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Abstract

During infectious disease outbreaks, individuals may adopt protective measures like
vaccination and physical distancing in response to awareness of disease burden. Prior
work showed how feedbacks between epidemic intensity and awareness-based
behavior shapes disease dynamics. These models often overlook social divisions, where
population subgroups may be disproportionately impacted by a disease and more
responsive to the effects of disease within their group.

We develop a compartmental model of disease transmission and awareness-based
protective behavior in a population split into two groups to explore the impacts of
awareness separation (relatively greater in- versus out-group awareness of epidemic
severity) and mixing separation (relatively greater in- versus out-group contact rates).
Using simulations, we show that groups that are more separated in awareness have
smaller differences in mortality. Fatigue (i.e., abandonment of protective measures over
time) can drive additional infection waves that can even exceed the size of the initial
wave, particularly if uniform awareness drives early protection in one group, leaving
that group largely susceptible to future infection. Counterintuitively, vaccine or
infection-acquired immunity that is more protective against transmission and mortality
may indirectly lead to more infections by reducing perceived risk of infection and
therefore vaccine uptake. Awareness-based protective behavior, including awareness
separation, can fundamentally alter disease dynamics.

Social media summary

Depending on group division, behaviour based on perceived risk can change epidemic
dynamics & produce large later waves.
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Introduction

When an infectious disease causes substantial disease burden and death, people may
perceive their risk of infection based on their awareness of the magnitude of disease-
linked outcomes and respond by modifying their behavior (An et al., 2020; Cheok et al.,
2021; Gidengil et al., 2012; Ridenhour et al., 2022; Yan et al., 2021). In turn, protective
behaviors like physical distancing, mask wearing, and vaccination may suppress
transmission, reducing peak and total infections and disease-linked mortality (Abaluck
et al., 2022; Toor et al., 2021; Yan et al., 2021). Awareness-based behavior describes
protective measures that are adopted in response to epidemic intensity. Bidirectional
teedback between protective behavior and epidemic intensity can lead to unexpected
and nonlinear dynamics, such as plateaus and oscillations in cases over time, if
protective measures are abandoned over time (e.g., fatigue with nonpharmaceutical
interventions may lead to a regular decline in adherence) or the strength of protection
wanes (e.g., waning immunity from vaccination or infection) (Arthur et al., 2021; Eksin
et al., 2017; Perra et al., 2011; Weitz et al., 2020). Models that split the population into
categories with respect to the disease (i.e., compartments) and mathematically define
transition rates between different states are widely used to understand such complex
epidemic dynamics. Compartmental models may incorporate the awareness as a
function of deaths or cases that reduces transmission evenly across the population
(Arthur et al., 2021; Weitz et al., 2020). However, real populations are sharply divided in
physical interactions, demography, ideology, education, housing and employment
structures, and information access. These social divisions can impact the transmission of
both pathogens and information within and between groups, altering epidemic
dynamics. The impacts of such asymmetrically spreading disease and awareness in a
highly divided population are not well understood (Acevedo-Garcia, 2000; Farmer,
1996; Grief & Miller, 2017).

Populations may be subdivided based on an array of factors (e.g., race, ethnicity, age,
and geography), with marked differences in pathogen exposure and infection severity
(Farmer, 1996; Greene et al., 2015; Li et al., 2016; Poteat et al., 2020; Williams & Cooper,
2020; Zelner et al., 2020). Risk of pathogen introduction may vary between groups: high
income groups may encounter pathogens endemic to other regions through
international travel, low income groups may have heightened likelihood of exposure
connected to poor housing quality and insufficient occupational protections, and certain
regions and occupations experience greater risks of exposure to zoonotic illnesses
(Benfer et al., 2021; Cubrich, 2020; Dhewantara et al., 2018; Greene et al., 2015;
Pramasivan et al., 2021). Once a pathogen is introduced, it may spread at different rates
within groups based on factors like housing density and access to healthcare (Benfer et
al., 2021; Poteat et al., 2020; Quinn et al., 2011). Further, the severity of infection may
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vary directly with group identity due to underlying biological differences (e.g., age or
sex), as a function of co-morbidities especially prevalent in one group due to underlying
inequities (e.g., lung disease connected to environmental pollution or heart disease
associated with factors driven by structural racism), or through heterogeneity in access
to and quality of healthcare (Calvin et al., 2003; Lane et al., 2022; Li et al., 2016; Poteat et
al., 2020; Quinn et al., 2011; Takahashi et al., 2020; Williams & Cooper, 2020; Wu et al.,
2020). Mixing, or between-group contact rates, can alter transmission dynamics.
Physical barriers (e.g., geographic boundaries, schools, residential segregation, and
incarceration) and preferential contact with members of one’s own group may reduce
interactions and subsequent transmission between groups, a characteristic we describe
as separated mixing (Arnold et al., 2022; Doherty et al., 2009; Greene et al., 2015; Harris et
al., 2021; Rothenberg et al., 2005). Infectious disease models that account for differences
in vulnerability within subgroups of a population and separated mixing can help to
illustrate the emergence of health inequities and justify structural interventions to
reduce these disparities (Jacquez et al., 1988; K. C. Ma et al., 2021; Richardson et al.,
2021; Zelner et al., 2022). However, such models may miss an important behavioral
dimension by failing to account for variation in awareness-based behavior changes
among groups.

Awareness and behavioral heterogeneity can significantly alter disease dynamics: for
example, protective behavior adoption based on disease status of social connections
may slow pathogen transmission, while social clustering in vaccine exemptions may
lead to outbreaks (Funk et al., 2009; Herrera-Diestra & Meyers, 2019; Omer et al., 2008).
Personal perception of disease severity may be influenced by population-level social
norms and mass media, regardless of group identity. However, attitudes toward
diseases and protective behaviors may also vary considerably between groups and
correspond to actual risk and personal experiences of close social ties with the disease
(Anthonj et al., 2019; Brug et al., 2004; Christensen et al., 2020; Holtz et al., 2020; Oraby
et al., 2014; Simione & Gnagnarella, 2020). While prior awareness-based models have
examined outcomes given different scales of information (i.e., local or global), we aim to
characterize risk perception based on group-level information in a population split into
two distinct and well-defined groups (Funk et al., 2010). We define separated awareness
as greater in- versus out-group awareness of current epidemic conditions in a split
population. We predict that, by producing behavioral responses more reflective of each
group’s risk, separated awareness may reduce differences between groups in disease
burden that might otherwise occur (Steinegger et al., 2022). Understanding the impacts
of separation with respect to mixing and awareness on disease dynamics may be
important for characterizing differences in epidemic burden and effectively intervening
to mitigate population inequities (K. C. Ma et al., 2021; Richardson et al., 2021;
Steinegger et al., 2022; Weston et al., 2018; Zelner et al., 2022).
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Here, we investigate the impacts of intergroup divisions on epidemic dynamics using
an awareness-based model for transmission of an infectious disease, in which adoption
of protective measures (either nonpharmaceutical interventions or vaccinations) is
linked to recent epidemic conditions and mediated by awareness.

We ask:

1. How do separated awareness and mixing interact to affect differences
between groups in epidemic dynamics?

2. How does fatigue interact with awareness separation to affect long-term
epidemic dynamics?

3. When vaccines are introduced, how does immunity interact with awareness
separation to affect long-term epidemic dynamics?

Methods

Nonpharmaceutical intervention model

We model disease transmission with awareness-based adoption of nonpharmaceutical
interventions that reduce transmission rates. See Supplementary Figure 1 for a
compartmental diagram for this model and Supplementary Table 1 for parameter
definitions. We model disease transmission with a Susceptible-Infectious-Recovered-
Deceased (SIRD) model, tracking the proportion of the population in each compartment
through time. Susceptible individuals have never been infected or vaccinated. New
infections arise through contact between susceptible and infected individuals, with
transmission coefficient  describing the rate at which the pathogen spreads.
Individuals exit the infected compartment at per capita rate p, the inverse of infectious

period % and either recover or die. The fatality probability, or fraction of individual

exiting the infectious compartment who die, is u (meaning that recovery after infection
occurs with probability 1- u). In this model, recovered individuals have durable
immunity and cannot be reinfected. The initial model does not include vaccine-derived
immunity, an extension we consider below (Equation 3).

We further categorize the population based on whether they adopt behavior that is
Protective (P) or Unprotective (U). Compartment names contain two letters, the first
indicating disease status and the second indicating behavior (e.g., SU denotes
Susceptible people with Unprotective behaviors). We track the behavioral status of
Recovered and Deceased individuals (at the time of death), although they do not
contribute directly to transmission. Protective measure efficacy against infection is
determined by a scaling factor k describing the degree to which the behavior prevents
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infection (where k = 0 corresponds to complete protection and k = 1 corresponds to no
protection). Protective measures affect the behavior of both susceptible and infected
individuals, so transmission rate is reduced by a factor of k% in encounters where both
parties have adopted protective measures. Living individuals can switch between
protective and unprotective behavior, and we assume that the rates of these behavioral
transitions are independent of their own disease status. Unprotective individuals adopt
protective behaviors based on awareness (a(t)), or perceived epidemic intensity at a
given point in time. Awareness is the product of disease-induced deaths over the past ¢
days (making £ a measure of memory) and a responsiveness constant 8. Protective
behaviors are abandoned due to fatigue at per capita rate ¢.

To study the impact of social divisions, we further split the population into two groups
of equal size, where group membership is fixed, and each group contains all
epidemiological and behavioral compartments. The groups are labelled as a2 and b and
indicated as a subscript in compartment names (e.g., SU, corresponds to the prevalence
of Susceptible-Unprotective individuals in group a). We arbitrarily designate group a as
having greater underlying vulnerability to infection or disease-linked mortality in all of
the following scenarios. Parameters may vary between groups, as indicated by
subscripts (e.g., 8, corresponds to responsiveness in group a). If parameters are
equivalent for both groups, we exclude the subscript (e.g., 8 = 6, = 6)).

Preferential within-group mixing is represented by homophily parameter h,
corresponding to the proportion of contacts that are within-group. When h is 0.5,
mixing is uniform, meaning that individuals are equally likely to contact members of
their own group as members of the opposite group. As h approaches 1, mixing becomes
increasingly separated, meaning that contacts are increasingly concentrated within
groups. Similarly, we consider separation in awareness, €, or the relative weight of in-
group versus out-group awareness of deaths for protective behavior.

The system of equations for group a is as follows (equations for group b can be derived
symmetrically):

SU, = —BSUL (WU, + kIP,) + (1 — R)(IU, + KIP,)) — OSU,a,(t) + ¢pSP,
SB, = —BKrSP,((R)(IU, + kIP,) + (1 — R)(IUy + KIP,)) + 0SU,a,(t) — PSP,
10, = BSU.((WUIU, + kIP,) + (1 — K)(U, + kIP,)) — 01Uza,(t) + (¢ — p)IP,
1P, = BkSP,((R)(IU, + KIP,) + (1 — R)(1U, + KIP,)) + 01U, (t) — (¢ + p)IP,
RU, = (1 —w)plU, — 6RU, a,(t) + ¢RP,

RP, = (1 — wplP, + 6RU a,(t) — $RP,

DU, = uplU,

DPa = pplF,

(Equation 1)
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where a,(t) is the awareness equation for group a:

t
aa(t) = f ((ca) (DU + DB) + (1 = €)(DU, + DP,)) dt
t—?
(Equation 2)

Vaccination model

We develop an alternative model in which the awareness-based behavior is vaccine
uptake, rather than nonpharmaceutical interventions. See Supplementary Figure 2 for a
compartmental diagram for this model and Supplementary Table 1 for parameter
definitions. Here, the second letter of compartment names indicates immune status:
Unprotective (U), Transmission and Mortality-Reducing Immunity (T), or Mortality-
Reducing Immunity (M). This reflects our assumption that immunity initially reduces
both transmission and mortality (though not necessarily infection) following infection
or vaccination, and later wanes to reduce mortality but not infection.

As in the nonpharmaceutical intervention model, susceptible people without prior
immunity (SU) may become infected and then recover or die according to baseline
infection parameter values. Susceptible individuals may become vaccinated and
transition directly to the recovered compartment, bypassing infection, at a rate
dependent on awareness. There may be a lag between the beginning of the epidemic
and vaccine introduction at time point ¢, (Supplementary Figure 13, Supplementary
Figure 14). To evaluate long-term immune effects of vaccination and infection on
epidemic dynamics, we incorporate waning immunity by including distinct T and M
compartments, as described above.

After vaccination or infection, individuals temporarily have complete protection from
infection (RT). At per capita rate w, they regain susceptibility to infection, this time with
transmission and mortality-reducing immunity (i.e., ST). As in the nonpharmaceutical
intervention model, transmission-reducing protection scales transmission rates for
susceptible and infected individuals by a constant. Additionally, immunity reduces
disease-linked mortality by scaling factor {. Transmission-reducing immunity is lost at
per capita rate ¢, while mortality-reducing immunity is retained over the course of the
simulation, reflecting how neutralizing antibody production may decay over time while
cellular immune responses are more durable (Siggins et al., 2021). Susceptible
individuals with mortality-reducing immunity alone (SM) may regain transmission-
reducing immunity via vaccination, which occurs based on the same awareness
function as vaccination of people without immune protection.

The system of equations for this model in a population without groups is:
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t
SU = —BSU(IU + xIT + IM) — 6SU | (DU + DT + DM) dt
t—*
ST = wRT — BxST(IU + «IT + IM) — $ST
t

SM = —BSM(IU + IT + IM) —0SM | (DU + DT + DM) dt + ¢ST
t—7¢
1IU = BSU(IU + KIT + IM) — pIU
IT = BST(IU + IT + IM) — pIT
IM = BSM(IU + xIT + IM) — pIM

t
RT = p((1 —WIU + (1 = Q)T + IM)) — oRT + 6(SU + SM) | (DU + DT + DM) dt

DU = (up)IU -
DT = (¢up)IP
DM = Gup)IM

(Equation 3)

The equations for a split population with separated mixing and awareness can be
derived following Equation 1.

Simulations

We ran simulations in R version 4.0.2, using the dede function in the deSolve package,
which solves systems of differential equations (Soetaert et al., 2010). The population
begins as almost fully susceptible (5(0) = 1), with a small initial infection prevalence
(1(0)) to seed the outbreak and no protective behaviors. In the nonpharmaceutical
intervention scenarios (scenario 1 and 2), the sole initial difference between groups is
caused by introducing the pathogen into group a alone at prevalence 1,(0) = 0.001. In
the vaccination scenario (scenario 3), the pathogen is introduced in both groups at
prevalence I(0) = 0.0005 and the fatality probability for group a is twice that of group b
(Ug = 0.02 and u;, = 0.01). An interactive R Shiny app that allows users to simulate
epidemics for the nonpharmaceutical intervention model across parameter values is
available at https://mallory-harris.shinyapps.io/divided-disease/.

Results

1. Separated mixing and awareness

To understand how separation in awareness and mixing interact to alter short-term
epidemic dynamics in a split population, we model awareness-based adoption of
nonpharmaceutical interventions (Equation 1); all model parameters are defined in
Supplementary Table 1 and a compartmental diagram is provided as Supplementary
Figure 1. As described above, the pathogen is introduced in group a alone; all other
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parameters are equivalent between groups. To simplify short-term awareness-based
behavior, this scenario does not incorporate memory or fatigue (£ = 1 and ¢ = 0). First,
we allow both mixing (h; which drives the contact and contagion process) and
awareness (€; which drives protective behavior adoption) to be either uniform
(functioning like a single population) (0.5) or highly separated (0.99).

The groups experience identical epidemic dynamics regardless of awareness separation
when mixing is uniform (Figure 1A, B), as the pathogen introduced into group a quickly
spreads into group b and circulates evenly within and between groups. When groups
mix separately, differences in epidemic dynamics between groups arise and depend on
awareness separation (Figure 1C, D). Therefore, we focus the rest of our analyses on
cases where mixing is separated to examine the impacts of awareness separation. When
awareness is uniform, epidemic shape differs in both timing and magnitude between
groups, increasing the peak size and total infections in the more vulnerable (earlier
epidemic introduction) group a and decreasing both in group b (Figure 1C). Group a
also has more cumulative deaths than group b under uniform awareness, while
cumulative deaths across the full population (group a and group b combined) are
approximately constant across different levels of awareness and mixing separation
(Supplementary Figure 3).

Awareness separation changes epidemic size in both groups by modulating how
quickly protective behavior arises relative to pathogen spread (Figure 2). Uniform
awareness reduces total infections in group b, which adopts protective behavior by
observing mortality in group a at a point when infections within group b remain
relatively low (Figure 1C, Figure 2B, D, E). Meanwhile, uniform awareness causes
group a to underestimate disease severity due to the lack of early mortality in group b,
leading to decreased early protective behavior and a larger outbreak (Figure 1C, Figure
2A, C, E). When awareness is separated, group b has little awareness of the emerging
epidemic localized to group a, while group a responds to its relatively higher early
disease burden with increased awareness, driving epidemic dynamics between the two
groups to be similar in shape but delayed in time for group b (Figure 1D). Therefore,
awareness separation reduces the differences between groups in epidemic shape (e.g.,
peak size, total infections), while mixing separation offsets them in time (Figure 1C, D,
Supplementary Figure 4, Supplementary Figure 5).

Ditferences between groups in epidemic dynamics only arise at high levels of mixing
separation (h > 0.9) but can occur at intermediate levels of awareness separation
(Supplementary Figure 4, Supplementary Figure 5) (e.g. € = 0.75). Awareness
separation also reduces differences between groups in severe outcomes when groups
differ in their transmission coefficients, infectious periods, or fatality probabilities
(Supplementary Figure 6, Supplementary Figure 7, Supplementary Figure 8).
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2. Fatigue and awareness separation

We introduce memory and fatigue to examine the long-term impacts of separated
awareness when awareness-driven protective behavior is abandoned over time. Once
again, the pathogen is introduced into group a alone and all other parameters are
equivalent between groups. To maintain between-group differences, we assume
separated mixing (h = 0.99).

In all cases, when protective behavior wanes with fatigue, three distinct peaks emerge
before transmission plateaus at low levels and declines gradually (Figure 3). The initial
difference between groups with uniform awareness means that group b retains a
relatively larger proportion of susceptible individuals who avoided infection in the first
wave by rapidly adopting protective behaviors (Figure 1C, Figure 3A). As a result, the
second and third wave in group b exceed its first wave in peak and total infections
(Figure 3A). Meanwhile, uniform awareness causes the second and third waves in
group a to be smaller compared to separated awareness (Figure 3A vs. B). Under
uniform awareness, the third wave in group 4 is considerably delayed, peaking around
800 days (versus 450 days under separated awareness). At intermediate awareness
separation (€ = 0.75), the first and second waves in group b are approximately
equivalent in size (Supplementary Figure 10). As shown in the case without memory
and fatigue (Figure 1), when both mixing and awareness are separated, the groups
differ mainly in the timing of epidemic peaks rather than in their magnitude, before
converging on a long and slow decline (i.e., shoulder; Figure 3B) (9). In the full
population, awareness separation may change infection prevalence over time but has no
impact on cumulative deaths (Supplementary Figure 11).

3. Immunity and awareness separation

Next, we consider the implications of awareness-based vaccine uptake in a split
population given waning immune protection against infection and durable protection
against mortality (Equation 3, Supplementary Figure 2). We model immunity from
prior infection as equivalent to immunity from vaccination. Unlike in the previous
analyses, the pathogen is now introduced at the same prevalence in both populations
simultaneously to ensure that group a and b begin the post-vaccine period with similar
levels of immunity. Group differences are driven by an fatality probability in group a
that is twice that of group b. Again, we assume separated mixing (h = 0.99) to maintain
distinct dynamics between the groups. We initiate vaccination at 200 days, after an
initial large wave of infections. Our analyses focus on the period following the
introduction of vaccines to understand how awareness separation modulates the impact
of this protective measure across a period where infection is already well established in
both populations but substantial proportions of the population remain susceptible.
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After an initial large wave (displayed in Supplementary Figure 12), vaccination and
waning immunity lead to damped cycles of infections and deaths (Figure 4). As was the
case with the nonpharmaceutical intervention model (Figure 1), when awareness drives
vaccination behavior, separated awareness helps to reduce differences in mortality
between groups (Figure 4D vs. C). Group a becomes vaccinated at a higher rate in
response to the greater number of deaths observed in group g, an effect that is most
notable during the second epidemic peak following vaccine introduction (Figure 4D).
Therefore, group a also has fewer infections than group b in later waves under
separated awareness (Figure 4B), while the two groups experience identical infection
dynamics (despite the larger disparity in deaths) given uniform awareness (Figure 4A).

Because vaccination protects against infections and deaths, and recent deaths feed back
to influence awareness-driven vaccine uptake, there is a potential tradeoff between
immune protection from vaccines and epidemic dynamics. We explored this tradeoff by
examining the effect of variation in immune protection on epidemic dynamics and their
feedbacks on vaccine uptake rate, assuming that immune protection causes the same
proportional reduction in transmission and mortality (x = ). As expected, greater
immune protection reduces the number of deaths by directly reducing the fatality
probability. However, because of awareness-driven vaccine uptake, vaccination can
produce diminishing returns at the population scale where doubling immune
protection from death and infection only reduces total deaths by about one eighth due
to the compensatory reduction in vaccine uptake (Figure 5A), despite doubling
individual protection for vaccinated people. Since a more effective immune response
reduces mortality, the perceived risk associated with infection declines and fewer
people become vaccinated (Figure 5B). The tradeoff between the direct impacts of
immune protection on preventing infections and reduced uptake produces a nonlinear
relationship between total infections and immune protection (Figure 5C). At low
immune protection, infections remain approximately constant as immune protection
improves. At higher levels of immune protection, reduced uptake leads to more
infections (Figure 5C).

Separated awareness drives greater differences between groups in vaccination

behavior —the higher-risk group a gets vaccinated at a higher rate in response to
awareness of the greater cumulative mortality in that group (Figure 5B). This in turn
increases differences in infections (group a experiences lower infection rates; Figure 5C)
but decreases differences in mortality between groups (death rates are lower for group a
but higher for group b than in the uniform awareness scenario; Figure 5A). Since group
a is at a higher inherent risk of mortality given infection, separated awareness
differentially promotes vaccination and reduces infection in this group, while uniform
awareness causes group 4 to ignore its higher risk of mortality (Figure 5A, B, solid
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versus dashed lines). Cumulative deaths increase especially quickly during the initial
wave absent vaccination because the population lacks transmission- or mortality-
reducing immunity. When vaccination begins earlier in the epidemic (prior to the initial
peak around t = 100), separated awareness has greater potential to reduce the difference
in cumulative deaths between the two groups (Supplementary Figure 13,
Supplementary Figure 14). Early vaccination may also reduce cumulative deaths and
infections in each group (Supplementary Figure 14).

Discussion

Awareness separation and social divisions may interact to fundamentally alter disease
dynamics, creating or erasing differences between groups in the timing and magnitude
of epidemic peaks. Uniform awareness can exacerbate differences between population
subgroups when the more vulnerable group (e.g., the group where the pathogen is
introduced or the group with higher fatality probabilities) underestimates the in-group
risk of disease and fails to adopt early protective measures (Figure 1, Figure 5). At the
same time, the initially less-vulnerable group receives indirect protection from
observing and responding to epidemic effects in the more vulnerable group, adopting
protective measures that reduce their total and peak infections (Figure 1, Figure 5).
However, when awareness-driven behavior fades with fatigue, the relative disease
burden may shift between groups such that the group that initially had fewer infections
has relatively more infections in subsequent waves, especially when uniform awareness
protects the initially less-vulnerable group during the first wave of infection (Figure 2).
Awareness separation diminishes between-group differences in severe outcomes
(Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Supplementary Figure 6,
Supplementary Figure 7, Supplementary Figure 8), but may do so by increasing
differences in behavior and infections (Figure 4, Figure 5, Supplementary Figure 8). For
example, when the more vulnerable group has a higher rate of disease-linked mortality,
awareness separation leads them to have higher vaccine uptake in response to their
heightened perceived (and actual) risk, narrowing the difference in mortality (Figure 5).
More broadly, awareness separation generally closes differences in severe outcomes
between groups by producing preferential uptake of preventative measures by the
group with the greatest recent mortality, which is usually the group at greatest current
risk.

In this model, greater awareness separation generally reduces differences in severe
outcomes between groups. But the magnitude of these impacts may vary depending on
disease properties (e.g., transmission coefficient) and behavioral and social processes
(e.g., responsiveness to disease-linked mortality) (Supplementary Figure 9,
Supplementary Figure 13, Supplementary Figure 14). Outcomes may be further
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modulated by public health orders and the timing of different interventions. For
example, there is greater potential for awareness separation to reduce between-group
differences in mortality given earlier vaccine introduction (Supplementary Figure 13,
Supplementary Figure 14). The existing models could be modified to incorporate
population-wide measures, particularly time-limited nonpharmaceutical intervention
mandates, to study how social and behavioral processes may shift the optimal timing of
interventions in the full population or either group (Ketcheson, 2021; Morris et al.,
2021). Although this model and others assume that protective behavior uptake is
independent of disease status (Mehta & Rosenberg, 2020; Smaldino & Jones, 2021), the
model could be modified to link behavior with known disease status (e.g., accelerated
uptake of or reduced fatigue with protective measures by people with symptomatic
infections) (Eksin et al., 2017; Funk et al., 2009). To assess the robustness of our
conclusions about the effects of awareness separation, the same scenarios could be
evaluated across different models of awareness-based behavior changes, including
saturation at a certain threshold for deaths (Weitz et al., 2020), consideration of both
lethal and non-lethal impacts of disease (e.g., hospitalizations and cases), or
optimization to balance the benefits of protection against the costs of various measures
(Arthur et al., 2021; Barrett et al., 2011; Eksin et al., 2017). The latter approach may
clarify a point that is not addressed in our analysis: although awareness separation may
reduce disparities in severe disease-linked outcomes, this phenomenon is not
necessarily equitable or desirable. In fact, if self-protection is associated with significant
costs, already-vulnerable populations may suffer compounding costs as they balance
self-protection against significant disease risk without adequate support from a broader
community that does not share their risks (Atchison et al., 2021; Barrett et al., 2011; Jay
et al., 2020; Skinner-Dorkenoo et al., 2022). Further, structural inequities often leave
population subgroups that are vulnerable to larger, more severe outbreaks with
reduced access to protective measures like health education, treatment, vaccination, and
paid leave (Cardona et al., 2021; Christensen et al., 2020; Clouston et al., 2015; Dryhurst
et al., 2020; Heymann et al., 2021; Poteat et al., 2020; Ridenhour et al., 2022; Simione &
Gnagnarella, 2020; Williams & Cooper, 2020). Resulting differences in rates of protective
behavior uptake and effectiveness can compound disparities between groups and
reduce the protective impact of awareness separation for more-vulnerable groups.

Epidemics are complex phenomena that typically involve heterogeneous mixing among
groups of people that differ in biological and social risk factors, dynamic evolution of
host behavior, pathogen infectiousness, and immune evasion, and ever-changing
epidemiological and policy responses to real and perceived risk. Despite this range of
potential drivers, we show here that a simple model that captures two key social
processes —awareness-driven protective behavior in a split population that can be
separated in mixing and awareness —can drive many of the complex dynamics
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observed in emerging epidemics like Covid-19. For example, when awareness is
uniform and mixing is separated, the group in which the pathogen is introduced later
can experience second and third waves that exceed the initial wave in size (Figure 3).
This trend resembles one observed in the United States during the first year of the
Covid-19 pandemic, where certain regions where the virus was introduced early (e.g.,
New York City metropolitan area) experienced a large early wave and relatively few
infections over the rest of the year, while other regions (e.g., the southern United States)
generally had small early waves and larger second and third waves. Many hypotheses
have been introduced to explain this phenomenon (e.g., policy, seasonal climate factors,
and population density) and several factors may have contributed to this pattern (Y. Ma
et al.,, 2021; Sy et al., 2021). Yet, in our model these dramatic differences among
populations in epidemic waves occur despite the groups being identical in transmission
rates and disease outcomes and are entirely due to awareness-driven behavior with
uniform awareness among groups (Figure 3). Although the current analysis does not
examine causation, and observed trends during Covid-19 likely involved a confluence
of drivers, we have demonstrated how a simple behavioral process can qualitatively
reproduce complex epidemic dynamics observed in real populations. To understand the
extent of awareness separation in real populations and the role of specific behavioral
processes in observed trends, our model could be parameterized using a combination of
epidemiological, survey, mobility, and social media data (Chang et al., 2021; Shen et al.,
2021; Weitz et al., 2020).

Feedback between vaccine efficacy and awareness-based vaccine uptake can also
produce the counterintuitive scenario where vaccines that cause a greater reduction in
transmission and mortality lead to more cumulative infections, even as deaths are
reduced (Figure 5). If, as we assume here, protective behavior is driven by awareness of
severe outcomes like mortality, awareness separation may reduce differences in deaths
between groups while widening differences in cases (Figure 4, Figure 5). The potential
for awareness separation in vaccine uptake to reduce between-group differences in
mortality is greatest when vaccination is introduced earlier in the epidemic, indicating
that intervention timing may have health equity implications (Supplementary Figure
13, Supplementary Figure 14). Accounting for awareness-based adoption of protective
behavior is therefore critical for understanding complicated epidemic dynamics such as
plateaus and cycles (Figure 3, Figure 4), accurately deploying protective measures, and
assessing their impact across different diseases and population subgroups (Arthur et al.,
2021; Steinegger et al., 2022; Weitz et al., 2020).

Here we have considered arbitrarily defined groups that can be separated in mixing
and awareness but initially differ only in the timing of pathogen introduction (Figure 1,
Figure 2, Figure 3), fatality probability (Figure 4, Figure 5, Supplementary Figure 8),
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pathogen transmission (Supplementary Figure 6), or infectious period (Supplementary
Figure 7). Real social groupings may fall along a number of social, demographic, and
geographic lines, while the assumption of two distinct and identifiable groups may not
tully capture relevant social dynamics. The most relevant groupings with respect to
awareness and disease risk may also depend on the disease. For infectious diseases that
are generally more prevalent and severe in children (e.g., pertussis and measles), risk
may depend on age while awareness is split between parents of young children versus
adults without children or among parents with different sentiments towards childhood
vaccination (Bhattacharyya & Bauch, 2010). In the context of Covid-19, disease burden
and attitudes toward preventative measures (e.g., masks and vaccines) have differed
markedly across age, socioeconomic status, and race and over time, demonstrating how
intersecting and imperfectly overlapping identities may interact to determine attitudes,
protective behaviors, and risk (Maroko et al., 2020; Schulz et al., 2020; van Holm et al.,
2020). Moreover, ideological and social factors that do not correspond directly to
disease risk (e.g., political affiliation) may influence decision-making and cause the level
of protective behavior in certain subgroups to diverge sharply from their relative risk
for severe disease, potentially overcoming the effects of awareness separation
(Christensen et al., 2020; Grossman et al., 2020). This process could be incorporated into
our model by splitting the population into additional groups with respect to a cultural
contagion or (mis)information spread process and allowing protective measures to be
adopted based on awareness or contact with protective in-group members and rejected
through fatigue or aversion to protective measures displayed by the opposite group
(Mehta & Rosenberg, 2020; Smaldino & Jones, 2021).

Although we assumed that awareness was directly proportional to recent mortality,
external influences like partisanship (Christensen et al., 2020; Grossman et al., 2020),
media coverage (Shanta & Biswas, 2020), misinformation (Lee et al., 2021), and policy
(Yan et al., 2021) may alter the perception of risk or the adoption of protective measures
at both the individual and group level. Group identification and assessment of relative
risk may be unclear or inaccurate based on uncertainty at the beginning of the outbreak,
misinformation about risk factors, a gradient in risk (e.g., increasing risk with age), lack
of data stratification, or unobserved risk factors. Attitudes based on one disease may
carry over to another disease even if risk factors differ. Relative risk across groups may
also vary across time and space, potentially leading to inaccurate assessment based on
prior conditions: for example, a mild initial epidemic wave can mislead a group into
believing they are inherently more protected and thereby relaxing protective behaviors.
Cognitive interventions that increase the accuracy of individual risk perception,
especially in high-risk groups, may help to reduce between-group differences in disease
burden (Sinclair, Hakimi, et al., 2021; Sinclair, Stanley, et al., 2021).
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Our model may also be extended to other scenarios involving a transmission process
and collective behavior, particularly social contagions like the spread of rumors and
trends. Additional parameter space may be explored via the R Shiny interactive app
accompanying this project, which currently only incorporates the nonpharmaceutical
intervention model (https://mallory-harris.shinyapps.io/divided-disease/). Considering
awareness separation as a social process that may interact with mixing, fatigue, waning
immunity, pathogen evolution, and pharmaceutical and non-pharmaceutical
interventions may help to explain how humans are affected by and respond to
infectious diseases in the presence of social divisions.

Figure 1. Epidemic peaks are offset in time between groups when mixing is
separated (C, D), and in magnitude when awareness is uniform but mixing is
separated (C). Plots show prevalence of infections over time in group a (pink) and
group b (green) under four scenarios: awareness is uniform (A, C; € = 0.5) or separated
(B, D; € = 0.99); mixing is uniform (A, B; h = 0.5) or separated (C, D; h = 0.99). We
assume the pathogen is introduced only in group a at prevalence 0.001 and that all
other parameters are equivalent between groups: transmission coefficient (f = 0.2),

infectious period (pl = 10), fatality probability (u = 0.01), protective measure efficacy

(k = 0.3), responsiveness (8 = 100), memory (£ = 1), and fatigue (¢ = 0). Lines overlap
under uniform mixing (top row).

Figure 2. Separated awareness reduces between-group differences by reducing group
b’s awareness of the emerging epidemic and augmenting group a’s response to the
introduction of the pathogen. We initialize our model using the same parameters as
Figure 1 with separated mixing (h = 0.99). We compare uniform awareness (¢ = 0.5;
dashed lines) and separated awareness (e = 0.99; solid lines). At the top, we compare
early time series (through t = 80) of (A) protective attitude prevalence in group a; (B)
protective attitude prevalence in group b; (C) cumulative infections in group a; (D)
cumulative infections in group b. Panel E is a phase portrait of protective attitude
prevalence against cumulative infections in group a (pink) and group b (green). Points
indicate values at t = 80, corresponding to the end of the time series in panels A-D.
Arrows indicate differences in protective attitude prevalence (gray) and cumulative
infections (black) at t = 80 for separated versus uniform awareness, with letters
corresponding to time series panel labels.

Figure 3. Fatigue and long-term memory produce multiple epidemic peaks, which
exceed the size of the initial peak in group b when uniform awareness and separated
mixing leave that group with a high proportion of susceptible people following the
first wave. We initialize the model with separated mixing (h = 0.99), long-term
memory (£ = 30), and fatigue (¢ = 0.02); all other parameters are the same as in Figure
1. We consider infections in group a (pink) and group b (green) over a longer time
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period (1000 days, compared to 200 days in Figure 1). The panels correspond to (A)
uniform awareness (¢ = 0.5) and (B) separated awareness (¢ = 0.99).

Figure 4. Waning immunity and awareness-based vaccination drive epidemic cycles;
separated awareness reduces the disparity in deaths (C vs. D) as more-vulnerable
group a members become vaccinated at a higher rate. We consider infections (A, B)
and deaths (C, D) in the post-vaccine period in group a (pink) and group b (green)
where the fatality probability for group a is double that of group b (u, = 0.02 and yu;, =
0.01). The x-axis gives time since vaccination began (t=200). We compare uniform
awareness (¢ = 0.5) (A, C) and separated awareness (e = 0.99) (B, D). Other parameter
values are: f = 0.2 (transmission coefficient), k = 0.05 (transmission-reducing
immunity), { = 0.05 (mortality-reducing immunity), o = ¢ = 0.01 (waning immunity),

1

infectious period (p = 10), 8 = 20 (responsiveness), £ = 30 (memory), h = 0.99

(separated mixing), I, = 0.0005 (initial infection prevalence). See Supplementary Figure
12 for a time series plot including the pre-vaccine period.

Figure 5. Greater immune protection (from vaccination and infection) leads to lower
death rates (A), which in turn decreases vaccination rates (B) and increases infection
rates (C); separated awareness reduces disparities in death rates (A) as groups are
vaccinated at different rates proportional to their risks of death (B), creating
differences in infection rates (C). We vary immune protection, defined as
transmission-reducing immunity and mortality-reducing immunity, where both
parameters are assigned the same values (k = {). We assume immune protection is
equivalent for vaccine- and infection-derived immunity. The x-axis is reversed because
smaller values indicate stronger protection. We examine the impacts of stronger
immune protection (lower values of k and {) on total deaths (A), vaccinations (B), and
infections (C) in the post-vaccine period (t =200 through t = 2200). We consider the post-
vaccine period to focus on the impacts of an awareness-based intervention administered
under different levels of awareness separation. We compute each quantity for group a
(pink) and group b (green) given uniform (dashed lines; € = 0.5) or separated (solid
lines; € = 0.99) awareness. Other parameter values are the same as Figure 4.
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