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Abstract 1 

During infectious disease outbreaks, individuals may adopt protective measures like 2 
vaccination and physical distancing in response to awareness of disease burden. Prior 3 
work showed how feedbacks between epidemic intensity and awareness-based 4 
behavior shapes disease dynamics. These models often overlook social divisions, where 5 
population subgroups may be disproportionately impacted by a disease and more 6 
responsive to the effects of disease within their group.  7 

We develop a compartmental model of disease transmission and awareness-based 8 
protective behavior in a population split into two groups to explore the impacts of 9 
awareness separation (relatively greater in- versus out-group awareness of epidemic 10 
severity) and mixing separation (relatively greater in- versus out-group contact rates). 11 
Using simulations, we show that groups that are more separated in awareness have 12 
smaller differences in mortality. Fatigue (i.e., abandonment of protective measures over 13 
time) can drive additional infection waves that can even exceed the size of the initial 14 
wave, particularly if uniform awareness drives early protection in one group, leaving 15 
that group largely susceptible to future infection. Counterintuitively, vaccine or 16 
infection-acquired immunity that is more protective against transmission and mortality 17 
may indirectly lead to more infections by reducing perceived risk of infection and 18 
therefore vaccine uptake. Awareness-based protective behavior, including awareness 19 
separation, can fundamentally alter disease dynamics. 20 

Social media summary 21 

Depending on group division, behaviour based on perceived risk can change epidemic 22 
dynamics & produce large later waves. 23 

  24 



Introduction 25 

When an infectious disease causes substantial disease burden and death, people may  26 
perceive their risk of infection based on their awareness of the magnitude of disease-27 
linked outcomes and respond by modifying their behavior (An et al., 2020; Cheok et al., 28 
2021; Gidengil et al., 2012; Ridenhour et al., 2022; Yan et al., 2021). In turn, protective 29 
behaviors like physical distancing, mask wearing, and vaccination may suppress 30 
transmission, reducing peak and total infections and disease-linked mortality (Abaluck 31 
et al., 2022; Toor et al., 2021; Yan et al., 2021). Awareness-based behavior describes 32 
protective measures that are adopted in response to epidemic intensity. Bidirectional 33 
feedback between protective behavior and epidemic intensity can lead to unexpected 34 
and nonlinear dynamics, such as plateaus and oscillations in cases over time, if 35 
protective measures are abandoned over time (e.g., fatigue with nonpharmaceutical 36 
interventions may lead to a regular decline in adherence) or the strength of protection 37 
wanes (e.g., waning immunity from vaccination or infection) (Arthur et al., 2021; Eksin 38 
et al., 2017; Perra et al., 2011; Weitz et al., 2020). Models that split the population into 39 
categories with respect to the disease (i.e., compartments) and mathematically define 40 
transition rates between different states are widely used to understand such complex 41 
epidemic dynamics. Compartmental models may incorporate the awareness as a 42 
function of deaths or cases that reduces transmission evenly across the population 43 
(Arthur et al., 2021; Weitz et al., 2020). However, real populations are sharply divided in 44 
physical interactions, demography, ideology, education, housing and employment 45 
structures, and information access. These social divisions can impact the transmission of 46 
both pathogens and information within and between groups, altering epidemic 47 
dynamics. The impacts of such asymmetrically spreading disease and awareness in a 48 
highly divided population are not well understood (Acevedo-Garcia, 2000; Farmer, 49 
1996; Grief & Miller, 2017). 50 

Populations may be subdivided based on an array of factors (e.g., race, ethnicity, age, 51 
and geography), with marked differences in pathogen exposure and infection severity 52 
(Farmer, 1996; Greene et al., 2015; Li et al., 2016; Poteat et al., 2020; Williams & Cooper, 53 
2020; Zelner et al., 2020). Risk of pathogen introduction may vary between groups: high 54 
income groups may encounter pathogens endemic to other regions through 55 
international travel, low income groups may have heightened likelihood of exposure 56 
connected to poor housing quality and insufficient occupational protections, and certain 57 
regions and occupations experience greater risks of exposure to zoonotic illnesses 58 
(Benfer et al., 2021; Cubrich, 2020; Dhewantara et al., 2018; Greene et al., 2015; 59 
Pramasivan et al., 2021). Once a pathogen is introduced, it may spread at different rates 60 
within groups based on factors like housing density and access to healthcare (Benfer et 61 
al., 2021; Poteat et al., 2020; Quinn et al., 2011). Further, the severity of infection may 62 



vary directly with group identity due to underlying biological differences (e.g., age or 63 
sex), as a function of co-morbidities especially prevalent in one group due to underlying 64 
inequities (e.g., lung disease connected to environmental pollution or heart disease 65 
associated with factors driven by structural racism), or through heterogeneity in access 66 
to and quality of healthcare (Calvin et al., 2003; Lane et al., 2022; Li et al., 2016; Poteat et 67 
al., 2020; Quinn et al., 2011; Takahashi et al., 2020; Williams & Cooper, 2020; Wu et al., 68 
2020). Mixing, or between-group contact rates, can alter transmission dynamics. 69 
Physical barriers (e.g., geographic boundaries, schools, residential segregation, and 70 
incarceration) and preferential contact with members of one’s own group may reduce 71 
interactions and subsequent transmission between groups, a characteristic we describe 72 
as separated mixing (Arnold et al., 2022; Doherty et al., 2009; Greene et al., 2015; Harris et 73 
al., 2021; Rothenberg et al., 2005). Infectious disease models that account for differences 74 
in vulnerability within subgroups of a population and separated mixing can help to 75 
illustrate the emergence of health inequities and justify structural interventions to 76 
reduce these disparities (Jacquez et al., 1988; K. C. Ma et al., 2021; Richardson et al., 77 
2021; Zelner et al., 2022). However, such models may miss an important behavioral 78 
dimension by failing to account for variation in awareness-based behavior changes 79 
among groups. 80 

Awareness and behavioral heterogeneity can significantly alter disease dynamics: for 81 
example, protective behavior adoption based on disease status of social connections 82 
may slow pathogen transmission, while social clustering in vaccine exemptions may 83 
lead to outbreaks (Funk et al., 2009; Herrera-Diestra & Meyers, 2019; Omer et al., 2008). 84 
Personal perception of disease severity may be influenced by population-level social 85 
norms and mass media, regardless of group identity. However, attitudes toward 86 
diseases and protective behaviors may also vary considerably between groups and 87 
correspond to actual risk and personal experiences of close social ties with the disease 88 
(Anthonj et al., 2019; Brug et al., 2004; Christensen et al., 2020; Holtz et al., 2020; Oraby 89 
et al., 2014; Simione & Gnagnarella, 2020). While prior awareness-based models have 90 
examined outcomes given different scales of information (i.e., local or global), we aim to 91 
characterize risk perception based on group-level information in a population split into 92 
two distinct and well-defined groups (Funk et al., 2010). We define separated awareness 93 
as greater in- versus out-group awareness of current epidemic conditions in a split 94 
population. We predict that, by producing behavioral responses more reflective of each 95 
group’s risk, separated awareness may reduce differences between groups in disease 96 
burden that might otherwise occur (Steinegger et al., 2022). Understanding the impacts 97 
of separation with respect to mixing and awareness on disease dynamics may be 98 
important for characterizing differences in epidemic burden and effectively intervening 99 
to mitigate population inequities (K. C. Ma et al., 2021; Richardson et al., 2021; 100 
Steinegger et al., 2022; Weston et al., 2018; Zelner et al., 2022). 101 



Here, we investigate the impacts of intergroup divisions on epidemic dynamics using 102 
an awareness-based model for transmission of an infectious disease, in which adoption 103 
of protective measures (either nonpharmaceutical interventions or vaccinations) is 104 
linked to recent epidemic conditions and mediated by awareness. 105 

We ask: 106 

1. How do separated awareness and mixing interact to affect differences 107 
between groups in epidemic dynamics? 108 

2. How does fatigue interact with awareness separation to affect long-term 109 
epidemic dynamics? 110 

3. When vaccines are introduced, how does immunity interact with awareness 111 
separation to affect long-term epidemic dynamics? 112 

Methods 113 

Nonpharmaceutical intervention model 114 

We model disease transmission with awareness-based adoption of nonpharmaceutical 115 
interventions that reduce transmission rates. See Supplementary Figure 1 for a 116 
compartmental diagram for this model and Supplementary Table 1 for parameter 117 
definitions. We model disease transmission with a Susceptible-Infectious-Recovered-118 
Deceased (SIRD) model, tracking the proportion of the population in each compartment 119 
through time. Susceptible individuals have never been infected or vaccinated. New 120 
infections arise through contact between susceptible and infected individuals, with 121 
transmission coefficient 𝛽 describing the rate at which the pathogen spreads. 122 
Individuals exit the infected compartment at per capita rate 𝜌, the inverse of infectious 123 
period 1

𝜌
 and either recover or die. The fatality probability, or fraction of individual 124 

exiting the infectious compartment who die, is 𝜇 (meaning that recovery after infection 125 
occurs with probability 1- 𝜇). In this model, recovered individuals have durable 126 
immunity and cannot be reinfected. The initial model does not include vaccine-derived 127 
immunity, an extension we consider below (Equation 3). 128 

We further categorize the population based on whether they adopt behavior that is 129 
Protective (P) or Unprotective (U). Compartment names contain two letters, the first 130 
indicating disease status and the second indicating behavior (e.g., SU denotes 131 
Susceptible people with Unprotective behaviors). We track the behavioral status of 132 
Recovered and Deceased individuals (at the time of death), although they do not 133 
contribute directly to transmission. Protective measure efficacy against infection is 134 
determined by a scaling factor 𝜅 describing the degree to which the behavior prevents 135 



infection (where 𝜅 = 0 corresponds to complete protection and 𝜅 = 1 corresponds to no 136 
protection). Protective measures affect the behavior of both susceptible and infected 137 
individuals, so transmission rate is reduced by a factor of 𝜅2 in encounters where both 138 
parties have adopted protective measures. Living individuals can switch between 139 
protective and unprotective behavior, and we assume that the rates of these behavioral 140 
transitions are independent of their own disease status. Unprotective individuals adopt 141 
protective behaviors based on awareness (𝛼(𝑡)), or perceived epidemic intensity at a 142 
given point in time. Awareness is the product of disease-induced deaths over the past ℓ 143 
days (making ℓ a measure of memory) and a responsiveness constant 𝜃. Protective 144 
behaviors are abandoned due to fatigue at per capita rate 𝜙. 145 

To study the impact of social divisions, we further split the population into two groups 146 
of equal size, where group membership is fixed, and each group contains all 147 
epidemiological and behavioral compartments. The groups are labelled as a and b and 148 
indicated as a subscript in compartment names (e.g., 𝑆𝑈𝑎 corresponds to the prevalence 149 
of Susceptible-Unprotective individuals in group a). We arbitrarily designate group a as 150 
having greater underlying vulnerability to infection or disease-linked mortality in all of 151 
the following scenarios. Parameters may vary between groups, as indicated by 152 
subscripts (e.g., 𝜃𝑎 corresponds to responsiveness in group a). If parameters are 153 
equivalent for both groups, we exclude the subscript (e.g., 𝜃 = 𝜃𝑎 = 𝜃𝑏). 154 

Preferential within-group mixing is represented by homophily parameter ℎ, 155 
corresponding to the proportion of contacts that are within-group. When ℎ is 0.5, 156 
mixing is uniform, meaning that individuals are equally likely to contact members of 157 
their own group as members of the opposite group. As ℎ approaches 1, mixing becomes 158 
increasingly separated, meaning that contacts are increasingly concentrated within 159 
groups. Similarly, we consider separation in awareness, 𝜖, or the relative weight of in-160 
group versus out-group awareness of deaths for protective behavior. 161 

The system of equations for group a is as follows (equations for group b can be derived 162 
symmetrically): 163 

𝑆𝑈𝑎̇ = −𝛽𝑆𝑈𝑎((ℎ)(𝐼𝑈𝑎 + 𝜅𝐼𝑃𝑎) + (1 − ℎ)(𝐼𝑈𝑏 + 𝜅𝐼𝑃𝑏)) − 𝜃𝑆𝑈𝑎𝛼𝑎(𝑡) + 𝜙𝑆𝑃𝑎 164 
𝑆𝑃𝑎̇ = −𝛽𝜅𝑆𝑃𝑎((ℎ)(𝐼𝑈𝑎 + 𝜅𝐼𝑃𝑎) + (1 − ℎ)(𝐼𝑈𝑏 + 𝜅𝐼𝑃𝑏)) + 𝜃𝑆𝑈𝑎𝛼𝑎(𝑡) − 𝜙𝑆𝑃𝑎 165 
𝐼𝑈𝑎̇ = 𝛽𝑆𝑈𝑎((ℎ)(𝐼𝑈𝑎 + 𝜅𝐼𝑃𝑎) + (1 − ℎ)(𝐼𝑈𝑏 + 𝜅𝐼𝑃𝑏)) − 𝜃𝐼𝑈𝑎𝛼𝑎(𝑡) + (𝜙 − 𝜌)𝐼𝑃𝑎 166 
𝐼𝑃𝑎̇ = 𝛽𝜅𝑆𝑃𝑎((ℎ)(𝐼𝑈𝑎 + 𝜅𝐼𝑃𝑎) + (1 − ℎ)(𝐼𝑈𝑏 + 𝜅𝐼𝑃𝑏)) + 𝜃𝐼𝑈𝑎𝛼𝑎(𝑡) − (𝜙 + 𝜌)𝐼𝑃𝑎 167 
𝑅𝑈𝑎̇ = (1 − 𝜇)𝜌𝐼𝑈𝑎  −  𝜃𝑅𝑈𝑎 𝛼𝑎(𝑡) + 𝜙𝑅𝑃𝑎 168 
𝑅𝑃𝑎̇ = (1 − 𝜇)𝜌𝐼𝑃𝑎 + 𝜃𝑅𝑈𝑎𝛼𝑎(𝑡) − 𝜙𝑅𝑃𝑎 169 
𝐷𝑈𝑎̇ = 𝜇𝜌𝐼𝑈𝑎  170 
𝐷𝑃𝑎̇ = 𝜇𝜌𝐼𝑃𝑎  171 

(Equation 1) 172 



where 𝛼𝑎(𝑡) is the awareness equation for group a: 173 

𝛼𝑎(𝑡) = ∫ ((𝜖𝑎)(𝐷𝑈𝑎̇ + 𝐷𝑃𝑎̇ ) + (1 − 𝜖𝑎)(𝐷𝑈𝑏̇ + 𝐷𝑃𝑏̇ ))
𝑡

𝑡−ℓ
 𝑑𝑡 174 

(Equation 2) 175 

Vaccination model 176 

We develop an alternative model in which the awareness-based behavior is vaccine 177 
uptake, rather than nonpharmaceutical interventions. See Supplementary Figure 2 for a 178 
compartmental diagram for this model and Supplementary Table 1 for parameter 179 
definitions. Here, the second letter of compartment names indicates immune status: 180 
Unprotective (U), Transmission and Mortality-Reducing Immunity (T), or Mortality-181 
Reducing Immunity (M). This reflects our assumption that immunity initially reduces 182 
both transmission and mortality (though not necessarily infection) following infection 183 
or vaccination, and later wanes to reduce mortality but not infection.  184 

As in the nonpharmaceutical intervention model, susceptible people without prior 185 
immunity (SU) may become infected and then recover or die according to baseline 186 
infection parameter values. Susceptible individuals may become vaccinated and 187 
transition directly to the recovered compartment, bypassing infection, at a rate 188 
dependent on awareness. There may be a lag between the beginning of the epidemic 189 
and vaccine introduction at time point 𝑡𝑣 (Supplementary Figure 13, Supplementary 190 
Figure 14). To evaluate long-term immune effects of vaccination and infection on 191 
epidemic dynamics, we incorporate waning immunity by including distinct T and M 192 
compartments, as described above. 193 

After vaccination or infection, individuals temporarily have complete protection from 194 
infection (RT). At per capita rate 𝜔, they regain susceptibility to infection, this time with 195 
transmission and mortality-reducing immunity (i.e., 𝑆𝑇). As in the nonpharmaceutical 196 
intervention model, transmission-reducing protection scales transmission rates for 197 
susceptible and infected individuals by a constant. Additionally, immunity reduces 198 
disease-linked mortality by scaling factor 𝜁. Transmission-reducing immunity is lost at 199 
per capita rate 𝜙, while mortality-reducing immunity is retained over the course of the 200 
simulation, reflecting how neutralizing antibody production may decay over time while 201 
cellular immune responses are more durable (Siggins et al., 2021). Susceptible 202 
individuals with mortality-reducing immunity alone (𝑆𝑀) may regain transmission-203 
reducing immunity via vaccination, which occurs based on the same awareness 204 
function as vaccination of people without immune protection. 205 

The system of equations for this model in a population without groups is: 206 



𝑆𝑈̇ = −β𝑆𝑈(𝐼𝑈 + κ𝐼𝑇 + 𝐼𝑀) − θ𝑆𝑈 ∫ (𝐷𝑈̇ + 𝐷𝑇̇ + 𝐷𝑀̇)
𝑡

𝑡−ℓ
𝑑𝑡 207 

𝑆𝑇̇ = ω𝑅𝑇 − βκ𝑆𝑇(𝐼𝑈 + κ𝐼𝑇 + 𝐼𝑀) − ϕ𝑆𝑇 208 

𝑆𝑀̇ = −β𝑆𝑀(𝐼𝑈 + κ𝐼𝑇 + 𝐼𝑀) − θ𝑆𝑀 ∫ (𝐷𝑈̇ + 𝐷𝑇̇ + 𝐷𝑀̇)
𝑡

𝑡−ℓ
𝑑𝑡 + ϕ𝑆𝑇 209 

𝐼𝑈̇ = β𝑆𝑈(𝐼𝑈 + κ𝐼𝑇 + 𝐼𝑀) − ρ𝐼𝑈 210 
𝐼𝑇̇ = βκ𝑆𝑇(𝐼𝑈 + κ𝐼𝑇 + 𝐼𝑀) − ρ𝐼𝑇 211 

𝐼𝑀̇ = β𝑆𝑀(𝐼𝑈 + κ𝐼𝑇 + 𝐼𝑀) − ρ𝐼𝑀 212 

𝑅𝑇̇ = ρ((1 − μ)𝐼𝑈 + (1 − ζμ)(𝐼𝑇 + 𝐼𝑀)) − ω𝑅𝑇 + θ(𝑆𝑈 + 𝑆𝑀) ∫ (𝐷𝑈̇ + 𝐷𝑇̇ + 𝐷𝑀̇)
𝑡

𝑡−ℓ
𝑑𝑡 213 

𝐷𝑈̇ = (μρ)𝐼𝑈 214 
𝐷𝑇̇ = (ζμρ)𝐼𝑃 215 

𝐷𝑀̇ = (ζμρ)𝐼𝑀 216 

(Equation 3) 217 

The equations for a split population with separated mixing and awareness can be 218 
derived following Equation 1. 219 

Simulations 220 

We ran simulations in R version 4.0.2, using the dede function in the deSolve package, 221 
which solves systems of differential equations (Soetaert et al., 2010). The population 222 
begins as almost fully susceptible (𝑆(0) ≈ 1), with a small initial infection prevalence 223 
(𝐼(0)) to seed the outbreak and no protective behaviors. In the nonpharmaceutical 224 
intervention scenarios (scenario 1 and 2), the sole initial difference between groups is 225 
caused by introducing the pathogen into group a alone at prevalence 𝐼𝑎(0) = 0.001. In 226 
the vaccination scenario (scenario 3), the pathogen is introduced in both groups at 227 
prevalence 𝐼(0) = 0.0005 and the fatality probability for group a is twice that of group b 228 
(𝜇𝑎 = 0.02 and 𝜇𝑏 = 0.01). An interactive R Shiny app that allows users to simulate 229 
epidemics for the nonpharmaceutical intervention model across parameter values is 230 
available at https://mallory-harris.shinyapps.io/divided-disease/. 231 

Results  232 

1. Separated mixing and awareness  233 

To understand how separation in awareness and mixing interact to alter short-term 234 
epidemic dynamics in a split population, we model awareness-based adoption of 235 
nonpharmaceutical interventions (Equation 1); all model parameters are defined in 236 
Supplementary Table 1 and a compartmental diagram is provided as Supplementary 237 
Figure 1. As described above, the pathogen is introduced in group a alone; all other 238 

https://mallory-harris.shinyapps.io/divided-disease/


parameters are equivalent between groups. To simplify short-term awareness-based 239 
behavior, this scenario does not incorporate memory or fatigue (ℓ = 1 and 𝜙 = 0). First, 240 
we allow both mixing (ℎ; which drives the contact and contagion process) and 241 
awareness (𝜖; which drives protective behavior adoption) to be either uniform 242 
(functioning like a single population) (0.5) or highly separated (0.99). 243 

The groups experience identical epidemic dynamics regardless of awareness separation 244 
when mixing is uniform (Figure 1A, B), as the pathogen introduced into group a quickly 245 
spreads into group b and circulates evenly within and between groups. When groups 246 
mix separately, differences in epidemic dynamics between groups arise and depend on 247 
awareness separation (Figure 1C, D). Therefore, we focus the rest of our analyses on 248 
cases where mixing is separated to examine the impacts of awareness separation. When 249 
awareness is uniform, epidemic shape differs in both timing and magnitude between 250 
groups, increasing the peak size and total infections in the more vulnerable (earlier 251 
epidemic introduction) group a and decreasing both in group b (Figure 1C). Group a 252 
also has more cumulative deaths than group b under uniform awareness, while 253 
cumulative deaths across the full population (group a and group b combined) are 254 
approximately constant across different levels of awareness and mixing separation 255 
(Supplementary Figure 3). 256 

Awareness separation changes epidemic size in both groups by modulating how 257 
quickly protective behavior arises relative to pathogen spread (Figure 2). Uniform 258 
awareness reduces total infections in group b, which adopts protective behavior by 259 
observing mortality in group a at a point when infections within group b remain 260 
relatively low (Figure 1C, Figure 2B, D, E). Meanwhile, uniform awareness causes 261 
group a to underestimate disease severity due to the lack of early mortality in group b, 262 
leading to decreased early protective behavior and a larger outbreak (Figure 1C, Figure 263 
2A, C, E). When awareness is separated, group b has little awareness of the emerging 264 
epidemic localized to group a, while group a responds to its relatively higher early 265 
disease burden with increased awareness, driving epidemic dynamics between the two 266 
groups to be similar in shape but delayed in time for group b (Figure 1D). Therefore, 267 
awareness separation reduces the differences between groups in epidemic shape (e.g., 268 
peak size, total infections), while mixing separation offsets them in time (Figure 1C, D, 269 
Supplementary Figure 4, Supplementary Figure 5).  270 

Differences between groups in epidemic dynamics only arise at high levels of mixing 271 
separation (h > 0.9) but can occur at intermediate levels of awareness separation 272 
(Supplementary Figure 4, Supplementary Figure 5) (e.g.  𝜖 = 0.75). Awareness 273 
separation also reduces differences between groups in severe outcomes when groups 274 
differ in their transmission coefficients, infectious periods, or fatality probabilities 275 
(Supplementary Figure 6, Supplementary Figure 7, Supplementary Figure 8). 276 



2. Fatigue and awareness separation 277 

We introduce memory and fatigue to examine the long-term impacts of separated 278 
awareness when awareness-driven protective behavior is abandoned over time. Once 279 
again, the pathogen is introduced into group a alone and all other parameters are 280 
equivalent between groups. To maintain between-group differences, we assume 281 
separated mixing (h = 0.99). 282 

In all cases, when protective behavior wanes with fatigue, three distinct peaks emerge 283 
before transmission plateaus at low levels and declines gradually (Figure 3). The initial 284 
difference between groups with uniform awareness means that group b retains a 285 
relatively larger proportion of susceptible individuals who avoided infection in the first 286 
wave by rapidly adopting protective behaviors (Figure 1C, Figure 3A). As a result, the 287 
second and third wave in group b exceed its first wave in peak and total infections 288 
(Figure 3A). Meanwhile, uniform awareness causes the second and third waves in 289 
group a to be smaller compared to separated awareness (Figure 3A vs. B). Under 290 
uniform awareness, the third wave in group a is considerably delayed, peaking around 291 
800 days (versus 450 days under separated awareness). At intermediate awareness 292 
separation (ϵ = 0.75), the first and second waves in group b are approximately 293 
equivalent in size (Supplementary Figure 10). As shown in the case without memory 294 
and fatigue (Figure 1), when both mixing and awareness are separated, the groups 295 
differ mainly in the timing of epidemic peaks rather than in their magnitude, before 296 
converging on a long and slow decline (i.e., shoulder; Figure 3B) (9). In the full 297 
population, awareness separation may change infection prevalence over time but has no 298 
impact on cumulative deaths (Supplementary Figure 11).  299 

3. Immunity and awareness separation 300 

Next, we consider the implications of awareness-based vaccine uptake in a split 301 
population given waning immune protection against infection and durable protection 302 
against mortality (Equation 3, Supplementary Figure 2). We model immunity from 303 
prior infection as equivalent to immunity from vaccination. Unlike in the previous 304 
analyses, the pathogen is now introduced at the same prevalence in both populations 305 
simultaneously to ensure that group a and b begin the post-vaccine period with similar 306 
levels of immunity. Group differences are driven by an fatality probability in group a 307 
that is twice that of group b. Again, we assume separated mixing (h = 0.99) to maintain 308 
distinct dynamics between the groups. We initiate vaccination at 200 days, after an 309 
initial large wave of infections. Our analyses focus on the period following the 310 
introduction of vaccines to understand how awareness separation modulates the impact 311 
of this protective measure across a period where infection is already well established in 312 
both populations but substantial proportions of the population remain susceptible. 313 



After an initial large wave (displayed in Supplementary Figure 12), vaccination and 314 
waning immunity lead to damped cycles of infections and deaths (Figure 4). As was the 315 
case with the nonpharmaceutical intervention model (Figure 1), when awareness drives 316 
vaccination behavior, separated awareness helps to reduce differences in mortality 317 
between groups (Figure 4D vs. C). Group a becomes vaccinated at a higher rate in 318 
response to the greater number of deaths observed in group a, an effect that is most 319 
notable during the second epidemic peak following vaccine introduction (Figure 4D). 320 
Therefore, group a also has fewer infections than group b in later waves under 321 
separated awareness  (Figure 4B), while the two groups experience identical infection 322 
dynamics (despite the larger disparity in deaths) given uniform awareness (Figure 4A).  323 

Because vaccination protects against infections and deaths, and recent deaths feed back 324 
to influence awareness-driven vaccine uptake, there is a potential tradeoff between 325 
immune protection from vaccines and epidemic dynamics. We explored this tradeoff by 326 
examining the effect of variation in immune protection on epidemic dynamics and their 327 
feedbacks on vaccine uptake rate, assuming that immune protection causes the same 328 
proportional reduction in transmission and mortality (𝜅 = 𝜁). As expected, greater 329 
immune protection reduces the number of deaths by directly reducing the fatality 330 
probability. However, because of awareness-driven vaccine uptake, vaccination can 331 
produce diminishing returns at the population scale where doubling immune 332 
protection from death and infection only reduces total deaths by about one eighth due 333 
to the compensatory reduction in vaccine uptake (Figure 5A), despite doubling 334 
individual protection for vaccinated people. Since a more effective immune response 335 
reduces mortality, the perceived risk associated with infection declines and fewer 336 
people become vaccinated (Figure 5B). The tradeoff between the direct impacts of 337 
immune protection on preventing infections and reduced uptake produces a nonlinear 338 
relationship between total infections and immune protection (Figure 5C). At low 339 
immune protection, infections remain approximately constant as immune protection 340 
improves. At higher levels of immune protection, reduced uptake leads to more 341 
infections (Figure 5C). 342 

Separated awareness drives greater differences between groups in vaccination 343 
behavior—the higher-risk group a gets vaccinated at a higher rate in response to 344 
awareness of the greater cumulative mortality in that group (Figure 5B). This in turn 345 
increases differences in infections (group a experiences lower infection rates; Figure 5C) 346 
but decreases differences in mortality between groups (death rates are lower for group a 347 
but higher for group b than in the uniform awareness scenario; Figure 5A). Since group 348 
a is at a higher inherent risk of mortality given infection, separated awareness 349 
differentially promotes vaccination and reduces infection in this group, while uniform 350 
awareness causes group a to ignore its higher risk of mortality (Figure 5A, B, solid 351 



versus dashed lines). Cumulative deaths increase especially quickly during the initial 352 
wave absent vaccination because the population lacks transmission- or mortality-353 
reducing immunity. When vaccination begins earlier in the epidemic (prior to the initial 354 
peak around t = 100), separated awareness has greater potential to reduce the difference 355 
in cumulative deaths between the two groups (Supplementary Figure 13, 356 
Supplementary Figure 14). Early vaccination may also reduce cumulative deaths and 357 
infections in each group (Supplementary Figure 14).  358 

Discussion 359 

Awareness separation and social divisions may interact to fundamentally alter disease 360 
dynamics, creating or erasing differences between groups in the timing and magnitude 361 
of epidemic peaks. Uniform awareness can exacerbate differences between population 362 
subgroups when the more vulnerable group (e.g., the group where the pathogen is 363 
introduced or the group with higher fatality probabilities) underestimates the in-group 364 
risk of disease and fails to adopt early protective measures (Figure 1, Figure 5). At the 365 
same time, the initially less-vulnerable group receives indirect protection from 366 
observing and responding to epidemic effects in the more vulnerable group, adopting 367 
protective measures that reduce their total and peak infections (Figure 1, Figure 5). 368 
However, when awareness-driven behavior fades with fatigue, the relative disease 369 
burden may shift between groups such that the group that initially had fewer infections 370 
has relatively more infections in subsequent waves, especially when uniform awareness 371 
protects the initially less-vulnerable group during the first wave of infection (Figure 2). 372 
Awareness separation diminishes between-group differences in severe outcomes 373 
(Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Supplementary Figure 6, 374 
Supplementary Figure 7, Supplementary Figure 8), but may do so by increasing 375 
differences in behavior and infections (Figure 4, Figure 5, Supplementary Figure 8). For 376 
example, when the more vulnerable group has a higher rate of disease-linked mortality, 377 
awareness separation leads them to have higher vaccine uptake in response to their 378 
heightened perceived (and actual) risk, narrowing the difference in mortality (Figure 5). 379 
More broadly, awareness separation generally closes differences in severe outcomes 380 
between groups by producing preferential uptake of preventative measures by the 381 
group with the greatest recent mortality, which is usually the group at greatest current 382 
risk. 383 

In this model, greater awareness separation generally reduces differences in severe 384 
outcomes between groups. But the magnitude of these impacts may vary depending on 385 
disease properties (e.g., transmission coefficient) and behavioral and social processes 386 
(e.g., responsiveness to disease-linked mortality) (Supplementary Figure 9, 387 
Supplementary Figure 13, Supplementary Figure 14). Outcomes may be further 388 



modulated by public health orders and the timing of different interventions. For 389 
example, there is greater potential for awareness separation to reduce between-group 390 
differences in mortality given earlier vaccine introduction (Supplementary Figure 13, 391 
Supplementary Figure 14). The existing models could be modified to incorporate 392 
population-wide measures, particularly time-limited nonpharmaceutical intervention 393 
mandates, to study how social and behavioral processes may shift the optimal timing of 394 
interventions in the full population or either group (Ketcheson, 2021; Morris et al., 395 
2021). Although this model and others assume that protective behavior uptake is 396 
independent of disease status (Mehta & Rosenberg, 2020; Smaldino & Jones, 2021), the 397 
model could be modified to link behavior with known disease status (e.g., accelerated 398 
uptake of or reduced fatigue with protective measures by people with symptomatic 399 
infections) (Eksin et al., 2017; Funk et al., 2009). To assess the robustness of our 400 
conclusions about the effects of awareness separation, the same scenarios could be 401 
evaluated across different models of awareness-based behavior changes, including 402 
saturation at a certain threshold for deaths (Weitz et al., 2020), consideration of both 403 
lethal and non-lethal impacts of disease (e.g., hospitalizations and cases), or 404 
optimization to balance the benefits of protection against the costs of various measures 405 
(Arthur et al., 2021; Barrett et al., 2011; Eksin et al., 2017). The latter approach may 406 
clarify a point that is not addressed in our analysis: although awareness separation may 407 
reduce disparities in severe disease-linked outcomes, this phenomenon is not 408 
necessarily equitable or desirable. In fact, if self-protection is associated with significant 409 
costs, already-vulnerable populations may suffer compounding costs as they balance 410 
self-protection against significant disease risk without adequate support from a broader 411 
community that does not share their risks (Atchison et al., 2021; Barrett et al., 2011; Jay 412 
et al., 2020; Skinner-Dorkenoo et al., 2022). Further, structural inequities often leave 413 
population subgroups that are vulnerable to larger, more severe outbreaks with 414 
reduced access to protective measures like health education, treatment, vaccination, and 415 
paid leave (Cardona et al., 2021; Christensen et al., 2020; Clouston et al., 2015; Dryhurst 416 
et al., 2020; Heymann et al., 2021; Poteat et al., 2020; Ridenhour et al., 2022; Simione & 417 
Gnagnarella, 2020; Williams & Cooper, 2020). Resulting differences in rates of protective 418 
behavior uptake and effectiveness can compound disparities between groups and 419 
reduce the protective impact of awareness separation for more-vulnerable groups. 420 

Epidemics are complex phenomena that typically involve heterogeneous mixing among 421 
groups of people that differ in biological and social risk factors, dynamic evolution of 422 
host behavior, pathogen infectiousness, and immune evasion, and ever-changing 423 
epidemiological and policy responses to real and perceived risk. Despite this range of 424 
potential drivers, we show here that a simple model that captures two key social 425 
processes—awareness-driven protective behavior in a split population that can be 426 
separated in mixing and awareness—can drive many of the complex dynamics 427 



observed in emerging epidemics like Covid-19. For example, when awareness is 428 
uniform and mixing is separated, the group in which the pathogen is introduced later 429 
can experience second and third waves that exceed the initial wave in size (Figure 3). 430 
This trend resembles one observed in the United States during the first year of the 431 
Covid-19 pandemic, where certain regions where the virus was introduced early (e.g., 432 
New York City metropolitan area) experienced a large early wave and relatively few 433 
infections over the rest of the year, while other regions (e.g., the southern United States) 434 
generally had small early waves and larger second and third waves. Many hypotheses 435 
have been introduced to explain this phenomenon (e.g., policy, seasonal climate factors, 436 
and population density) and several factors may have contributed to this pattern (Y. Ma 437 
et al., 2021; Sy et al., 2021). Yet, in our model these dramatic differences among 438 
populations in epidemic waves occur despite the groups being identical in transmission 439 
rates and disease outcomes and are entirely due to awareness-driven behavior with 440 
uniform awareness among groups (Figure 3). Although the current analysis does not 441 
examine causation, and observed trends during Covid-19 likely involved a confluence 442 
of drivers, we have demonstrated how a simple behavioral process can qualitatively 443 
reproduce complex epidemic dynamics observed in real populations. To understand the 444 
extent of awareness separation in real populations and the role of specific behavioral 445 
processes in observed trends, our model could be parameterized using a combination of 446 
epidemiological, survey, mobility, and social media data (Chang et al., 2021; Shen et al., 447 
2021; Weitz et al., 2020). 448 

Feedback between vaccine efficacy and awareness-based vaccine uptake can also 449 
produce the counterintuitive scenario where vaccines that cause a greater reduction in 450 
transmission and mortality lead to more cumulative infections, even as deaths are 451 
reduced (Figure 5). If, as we assume here, protective behavior is driven by awareness of 452 
severe outcomes like mortality, awareness separation may reduce differences in deaths 453 
between groups while widening differences in cases (Figure 4, Figure 5). The potential 454 
for awareness separation in vaccine uptake to reduce between-group differences in 455 
mortality is greatest when vaccination is introduced earlier in the epidemic, indicating 456 
that intervention timing may have health equity implications (Supplementary Figure 457 
13, Supplementary Figure 14). Accounting for awareness-based adoption of protective 458 
behavior is therefore critical for understanding complicated epidemic dynamics such as 459 
plateaus and cycles (Figure 3, Figure 4), accurately deploying protective measures, and 460 
assessing their impact across different diseases and population subgroups (Arthur et al., 461 
2021; Steinegger et al., 2022; Weitz et al., 2020). 462 

Here we have considered arbitrarily defined groups that can be separated in mixing 463 
and awareness but initially differ only in the timing of pathogen introduction (Figure 1, 464 
Figure 2, Figure 3), fatality probability (Figure 4, Figure 5, Supplementary Figure 8), 465 



pathogen transmission (Supplementary Figure 6), or infectious period (Supplementary 466 
Figure 7). Real social groupings may fall along a number of social, demographic, and 467 
geographic lines, while the assumption of two distinct and identifiable groups may not 468 
fully capture relevant social dynamics. The most relevant groupings with respect to 469 
awareness and disease risk may also depend on the disease. For infectious diseases that 470 
are generally more prevalent and severe in children (e.g., pertussis and measles), risk 471 
may depend on age while awareness is split between parents of young children versus 472 
adults without children or among parents with different sentiments towards childhood 473 
vaccination (Bhattacharyya & Bauch, 2010). In the context of Covid-19, disease burden 474 
and attitudes toward preventative measures (e.g., masks and vaccines) have differed 475 
markedly across age, socioeconomic status, and race and over time, demonstrating how 476 
intersecting and imperfectly overlapping identities may interact to determine attitudes, 477 
protective behaviors, and risk (Maroko et al., 2020; Schulz et al., 2020; van Holm et al., 478 
2020). Moreover, ideological and social factors that do not correspond directly to 479 
disease risk (e.g., political affiliation) may influence decision-making and cause the level 480 
of protective behavior in certain subgroups to diverge sharply from their relative risk 481 
for severe disease, potentially overcoming the effects of awareness separation 482 
(Christensen et al., 2020; Grossman et al., 2020). This process could be incorporated into 483 
our model by splitting the population into additional groups with respect to a cultural 484 
contagion or (mis)information spread process and allowing protective measures to be 485 
adopted based on awareness or contact with protective in-group members and rejected 486 
through fatigue or aversion to protective measures displayed by the opposite group 487 
(Mehta & Rosenberg, 2020; Smaldino & Jones, 2021). 488 

Although we assumed that awareness was directly proportional to recent mortality, 489 
external influences like partisanship (Christensen et al., 2020; Grossman et al., 2020), 490 
media coverage (Shanta & Biswas, 2020), misinformation (Lee et al., 2021), and policy 491 
(Yan et al., 2021) may alter the perception of risk or the adoption of protective measures 492 
at both the individual and group level. Group identification and assessment of relative 493 
risk may be unclear or inaccurate based on uncertainty at the beginning of the outbreak, 494 
misinformation about risk factors, a gradient in risk (e.g., increasing risk with age), lack 495 
of data stratification, or unobserved risk factors. Attitudes based on one disease may 496 
carry over to another disease even if risk factors differ. Relative risk across groups may 497 
also vary across time and space, potentially leading to inaccurate assessment based on 498 
prior conditions: for example, a mild initial epidemic wave can mislead a group into 499 
believing they are inherently more protected and thereby relaxing protective behaviors. 500 
Cognitive interventions that increase the accuracy of individual risk perception, 501 
especially in high-risk groups, may help to reduce between-group differences in disease 502 
burden (Sinclair, Hakimi, et al., 2021; Sinclair, Stanley, et al., 2021).  503 



Our model may also be extended to other scenarios involving a transmission process 504 
and collective behavior, particularly social contagions like the spread of rumors and 505 
trends. Additional parameter space may be explored via the R Shiny interactive app 506 
accompanying this project, which currently only incorporates the nonpharmaceutical 507 
intervention model (https://mallory-harris.shinyapps.io/divided-disease/). Considering 508 
awareness separation as a social process that may interact with mixing, fatigue, waning 509 
immunity, pathogen evolution, and pharmaceutical and non-pharmaceutical 510 
interventions may help to explain how humans are affected by and respond to 511 
infectious diseases in the presence of social divisions. 512 

Figure 1.  Epidemic peaks are offset in time between groups when mixing is 513 
separated (C, D), and in magnitude when awareness is uniform but mixing is 514 
separated (C). Plots show prevalence of infections over time in group a (pink) and 515 
group b (green) under four scenarios: awareness is uniform (A, C; ϵ = 0.5) or separated 516 
(B, D; ϵ = 0.99); mixing is uniform (A, B; h = 0.5) or separated (C, D; h = 0.99). We 517 
assume the pathogen is introduced only in group a at prevalence 0.001 and that all 518 
other parameters are equivalent between groups: transmission coefficient (β = 0.2), 519 
infectious period ( 1

ρ 
 = 10), fatality probability (μ = 0.01), protective measure efficacy 520 

(κ = 0.3), responsiveness (θ = 100), memory (ℓ = 1), and fatigue (ϕ = 0). Lines overlap 521 
under uniform mixing (top row). 522 
Figure 2. Separated awareness reduces between-group differences by reducing group 523 
b’s awareness of the emerging epidemic and augmenting group a’s response to the 524 
introduction of the pathogen. We initialize our model using the same parameters as 525 
Figure 1 with separated mixing (ℎ = 0.99). We compare uniform awareness (𝜖 = 0.5; 526 
dashed lines) and separated awareness (𝜖 = 0.99; solid lines). At the top, we compare 527 
early time series (through 𝑡 = 80) of (A) protective attitude prevalence in group a; (B) 528 
protective attitude prevalence in group b; (C) cumulative infections in group a; (D) 529 
cumulative infections in group b. Panel E is a phase portrait of protective attitude 530 
prevalence against cumulative infections in group a (pink) and group b (green). Points 531 
indicate values at 𝑡 = 80, corresponding to the end of the time series in panels A-D. 532 
Arrows indicate differences in protective attitude prevalence (gray) and cumulative 533 
infections (black) at 𝑡 = 80 for separated versus uniform awareness, with letters 534 
corresponding to time series panel labels. 535 

Figure 3. Fatigue and long-term memory produce multiple epidemic peaks, which 536 
exceed the size of the initial peak in group b when uniform awareness and separated 537 
mixing leave that group with a high proportion of susceptible people following the 538 
first wave. We initialize the model with separated mixing (ℎ = 0.99), long-term 539 
memory (ℓ = 30), and fatigue (𝜙 = 0.02); all other parameters are the same as in Figure 540 
1. We consider infections in group a (pink) and group b (green) over a longer time 541 

https://mallory-harris.shinyapps.io/divided-disease/


period (1000 days, compared to 200 days in Figure 1). The panels correspond to (A) 542 
uniform awareness (𝜖 = 0.5) and (B) separated awareness (𝜖 = 0.99). 543 

Figure 4. Waning immunity and awareness-based vaccination drive epidemic cycles; 544 
separated awareness reduces the disparity in deaths (C vs. D) as more-vulnerable 545 
group a members become vaccinated at a higher rate. We consider infections (A, B) 546 
and deaths (C, D) in the post-vaccine period in group a (pink) and group b (green) 547 
where the fatality probability for group a is double that of group b (𝜇𝑎 = 0.02 and 𝜇𝑏 =548 
0.01). The x-axis gives time since vaccination began (t=200). We compare uniform 549 
awareness (𝜖 = 0.5) (A, C) and separated awareness (𝜖 = 0.99) (B, D). Other parameter 550 
values are: 𝛽 = 0.2 (transmission coefficient), 𝜅 = 0.05 (transmission-reducing 551 
immunity), 𝜁 = 0.05 (mortality-reducing immunity), 𝜔 = 𝜙 = 0.01 (waning immunity), 552 
infectious period ( 1

𝜌 
 = 10), 𝜃 = 20 (responsiveness), ℓ = 30 (memory), ℎ = 0.99 553 

(separated mixing), 𝐼0 = 0.0005 (initial infection prevalence). See Supplementary Figure 554 
12 for a time series plot including the pre-vaccine period. 555 

Figure 5. Greater immune protection (from vaccination and infection) leads to lower 556 
death rates (A), which in turn decreases vaccination rates (B) and increases infection 557 
rates (C); separated awareness reduces disparities in death rates (A) as groups are 558 
vaccinated at different rates proportional to their risks of death (B), creating 559 
differences in infection rates (C). We vary immune protection, defined as 560 
transmission-reducing immunity and mortality-reducing immunity, where both 561 
parameters are assigned the same values (𝜅 = 𝜁). We assume immune protection is 562 
equivalent for vaccine- and infection-derived immunity. The x-axis is reversed because 563 
smaller values indicate stronger protection. We examine the impacts of stronger 564 
immune protection (lower values of 𝜅 and 𝜁) on total deaths (A), vaccinations (B), and 565 
infections (C) in the post-vaccine period (t = 200 through t = 2200). We consider the post-566 
vaccine period to focus on the impacts of an awareness-based intervention administered 567 
under different levels of awareness separation. We compute each quantity for group a 568 
(pink) and group b (green) given uniform (dashed lines; 𝜖 = 0.5) or separated (solid 569 
lines; 𝜖 = 0.99) awareness. Other parameter values are the same as Figure 4.  570 
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