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Abstract 52 

Background:  West Nile virus (WNV) is the leading cause of mosquito-borne illness in the 53 

continental United States. WNV occurrence has high spatiotemporal variation and current 54 

approaches for targeted control of the virus are limited, making forecasting a public health 55 

priority. However, little research has been done to compare strengths and weaknesses of WNV 56 

disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 57 

WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control 58 

and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and 59 

identify avenues for improvement. 60 

Methods: We performed a multi-model comparative assessment of probabilistic forecasts 61 

submitted by 15 teams for annual WNND cases in US counties for 2020, and assessed forecast 62 

accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts 63 

produced by comparison models of varying complexity as benchmarks of forecast performance. 64 

We also used regression analysis to identify modeling approaches and contextual factors that 65 

were associated with forecast skill. 66 

Results: Simple models based on historical WNND cases generally scored better than more 67 

complex models and combined higher discriminatory power with better calibration of 68 

uncertainty. Forecast skill improved across updated forecast submissions submitted during the 69 

2020 season. Among models using additional data, inclusion of climate or human demographic 70 

data was associated with higher skill, while inclusion of mosquito or land use data was 71 

associated with lower skill. We also identified population size, extreme minimum winter 72 

temperature, and interannual variation in WNND cases as county-level characteristics associated 73 

with variation in forecast skill.  74 



   
 

5 
 

Conclusions: Historical WNND cases were strong predictors of future cases with minimal 75 

increase in skill achieved by models that included other factors. Although opportunities might 76 

exist to specifically improve predictions for areas with large populations and low or high winter 77 

temperatures, areas with high case-count variability are intrinsically more difficult to predict. 78 

Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains 79 

difficult. Further improvements to prediction could be obtained with improved calibration of 80 

forecast uncertainty and access to real-time data streams (e.g., current weather and preliminary 81 

human cases). 82 

Keywords: calibration, discriminatory power, forecasting, logarithmic score, multi-model 83 

assessment, West Nile virus, West Nile neuroinvasive disease, United States 84 

Background 85 

West Nile virus (WNV; Flaviviridae, Flavivirus) is the leading cause of mosquito-borne illness 86 

in the continental United States [1]. Symptomatic infections typically present as a febrile illness 87 

(approximately 20% of all infections). However, <1% of all infections result in West Nile 88 

neuroinvasive disease (WNND) with manifestations including meningitis, encephalitis, or acute 89 

flaccid paralysis [2]. WNV was first detected in the United States in 1999 [3] and by 2004, had 90 

spread across the contiguous United States and up the Pacific coast [4]. From 1999-2020, the 91 

Centers for Disease Control and Prevention (CDC) reported a total of 26,683 non-neuroinvasive 92 

WNV disease cases and 25,849 WNND cases, resulting in 2,456 deaths [5]. Since WNV became 93 

endemic (2005-2020), a median of 409 (range 167-693; 5-22%) of the 3,108 counties in the 94 

contiguous United States report WNND cases each year. WNV exhibits marked seasonality with 95 

most cases reported between Jul and Oct nation-wide [5]. Even in counties that regularly report 96 

WNND cases, the number and location of WNND cases varies. For example, reported WNND 97 
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cases per county can range from singles to a few dozen or fifty with 239 cases reported in the 98 

largest outbreak during this time [6]. Large spatial and temporal heterogeneity in annual WNND 99 

cases make accurate prediction of incidence both challenging and potentially valuable to guide 100 

prevention and control efforts. 101 

  The ecology of WNV is complex and spatially variable across the United States. The 102 

virus is maintained in an enzootic cycle between birds (predominantly passerines) and Culex 103 

mosquitoes [7–9], but can cause disease in horses and humans, which are dead-end hosts [10]. 104 

The vectors for WNV vary geographically [9]. In the east-central region (Northeast, mid-105 

Atlantic, and central United States), Cx. pipiens and Cx. restuans have been incriminated as the 106 

primary vectors with Cx. salinarius also playing an important role in maintenance and zoonotic 107 

transmission in coastal areas. In the southeast, Cx. quinquefasciatus has been implicated as the 108 

primary vector with Cx. salinarius and Cx. nigripalpus also capable of causing human disease. In 109 

western North America, Cx. tarsalis is largely responsible for zoonotic transmission, especially 110 

in more rural areas, while Cx. pipiens serves as the enzootic vector in urban areas in the more 111 

northern parts of the western United States (northern Great Plains, Rocky Mountains, and Pacific 112 

Northwest). In urban areas of the southwestern United States, Cx. quinquefasciatus can act as the 113 

dominant zoonotic vector. Other Culex mosquito species can have a secondary or localized 114 

importance in this region.  115 

 Meteorological factors like temperature and precipitation have a large impact on the 116 

transmission of WNV. Temperature influences mosquito survival and potential WNV 117 

transmission rates [11]. As temperatures warm, mosquito development and biting rates accelerate 118 

[11,12]. Additionally, with increasing temperature, the extrinsic incubation period for WNV 119 

decreases as viral replication rates increase [13–16]. Thus, with increasing temperature above the 120 
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thermal minimum for mosquito survival and WNV replication [15,17], viral transmission and 121 

risk of zoonotic transmission increases. However, there is a thermal optimum (23.9-25.2°C [18]) 122 

above which transmission generally decreases due to negative impacts on mosquito survival and 123 

other traits. Variation in the interaction of climatic and landscape factors contributes to seasonal 124 

dynamics and spatial variation in the effect of temperature [9,19]. Increased precipitation 125 

generally increases the quantity of available larval habitat [20–22], but intense precipitation 126 

events can wash out immature mosquitoes from larval habitat such as catch basins [23]. The 127 

impact of precipitation varies broadly across the United States with a positive association 128 

between increased precipitation and above average-human cases in the western United States, 129 

but a negative association in the eastern United States. This difference is potentially due to 130 

difference in the mosquito species, their preferred egg-laying habitats, and other environmental 131 

factors present in each area [9,19,22]; in the West, increased precipitation likely leads to 132 

increased Cx. tarsalis larval habitats while in the East, increased precipitation may wash out Cx. 133 

pipiens larval habitats. Also, drought has been associated with WNV amplification and increased 134 

human cases, partially due to aggregation of hosts and vectors at dwindling water sources 135 

[24,25]. 136 

Statistical and mechanistic models have been developed to predict geographic or 137 

temporal dynamics of WNV transmission [26,27]. These models included some subset of the 138 

following grouping of variables: historical human cases, veterinary cases, climate, hydrology, 139 

human demographics, land use, viral genetics, mosquito surveillance, sentinel surveillance, and 140 

avian population dynamics. Models generally produce estimates on a single spatial and temporal 141 

scale aimed at guiding public health decisions or elucidating factors that enable increased 142 

transmission. Models developed for prediction in one location often fail to perform well if 143 
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applied to a different location due to variation in factors like ecology, primary mosquito species, 144 

and human behavior as well as availability of predictor data, like mosquito surveillance data 145 

[28]. Out-of-sample validation is often used to assess model performance, but no multi-model 146 

comparative assessment has been performed to assess the strengths and weaknesses of predictive 147 

WNV modeling at the local or national scale.  148 

To systematically evaluate WNND prediction across the continental United States, the 149 

CDC Epidemic Predictive Initiative and the Council for State and Territorial Epidemiologists 150 

launched an open West Nile virus Forecasting Challenge in 2020. The primary objective of the 151 

Challenge was to predict the total number of WNND cases for each county in the contiguous 152 

United States that would be reported to the national surveillance system for arboviral diseases, 153 

ArboNET, during the 2020 calendar year. In our evaluation of the Challenge, we 1) assessed 154 

whether some models had better predictive performance than others, 2) identified modeling 155 

approaches associated with better prediction, and 3) evaluated contextual factors of the counties 156 

(e.g., environmental, climatic, and historical WNV patterns) associated with variation in forecast 157 

skill. 158 

Methods 159 

Team participation 160 

An announcement recruiting team participation in the 2020 WNV Forecasting Challenge was 161 

circulated widely by the CDC Epidemic Prediction Initiative through emails and postings on 162 

webpages starting in March 2020. Teams using any modeling approach were encouraged to 163 

participate. 164 

Participating teams signed a data use agreement and were provided with annual WNND 165 

case counts, by county for the contiguous United States and Washington DC during 2000-2018, 166 
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from ArboNET, the national arboviral diseases surveillance system administered by the CDC. 167 

Provisional 2019 case data were provided to participants in early May 2020. Participants were 168 

allowed to use any other data source, like climate, weather, land use, mosquito surveillance, and 169 

human demographics, at whatever spatial and temporal scaled they deemed appropriate to 170 

develop their modeling approach. See Additional File 1: Text S1 for details on modeling 171 

methodologies and datasets used by each team. 172 

Forecasting target 173 

Teams predicted the total number of probable and confirmed WNND cases that would be 174 

reported to ArboNET for all counties (n = 3,108) in the contiguous United States and 175 

Washington DC during 2020. WNND cases were chosen as the outcome because the severe 176 

manifestations of the disease are more likely to be consistently recognized and reported 177 

compared with less severe, non-neuroinvasive WNV disease cases [29]. 178 

 For each county, a forecast included both a point estimate and a binned probability 179 

distribution. The point estimate denoted the most likely number of cases. Fifteen bins were 180 

chosen to cover the range of cases from 0 to >200, reflecting a typical range of observed cases 181 

across counties, with finer resolution for smaller numbers of expected cases given the relatively 182 

few cases reported in the majority of counties (i.e., bins for 0, 1-5, 6-10, …, 46-50, 51-100, 101-183 

150, 151-200, >200 cases). These bins provide meaningful information for location-specific 184 

public health action given that, on average, 0.38 WNND cases per county are reported each year 185 

(on average, 88% of counties report zero cases, 11.5% report 1-10 cases, and 0.4% report 11-50 186 

cases with yearly county maximums ranging from 18-239 cases, 2005-2020) [6]. Teams assigned 187 

a probability between 0 and 1 to each bin, with a total probability equal to 1.0 across all bins per 188 

county. 189 
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Forecasts 190 

The initial forecast due date was April 30, 2020, with submission to an online system 191 

(https://predict.cdc.gov). Additional, optional, updated submissions could be submitted by the 192 

following deadlines: May 31, June 30, and July 31, 2020. Further details are available through 193 

the project’s GitHub repository (https://github.com/cdcepi/WNV-forecast-project-2020). 194 

 Concurrently, we developed four additional models of varying complexity and use of 195 

historical case data for comparison with the team forecasts: a naïve model, an always-absent 196 

model, a negative binomial model, and an ensemble model. The naïve model used no historical 197 

data and assigned equal probability to each of the bins (i.e., 1/15 probability). The always-absent 198 

model also ignored historical data and represented a universal expectation of zero cases by 199 

assigning a probability of 1.0 to the zero-case bin and zero probability to all other bins for each 200 

county. We included this model given the relatively small percent of counties in the U.S. that 201 

report WNND cases each year. The negative binomial model was built to reflect a parsimonious 202 

probabilistic prediction relying exclusively on local historical data, a “same-as-before” baseline 203 

model. For each county, we fitted a negative binomial distribution to historical WNND cases and 204 

extracted probabilities for each bin from the cumulative distribution function. The initial version 205 

of this forecast (April submission) used 2000-2018 case counts, while the May submission also 206 

incorporated the provisional 2019 data reported as of May 2020. Finally, we created a mean 207 

consensus ensemble using all team-submitted forecasts and the negative binomial forecast by 208 

averaging the probabilities assigned in each bin for all forecasts at each location and submission 209 

deadline. For forecasts that were not updated at a particular submission deadline, we used the last 210 

available forecast for each update of the ensemble. Using the final version of the ensemble, we 211 

https://predict.cdc.gov/
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used Shannon entropy [30] to assess the spread of probability across the binned case counts 212 

(uncertainty) in the ensemble model forecast. 213 

We developed two additional models retrospectively as alternative baseline models: a 214 

first-order autoregressive model (i.e., AR(1)) and a first-order autoregressive model with a single 215 

climate variable as an exogenous covariate (AR(1) Climate). For both models, we fitted log-216 

transformed annual WNND case counts (2005-2019; ln(cases+1)) using the arima function in the 217 

stats package in R (version 4.1.2; [31]). For the AR(1) Climate model, we considered seasonal 218 

aggregations of climate conditions (i.e., average temperature, mean minimum temperature, or 219 

total precipitation), using Parameter-elevation Regressions on Independent Slopes Model 220 

(PRISM) data [32] aggregated to county. We defined seasons as three-month periods for winter 221 

(Dec-Feb), spring (Mar-May), summer (Jun-Aug), and fall (Sep-Nov). To predict annual WNND 222 

case numbers, we considered including climate data from the previous winter to the concurrent 223 

year’s spring to capture any lagged climate-induced impacts on transmission during the previous 224 

year (e.g., considering seasonal climate data from Dec 2018-May 2020 to predict 2020 WNND 225 

cases). See Additional File 1: Text S1 for more details on the development of the autoregressive 226 

modeling framework. 227 

Evaluation 228 

As announced before the Challenge, we evaluated all forecasts using the logarithmic score, a 229 

proper scoring rule based on the probabilities assigned in each forecast in relation to the eventual 230 

observed case counts [33,34]. The score for each team was the average logarithm of the 231 

probability assigned to the observed outcome bin, the bin containing the reported number of 232 

WNND cases for 2020, per county. To avoid logarithmic scores of negative infinity for forecasts 233 

which assigned zero probability to the observed outcome, we truncated binned predictions to 234 
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have a minimum logarithmic score of -10. We compared mean logarithmic scores with ANOVA 235 

followed by Tukey post-hoc multiple comparisons to identify significant differences between 236 

forecast scores. We compared the forecasts for the final versions of team forecasts and 237 

comparison models, and between the initial and final versions of all forecasts. 238 

 We assessed probabilistic calibration by plotting forecasted probabilities versus observed 239 

frequencies for forecasts with each summarized in the following upper-bound inclusive 240 

probability bins: 0.0, 0.0-0.1, 0.1-0.2, …, 0.9-1.0. Note that these bins are the probabilities 241 

assigned to case number bins, not the cases number bins themselves. We then calculated a metric 242 

of overall probabilistic calibration as the mean weighted squared difference of binned predicted 243 

probabilities versus the observed frequency of events; 1
𝑁
∑𝑛𝑘 (𝑝̅𝑘 − 𝑜̅𝑘)2, where 𝑁 is the total 244 

number of a team’s prediction, nk is the number of predictions in bin 𝑘 (e.g., between 0.2 and 0.3) 245 

with average probability 𝑝̅𝑘, and 𝑜̅𝑘 is the frequency of those predictions being correct. In other 246 

words, we assessed if events that were predicted to occur 20-30% actually occurred 20-30% of 247 

the time. Our chosen calibration metric corresponds to the reliability term in the Brier score 248 

decomposition [35,36] and has been used to evaluate calibration of another vector-borne disease 249 

forecasting challenge [37]. Note that this considers calibration within the single forecast year and 250 

provides no information on calibration of models across forecast years. 251 

To assess discriminatory power, we used receiver-operator characteristic (ROC) curve 252 

analysis to assess the sensitivity and specificity of the probability of having at least one WNND 253 

case in each county. We then calculated the area under the curve (AUC) as the metric for 254 

discrimination. 255 

Regression modeling 256 
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We used Bayesian regression modeling to identify high-level modeling approaches and 257 

contextual factors of counties associated with variation in skill. To assess the impact of modeling 258 

approach, we fitted generalized linear models to all team forecasts and the negative binomial 259 

comparison model (April and May versions) using the negative logarithmic score, or surprisal, as 260 

the outcome, assuming a Gamma distribution with the inverse link. We used the stan_glm 261 

function in the rstanarm package (version: 2.21.1, [38]) to fit the models. We assessed 262 

associations between surprisal and a suite of model-specific nominal covariates for a team's 263 

inclusion of data on climate, human demographics, land use, mosquito distributions/surveillance, 264 

and bird/equine infections, and if submissions were updated. To assess county-specific 265 

contextual factors, we fitted Bayesian generalized additive models (GAMs) to the ensemble 266 

forecasts using the stan_gamm4 function in the rstanarm package (version: 2.21.1, [38]). We 267 

chose the ensemble forecast to capture the overall accuracy of all teams without the variation in 268 

performance between teams due to modeling approaches. Contextual factors investigated 269 

included environmental factors (e.g., land use, extreme minimum winter temperature, region), 270 

history of reported WNND cases (e.g., number of years and pattern of reported cases), and 271 

demographics (e.g., population size, population density, population > 65 years old). See 272 

Additional File 1: Text S1 for more details on methods, model selection, and a complete list of 273 

variables considered. 274 

 All analyses were performed with R statistical software (version 4.1.2; [31]). 275 

Results 276 

Fifteen teams submitted binned probabilistic forecasts for the total number of WNND cases 277 

reported in each county using a variety of modeling approaches (see Additional File 1: Text S1 278 

for team information including model details and descriptions and Table S1 for model 279 
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characteristics). Two teams (13%) included mechanistic model elements while the remainder 280 

used completely statistical approaches. Six teams (40%) used Bayesian frameworks for model 281 

fitting. We broadly categorized the modeling approaches teams used as machine learning (i.e., 282 

random forest, neural network), regression (i.e., maximum likelihood generalized linear models, 283 

generalized additive models), hurdle models (i.e., spatio-temporal hurdle models fit using 284 

integrated nested Laplace estimation), system of difference equations, or historical case 285 

distributions. Across the four submission timepoints, we received 30 unique forecast submissions 286 

(15 initial submissions, 5 teams that updated once, 2 that updated twice, and 2 that updated three 287 

times). Some teams used different data sources in different submissions. Across all submissions, 288 

24 submissions (from 11 teams) used climatic data, 22 (from 11 teams) used human 289 

demographic data, 9 (from 5 teams) used land-use data, 12 (from 4 teams) used entomological 290 

data related to Culex mosquito species distributions or WNV infection prevalence in mosquitoes, 291 

2 used data on avian WNV infections (1 team), and 2 used data on equine WNV infections (1 292 

team). 293 

 The final version of the ensemble model assigned the highest probability to a non-zero 294 

bin for 115 counties, with the largest probabilities assigned to high numbers of WNND cases in 295 

highly urbanized counties: Los Angeles (CA, bin: 101-150 cases), Maricopa (AZ, bin: 51-100 296 

cases), Cook (IL, bin: 51-100 cases), and Harris (TX, bin: 11-15 cases) (Fig 1A); the other 111 297 

counties assigned the highest probability to the 1-5 cases bin. The remaining 2,993 counties had 298 

the highest probability in the ensemble model assigned to the zero-case bin and each team model 299 

(final version) assigned the highest probability to the zero-case bin for at least 2,222 counties. 300 

Uncertainty in ensemble predictions was greatest in more populous counties as well as in the 301 
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southwest (CA, AZ, NV), in the Great Plains states, along the southern edges of the Great Lakes, 302 

and along the northeast coast (Fig 1B). 303 

Finalized case data for 2020 were released in November 2021 with 559 WNND cases 304 

reported in 181 counties. These counts were similar to totals reported annually during 2008-2011 305 

and 2019 (Additional File 1: Table S2). The ratio of reported neuroinvasive to non-neuroinvasive 306 

cases was 3.25, the largest reported since 2001 (range for 2002-2019: 0.41-2.43). 307 

Forecast skill, as measured by logarithmic score, generally increased across the 308 

submission timepoints with updated submissions (Fig 2, Additional File 1: Table S3). Gains in 309 

skill for individual forecasting teams were typically abrupt and occurred at different times, 310 

presumably due to acquisition of new contextual data or revisions of modeling approaches. The 311 

ensemble forecast, which included all the most recent team forecasts and the negative binomial 312 

model at each time point, increased from a mean log score of -0.357 (April) to -0.253 (July), 313 

with the largest increase in skill occurring between the June and July submissions likely due to 314 

the dramatic improvement in the forecast by UI. Three teams (MSSM, Stanford, and UNL) and 315 

the negative binomial forecast consistently outscored the ensemble forecast with four teams 316 

(MHC, NYSW, NYSW-CVD, and UCD) outscoring the ensemble for at least one submission 317 

timepoint. The retrospectively implemented AR(1) and AR(1) Climate models (using mean 318 

winter temperature based on historical performance, Additional File 1: Fig S1) also consistently 319 

outperformed the ensemble. However, the difference in score between the final forecast for each 320 

of those that outscored the ensemble was not statistically significant (P > 0.1, Additional File 1: 321 

Fig S4). 322 

 Overall, models based only on historical distributions of cases had relatively high skill. 323 

The negative binomial comparison model, AR(1) comparison model, and an empirically 324 
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weighted distribution (MSSM) were in the top five forecasts at each submission timepoint. Only 325 

the final forecast from UCD scored higher than the negative binomial model with a difference in 326 

mean logarithmic score of 0.007 (P = 0.98, Additional File 1: Fig S4).  327 

Comparing high-level modeling approaches and controlling for submission date, we 328 

found variation in forecast skill was associated with the inclusion of some types of data 329 

(Additional File 1: Table S4). Skill was higher for teams that included climate (0.187, 95% CI: 330 

0.174, 0.226) or demographic data (0.335, 95% CI: 0.326, 0.361). We found lower skill for 331 

forecasts that included land use (-0.100, 95% CI: -0.124, -0.031) or Culex mosquito geography 332 

(estimated ranges or WNV infection prevalence data, -0.114, 95% CI: -0.142, -0.048). We did 333 

not compare the association of skill with the inclusion of avian or equine WNV disease cases 334 

because only one team used each of these data types. 335 

 We next analyzed county-specific contextual factors that might be associated with 336 

varying forecast skill across modeling approaches by analyzing associations with ensemble 337 

forecast skill (Additional File 1: Fig S3). Average skill was highest in counties with mid-sized 338 

populations, low historical variation in annual WNND cases (permutation entropy), and 339 

relatively moderate winter minimum temperatures (-10° and 10°F, corresponding to the USDA 340 

Plant Hardiness Zones 6a to 7b). For extreme minimum winter temperatures, the ensemble had 341 

lower skill at extreme high and low values. For population size, the ensemble had lower skill at 342 

large sizes and a nonsignificant relationship at small sizes. Increased variation in interannual 343 

historic WNND cases (larger permutation entropy) was associated with decreased forecast skill 344 

with a plateau at permutation entropy above approximately 0.7. 345 

 Calibration of forecast uncertainty and the ability to predict whether WNND cases would 346 

occur (≥1 vs. 0 cases, i.e., discrimination) varied across teams (Fig 3). Comparing binned 347 
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forecasted probabilities to observations (Additional File 1: Fig S5), we found that most forecasts 348 

were over-confident at lower probabilities and under-confident at higher probabilities. 349 

Expectations of the occurrence of cases, especially large numbers of cases, were commonly 350 

assigned low probabilities while the expectation of no reported cases was typically highly 351 

probable. The forecasts with the best calibration (i.e., reliable specification of probabilities) were 352 

those that did not assign any high probabilities (e.g., the naïve forecast), followed by the 353 

autoregressive (AR(1) and AR(1) Climate) and negative binomial models. We found that the 354 

discriminatory power of forecasts, assessed as the AUC comparing the probability of one or 355 

more cases in each county to whether at least one WNND case was reported, also varied widely 356 

across teams and comparison models (range of forecast AUC: 0.5-0.875, Additional File 1: Fig 357 

S6). The naïve and always-absent comparison models had the worst discriminatory performance, 358 

while the ensemble, the negative binomial, the AR(1), the AR(1) Climate forecasts, and several 359 

teams (MHC, MSSM, NYSW, NYSW-CVD, Rutgers, Stanford, and UCD) all had high 360 

discriminatory power. The forecasts with the highest overall skill combined good calibration and 361 

discrimination. 362 

Discussion 363 

Reliable early-warning of vector-borne disease outbreaks could offer new opportunities for 364 

effective prevention and control through targeting control to high-risk areas. For WNV, such an 365 

early-warning system would identify spatial and temporal periods of high-risk weeks to months 366 

prior to the onset of risk, enabling effective proactive response. We performed a multi-model 367 

evaluation of probabilistic forecasts for the total WNND cases reported by county in the 368 

contiguous United States and Washington DC in 2020. The comparison of forecast performance 369 
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elucidated the current predictive capacity of WNND on this spatial and temporal scale, and 370 

avenues for improvement. 371 

Although the COVID-19 pandemic caused dramatic changes in human behavior and 372 

challenges for health systems in 2020, it is not clear that the occurrence and reporting of WNND 373 

cases changed dramatically. The reported total number of WNND cases was similar to prior 374 

years with relatively low case numbers. The ratio of reported WNND to non-neuroinvasive cases 375 

for 2020 increased substantially, to the highest level since 2001, indicating likely under-detection 376 

and reporting of non-neuroinvasive cases. However, it remains unclear what impact COVID-19 377 

may have had on human behavior and resulting exposure to WNV, treatment-seeking by infected 378 

individuals, or physicians’ diagnosis and reporting of WNV disease. 379 

Overall, simple models based on historical WNND cases (i.e., the negative binomial 380 

model) generally scored better than more complex models, combining discriminatory power and 381 

calibration of uncertainty. Only one team (UCD) had higher forecast skill than the negative 382 

binomial forecast model, and only by a small, nonsignificant margin. One explanation for the 383 

relatively strong performance of the negative binomial model is that the historical case 384 

distributions reflect the ecological differences across counties and therefore capture most of the 385 

inherent spatial variability in WNV transmission. Incorporating additional contextual factors 386 

explicitly might not necessarily improve prediction accuracy despite their importance. Also, 387 

matching case locations in space and time with available environmental data can introduce 388 

uncertainty in model predictions that consider environmental data on top of historical WNV data. 389 

For example, WNND data were available on the county-annual scale while environmental data 390 

were available at much finer spatial and temporal resolutions. Thus, decisions on aggregations or 391 
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summaries of environmental data cannot fully capture the particular sequence of conditions 392 

precipitating zoonotic transmission. 393 

Regression to identify modeling approaches associated with variation in forecast skill 394 

confirmed an increase in score for later submissions after accounting for other differences. 395 

Changes in later forecast submissions were attributed largely to integration of updated data rather 396 

than changes in forecasting methods, so this score improvement highlights the value of including 397 

updated covariate data (e.g., reported updates included using recent weather data, newly released 398 

2019 WNV data, and additional demographic data). Although we could not discern the relative 399 

contribution of each update on the change in score due to heterogeneity in the type of changes 400 

and number of submissions across teams, recent weather data appeared to have played some role 401 

in improving the predictive accuracy of forecasts. Improving access to real-time data streams 402 

could therefore improve predictive accuracy [27,39]. Moreover, these updates occurred before 403 

the majority of WNND cases were reported, indicating that although forecasts that provide early 404 

warning during the spring can allow for greater lead times for preventative actions, later updates 405 

that provide early detection of risk—even after some cases have begun to occur—could provide 406 

additional value [27]. From a practical standpoint, shifting forecast submission deadlines by 407 

several days later could facilitate incorporating monthly aggregated data from the prior month 408 

when available.  409 

The limited number of submissions prevented us from fully assessing the relative 410 

performance of different modeling approaches as models used different data inputs in addition to 411 

different methods. While the broad classifications we used provide some insight on general 412 

forecast skill, we could not assess the performance of specific model constructions because they 413 

varied in both methods and covariates included. It could be of interest to identify variation in 414 
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predictive performance due to specific model constructions to guide the development and 415 

refinement of WNV prediction.  416 

We found the inclusion of estimated mosquito distributions or mosquito surveillance data 417 

reduced forecast skill on average. This result seems counter-intuitive because the importance of 418 

key mosquito vectors and the relationship between entomological indicators of risk and WNV 419 

activity is clear [9,10,40–43]. One explanation is that mosquitoes are much more widespread 420 

than WNND cases, so it is difficult to discriminate counties with intense enzootic transmission 421 

without human involvement. An alternative explanation is that this finding might reflect model-422 

specific limitations in how the data were incorporated or limited quality or availability of 423 

national datasets on mosquito distributions or entomological surveillance. Current distribution 424 

maps date back to the 1980s [44,45] with an update in 2021 using habitat suitability modeling 425 

[46]. Although the updated maps have increased spatial definition compared to earlier estimates, 426 

these distributions indicate relative habitat suitability rather than presence or absence.  One 427 

publicly available surveillance database, ArboNET, maintains data on human disease and 428 

infections among presumptive viremic blood donors, veterinary disease cases, mosquitoes, dead 429 

birds, and sentinel animals for a variety of arboviruses. However, nonhuman arboviral 430 

surveillance is voluntary with large variation in spatial and temporal coverage between 431 

jurisdictions, and reported data are often incomplete [47] reducing the predictive utility of the 432 

database.  433 

The ensemble forecast had a higher forecasting skill (average logarithmic score) than 434 

most team forecasts, with better discriminatory power (ability to differentiate having at least one 435 

case) than any team forecast and better calibration (reliable uncertainty specification) than most. 436 

Previous forecasting efforts for influenza, dengue, and COVID-19 [37,48–50] demonstrated that 437 
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ensemble approaches capitalize on the strengths of diverse models and balance uncertainty 438 

across modeling approaches to produce robust predictions. This general finding was replicated 439 

here with the ensemble performing in the top third of forecasts. However, we also found a simple 440 

model based on historical data alone substantially outperformed both the ensemble and majority 441 

of team forecasts at every submission date for the 2020 Challenge. This indicates that even the 442 

strengths of a multi-modeling approach were not sufficient to improve prediction beyond 443 

historical trends for this year. There are several potential ways to improve the ensemble in the 444 

future. With predictions for previous years it would be possible to generate weighted ensembles 445 

that could improve performance. Weighted ensembles based on regional performance could also 446 

potentially leverage differences in forecast skill for different ecological zones. Alternative 447 

approaches to generating ensembles from component models such as linear pools from 448 

cumulative distribution functions which could be approximated from binned forecast 449 

probabilities could also be fruitful [51,52]. 450 

 We found that heterogeneity in historic WNV cases had a significant impact on variation 451 

in forecast skill, and unsurprisingly, forecasts scored worse in locations of high historic 452 

heterogeneity. Improvement in forecast skill for these locations would likely be the most useful 453 

for vector control and public health officials, but the high variability also represents a significant 454 

challenge to forecasters.  455 

Other intrinsic differences between counties associated with lower forecast skill could 456 

highlight areas that need improvement. By identifying local drivers in counties with relatively 457 

large populations and hotter or colder winters, forecast skill could be improved in these 458 

circumstances. For example, the ecological setting (i.e., Culex species present, composition of 459 

avian community, and climate) would vary substantially between counties with “hot” or “cold” 460 
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winter extremes and different drivers may need to be considered in each. Also, factors might 461 

interact together to impact zoonotic transmission, but due to the limited data and limited number 462 

of forecasts available for analysis, we were unable to investigate these. 463 

Calibration across teams indicated other avenues for improving prediction. Overall, teams 464 

over-predicted the probability that cases would occur while correspondingly underestimating the 465 

probability that cases would not occur. Overestimating the probability of disease cases could lead 466 

to better preparedness but could also result in allocation of resources that are not ultimately 467 

needed. Moreover, repeated instances of non-events could lead public health officials or the 468 

public to doubt the accuracy of such forecasts. A forecast with demonstrated calibration is not 469 

immune to this type of perception but would be able to demonstrate over time or across locations 470 

that an 80% chance of an outbreak still results in no outbreak 20% of the time. Further work on 471 

refining calibration and identifying any relationship of modeling approach and calibration could 472 

improve the reliability and usability of forecasts. 473 

The identification of climate factors predictive for WNV activity needs further 474 

refinement. Our analysis of modeling approaches indicated that teams that included climate data 475 

scored better than those that did not. However, the data source, climatic variables (e.g., minimum 476 

temperature, maximum temperature, total precipitation, variance in precipitation, Palmer 477 

Drought Severity score, dewpoint, soil moisture, anomalies in temperature or precipitation), and 478 

aggregation of the climate variable (e.g., number of days above or below a threshold; weekly 479 

average; average of 1-12 months; lagged values up to three years) varied widely among teams 480 

(Additional File 1: Text S1). It should be noted that all climate data included in models was 481 

lagged to some extent in relation to the predicted annual totals. Due to heterogeneity among 482 

teams and the limited number of total forecasts, we could not identify the most predictive subset 483 
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of climatic factors and appropriate spatial and temporal aggregations or lags nor the potential 484 

importance of variation in data quality among data sources. Similarly, the addition of any 485 

seasonal climatic variable in the autoregressive modeling framework when selecting the baseline 486 

climate model reduced the forecast skill relative to the AR(1) model (Additional File 1: Fig S1). 487 

However, this model, which used a single climate variable nationally on a subjectively 488 

prescribed three-month season, could not capture spatial variation in climatic zones. Previous 489 

studies have also demonstrated challenges in identifying a single environmental driver for 490 

predicting WNV activity [53–57]. The essential role of climate in WNV transmission likely 491 

varies substantially across different ecological areas, with geographic heterogeneity in which 492 

combination of environmental factors, avian populations (composition and seropositivity), and 493 

mosquito species drive local transmission.  494 

The forecasts generated here provide some important insight on the challenges with 495 

current capabilities and opportunities for improvement, but also on potential uses. As in other 496 

forecasting efforts, an ensemble was more accurate than many of the individual component 497 

forecasts. However, in this case, a model based on historical data had more forecast skill and 498 

could be considered as a benchmark for a national-scale early warning system even though the 499 

current best indicator of high risk is a past history of larger outbreaks. The use of heuristic 500 

principles, like historic outbreaks, can be useful, but sometimes leads to severe and systematic 501 

errors [58]. Early indications of high risk can support preparedness across scales, such as 502 

resource planning and allocation at the state or local scale. Forecasts at finer spatio-temporal 503 

resolution (e.g., two-week forecast on the neighborhood scale) could be even more useful to 504 

directly guide effective vector control within counties within seasons [27]. Additional targets like 505 

onset or peak week of transmission could also guide vector control activities. There might also 506 
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be opportunities to frame and communicate forecasts more effectively. Here, we have focused on 507 

binned probabilities of different case numbers. However, forecasts could also be framed as the 508 

probability of above average incidence or predicted range of case numbers (e.g., a 90% 509 

prediction interval) that might be actionable in different ways.  510 

Conclusions 511 

The 2020 WNV Forecasting Challenge highlighted the current state of large-scale, early-warning 512 

prediction capacity for WNND cases in the United States. Simple models based on previous 513 

WNND cases generally performed better than more complex forecasts. The forecasts evaluated 514 

therefore indicate that historical incidence provides a relatively reliable indicator of future risk, 515 

but substantial uncertainty remains, and future models can build upon findings here to improve 516 

forecasting as well as providing insight on the probability that the next season will be different 517 

from previous seasons. Among models using additional data, inclusion of climate or human 518 

demographic data was associated with higher skill, while inclusion of mosquito or land use data 519 

was associated with lower skill. These differences indicate that WNV forecasts can benefit by 520 

considering location-specific historical data and incorporating additional covariates with caution. 521 

Forecast skill was also associated with intrinsic differences among counties, with lower skill in 522 

counties with relatively large populations, “cold” or “hot” winters, and high variability in yearly 523 

case counts. High case count variability likely indicates counties that are intrinsically more 524 

difficult to predict, but there may be opportunities to specifically improve predictions for areas 525 

with large populations and low or high winter temperatures. Most forecasts, including the highest 526 

skill forecasts, also showed patterns of calibration that could potentially be improved. In addition 527 

to improved forecast models, increased data collection, data sharing, and real-time data access 528 

(e.g., meteorological observations, avian immunity to WNV, mosquito surveillance (abundance 529 
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and infection rates), mosquito control activities) may support improved predictions. These 530 

findings lay the foundation for improving future WNV forecasts. 531 
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 750 

Fig 1. Ensemble forecast with final submissions. A) Most likely number of WNND cases from 751 

and B) uncertainty (Shannon entropy) of ensemble model forecast. Mean ensemble model built 752 
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using the last submitted versions of forecasts of all teams and negative binomial model (2000-753 

2019 data). Shannon entropy measures the spread of probability across the binned case counts 754 

with a value of zero indicating high certainty in prediction (all probability in a single bin) and a 755 

value of one indicating high uncertainty in prediction (probability equally spread across all bins). 756 

757 

Fig 2. Mean logarithmic score of submissions from teams and comparison models. A) Full 758 

range of mean scores and B) vertically truncated range to visualize differences in score among 759 

top models for each submission timepoint. If a team did not submit a new forecast at a 760 

submission timepoint, we used the previously submitted forecast to calculate the score (i.e., no 761 

variation in score between timepoints). See Additional File 1: Table S3 for individual forecast 762 

mean logarithmic scores. 763 
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764 

Fig 3. Discrimination, calibration, and mean logarithmic score of final forecasts by teams 765 

and comparison models. Area under the curve (AUC) was used to measure a forecast’s ability 766 

to discriminate situations with reported WNV cases vs. no cases (AUC of 1.0 would indicate 767 

perfect discrimination). Calibration was calculated as the mean weighted squared difference of 768 

binned predicted probabilities vs. observed frequency of events (metric of 0 perfectly calibrated). 769 

Mean logarithmic score of 0 indicates perfect prediction accuracy. Top-performing models are in 770 

the top left (A, C) or top right (B). See Additional File 1: Table S3 and Fig S5-S6 for individual 771 

forecast score, calibration, and discrimination. 772 


