used there.

Let p = IC4(to,00). We will begin by sketching the proof of the following
propagation result, which gives the first part of the theorem up to the factors
in of A’g

Propagation Estimate 1. If m/ > ' +1/2, u € Ho ™V (M), p ¢ WF™ ' (u),
and Fr(p) N WE™+1/2 4 = (), then p ¢ WFL' T2,

To establish Propagation Estimate (1| we choose A € \I'ZL/’Z/H/ ? such that
(41)  P*A"A— A"AP=£(A)(A)+) B/Bj+E+K+TF,

where

(1) A, A’ are microsupported near p.

(2) A" € W2 Gith o (A7) = 0o(A) - (£(m/ + 1+ 1/2)€)1/2

(3) E € w2123 and WF' E is in an arbitrarily small neighborhood
of a single point in Fr(p).

(4) K € U228 and WR KNS =0

(5) F is of lower order, lying in \Ime"Q”?’. (Note that it is only the
pseudodifferential order that is lower, not the weight.)

Notwithstanding that our convention for b-Sobolev spaces is to base them
on Lg, the adjoints above are all taken with respect to the inner product
on Lg, as we will use this inner product (with respect to which P is mostly
self-adjoint) in making a pairing argument below.

The operator A is constructed roughly as follows: if m + 1 > 0, then
HO™r) = (m + DEN™r!, so that if y(s) = 0 for s < 0 and x(s) = 1
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for s > 1, H (x(£MN)x(£E)(£A)™r!) has the same sign as ¢ (the + used
here). We can localize in the 6 variable as in the more general treatment
in [32, Section 6] by using a function given, in our blown-down Euclidean
coordinates (z,¢) € T*R3 by cutting off —é to lie in a small neighborhood of
any desired 6; such a cutoff manifestly commutes with the Hamilton flow,
and is shown in [32] to lift to be a smooth symbol on PT*M. If a geodesic
arrives at the origin, then since it is oriented radially, its angle of arrival
6 € S? is manifestly —%, hence we have achieved an angular localization.
Finally, a cutoff in |(|/|\| has the same sign as the signed terms listed above.
Thus, the product of these cutoffs localizing in 0, ¢ with y () x(£€)(FX)™r!
may be quantized to give an A with the desired properties — see Lemma 7.1
of [32] for details.

We remark that the system under consideration here may be treated
as a scalar equation from the point of view of the positive commutator
argument because the principal symbol of P in the edge calculus is scalar.
In particular, the anti-self-adjoint term in P,

L (0 o
Zr2 o 0/’

which is large enough to disrupt commutator arguments in the b-calculus,
lies in \I'g’Q, hence in the twisted commutator P*A*A — A* AP gives rise to
a term in U2 2'+3 which may be included in the lower-order error term F'
above.

Now the propagation argument follows by pairing the equation (41)) with
w, using the metric inner product r>drdf. The left-hand-side is zero, by
integration by parts. Technically, in fact, we require an approximation of
A by operators in \Ile_oo’lurl/2 in order to justify this integration by parts—
see |32] for details of this approximation process, which involve a family of
smoothing operators As with a further parameter approximating A as ¢ | 0.

The terms of the right hand side of the pairing are then as follows. The
term || A’ uHig is precisely what we need to control: note that in terms of the

b/edge-volume form dr/r dt d§ = r=3dVj, this term is of the form

2
HT,?)/ZA/ 7
Lz
m/+1/2,l/ 2 .
hence controls WFe u. The terms ||Bul|” have the same sign, and

hence may be dropped. The term with E is controlled by our incoming
wavefront set hypothesis. The term with K is controlled by microlocal
elliptic regularity. And the term with F is controlled by our assumption
pé¢ WF;"/’II u. This concludes our proof of Propagation Estimate

Now we can employ Propagation Estimate [T] iteratively to obtain the first
part of the theorem, in the case k = 0. We know a priori that u € H' for
some q; if ¢ > 1+ 1/2 we may immediately iterate the propagation estimate
to obtain the result of the theorem. If not, we must artificially lower our [
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to some I’ < ¢—1/2 in order to start the iteration. In this case, however, an
interpolation argument still recovers the result but ends up with I’ =1 — ¢
for any desired € > 0—see Figure 1 of [32] and related discussion.

To include the module regularity in the first part of the theorem, we pro-
ceed inductively, employing the same commutant as above and considering
the twisted product

P*ARA* AN — A A*ANEP
(42) — [P*, A A" AN — AfA*A[AS, P)
+ AF (P*A*A — A*AP) AS.

The last term gives rise to similar terms as in the propagation estimate
(with u replaced by Aku) and so allow us to control WE /2 Aku. In-
deed, together with terms that are finite by induction, this term controls
2 lal<2k ||D‘9)‘A’u||2 with A’ as before. The first two terms on the RHS of
can then be absorbed into this main term (modulo inductively finite
terms); here we use the fact that while having the same order, these error
terms have a smaller r weight.

are controlled by the induction hypothesis (together with the description
of [P, Ay| given by Lemma [40]).

The remaining parts of the theorem follow in an essentially identical way

to those of Theorem 8.1 of [32], and similar to the arguments given above.
O

6.2. Global propagation of coisotropic regularity. Our aim in this
section is to apply Theorem to the solution of (idy — m)u = 0 with
initial condition vgd, and verify that the diffracted wavefront is 1 — 0 orders
smoother than the propagated one.

The sketch of the proof is as follows: For each time, the solution is a
distribution u of Sobolev order —3/2 — 0. An angularly smoothed version
of the solution, (Ag) ™u (for M > 0) is, by contrast, a distribution of
order —1/2 — 0. (In the language below, u has global nonfocusing regularity
of order —1/2 — 0). Additionally, at a point on the diffracted front away
from the propagated light cone, Theorem [41] shows that u has infinite order
coisotropic regularity with respect to a weaker Sobolev norm, i.e., Dgu € H k
for all a, with k fixed. Interpolation of the coisotropic regularity with the an-
gular smoothing effect then shows that in fact v has infinite order coisotropic
regularity with respect to the better space (up to an € loss) and therefore
is locally a distribution of Sobolev order —1/2 — 0 enjoying coisotropic reg-
ularity. Additionally propagating powers of R = tD; 4+ rD, through the
evolution then suffices to show that u enjoys Lagrangian regularity with
respect to H /270 along the diffracted wave, as desired.

Definition 42. Fix a Hilbert space H and a set K C PS*(M).
A distribution on R x X enjoys coisotropic regularity (of order 2N) with
respect to H on K if there exists a properly supported operator A € W9 (M),
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elliptic on K, such that
(Id +Ag)N Au € H.

A distribution on M is nonfocusing with respect to H on K if there exists
a properly supported operator A € \I'g (M?°), elliptic on K and there exists
N € N such that

Au = (Id+A9)N/, o € H.

We also make analogous definitions at the level of Cauchy data, i.e., distri-
butions on X: if H’ is a Hilbert space of distributions on X, and K C PS*X,
a distribution on X enjoys coisotropic regularity (of order 2/N) with respect
to H on K if there exists a properly supported operator A € \I/% (X), elliptic
on K, such that

(Id+29)N Au € H.

A distribution on X is nonfocusing with respect to H’' on K if there exists
a properly supported operator A € \II?)(M ), elliptic on K and there exists
N € N such that
Au= Td+Ap)Nu/, o' €H.

One could of course refine the nonfocusing definition by specifying in the
terminology the power N for which it holds, but in practice we will be
concerned with the union of this nonfocusing condition over all possible N.
In this paper, moreover, we will mainly be concerned with localizing over a
particular set in the ¢ variable, but will neither localize in other variables
nor microlocalize, hence the subtleties of microlocalizing in the b-calculus
are moot.

In practice, it is convenient to take H to be L (R;D?) (where we will
drop the “loc” from now on as global estimates in time play no role here).
This formulation is convenient for duality arguments owing to the sensible
behavior of these spaces near the origin, but away from the origin, we remark
that nonfocusing with respect to D? is in fact equivalent to nonfocusing with
respect to H?.

Note also that we may equivalently test for coisotropic regularity with
powers of Dirac’s angular operator K instead of powers of Ay : Since

K2_BK:A9a

regularity under powers of K up to 2N yields regularity under (Id +Ag)";
conversely, regularity under (Id +Ag)" yields K-regularity by ellipticity of
Ay in the angular variables. Likewise the condition of nonfocusing can be
recast as lying in the range of sums of powers of K, and we will use this
alternative version below.

Lemma 43. Let

(ida —m)u = 0.
If for some € > 0, u enjoys coisotropic reqularity of order N with respect to
L? (R;D?) on (—¢,€); x X then u enjoys coisotropic reqularity of order N

loc

with respect to L2 (R; D*) globally on M.
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If for some € > 0, u enjoys the nonfocusing condition with respect to
L2 (R;D%) on (—€,€); x X then u enjoys the nonfocusing condition with
respect to L2 (R; D) globally on M.

The conditions of coisotropic regularity resp. nonfocusing w.r.t. L%OC(R; D?)
are moreover equivalent to the conditions of coisotropic regularity resp. non-

focusing of the Cauchy data u(ty) (for any ty) w.r.t D*.

Proof. We begin with coisotropic regularity. By Lemma

~

(3 Gl S |1 B, K,

By Lemma [B, K7] is a linear combination of terms of the form K7'BK7~1-7",
where j/ = 0,1,...,5 — 1 and B € Diff,la only differentiates in the angular
variables. Thus by Lemma [39] and the following discussion, we may bound

S |w|
<

Thus by Cauchy—Schwarz and Gronwall, yields inductively for all T,
Js

. . . . 2
‘<KJ BE/—1-7'y, Kﬂu> .

DS

J J
ZO o], < € ZO ||, <
j'= s

This shows that coisotropic regularity of the Cauchy data propagates, and
moreover that coisotropic regularity of the Cauchy data implies LS (R; D?)
coisotropic regularity of the spacetime solution. Conversely, knowing merely
L?D? coisotropic regularity of the spacetimes solution implies that for a.e.
t, the Cauchy data wu(t) enjoys coisotropic regularity, which then in turn
propagates to yield L{¥ (R; D®) spacetime regularity. This finishes the proof
of the lemma for coisotropic regularity.

We now turn to nonfocusing. We note that by the coisotropic results,
applied backwards in time, if we let H denote the Hilbert space with squared
norm

J
(44) 3 HKJU‘
/=0
then we have estimated

(45) Ut)H — L. (R H).

In particular, for fixed ¢, U(—t) is bounded H — H. Thus (by unitarity on
D5) U(—=t) =U(t)* : H* — H*, with dual spaces taken with respect to D?
inner product. By the Riesz lemma,

2
)
Ds

J
(46) H =) KI'D*

§'=0
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This is just the space of Cauchy data nonfocusing with respect to D?, hence
the nonfocusing of Cauchy data is preserved under propagation. Moreover,
uniformity in ¢ of the maps H — H show the uniformity in ¢ of the dual maps,
hence yield the equivalence with nonfocusing with respect to L120c (R; D?) as
above in the coisotropic regularity case. O

In order to show conormal regularity of the diffracted wavefront, it is
useful to have a refinement of Lemma [43| that additionally allows powers of
the scaling operator R.

Lemma 44. Let

(ida — m)u = 0.
Fiz k € N. If for some € > 0, u, Ru, ..., R*u enjoy coisotropic reqularity
of order N with respect to L2 (R; D) on (—¢,€); x X then u, Ru,..., RFu
enjoy coisotropic reqularity of order N with respect to L%OC(R;DS) globally
on M.

If for some € > 0, u,..., RFu enjoy the nonfocusing condition with re-
spect to L2 (R;D%) on (—e,€); x X then u,... , RFu enjoy the nonfocusing
condition with respect to L2, (R;D*) globally on M.

The conditions of coisotropic regularity resp. nonfocusing w.r.t. L%OC(R; D?)
for Riu are moreover equivalent to the conditions of coisotropic regularity
resp. nonfocusing of the Cauchy data ﬁju(to), where R = —tB + rD, (for
any t € R) w.r.t D*.

Proof. To obtain the propagation of coisotropic regularity of order N, we
recall from Lemma [37] that

k—1
(47) ORFu =Y C*RMu
k=0

(with the C* terms non-scalar). Thus, if H is defined as in ([@4), and if we
inductively assume that u, ..., R~!u enjoy coisotropic regularity, i.e., lie in
L (R;H), then

j—1

ORI =Y C*R'ue L®(R;H).

i'=0
Moreover if we assume that R7u has coisotropic regularity initially, then it
has initial data in H. Duhamel’s theorem (employed with values in H) and
then imply that

Riu e L®(R;H)
as well; this inductively shows propagation of coisotropic regularity for R7u.

The equivalence with the Cauchy data statement simply follows from the

fact that

Ru = Ru

for solutions of the Dirac equation.
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To obtain the propagation of nonfocusing for R7u, where we have to du-
alize in powers of K but not in powers of R, we apply the same argument
as above but with solutions in L>°(R; H*) rather than L>°(R;H) : we induc-
tively show that Riu € L (R;H*) for each j € N.

loc

O

Lemma 45. Fiz a 4-spinor 1y and a point xo € R3. Then the solution u
to the Dirac equation with initial data

5(17 — ZEU)I/)Q

is in C(R; D~3/279) and enjoys nonfocusing (on all of M®) with respect to
D-1/2-0

Proof. This is essentially a vector-valued version of [32, Lemma 16.1, Propo-
sition 16.2]. We first note that by energy conservation (see §4.2)), u €
C(R;D_3/2_0) since § € H~3/270_ On the other hand, given any k, for N
large,
(Id+29) " No(r — 10)8(0 — ) € CH(S* H27O(R,)),
hence taking k > 0 yields
(Id+2g)Nu(0) € D7/270,

This suffices to establish nonfocusing at ¢ = 0 and hence globally in time,
by Lemma ([

Finally, we consider the regularity of the solution on the strictly diffracted
wavefront D\G. Let u denote the solution with initial data §(z — x¢)to,
where xy = (rg,6p) in polar coordinates. For ¢y > rg, consider any point
(r = to—r1,0) with 6 # —6y and let U be a neighborhood of this point
in X° disjoint from 7(G) = {|z —xo| =t} for t € I = (ty —€,to +€). By
Lemma u is nonfocusing in 7*(I x U) (or, indeed, globally) relative to
L?*D~1/2-0_ On the other hand, we now apply the edge propagation theorem
(Theorem i to the solution ©_3/5, u, which lies in Co(R; DY), hence in
particular, say, in LZ _(M). Thus the edge regularity hypotheses of the edge
propagation theorem are satisfied (with [ = 0), and we conclude, also using
Proposition for propagation into r > 0, that for some fixed M, for all
k€N, WEM(ALO_3/5_u)NT*(M®) is disjoint from the strictly diffractive
flowout from the origin

N*{r=t—ro}n {9 =+ —90}.

In particular, then, since no points in 7%(I x U) are geometrically related to
the initial singularity, u (which differs from ©3/9,(©_3/5_.u) by a smooth
error) enjoys coisotropic regularity of every order relative to some Sobolev
space HM' on I x U. By an interpolation argument [30, Section 13], a distri-
bution that is nonfocusing relative to H® and enjoys infinite order coisotropic
regularity relative to some fixed H* in fact lies in H*~°, hence u enjoys this
regularity over I x U (and it moreover also enjoys iterated regularity under
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K relative to these spaces). This proves that the fundamental solution  lies
in H=1/2-0 pear D\G and moreover that A]gu enjoys the same regularity for
all k.

Finally, we show that the diffracted wave is a conormal singularity. To
begin, we further analyze the singularity of the fundamental solution for
short time: since Pu = 0 with P = [ modulo lower order terms, we
have energy estimates for u for short time, and the parametrix construction
[20, Theorem 29.1.1] applies, and shows that u € C(R; D~3/279) is conormal
to |x — xo| = |t| whenever [t| < |zp|. (Beyond this range of times, the sup-
port reaches the singularity of the potential, which cannot be treated as a
perturbation any longer). Consequently, as N — oo, the angular smoothing
of u,

(Id —i—Ag)_Nu,

approximates a sum of conormal distributions in H~/270 at the hypersur-
faces r = ro £ t. Since R = (t — ro)D¢ + rD, is tangent to {r = ro — t},
for t € (0,r¢) the regularity of this latter piece of the solution is unaffected
by the iterated application of R. Thus for each j € N, R/u satisfies the
nonfocusing condition relative to D~/270 for ¢ € (0,70), microlocally away
from the outgoing spherical wave N*{r = ro + t}. (See |32, Lemma 16.1]
for details of this computation.) Note that we may microlocalize our solu-
tion away from the outgoing spherical wave without changing the diffracted
wave (by the b propagation theorem), hence we may ignore this part of the
solution.

By Lemma the nonfocusing condition persists for all ¢ € R. On the
other hand, Theorem [41]implies that along the strictly diffracted wavefront
(and for r small), for every j € N, R/u enjoys coisotropic regularity with
respect to some fixed (but j-dependent) Sobolev space H M (4). Once again,
by interpolation, we then have Riu € H~1/2-0 along the strictly diffracted
wavefront for every j, and this, along with the coisotropic regularity and
the equation Pu = 0, establishes conormal regularity along the Lagrangian
D= N*{r=t—ro} at points § # —6; (i.e., away from G).
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