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Abstract

Background: West Nile virus (WNYV) is the leading cause of mosquito-borne illness in the
continental United States. WNV occurrence has high spatiotemporal variation and current
approaches for targeted control of the virus are limited, making forecasting a public health
priority. However, little research has been done to compare strengths and weaknesses of WNV
disease forecasting approaches on the national scale. We used forecasts submitted to the 2020
WNYV Forecasting Challenge, an open challenge organized by the Centers for Disease Control
and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and
identify avenues for improvement.

Methods: We performed a multi-model comparative assessment of probabilistic forecasts
submitted by 15 teams for annual WNND cases in US counties for 2020, and assessed forecast
accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts
produced by comparison models of varying complexity as benchmarks of forecast performance.
We also used regression analysis to identify modeling approaches and contextual factors that
were associated with forecast skill.

Results: Simple models based on historical WNND cases generally scored better than more
complex models and combined higher discriminatory power with better calibration of
uncertainty. Forecast skill improved across updated forecast submissions submitted during the
2020 season. Among models using additional data, inclusion of climate or human demographic
data was associated with higher skill, while inclusion of mosquito or land use data was
associated with lower skill. We also identified population size, extreme minimum winter
temperature, and interannual variation in WNND cases as county-level characteristics associated

with variation in forecast skill.
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Conclusions: Historical WNND cases were strong predictors of future cases with minimal
increase in skill achieved by models that included other factors. Although opportunities might
exist to specifically improve predictions for areas with large populations and low or high winter
temperatures, areas with high case-count variability are intrinsically more difficult to predict.
Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains
difficult. Further improvements to prediction could be obtained with improved calibration of
forecast uncertainty and access to real-time data streams (e.g., current weather and preliminary

human cases).

Keywords: calibration, discriminatory power, forecasting, logarithmic score, multi-model
assessment, West Nile virus, West Nile neuroinvasive disease, United States
Background

West Nile virus (WNV; Flaviviridae, Flavivirus) is the leading cause of mosquito-borne illness
in the continental United States [1]. Symptomatic infections typically present as a febrile illness
(approximately 20% of all infections). However, <1% of all infections result in West Nile
neuroinvasive disease (WNND) with manifestations including meningitis, encephalitis, or acute
flaccid paralysis [2]. WNV was first detected in the United States in 1999 [3] and by 2004, had
spread across the contiguous United States and up the Pacific coast [4]. From 1999-2020, the
Centers for Disease Control and Prevention (CDC) reported a total of 26,683 non-neuroinvasive
WNV disease cases and 25,849 WNND cases, resulting in 2,456 deaths [5]. Since WNV became
endemic (2005-2020), a median of 409 (range 167-693; 5-22%) of the 3,108 counties in the
contiguous United States report WNND cases each year. WNV exhibits marked seasonality with
most cases reported between Jul and Oct nation-wide [5]. Even in counties that regularly report

WNND cases, the number and location of WNND cases varies. For example, reported WNND
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cases per county can range from singles to a few dozen or fifty with 239 cases reported in the
largest outbreak during this time [6]. Large spatial and temporal heterogeneity in annual WNND
cases make accurate prediction of incidence both challenging and potentially valuable to guide
prevention and control efforts.

The ecology of WNV is complex and spatially variable across the United States. The
virus is maintained in an enzootic cycle between birds (predominantly passerines) and Culex
mosquitoes [7-9], but can cause disease in horses and humans, which are dead-end hosts [10].
The vectors for WNV vary geographically [9]. In the east-central region (Northeast, mid-
Atlantic, and central United States), Cx. pipiens and Cx. restuans have been incriminated as the
primary vectors with Cx. salinarius also playing an important role in maintenance and zoonotic
transmission in coastal areas. In the southeast, Cx. quinquefasciatus has been implicated as the
primary vector with Cx. salinarius and Cx. nigripalpus also capable of causing human disease. In
western North America, Cx. tarsalis is largely responsible for zoonotic transmission, especially
in more rural areas, while Cx. pipiens serves as the enzootic vector in urban areas in the more
northern parts of the western United States (northern Great Plains, Rocky Mountains, and Pacific
Northwest). In urban areas of the southwestern United States, Cx. quinquefasciatus can act as the
dominant zoonotic vector. Other Culex mosquito species can have a secondary or localized
importance in this region.

Meteorological factors like temperature and precipitation have a large impact on the
transmission of WNV. Temperature influences mosquito survival and potential WNV
transmission rates [11]. As temperatures warm, mosquito development and biting rates accelerate
[11,12]. Additionally, with increasing temperature, the extrinsic incubation period for WNV

decreases as viral replication rates increase [13—16]. Thus, with increasing temperature above the
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thermal minimum for mosquito survival and WNV replication [15,17], viral transmission and
risk of zoonotic transmission increases. However, there is a thermal optimum (23.9-25.2°C [18])
above which transmission generally decreases due to negative impacts on mosquito survival and
other traits. Variation in the interaction of climatic and landscape factors contributes to seasonal
dynamics and spatial variation in the effect of temperature [9,19]. Increased precipitation
generally increases the quantity of available larval habitat [20—22], but intense precipitation
events can wash out immature mosquitoes from larval habitat such as catch basins [23]. The
impact of precipitation varies broadly across the United States with a positive association
between increased precipitation and above average-human cases in the western United States,
but a negative association in the eastern United States. This difference is potentially due to
difference in the mosquito species, their preferred egg-laying habitats, and other environmental
factors present in each area [9,19,22]; in the West, increased precipitation likely leads to
increased Cx. tarsalis larval habitats while in the East, increased precipitation may wash out Cx.
pipiens larval habitats. Also, drought has been associated with WNV amplification and increased
human cases, partially due to aggregation of hosts and vectors at dwindling water sources
[24,25].

Statistical and mechanistic models have been developed to predict geographic or
temporal dynamics of WNV transmission [26,27]. These models included some subset of the
following grouping of variables: historical human cases, veterinary cases, climate, hydrology,
human demographics, land use, viral genetics, mosquito surveillance, sentinel surveillance, and
avian population dynamics. Models generally produce estimates on a single spatial and temporal
scale aimed at guiding public health decisions or elucidating factors that enable increased

transmission. Models developed for prediction in one location often fail to perform well if
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applied to a different location due to variation in factors like ecology, primary mosquito species,
and human behavior as well as availability of predictor data, like mosquito surveillance data
[28]. Out-of-sample validation is often used to assess model performance, but no multi-model
comparative assessment has been performed to assess the strengths and weaknesses of predictive
WNV modeling at the local or national scale.

To systematically evaluate WNND prediction across the continental United States, the
CDC Epidemic Predictive Initiative and the Council for State and Territorial Epidemiologists
launched an open West Nile virus Forecasting Challenge in 2020. The primary objective of the
Challenge was to predict the total number of WNND cases for each county in the contiguous
United States that would be reported to the national surveillance system for arboviral diseases,
ArboNET, during the 2020 calendar year. In our evaluation of the Challenge, we 1) assessed
whether some models had better predictive performance than others, 2) identified modeling
approaches associated with better prediction, and 3) evaluated contextual factors of the counties
(e.g., environmental, climatic, and historical WNV patterns) associated with variation in forecast

skill.

Methods

Team participation
An announcement recruiting team participation in the 2020 WNV Forecasting Challenge was
circulated widely by the CDC Epidemic Prediction Initiative through emails and postings on
webpages starting in March 2020. Teams using any modeling approach were encouraged to
participate.

Participating teams signed a data use agreement and were provided with annual WNND

case counts, by county for the contiguous United States and Washington DC during 2000-2018,
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from ArboNET, the national arboviral diseases surveillance system administered by the CDC.
Provisional 2019 case data were provided to participants in early May 2020. Participants were
allowed to use any other data source, like climate, weather, land use, mosquito surveillance, and
human demographics, at whatever spatial and temporal scaled they deemed appropriate to
develop their modeling approach. See Additional File 1: Text S1 for details on modeling
methodologies and datasets used by each team.

Forecasting target

Teams predicted the total number of probable and confirmed WNND cases that would be
reported to ArboNET for all counties (n = 3,108) in the contiguous United States and
Washington DC during 2020. WNND cases were chosen as the outcome because the severe
manifestations of the disease are more likely to be consistently recognized and reported
compared with less severe, non-neuroinvasive WNV disease cases [29].

For each county, a forecast included both a point estimate and a binned probability
distribution. The point estimate denoted the most likely number of cases. Fifteen bins were
chosen to cover the range of cases from 0 to >200, reflecting a typical range of observed cases
across counties, with finer resolution for smaller numbers of expected cases given the relatively
few cases reported in the majority of counties (i.e., bins for 0, 1-5, 6-10, ..., 46-50, 51-100, 101-
150, 151-200, >200 cases). These bins provide meaningful information for location-specific
public health action given that, on average, 0.38 WNND cases per county are reported each year
(on average, 88% of counties report zero cases, 11.5% report 1-10 cases, and 0.4% report 11-50
cases with yearly county maximums ranging from 18-239 cases, 2005-2020) [6]. Teams assigned
a probability between 0 and 1 to each bin, with a total probability equal to 1.0 across all bins per

county.
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Forecasts
The initial forecast due date was April 30, 2020, with submission to an online system

(https://predict.cdc.gov). Additional, optional, updated submissions could be submitted by the

following deadlines: May 31, June 30, and July 31, 2020. Further details are available through
the project’s GitHub repository (https://github.com/cdcepi/ WNV-forecast-project-2020).
Concurrently, we developed four additional models of varying complexity and use of
historical case data for comparison with the team forecasts: a naive model, an always-absent
model, a negative binomial model, and an ensemble model. The naive model used no historical
data and assigned equal probability to each of the bins (i.e., 1/15 probability). The always-absent
model also ignored historical data and represented a universal expectation of zero cases by
assigning a probability of 1.0 to the zero-case bin and zero probability to all other bins for each
county. We included this model given the relatively small percent of counties in the U.S. that
report WNND cases each year. The negative binomial model was built to reflect a parsimonious
probabilistic prediction relying exclusively on local historical data, a “same-as-before” baseline
model. For each county, we fitted a negative binomial distribution to historical WNND cases and
extracted probabilities for each bin from the cumulative distribution function. The initial version
of this forecast (April submission) used 2000-2018 case counts, while the May submission also
incorporated the provisional 2019 data reported as of May 2020. Finally, we created a mean
consensus ensemble using all team-submitted forecasts and the negative binomial forecast by
averaging the probabilities assigned in each bin for all forecasts at each location and submission
deadline. For forecasts that were not updated at a particular submission deadline, we used the last

available forecast for each update of the ensemble. Using the final version of the ensemble, we

10


https://predict.cdc.gov/

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

used Shannon entropy [30] to assess the spread of probability across the binned case counts
(uncertainty) in the ensemble model forecast.

We developed two additional models retrospectively as alternative baseline models: a
first-order autoregressive model (i.e., AR(1)) and a first-order autoregressive model with a single
climate variable as an exogenous covariate (AR(1) Climate). For both models, we fitted log-
transformed annual WNND case counts (2005-2019; In(cases+1)) using the arima function in the
stats package in R (version 4.1.2; [31]). For the AR(1) Climate model, we considered seasonal
aggregations of climate conditions (i.e., average temperature, mean minimum temperature, or
total precipitation), using Parameter-elevation Regressions on Independent Slopes Model
(PRISM) data [32] aggregated to county. We defined seasons as three-month periods for winter
(Dec-Feb), spring (Mar-May), summer (Jun-Aug), and fall (Sep-Nov). To predict annual WNND
case numbers, we considered including climate data from the previous winter to the concurrent
year’s spring to capture any lagged climate-induced impacts on transmission during the previous
year (e.g., considering seasonal climate data from Dec 2018-May 2020 to predict 2020 WNND
cases). See Additional File 1: Text S1 for more details on the development of the autoregressive
modeling framework.

Evaluation

As announced before the Challenge, we evaluated all forecasts using the logarithmic score, a
proper scoring rule based on the probabilities assigned in each forecast in relation to the eventual
observed case counts [33,34]. The score for each team was the average logarithm of the
probability assigned to the observed outcome bin, the bin containing the reported number of
WNND cases for 2020, per county. To avoid logarithmic scores of negative infinity for forecasts

which assigned zero probability to the observed outcome, we truncated binned predictions to
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have a minimum logarithmic score of -10. We compared mean logarithmic scores with ANOVA
followed by Tukey post-hoc multiple comparisons to identify significant differences between
forecast scores. We compared the forecasts for the final versions of team forecasts and
comparison models, and between the initial and final versions of all forecasts.

We assessed probabilistic calibration by plotting forecasted probabilities versus observed
frequencies for forecasts with each summarized in the following upper-bound inclusive
probability bins: 0.0, 0.0-0.1, 0.1-0.2, ..., 0.9-1.0. Note that these bins are the probabilities
assigned to case number bins, not the cases number bins themselves. We then calculated a metric

of overall probabilistic calibration as the mean weighted squared difference of binned predicted
probabilities versus the observed frequency of events; %Z 1y, (P — 0 )%, where N is the total

number of a team’s prediction, nyis the number of predictions in bin k (e.g., between 0.2 and 0.3)
with average probability py, and 0, is the frequency of those predictions being correct. In other
words, we assessed if events that were predicted to occur 20-30% actually occurred 20-30% of
the time. Our chosen calibration metric corresponds to the reliability term in the Brier score
decomposition [35,36] and has been used to evaluate calibration of another vector-borne disease
forecasting challenge [37]. Note that this considers calibration within the single forecast year and
provides no information on calibration of models across forecast years.

To assess discriminatory power, we used receiver-operator characteristic (ROC) curve
analysis to assess the sensitivity and specificity of the probability of having at least one WNND
case in each county. We then calculated the area under the curve (AUC) as the metric for
discrimination.

Regression modeling

12
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We used Bayesian regression modeling to identify high-level modeling approaches and
contextual factors of counties associated with variation in skill. To assess the impact of modeling
approach, we fitted generalized linear models to all team forecasts and the negative binomial
comparison model (April and May versions) using the negative logarithmic score, or surprisal, as
the outcome, assuming a Gamma distribution with the inverse link. We used the stan gim
function in the rstanarm package (version: 2.21.1, [38]) to fit the models. We assessed
associations between surprisal and a suite of model-specific nominal covariates for a team's
inclusion of data on climate, human demographics, land use, mosquito distributions/surveillance,
and bird/equine infections, and if submissions were updated. To assess county-specific
contextual factors, we fitted Bayesian generalized additive models (GAMs) to the ensemble
forecasts using the stan_gamm4 function in the rstanarm package (version: 2.21.1, [38]). We
chose the ensemble forecast to capture the overall accuracy of all teams without the variation in
performance between teams due to modeling approaches. Contextual factors investigated
included environmental factors (e.g., land use, extreme minimum winter temperature, region),
history of reported WNND cases (e.g., number of years and pattern of reported cases), and
demographics (e.g., population size, population density, population > 65 years old). See
Additional File 1: Text S1 for more details on methods, model selection, and a complete list of
variables considered.

All analyses were performed with R statistical software (version 4.1.2; [31]).
Results

Fifteen teams submitted binned probabilistic forecasts for the total number of WNND cases
reported in each county using a variety of modeling approaches (see Additional File 1: Text S1

for team information including model details and descriptions and Table S1 for model
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characteristics). Two teams (13%) included mechanistic model elements while the remainder
used completely statistical approaches. Six teams (40%) used Bayesian frameworks for model
fitting. We broadly categorized the modeling approaches teams used as machine learning (i.e.,
random forest, neural network), regression (i.e., maximum likelihood generalized linear models,
generalized additive models), hurdle models (i.e., spatio-temporal hurdle models fit using
integrated nested Laplace estimation), system of difference equations, or historical case
distributions. Across the four submission timepoints, we received 30 unique forecast submissions
(15 initial submissions, 5 teams that updated once, 2 that updated twice, and 2 that updated three
times). Some teams used different data sources in different submissions. Across all submissions,
24 submissions (from 11 teams) used climatic data, 22 (from 11 teams) used human
demographic data, 9 (from 5 teams) used land-use data, 12 (from 4 teams) used entomological
data related to Culex mosquito species distributions or WNV infection prevalence in mosquitoes,
2 used data on avian WNV infections (1 team), and 2 used data on equine WNV infections (1
team).

The final version of the ensemble model assigned the highest probability to a non-zero
bin for 115 counties, with the largest probabilities assigned to high numbers of WNND cases in
highly urbanized counties: Los Angeles (CA, bin: 101-150 cases), Maricopa (AZ, bin: 51-100
cases), Cook (IL, bin: 51-100 cases), and Harris (TX, bin: 11-15 cases) (Fig 1A); the other 111
counties assigned the highest probability to the 1-5 cases bin. The remaining 2,993 counties had
the highest probability in the ensemble model assigned to the zero-case bin and each team model
(final version) assigned the highest probability to the zero-case bin for at least 2,222 counties.

Uncertainty in ensemble predictions was greatest in more populous counties as well as in the
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southwest (CA, AZ, NV), in the Great Plains states, along the southern edges of the Great Lakes,
and along the northeast coast (Fig 1B).

Finalized case data for 2020 were released in November 2021 with 559 WNND cases
reported in 181 counties. These counts were similar to totals reported annually during 2008-2011
and 2019 (Additional File 1: Table S2). The ratio of reported neuroinvasive to non-neuroinvasive
cases was 3.25, the largest reported since 2001 (range for 2002-2019: 0.41-2.43).

Forecast skill, as measured by logarithmic score, generally increased across the
submission timepoints with updated submissions (Fig 2, Additional File 1: Table S3). Gains in
skill for individual forecasting teams were typically abrupt and occurred at different times,
presumably due to acquisition of new contextual data or revisions of modeling approaches. The
ensemble forecast, which included all the most recent team forecasts and the negative binomial
model at each time point, increased from a mean log score of -0.357 (April) to -0.253 (July),
with the largest increase in skill occurring between the June and July submissions likely due to
the dramatic improvement in the forecast by Ul. Three teams (MSSM, Stanford, and UNL) and
the negative binomial forecast consistently outscored the ensemble forecast with four teams
(MHC, NYSW, NYSW-CVD, and UCD) outscoring the ensemble for at least one submission
timepoint. The retrospectively implemented AR(1) and AR(1) Climate models (using mean
winter temperature based on historical performance, Additional File 1: Fig S1) also consistently
outperformed the ensemble. However, the difference in score between the final forecast for each
of those that outscored the ensemble was not statistically significant (P > 0.1, Additional File 1:
Fig S4).

Overall, models based only on historical distributions of cases had relatively high skill.

The negative binomial comparison model, AR(1) comparison model, and an empirically
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weighted distribution (MSSM) were in the top five forecasts at each submission timepoint. Only
the final forecast from UCD scored higher than the negative binomial model with a difference in
mean logarithmic score of 0.007 (P = 0.98, Additional File 1: Fig S4).

Comparing high-level modeling approaches and controlling for submission date, we
found variation in forecast skill was associated with the inclusion of some types of data
(Additional File 1: Table S4). Skill was higher for teams that included climate (0.187, 95% CI:
0.174, 0.226) or demographic data (0.335, 95% CI: 0.326, 0.361). We found lower skill for
forecasts that included land use (-0.100, 95% CI: -0.124, -0.031) or Culex mosquito geography
(estimated ranges or WNV infection prevalence data, -0.114, 95% CI: -0.142, -0.048). We did
not compare the association of skill with the inclusion of avian or equine WNV disease cases
because only one team used each of these data types.

We next analyzed county-specific contextual factors that might be associated with
varying forecast skill across modeling approaches by analyzing associations with ensemble
forecast skill (Additional File 1: Fig S3). Average skill was highest in counties with mid-sized
populations, low historical variation in annual WNND cases (permutation entropy), and
relatively moderate winter minimum temperatures (-10° and 10°F, corresponding to the USDA
Plant Hardiness Zones 6a to 7b). For extreme minimum winter temperatures, the ensemble had
lower skill at extreme high and low values. For population size, the ensemble had lower skill at
large sizes and a nonsignificant relationship at small sizes. Increased variation in interannual
historic WNND cases (larger permutation entropy) was associated with decreased forecast skill
with a plateau at permutation entropy above approximately 0.7.

Calibration of forecast uncertainty and the ability to predict whether WNND cases would

occur (=1 vs. 0 cases, i.e., discrimination) varied across teams (Fig 3). Comparing binned
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forecasted probabilities to observations (Additional File 1: Fig S5), we found that most forecasts
were over-confident at lower probabilities and under-confident at higher probabilities.
Expectations of the occurrence of cases, especially large numbers of cases, were commonly
assigned low probabilities while the expectation of no reported cases was typically highly
probable. The forecasts with the best calibration (i.e., reliable specification of probabilities) were
those that did not assign any high probabilities (e.g., the naive forecast), followed by the
autoregressive (AR(1) and AR(1) Climate) and negative binomial models. We found that the
discriminatory power of forecasts, assessed as the AUC comparing the probability of one or
more cases in each county to whether at least one WNND case was reported, also varied widely
across teams and comparison models (range of forecast AUC: 0.5-0.875, Additional File 1: Fig
S6). The naive and always-absent comparison models had the worst discriminatory performance,
while the ensemble, the negative binomial, the AR(1), the AR(1) Climate forecasts, and several
teams (MHC, MSSM, NYSW, NYSW-CVD, Rutgers, Stanford, and UCD) all had high
discriminatory power. The forecasts with the highest overall skill combined good calibration and
discrimination.

Discussion

Reliable early-warning of vector-borne disease outbreaks could offer new opportunities for
effective prevention and control through targeting control to high-risk areas. For WNV, such an
early-warning system would identify spatial and temporal periods of high-risk weeks to months
prior to the onset of risk, enabling effective proactive response. We performed a multi-model
evaluation of probabilistic forecasts for the total WNND cases reported by county in the

contiguous United States and Washington DC in 2020. The comparison of forecast performance
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elucidated the current predictive capacity of WNND on this spatial and temporal scale, and
avenues for improvement.

Although the COVID-19 pandemic caused dramatic changes in human behavior and
challenges for health systems in 2020, it is not clear that the occurrence and reporting of WNND
cases changed dramatically. The reported total number of WNND cases was similar to prior
years with relatively low case numbers. The ratio of reported WNND to non-neuroinvasive cases
for 2020 increased substantially, to the highest level since 2001, indicating likely under-detection
and reporting of non-neuroinvasive cases. However, it remains unclear what impact COVID-19
may have had on human behavior and resulting exposure to WNV, treatment-seeking by infected
individuals, or physicians’ diagnosis and reporting of WNV disease.

Overall, simple models based on historical WNND cases (i.e., the negative binomial
model) generally scored better than more complex models, combining discriminatory power and
calibration of uncertainty. Only one team (UCD) had higher forecast skill than the negative
binomial forecast model, and only by a small, nonsignificant margin. One explanation for the
relatively strong performance of the negative binomial model is that the historical case
distributions reflect the ecological differences across counties and therefore capture most of the
inherent spatial variability in WNV transmission. Incorporating additional contextual factors
explicitly might not necessarily improve prediction accuracy despite their importance. Also,
matching case locations in space and time with available environmental data can introduce
uncertainty in model predictions that consider environmental data on top of historical WNV data.
For example, WNND data were available on the county-annual scale while environmental data

were available at much finer spatial and temporal resolutions. Thus, decisions on aggregations or
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summaries of environmental data cannot fully capture the particular sequence of conditions
precipitating zoonotic transmission.

Regression to identify modeling approaches associated with variation in forecast skill
confirmed an increase in score for later submissions after accounting for other differences.
Changes in later forecast submissions were attributed largely to integration of updated data rather
than changes in forecasting methods, so this score improvement highlights the value of including
updated covariate data (e.g., reported updates included using recent weather data, newly released
2019 WNV data, and additional demographic data). Although we could not discern the relative
contribution of each update on the change in score due to heterogeneity in the type of changes
and number of submissions across teams, recent weather data appeared to have played some role
in improving the predictive accuracy of forecasts. Improving access to real-time data streams
could therefore improve predictive accuracy [27,39]. Moreover, these updates occurred before
the majority of WNND cases were reported, indicating that although forecasts that provide early
warning during the spring can allow for greater lead times for preventative actions, later updates
that provide early detection of risk—even after some cases have begun to occur—could provide
additional value [27]. From a practical standpoint, shifting forecast submission deadlines by
several days later could facilitate incorporating monthly aggregated data from the prior month
when available.

The limited number of submissions prevented us from fully assessing the relative
performance of different modeling approaches as models used different data inputs in addition to
different methods. While the broad classifications we used provide some insight on general
forecast skill, we could not assess the performance of specific model constructions because they

varied in both methods and covariates included. It could be of interest to identify variation in
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predictive performance due to specific model constructions to guide the development and
refinement of WNV prediction.

We found the inclusion of estimated mosquito distributions or mosquito surveillance data
reduced forecast skill on average. This result seems counter-intuitive because the importance of
key mosquito vectors and the relationship between entomological indicators of risk and WNV
activity is clear [9,10,40—43]. One explanation is that mosquitoes are much more widespread
than WNND cases, so it is difficult to discriminate counties with intense enzootic transmission
without human involvement. An alternative explanation is that this finding might reflect model-
specific limitations in how the data were incorporated or limited quality or availability of
national datasets on mosquito distributions or entomological surveillance. Current distribution
maps date back to the 1980s [44,45] with an update in 2021 using habitat suitability modeling
[46]. Although the updated maps have increased spatial definition compared to earlier estimates,
these distributions indicate relative habitat suitability rather than presence or absence. One
publicly available surveillance database, ArboNET, maintains data on human disease and
infections among presumptive viremic blood donors, veterinary disease cases, mosquitoes, dead
birds, and sentinel animals for a variety of arboviruses. However, nonhuman arboviral
surveillance is voluntary with large variation in spatial and temporal coverage between
jurisdictions, and reported data are often incomplete [47] reducing the predictive utility of the
database.

The ensemble forecast had a higher forecasting skill (average logarithmic score) than
most team forecasts, with better discriminatory power (ability to differentiate having at least one
case) than any team forecast and better calibration (reliable uncertainty specification) than most.

Previous forecasting efforts for influenza, dengue, and COVID-19 [37,48—-50] demonstrated that
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ensemble approaches capitalize on the strengths of diverse models and balance uncertainty
across modeling approaches to produce robust predictions. This general finding was replicated
here with the ensemble performing in the top third of forecasts. However, we also found a simple
model based on historical data alone substantially outperformed both the ensemble and majority
of team forecasts at every submission date for the 2020 Challenge. This indicates that even the
strengths of a multi-modeling approach were not sufficient to improve prediction beyond
historical trends for this year. There are several potential ways to improve the ensemble in the
future. With predictions for previous years it would be possible to generate weighted ensembles
that could improve performance. Weighted ensembles based on regional performance could also
potentially leverage differences in forecast skill for different ecological zones. Alternative
approaches to generating ensembles from component models such as linear pools from
cumulative distribution functions which could be approximated from binned forecast
probabilities could also be fruitful [51,52].

We found that heterogeneity in historic WNV cases had a significant impact on variation
in forecast skill, and unsurprisingly, forecasts scored worse in locations of high historic
heterogeneity. Improvement in forecast skill for these locations would likely be the most useful
for vector control and public health officials, but the high variability also represents a significant
challenge to forecasters.

Other intrinsic differences between counties associated with lower forecast skill could
highlight areas that need improvement. By identifying local drivers in counties with relatively
large populations and hotter or colder winters, forecast skill could be improved in these
circumstances. For example, the ecological setting (i.e., Culex species present, composition of

avian community, and climate) would vary substantially between counties with “hot” or “cold”
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winter extremes and different drivers may need to be considered in each. Also, factors might
interact together to impact zoonotic transmission, but due to the limited data and limited number
of forecasts available for analysis, we were unable to investigate these.

Calibration across teams indicated other avenues for improving prediction. Overall, teams
over-predicted the probability that cases would occur while correspondingly underestimating the
probability that cases would not occur. Overestimating the probability of disease cases could lead
to better preparedness but could also result in allocation of resources that are not ultimately
needed. Moreover, repeated instances of non-events could lead public health officials or the
public to doubt the accuracy of such forecasts. A forecast with demonstrated calibration is not
immune to this type of perception but would be able to demonstrate over time or across locations
that an 80% chance of an outbreak still results in no outbreak 20% of the time. Further work on
refining calibration and identifying any relationship of modeling approach and calibration could
improve the reliability and usability of forecasts.

The identification of climate factors predictive for WNV activity needs further
refinement. Our analysis of modeling approaches indicated that teams that included climate data
scored better than those that did not. However, the data source, climatic variables (e.g., minimum
temperature, maximum temperature, total precipitation, variance in precipitation, Palmer
Drought Severity score, dewpoint, soil moisture, anomalies in temperature or precipitation), and
aggregation of the climate variable (e.g., number of days above or below a threshold; weekly
average; average of 1-12 months; lagged values up to three years) varied widely among teams
(Additional File 1: Text S1). It should be noted that all climate data included in models was
lagged to some extent in relation to the predicted annual totals. Due to heterogeneity among

teams and the limited number of total forecasts, we could not identify the most predictive subset

22



484  of climatic factors and appropriate spatial and temporal aggregations or lags nor the potential
485  importance of variation in data quality among data sources. Similarly, the addition of any

486  seasonal climatic variable in the autoregressive modeling framework when selecting the baseline
487  climate model reduced the forecast skill relative to the AR(1) model (Additional File 1: Fig S1).
488  However, this model, which used a single climate variable nationally on a subjectively

489  prescribed three-month season, could not capture spatial variation in climatic zones. Previous
490  studies have also demonstrated challenges in identifying a single environmental driver for

491  predicting WNV activity [53-57]. The essential role of climate in WNV transmission likely

492  varies substantially across different ecological areas, with geographic heterogeneity in which
493  combination of environmental factors, avian populations (composition and seropositivity), and
494  mosquito species drive local transmission.

495 The forecasts generated here provide some important insight on the challenges with

496  current capabilities and opportunities for improvement, but also on potential uses. As in other
497  forecasting efforts, an ensemble was more accurate than many of the individual component

498  forecasts. However, in this case, a model based on historical data had more forecast skill and
499  could be considered as a benchmark for a national-scale early warning system even though the
500 current best indicator of high risk is a past history of larger outbreaks. The use of heuristic

501  principles, like historic outbreaks, can be useful, but sometimes leads to severe and systematic
502 errors [58]. Early indications of high risk can support preparedness across scales, such as

503  resource planning and allocation at the state or local scale. Forecasts at finer spatio-temporal
504  resolution (e.g., two-week forecast on the neighborhood scale) could be even more useful to

505 directly guide effective vector control within counties within seasons [27]. Additional targets like

506  onset or peak week of transmission could also guide vector control activities. There might also

23



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

be opportunities to frame and communicate forecasts more effectively. Here, we have focused on
binned probabilities of different case numbers. However, forecasts could also be framed as the
probability of above average incidence or predicted range of case numbers (e.g., a 90%

prediction interval) that might be actionable in different ways.
Conclusions

The 2020 WNYV Forecasting Challenge highlighted the current state of large-scale, early-warning
prediction capacity for WNND cases in the United States. Simple models based on previous
WNND cases generally performed better than more complex forecasts. The forecasts evaluated
therefore indicate that historical incidence provides a relatively reliable indicator of future risk,
but substantial uncertainty remains, and future models can build upon findings here to improve
forecasting as well as providing insight on the probability that the next season will be different
from previous seasons. Among models using additional data, inclusion of climate or human
demographic data was associated with higher skill, while inclusion of mosquito or land use data
was associated with lower skill. These differences indicate that WNV forecasts can benefit by
considering location-specific historical data and incorporating additional covariates with caution.
Forecast skill was also associated with intrinsic differences among counties, with lower skill in
counties with relatively large populations, “cold” or “hot” winters, and high variability in yearly
case counts. High case count variability likely indicates counties that are intrinsically more
difficult to predict, but there may be opportunities to specifically improve predictions for areas
with large populations and low or high winter temperatures. Most forecasts, including the highest
skill forecasts, also showed patterns of calibration that could potentially be improved. In addition
to improved forecast models, increased data collection, data sharing, and real-time data access

(e.g., meteorological observations, avian immunity to WNV, mosquito surveillance (abundance
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and infection rates), mosquito control activities) may support improved predictions. These

findings lay the foundation for improving future WNV forecasts.
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751  Fig 1. Ensemble forecast with final submissions. A) Most likely number of WNND cases from

752  and B) uncertainty (Shannon entropy) of ensemble model forecast. Mean ensemble model built
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using the last submitted versions of forecasts of all teams and negative binomial model (2000-

2019 data). Shannon entropy measures the spread of probability across the binned case counts

with a value of zero indicating high certainty in prediction (all probability in a single bin) and a

value of one indicating high uncertainty in prediction (probability equally spread across all bins).
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Fig 2. Mean logarithmic score of submissions from teams and comparison models. A) Full

range of mean scores and B) vertically truncated range to visualize differences in score among

top models for each submission timepoint. If a team did not submit a new forecast at a

submission timepoint, we used the previously submitted forecast to calculate the score (i.e., no

variation in score between timepoints). See Additional File 1: Table S3 for individual forecast

mean logarithmic scores.
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Fig 3. Discrimination, calibration, and mean logarithmic score of final forecasts by teams

and comparison models. Area under the curve (AUC) was used to measure a forecast’s ability

to discriminate situations with reported WNYV cases vs. no cases (AUC of 1.0 would indicate

perfect discrimination). Calibration was calculated as the mean weighted squared difference of

binned predicted probabilities vs. observed frequency of events (metric of 0 perfectly calibrated).

Mean logarithmic score of 0 indicates perfect prediction accuracy. Top-performing models are in

the top left (A, C) or top right (B). See Additional File 1: Table S3 and Fig S5-S6 for individual

forecast score, calibration, and discrimination.
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