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Abstract—Despite the advances in the autonomous driving
domain, autonomous vehicles (AVs) are still inefficient and limited
in terms of cooperating with each other or coordinating with
vehicles operated by humans. A group of autonomous and
human-driven vehicles (HVs) which work together to optimize an
altruistic social utility can co-exist seamlessly and assure safety
and efficiency on the road. Achieving this mission without explicit
coordination among agents is challenging, mainly due to the
difficulty of predicting the behavior of humans with heteroge-
neous preferences in mixed-autonomy environments. Formally,
we model an AV’s maneuver planning in mixed-autonomy traffic
as a partially-observable stochastic game and attempt to derive
optimal policies that lead to socially-desirable outcomes using a
multi-agent reinforcement learning framework (MARL), and
propose a semi-sequential multi-agent training and policy dis-
semination algorithm for our MARL problem. We introduce a
quantitative representation of the AVs’ social preferences and
design a distributed reward structure that induces altruism into
their decision-making process. Altruistic AVs are able to form
alliances, guide the traffic, and affect the behavior of the HVs to
handle competitive driving scenarios. We compare egoistic AVs
to our altruistic autonomous agents in a highway merging setting
and demonstrate the emerging behaviors that lead to
improvement in the number of successful merges and the overall
traffic flow and safety.

Index Terms—Cooperative driving, social navigation, mixed-
autonomy traffic, multi-agent reinforcement learning.

I. INTRODUCTION

ONNECTED and automated vehicles (CAVs) pursue a
mission to enhance driving safety and reliability by

bringing automation and intelligence into vehicles, which
lessens the inherent human limitations such as range of
vision, reaction time, and distraction. Adding the commu-
nication component to intelligent vehicles further improves
their ability to perceive their surroundings and creates an
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opportunity for mass coordination and cooperative decision-
making. This inter-agent coordination is particularly important
as the full potential of CAVs does not lie in operating a
single vehicle on an empty road but rather from their seam-
less co-existence with other autonomous and human-driven
vehicles (HVs). Hence, we narrow the focus of this work to
studying the decision-making problem in the presence of
multiple autonomous agents and human drivers, i.e. a mixed-
autonomy multi-agent environment.

Leveraging vehicle-to-vehicle (V2V) communication,
decision-making in a purely-autonomous environment can be
simplified into a centralized control problem with essentially
one agent. However, the presence of HVs makes inter-agent
coordination more challenging as they cannot explicitly
communicate to coordinate with AVs in real-time. In order to
make safe and socially-desirable decisions in the presence of
humans, current solutions on social navigation for AVs
mainly rely on learned or hand-coded models that predict
the behavior of human drivers [1], [2]. We identify two key
shortcomings in the existing schemes. First, the fidelity of the
human models that are derived in the absence of autonomous
agents is questionable in mixed-autonomy settings as human
drivers tend to act differently when around AVs [3]. Second,
single-agent solutions do not fully exploit the potential of
CAVs in constituting a mass intelligence, forming alliances,
and performing coordinated multi-agent maneuvers.

We study the mixed-autonomy decision-making problem
from a multi-agent point of view, as opposed to the previous
individual perspectives. Our key insight is that incentivizing
AVs on adopting an altruistic behavior and accounting for the
interest of other vehicles, allows them to see the big picture
and find solutions that are optimal for the group in the longer
term. In addition to the potential safety and efficiency benefits
of altruistic decision-making, altruism leads to circumstances
where no vehicle has superiority over the others, creating more
societally beneficial outcomes [4]. To elaborate, Figure 1(a)
shows that a group of AVs can guide the behavior of human
drivers to improve safety and efficiency, Figures 1(b) and 1(c)
illustrate examples of how AVs can work together to achieve a
social goal that benefits another HV or AV.

We focus our work on inherently competitive driving sce-
narios, such as the examples illustrated in Figure 1, where
safe and efficient traffic flow necessarily requires coordination
among autonomous agents and egoistic behavior most likely
compromises traffic safety and efficiency. We build on our
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Fig. 1.     (a) AV-HV interaction to benefit another HV: Altruistic agents have the opportunity to form alliances and guide the behavior of HVs in order to
improve the traffic flow and avoid hazardous situations. AV1 & AV2 can build a formation to slow down HV2 and open up a pathway for HV1, enabling it to trust
the AVs, change lanes, and navigate towards the exit ramp. (b) AV-AV interaction to benefit another HV: HV1 is intended to merge into the highway. Egoistic
AVs ignore the merging vehicle and do not open up space for it which can potentially lead to hazardous scenarios, whereas if they show sympathy for the merging
HV, they can compromise on their own interest in order to create a safe path for HV1 to merge into the highway. (c) AV-AV interaction to benefit another AV:
AV1 attempts to exit the highway. If AV2-AV5 act egoistically, AV1 might miss the exit and not be able to follow its planned mission. However, if AV2-AV5
take into account the interest of AV1 and act altruistically, they can open up space in the platoon, by AV2 & AV3 decelerating and AV4 & AV5 accelerating, to
enable a safe exit for AV1.

prior work in [5] and [6] and proposed a novel semi-sequential
multi-agent training and policy dissemination algorithm to
alleviate the non-stationary problem. Additionally, we use a
method for scoring the entries in the experience replay
buffer that improves sample efficiency and speeds up the
learning process. Furthermore, we emphasize the importance
of finding the optimal social value orientation and in contrast to
the other works, formulate it as a convex optimization
problem. We formalize the mixed-autonomy driving problem
as a partially observable stochastic game (POSG) and derive
optimal policies using deep multi-agent reinforcement learning
(MARL). With our solution, altruistic autonomous agents
not only learn to drive safely but also master inter-agent
coordination and social navigation. Our main contributions are
as follows:

• We propose a MARL framework to train altruistic agents
using a decentralized social reward signal. These agents
are able to drive safely on the highway and coordinate
with each other in the presence of human drivers.

• We proposed a novel semi-sequential multi-agent training
and policy dissemination algorithm for our MARL prob-
lem and utilized a network architecture that allows our
agents to implicitly learn from experience, without the
need for an explicit behavioral model of human drivers.

• In contrast with the existing solutions, we formulate the
problem of finding the optimal social value orientation
angle as a convex optimization objective. We show that
an optimal value for the level of altruism exists and
when chosen properly between being absolutely selfless
or selfish, despite some agents’ compromise on their local
utility, the overall traffic safety, and flow improve for the
group of vehicles.

II. RELATED WORK

This section presents a short literature review on the main
topics that are closely related to our problem, namely core

MARL solutions, cooperative algorithms, human behavior
modeling, and navigation in the presence of humans.

A. Multi-Agent Reinforcement Learning

Early solutions for multi-agent value-learning algorithms
assume independently trained agents and are proved to per-
form poorly [7]. To alleviate this problem, a learning rule is
presented by Foerster et al. that relies on an additional term
to take into account the effect of other agents’ evolution during
the training. They have also attempted to leverage a multi-
agent derivation of importance sampling and remove
outdated samples from the experience replay buffer [8] to
make it effective for multi-agent settings. Xie et al. employs
latent representations of partner strategies to address this
problem and enable a more scalable partner modeling [9].
Shih et al. further considers the effects of repeated interactions
on partner modeling and develop a modular approach that sep-
arates rule-dependent representations from partner-dependent
conventions [10].

Foerster et al. proposed the counterfactual multi-agent
(COMA) algorithm that is expected to address the credit
assignment problem in multi-agent environments [11]. COMA
algorithm utilizes the set of joint actions of all agents as
well as the full state of the world during the training. In
contrast, we assume partial observability and a decen-
tralized reward function during both training and execution.
More application-oriented related works include the central-
ized multi-agent solutions proposed by Gupta et al. [12].
More recently, Wang et al. proposed a gifting approach that
enables the emergence of prosocial behaviors in general-sum
coordination games [13]. Importantly, in contrast with our
approach, the existing literature on multi-agent systems relies
on assumptions on the social preference of agents [14], [15].

B. Human Behavior Modeling

Driving styles of human drivers can be learned either
from demonstration through inverse RL, as proposed by
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Kuderer et al. , or employing statistical models such as
Gaussian and Dirichlet processes [16], [17]. Kuefler et al.
adopt a novel approach and apply generative adversarial
networks to imitate the behavior of a human driver [18].
Schmerling et al. study the scenarios with inherent multimodal
uncertainty, such as our driving, and leverage conditional
variational autoencoders (CVAEs) to condition the policy on
the present interaction history [19]. Recent data-driven
approaches have shown achievements in classifying human
driving maneuvers [20] and predicting human trajectories to
enable fully-autonomous navigation of a robot in human-dense
environments [21]. In contrast with works in the broad litera-
ture on human behavior modeling that take a game-theoretic or
optimization-based approach, we rely on implicitly learning
from interaction data within our MARL platform.

C. Social Value Orientation

Schwarting et al. initially proposed the idea of leverag-ing
SVO in the form of an angular representation to study and
govern the social behavior of autonomous vehicles in a game-
theoretic setup, which contrasts with our reinforcement
learning framework [4]. Crosato et al. address an important
problem, i.e., the freezing robot problem, that is a conse-
quence of agents overestimating risks created by humans. Our
work is different in the sense that we address the broader
problem of training altruistic agents which can impact and
govern the road behavior of the vehicles around them [22].
Van Vugt et al. also employed the concept of SVO to address
some of the ethical and societal questions around AVs [23].
Geary et al. introduce the notion of “Information Sufficiency”
and leverage that to define a reward function that enables AV to
choose actions with altruistic nature. The authors formulate the
mixed-autonomy driving problem as a Stackelberg Game while
we view it as a Markov Game and solve it using a Muli-
agent RL framework [24].

D. Robot Navigation

Alahi et al. introduced the Social LSTM framework which
leverages recurrent neural networks to extract the tempo-ral
information from the trajectory of pedestrians in large
crowds [1]. Tsoi et al. present their high-fidelity simulation
platform, SEAN, to accelerate the research on social robot
navigation [25]. Vazquez et al. study the social interactions in a
human-robot role-playing game and expand their observations
to study the spatial behavior of a group of robots. More recent
works in social navigation have revealed the potential for
collaborative planning and interaction with humans. Examples
include but are not limited to works by Trautman et al. and
Nikolaidis et al. where a mutual reward function is optimized in
order to enable joint trajectory planning for humans and
robots [26], [27].

E. Mixed-Autonomy Traffic Networks

Lazar et al. take a more abstract and traffic-level per-
spective to study the emergent behaviors in mixed-autonomy
environments using model-free RL solutions [28]. Wu et al.

explore the idea of stabilizing the traffic flow that is guided by
autonomous vehicles as well as the emergent behaviors in a
mixed AV-HV setting [29], [30]. Vinitsky et al. present a
benchmark for traffic control based on RL in mixed-autonomy
traffic [31]. Biyik et al. formalize the effects of altruistic
driving in mixed-autonomy at a road level and present a formal
model of road congestion that can be used for optimal routing in
road networks [32].

III. PRELIMINARIES

In this section, we provide the preliminary concepts that
are essential in the following section and introduce our formal
notation.

A. Partially-Observable Stochastic Games

Decision-making process in a finite set of autonomous
agents I with partial observability in stochastic
environments can be formalized as a partially-observable
stochastic game (POSG) defined by the tuple M G       : =
(I , S , [A i ] , [O i ] ,  T , [Ri ]) for i =  1, . . . , N . At a given time,
each agent receives a local observation oi : S  →  O i  that is
correlated with the underlying state of the environment
s � S  and takes an action from the action space a � A .
Consequently, the environment evolves to a new state s0 with
probability T =  Pr(s0|s, a) : S  × A 1  × . . . × A N  →  S  and the
agent receives a decentralized reward Ri : S  ×  A i  →  R .  The
probability distribution over actions at a given state is known as
the stochastic policy πi : O i  ×  A i  →  [0, 1]. The goal is to
derive a distribution that maximizes the discounted sum of
future rewards over an infinite time horizon, i.e., an optimal
policy π� : S  →  A ,

 ∞
π : =  arg max E γ R sk , π (sk ) (1)

k =0

in which, γ � [0, 1) is the discount factor. The optimal
policy maximizes the state-action value function, i.e., π�(s) =
arg maxa Q�(s, a), where

 ∞
Q (s , a ) : =  E γ R sk , π (sk ) |s0 =  s, a0 =  a (2)

k =0

and the optimal state-action value function can then be derived
using the Bellman optimality equation,

Q�(s, a) =  Es0�P (.|s,a)R(s, a) +  max γ Q�(s0, a0) (3)

B. Solving POSGs With Unknown Dynamics

The dynamics of the environment and reward function are
usually stochastic and not fully known in real-world problems.
Reinforcement learning (RL) provides a possibility to solve
POSGs with unknown rewards and state transition functions
through continuous interaction with the environment. RL algo-
rithms such as off-policy temporal difference learning enable
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agents to update the value function from such interactions with
the environment,

Qk+1 (s , a ) −  Qk (s, a) =  αk Rs, π (s)
 
+  γ max Qk(s0, a0)

−  Qk (s, a) , (4)

where αk is the learning rate at the kth iteration.

C. Deep Q-Networks

Parameterizing the state-action value function using a func-
tion approximator, i.e., Q (.; w) =  Q(·), results in more
generalizable policies that can scale to larger state-spaces.
Parameters w can be learned through mini-batch gradient
descent steps,

wk+1 =  wk +  αk ˆ w L(wk ) (5)

where, the �w operator estimates the gradient at wk . Deep
neural networks are widely used as function approximators and
are also applicable to the Q-learning algorithm [33]. A deep
Q-network (DQN) builds up on two major ideas, namely
using two separate networks during training and employing an
experience replay buffer to decorrelate the training samples.
The former is done to stabilize the training process by updating
the greedy network at each training iteration to compute the
optimal Q-value and using another less-frequently updated
target network. The loss function in Eq. (5) can be written
as 

L (w ) =  ER +  γmaxQ�(s0, a0; ŵ ) −  Q�(s, a; w)
2      

(6)
a

where ŵ is the target network that periodically gets updated
during the training. Additionally, the DQN algorithm draws
batches of training data (s , a , R, s0) from an experience replay
buffer in order to decorrelate the training samples in Eq. (5)
that are generated from simulation or real-world experience
and thus naturally have temporal dependencies. This process
is challenging in MARL since, Pr(s0|s, a,π , . . . , π ) =
Pr(s0|s, a,π0 , . . . ,π0 ) if any πi =  π0. In other words, the
environment becomes non-stationary when multiple agents are
evolving concurrently. We will further discuss this issue and
provide a solution to stabilize the multi-agent learning process
in Section V-D.

D. V2V Networks

We are interested in a multi-agent setting where agents
have no information about others’ actions and cannot explic-
itly coordinate. Instead, the decentralized coordination among
agents is expected to arise from the social reward signal. We
extend the earlier introduced concepts to a coordinated POSG
defined as (I , S , [A i ] , [O i ] ,  T , [Ri ], G), where G =  ( I , E )
is a stochastic, time-varying, undirected graph that
encompasses the V2V communication among agents in the
environment E . The communicated information can be as
simple as kinematics information, e.g., speed, location, head-
ing, or more bandwidth-intensive forms of sensory data,
e.g., camera and LiDAR. Leveraging this shared situational

awareness, agents can extend their range of perception and
overcome obstacles and line-of-sight visibility limitations [34],
[35]. An agent’s local observation õi � O i  is created using the
shared situational awareness and clearly depends on G which
incorporates the flow of information among agents. We
utilize the network analysis from [36] to model the V2V
communication on a high-density highway.

IV. PROBLEM STATEMENT

We investigate the maneuver-level decision-making prob-
lem for AVs to explore behaviors that can lead to socially-
desirable outcomes. We are interested in the question of how
autonomous agents can be trained from scratch to perform an
individual task such as driving safely on a road, while
considering the social aspects of their mission, i.e., optimizing
for a social utility that also accounts for the interest of other
vehicles around them. Figure 1 helps us to build more intu-
ition on the topic by depicting instances of driving scenarios in
which altruism leads to socially-valuable outcomes and
clearly overcomes the limitations of egoistic and single-agent
planning. Each example in Figure 1 provides an example of
altruistic inter-agent coordination settings that can benefit both
HVs and AVs. It is clear that in some instances, altruistic AVs
have to compromise on their individual utility, e.g., by slowing
down, in order to increase the group’s overall utility. The
balance between an AV’s selflessness and selfishness is the
key to reaching efficient and safe traffic flow. In [5] and [6] we
show that tuning the level of altruism in AVs leads to different
emerging behaviors and affects the traffic flow and driving
safety. In this work, we further explore that finding and formu-
late the problem as a convex optimization objective, to obtain
an optimal social value orientation angle. Thus, we continue
this section by providing a quantitative representation of an
agent’s level of altruism and formally defining our case study
scenario, before presenting our proposed solution in the next
section.

A. Quantifying Social Value Orientation

In order to formally study the social dilemmas between
humans and autonomous agents in heterogeneous environ-
ments, it is crucial to quantify the social preference of an
individual, e.g., whether they will defect or cooperate in a
given situation such as opening a gap in our highway merging
example. The degree of an agent’s egoism or altruism with
regard to its counterparts is defined as Social Value Orien-
tation (SVO), a widely used notion in the social psychology
literature that has been recently adopted in robotics research.
Specifically, we borrow the angular annotation for SVO as
defined by Liebrand et al. [37]. The SVO angular preference φ,
quantifies how an agent weights its own reward against the
reward of others. An agent’s total utility Ri can then be written
as,

Ri =  ri cosφi +  ri sin φi (7)

where ri is the agent’s individual utility, r −  is the total utility
of other agents from the perspective of the i th agent which in
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Fig. 2. SVO angular phase φ quantifies an agent’s level of altruism. The figure is
based on the empirical data collected from humans by Garapin et al. [38]. The
diameter of the circles shows the size of the human population that holds the
corresponding SVO.

Fig. 3. Case study: a mission vehicle that can be human-driven or autonomous
attempts to merge into the mixed group of AVs and HVs.

general is a function f (·) of their individual utilities,

ri     =  f (r j ),     where j =  i (8)

Autonomous agents require an understanding of human
drivers’ social preferences and their willingness to coordinate.
However, it is well-established in the behavioral decision
theory that humans are heterogeneous in SVO and thus their
preference is rather ambiguous and unclear [39]. Current
works on social navigation for AVs often make restrictive
assumptions about human drivers’ social preference and com-
pliance [2], whereas Figure 2 indicates a spectrum of altruism
among humans with heterogeneous social value orientations.
Thus, due to the large spectrum of altruistic behavior observed
by humans, our insight is to rely on autonomous cars instead to
guide the overall system toward more socially desirable
objectives. Specifically, we plan to find policies for AVs that
improve the utility of the group as a whole through emerging
alliances and more importantly, affecting the behavior of
human drivers. In our particular driving example, the desired
social outcome is achieving seamless and safe highway merg-
ing while maximizing the distance traveled by all vehicles and
avoiding collisions.

B. Formalism

We choose a highway merging scenario with a mixed group
of AVs and HVs as our base experiment scenario, as illustrated in
Figure 3. A merging vehicle, which can be either HV or AV,
approaches the highway on the merging ramp and faces a
mixed platoon of vehicles that are cruising on the highway.
This configuration contains a group of AVs that hold the same
SVO, as well as a group of HVs that are heterogeneous in
their SVO, hence it is unclear if they are allies or foes. In this
setting, it is obvious that the individual interest of the merging
vehicle, i.e., seamless merging into the highway, does not align

with that of the cruising vehicles, i.e., cruising with optimal
speed and energy consumption. We design our case study
scenario in a way that safe and seamless merging necessarily
requires all AVs to work together and none of them alone
can enable the merging of the mission vehicle without the
cooperation of the others. Formally, the road section shown in
Figure 3 is shared by a set of AVs I  that are connected together
via V2V communication and governed by a decentralized
stochastic policy, a set of HVs V operated by humans with
heterogeneous and unknown SVOs, and a human-driven or
autonomous mission vehicle M � I �V that attempts to merge
into the highway.

A human driver’s perception is often limited by their range of
vision, occlusion, and obstacles. In contrast, CAVs share their
observations to overcome these limitations. Each CAVs has a
unique local observation õ i ([oi ]; G) that is constructed using
its own local observation, as well as the local obser-vations
it receives from the neighboring CAVs. As mentioned before,
graph G grasps this inter-agent communication. There-fore, an
observer AV can detect a subset of other AVs, I  � I ,  and a
subset of HVs V � V . As we elaborated before, our aim is to
find a decentralized control scheme that can induce altruism in
the behavior of AVs. Hence, each AV must use its local
observation oi to make independent decisions that optimize its
utility. The value of the agent’s altruism, i.e., the SVO angular
phase φ, determines the social implications of an agent’s local
actions. To summarize, we state our problem as deriving a
utility function that enables the AVs to handle competitive
driving scenarios, such as those illustrated in Figure 1, and
lead them into socially-desirable outcomes that improve traffic
safety and efficiency for the group of vehicles.

V. SYMPATHETIC COOPERATIVE DRIVING FRAMEWORK

In their recent work, Silver et al. explained how artificial
intelligence agents can learn complex tasks through experi-
ence and maximizing a generic reward function, rather than
requiring task-specific specialized problem formulations [40].
Inspired by this approach to solving decision-making prob-
lems, rather than breaking down our problem into learning
how to drive and learning social coordination, we train our
autonomous agents from scratch using a decentralized reward
structure and expect them to master the basics of highway
driving, e.g., avoiding collisions and unnecessary lane change
or acceleration, while learning inter-agent coordination to
eventually achieve the goal of enabling a safe and seamless
merging. To reiterate our goal, we seek a decentralized solution
that enables autonomous agents to make independent socially-
desirable decisions, with no explicit coordination or sharing of
their decisions and future actions. In the rest of this
section, we define the action and observation space in the
POSG framework of Section III and introduce the notions of
sympathy and cooperation that are essential for structuring the
reward function.

A. Action and Observation Spaces

We employ a numeric representation for an agent’s obser-
vation that embeds the kinematics of the neighboring vehicles.
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Additionally, we integrate the history of vehicles’ last h meta-
actions to extract temporal information and their past trajecto-
ries. An ego vehicle Ii � I  observes a set of HVs and AVs in its
perception range. The Kinematic observation includes the
relative Frenet coordinates of the closest |I�V|+1 vehicles in
addition to the absolute Frenet coordinates of the ego vehicle.
Formally, agent Ii receives a local observation õi � Oi ,

õi =
oi , om , oi +1 , . . . , oi +|I�V |

> (9)

Each row of the local observation matrix o(i ) is defined as,

o j =  p j , l j , d j , dl j /dt , dd j /dt , cos ρ j , sin ρ j , λ j , HA

(10)

in which, l j and d j are the longitudinal and lateral Frenet
coordinates of the j th vehicle, respectively. Vehicle’s yaw
angle is denoted by ρ and the autonomy flag is λ j =  0 if I j �
V and λ j =  1 otherwise. In case the total number of observed
vehicles is smaller than the set size of the observation matrix o,
the remaining rows are filled with zeros with p j =  0.

H is the unrolled numeric representation of the action history
array HA  that contains the last h meta-actions taken by I j and is
defined as,

H j (t ) =
a j (t −  1), . . . , a j (t −  h) (11)

Our interest is in maneuver-level decision-making for
autonomous vehicles. Thus, we define the action space A  as
the set of abstract meta-actions A i      =  [Lane Left, Idle,
Lane Right, Accelerate, Decelerate] . These
meta-actions are then translated into admissible tra-jectories
and low-level control signals that eventually govern the
movement of the vehicle. The implementation details of
how meta-actions render into steering and acceleration
signals are discussed in Section VI. Additionally, the discrete
meta-actions defined above must be translated into numeric
values in Eq. (11). We experiment with three encodings and
choose the one that leads to the best performance after training:

- Binary: A one-hot encoding with 5 bits for ai � A i .
- Discrete: An integer in (0, 5] for ai � A i .
- Frenet: Two integers in [−1, 1] for lateral and longitudi-

nal actions.

B. Disentangling Sympathy and Cooperation

Inter-agent relations in our mixed-autonomy problem can be
broken down into the interactions among autonomous agents,
i.e., AV-AV interactions, as well as between autonomous
agents and human drivers, i.e., human-AI interactions. Decou-
pling the two enables us to systematically study the inter-
actions between human drivers with ambiguous SVO and
our autonomous agents. We refer to an autonomous agent’s
altruism toward a human as sympathy and define cooperation
as the altruistic behavior among autonomous agents. Our
rationale for decoupling the components of altruism is that
they differ in nature. As an instance, sympathy may not be
reciprocal as humans are heterogeneous in their SVO but
cooperation among autonomous agents is essentially homoge-
neous, assuming that they hold the same SVO. We investigate

each component of altruism separately to better understand the
emerging behaviors and the mechanics of inducing altruism in
autonomous agents. Following this definition, we can rewrite
Eq. (7) as,

Ri =  ri cosφi +  (sin θi RAV +  cosθi RHV) sin φi

=  ri cosφi + sin θi sin φi RA+ cos θi sin φi RH

egoistic term cooperation term sympathy term

(12)

where θ is the sympathy angular phase determining the
cooperation-to-sympathy ratio. Parameters RAV     and RHV

denote the total utility of other autonomous and human-
driven vehicles, respectively, as perceived from the i th agent’s
perspective. We expand on this topic in Section V-C where we
introduce the distributed reward structure.

C. Decentralized Reward Structure

Following the notions of sympathy and cooperation and the
notation of Eq. (12) we decompose the decentralized reward
received by agent Ii � I  as,

Ri (si , ai ) =  RE +  RC +  RS

=  ri (si , ai ) cosφi
+ sin θi sin φi             ri, j (õ i ) +  r j (õ i )

+ cos θi sin φi ri,h (õ i ) +  r j (õ i )
 

(13) h

in which j � I  \  {Ii }, h � (V � {M}) \  ( I  ∩ {M}). The ri

term denotes the ego vehicle’s driving performance derived
from metrics such as distance traveled, average speed, and a
negative cost for changes in acceleration to promote a smooth
and efficient movement by the vehicle. The cooperative reward
term, rAV accounts for the utility of the ego’s allies. It is
important to note that the ego vehicle only requires the obser-
vation õi to compute RC and not any explicit coordination or
knowledge of the actions of the other agents. The sympathetic
reward term, ri,h is defined as

ri,h =  ψ uh , (14)
h i,h

where uh denotes an HV’s utility, e.g., its speed, di,h is the
distance between the observer autonomous agent and the hth
HV, and η and ψ are dimensionless coefficients. The
sympathetic reward term in Equation (14) acts as a proxy to
put more importance on the state of the vehicles that are
geographically closer to the ego-vehicle. ψ and η are hyper-
parameters that allow us to control this proxy in order to achieve
an optimal point at which the ego-agent both considers the
behavior of the vehicles on the farther horizon and also puts
more importance on its immediate neighbors. Moreover,
the sparse scenario-specific mission reward term re in the case
of our driving scenario is representing the success or failure
of the merging maneuver,

M 1/2, if Ie ≡  M and merge is successful
e 0, o.w.
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D. Deep MARL for Sympathetic and Cooperative Driving

Two cascade multi-layer perceptron (MLP) networks are uti-
lized as the feature extractor network (FEN) and the function
approximator network (FAN), each with two layers of size
256 and 128 neurons, respectively, and rectified linear unit
(ReLU) non-linearities. As introduced in Section V-A, the
temporal information in a vehicle’s observations is captured
through integrating the history of the past actions in the
observations and the feature extractor network must be able to
efficiently extract meaningful patterns from this information.
Both networks are trained end-to-end to enforce the feature
extractor network to extract the most vital information that is
required for estimating the state-action value function. The
policy is trained offline and deployed to all agents to be
executed in a distributed and online fashion, meaning that each
agent makes independent decisions based on its observation
but they all follow the same stochastic policy.

As we elaborated in Section III, the non-stationarity of the
environment is a major problem in the concurrent training of
multiple RL agents. We employ a semi-sequential training and
policy dissemination algorithm to cope with this challenge
and stabilize the training process. Algorithm 1 summarizes
our overall methodology which is done in two stages. First, an
experience replay buffer (ERB) is filled with data from
simulation episodes, and then, random samples drawn from
this buffer are used for updating the weights of both FEN and
FAN networks. For simplicity, we refer to the set of all weights
for both neural networks as w. We use a novel method for
scoring the entries in ERB and drawing them with a probability
proportional to that score.

ERB is highly skewed due to the nature of our highway
merging scenario. To elaborate, each episode can be mor-
phologically broken down into two parts, straight driving on
the highway and the merging point. The former mostly
provides information and training samples that are useful for
learning the basics of driving and the latter contains important
information regarding inter-agent coordination and altruistic
behavior, which is of our interest. Only a few time steps of
each episode contain the merging point and the rest is mostly
related to highway cruising. To balance the training data drawn
from the experience replay, we randomly draw samples with a
probability pERB proportional to their spatial distance from the
merging point. This method showed better performance when
compared to the most common method of prioritizing the
experience replay based on a sample’s last resulting reward.

After drawing a training sample from ERB, the agent Ii � I
performs kdiss iterations of training while the weights w j of

all other agents I j ( j =  i ) is frozen. The updated weights w
are then disseminated to the other agents to update their policy.
This process is then repeated for all agents until convergence.
Doing so enables us to stabilize the training and train all agents
concurrently. The key idea is to apply incremental updates and
keep the environment stationary in between the updates so
that the optimizer achieves convergence. This semi-sequential
algorithm is illustrated in Figure 4 and Algorithm 1.

Different from other works, we borrow the notion of
SVO from psychology to quantify the agent’s degree of

Algorithm 1 Semi-Sequential Multi-Agent Q-Learning
Initialize experience replay buffer (ERB) of size Nbuff

for Episode =  1 to Nepisode do
Initialize episode with lM (t0) and v M (t0)
for t =  1 to Tepisode do

Fill ERB with the tuples ([oi ], [ai ], [o ], [Ri ])
Calculate the relevance factor pERB for each entry in
ERB

Initialize Q(s, a ; w) with random weights w−

Initialize target network ŵ with weights ŵ =  w−

for Frame =  1 to Nepisode ×  Tepisode do
ctarget =  0
for I in I  do

Freeze the weights w−  for I j where j =  i
for k =  1 to kdiss do

Calculate the spatial distance
Draw a sample from ERB based on pERB values
w ←  w +  α�w L(w)
ctarget++
if ctarget == ntarget then

ŵ ←  w
w−  =  w +  for all Ii � I

selfishness or altruism and, we frame our problem as a
MARL problem that learns from interaction to compute an
optimal altruistic policy; we proposed a data-driven frame-
work that incorporates a well-engineered decentralized SVO
reward structure to model cooperation and sympathy and
use a suitable deep reinforcement learning architecture. Our
proposed multi-agent training framework and policy dissem-
ination process help to mitigate the non-stationarity problem in
simultaneous multi-agent training while optimizing for a
social utility. To summarize our design, as depicted in Figure 4
and explained in Algorithm 1, we train stochastic policies for
altruistic agents in an online RL fashion. All the agents are
trained concurrently in a simulation environment where they
interact with each other and with the human-driven vehicles in
the scene. Agents can share their policies in a semi-sequential
manner only during the training phase and there is no coordi-
nation among agents after deployment, i.e., during inference.
Agents are expected to take stand-alone decisions with no
explicit information sharing among themselves and with HVs.

VI. IMPLEMENTATION DETAILS

We start this section with the 2D micro-traffic simulator
we employed to generate simulation episodes and formulate
the human driver model that imitates the behavior of an HV in
mixed-autonomy environments. Practical details of training and
validation are discussed before presenting our results in the
next section.

A. Driving Simulator

We modified an OpenAI Gym environment [41] to
enable multi-agent training and distributed execution in a
mixed-autonomy highway merging scenario. The meta-actions
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determined by the stochastic policy are translated to low-level
steering and acceleration control signals through a closed-loop
proportional–integral–derivative (PID) controller. The motion
of the vehicles is then governed by a Kinematic Bicycle Model
that determines the vehicles’ yaw rate and acceleration. As a
common practice in robotics, road segments and the motion of
the agents are expressed in Frenet-Serret coordinates and
broken into lateral and longitudinal movements.

In order to ensure learning generalizable policies rather than
memorizing a sequence of actions by the function approxi-
mator network, the initial state of each simulation episode is
randomized. This episode initialization is particularly critical
as the resulting initial states must be still meaningful and valid
for our desired conflictive highway merging scenario. Trivial
episodes where the merging vehicle can easily merge into the
highway regardless of the AVs’ actions or the episodes where
the AVs’ do not have an opportunity to enable safe merging,
not only do not add valuable information to the training
process but also can lead to misleading measures. The initial
longitude and speed of the cruising vehicles are uniformly
randomized and the initial longitude lM (t0) and speed v M (t0)
of the merging vehicle are drawn from a clipped-Gaussian
distribution N (x ; μ , σ , δ ) defined as,

 N (x )
=  N (x ; μ , σ ) 1(x −  μ  +  δ) −  1(x −  μ  −  δ )      (16)

where N (x ; μ , σ ) denotes a Gaussian distribution and 1 is the
Heaviside step function. We elaborate on initializing episodes
via parameters μ,  σ , and δ in Section VII-E.

B. Human Driver Model

Lateral and longitudinal movements of HVs are mimicked
by human driver models proposed by Treiber et al. and
Kesting et al. [42], [43]. The lateral actions of HVs, i.e., the
decision to perform a lane change, follow the Minimizing
Overall Braking Induced by Lane changes (MOBIL) strat-
egy [43]. MOBIL model allows a lane change only if the
resulting acceleration accn >  −bsafe meets the safety criterion,
and the incentive criterion is also satisfied,
acc0 −  acce +  sin φe(acc0 −  accn) +  (acc0 −  acco)

 
>  accth

(17)

with acce, accn , and acco being the acceleration of the ego
HV, the following vehicle in the target lane, and the following
vehicle in the current lane, respectively, and acce, accn , and
acco are the corresponding accelerations assuming the ego HV
has performed the lane change. accth is the threshold that
determines if the ego HV shall perform the lane change. HV’s
SVO angle φe is also referred to as the politeness factor in the
literature and is extracted from the empirical probability
distribution illustrated in Figure 2.

The longitudinal acceleration of HVs follows the Intelligent
Driver Model (IDM) [42]. The longitudinal Frenet acceleration
of an HV, lIDM, is determined by

lIDM =  accmax1 −  
 l 4 

−  
d�(l , 1l ) 2

(18)
set

Fig. 4.     Multi-agent training and policy dissemination process.

where l denotes the longitudinal Frenet speed of the HV, and
the desired Frenet distance to the leading vehicle is controlled
by d�, defined as,

d�(l , 1l ) =  d0 +  lTset +  
2
√

accmax.accdes
(19)

in which 1 l  is the approach rate, and the model parameters
vset, Tset, d0, accmax, and accdes are set speed, set time gap,
minimum gap distance, maximum acceleration, and the desired
acceleration, respectively. Additionally, the acceleration of the
vehicle is a random variable defined as,

l =  lIDM +  
σvel N (0 , 1) (20)

with N (0, 1) being a standard Gaussian random variable and
σvel is the standard deviation of the velocity noise at the time
step 1 t  of the simulation.

C. Training and Hyperparameter

The autonomous agents are trained using the semi-
sequential multi-agent Q-learning algorithm that we intro-
duced in Figure 4 and Algorithm 1 for 15,000 episodes that
are generated by the procedure discussed in Section VI-A.
The training process is repeated and compared across multiple
runs to assure the stability of training and that it converges to
similar policies every time. The trained policies are then
evaluated for 2,000 randomized novel test episodes to gauge
their efficacy. Test episodes are intentionally generated with a
different and broader initialization range than the training
episodes to demonstrate that agents actually are able to learn
generalizable policies and not only memorize sequences of
actions.

To guarantee that agents reach similar policies in terms of
training stability, we conducted many rounds of training, and
compute the average reward. To evaluate convergence, we use
the average reward over multiple runs and take an average
across runs. Figure 2 illustrates the training performance in
terms of average reward and distance traveled. Despite the
empirical success of the DQN and its variants, there is no
guarantee for convergence. While we do not provide a
convergence theoretical proof, the smoothness of the learning
curve and our experiments shows that our method reaches
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Fig. 5. Training performance of altruistic agents using the proposed
algorithm.

TABLE I

COMPUTATION TIME ON DIFFERENT HARDWARE PLATFORMS

stable policies and is able to train AVs that learned how to
drive by using a decentralized reinforcement learning signal.

Using a GPU NVIDIA Tesla V100, our approach typically
requires 2.7GB of memory for 4 agents and 20 HVs. While
each run of 15, 000 training episodes in the Tesla V100
GPU takes approximately 11h, a forward pass during testing
for 4 AV takes 18ms. A total of 3,600 GPU were used for our
experiments. Our simulation and training hyper-parameters are
listed in Table IV We evaluate the time performance of our
architecture in terms of computation time on a variety of
hardware platforms. The results are presented in Table I. For
instance, an online forward pass of the network utilizing an
NVIDIA GEFORCE GTX 1060, will take around 198 ms.

VII. EXPERIMENTAL RESULTS

We break down the research questions of our interest into
experimental hypotheses and investigate them through our
experiments and ablation studies in this section.

A. Manipulated Variables

The two key variables in Eq. (13) are φ and θ that determine
the level of altruism, which is the general term we use for
both HVs and AVs, as well as the level of sympathy, which is
the term for altruism toward HVs only. Our experiments are
done in 2 ×  6 settings with different values of phi and θ.
Furthermore, we experiment with both autonomous, M � I ,
and human-driven, M � V , mission vehicle. Our experiment
settings are:

• HV+E. autonomous agents are egoistic (φi =  0 for
Ii � I ) ,  and the mission vehicle is HV (M � V);

• HV+C. autonomous vehicles are cooperative only (φ =
φ� and θi =  π/2 for Ii � I ) ,  and the mission vehicle is
HV (M � V);

• HV+SC. autonomous vehicles are sympathetic and
cooperative (φi =  φ� and θi =  π/4 for Ii � I ) ,  and the
merging vehicle is HV (M � V);

• AV+E/C/SC. Duals of the above cases with autonomous
mission vehicle (M � I ) .

In HV+SC and AV+SC scenarios where autonomous
agents have both sympathy and cooperation components,
we set the sympathy angle to θ =  π/4 for the sake of fairness
and to avoid imposing bias between HVs and AVs as they both
carry humans or goods and neither should have a pre-assumed
advantage over the other. The SVO angle φ is however tuned to
reach the optimal level of altruism, we elaborate on this topic
in Section VII-D and derive the optimal SVO angle φ�.

B. Performance Measures

To gauge the impact of the aforementioned manipulated
variables and other configurable parameters, 3 metrics are
chosen that despite being correlated with each other, provide
different insights on the efficacy of our solution. As a traffic-
level metric, the average distance traveled by HVs and AVs is
logged during simulation episodes. Additionally, counting the
percentage of the episodes that experience a successful merge
enables us to probe the overall social importance of a solution.
Safety is also gauged by counting the percentage of episodes
that contain at least one crash.

C. Hypotheses

The social and individual performance of altruistic and
purely egoistic agents are compared through the 3 key
hypotheses:

• H1. While egoistic AVs fail to account for a merging
HV, AVs that hold both sympathy and cooperation ele-
ments explore ways to enable safe and seamless merging.
Therefore, we expect HV+SC to outperform HV+E and
HV+C settings.

• H2. AVs with φ =  0 are able to implicitly learn the
SVO of HVs and guide them to improve the overall
performance of the group.

• H3. There exists a social value orientation angle 0 <
φ� <  π/2 for autonomous agents that can both lessen
the number of crashes and improve the number of
successful merges.

D. Analysis and Results

1) Examining H1 : The main claim of hypothesis H1
is the superiority of sympathetic cooperative AVs in cre-
ating socially optimal results when compared to egoistic
autonomous AVs. To better understand the situation, we reit-
erate the driving scenario: the merging vehicle M , which can
be either human-driven or autonomous, approaches a highway
with a mixed group of HVs and AVs. M requires the cruising
vehicles’ assistance in order to be able to merge safely. Per
our fundamental assumption, we do not rely on the HVs to
compromise on their own utility as their SVO is unknown.
Instead, it’s on the AVs to create a safe corridor for M and,
as we will show in Section VII-E, this goal cannot be achieved
by a single AV alone and necessarily needs a cooperative
action by the group of AVs.

Figure 6 illustrates an overall comparison between the
settings defined in Section VII-A. Focusing on the cases with a
human-driven merging vehicle, it is evident that in the
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Fig. 6.     Impact of sympathy and cooperation elements in traffic safety and
success of the merging maneuver for both M � I  or M � V . Hatched bars
show the number of independent crashes that do not involve the mission
vehicle.

Fig. 7.     Sampled trajectories of the human-driven mission vehicle M shows the
efficacy of SC agents. Mean and standard deviation are shown on the right-
hand side plots.

absence of the sympathy component in AVs, i.e., in HV+E
and HV+C settings, merging fails in the majority of episodes.
Failed merging leads to a crash in our simulator as vehicles
cannot stop on the highway or the merging ramp and the
merging vehicle that fails to merge collides with the barrier at
the end of the merging ramp. This assumption is made to
make our simulations more realistic and avoid unfeasible
solutions that require full-stop on the highway. Therefore, most
of the crash cases shown in Figure 6 are due to unsuccessful
merging and not the lack of basic driving skills in HVs and
AVs. As additional evidence, independent crashes that are not
relevant to a failed merge are also plotted in Figure 6, which
confirms the fact that the vehicles hold sufficient basic skills to
maneuver on a highway and avoid collisions.

Figure 6 and 7 clarify the positive social impact that
sympathy and cooperation make in terms of reducing the total
number of crashes and failing to merge. However, a counter-
argument against this comparison can be the fact that a
rather conservative model is used to mimic HVs in our
simulations and this might limit their capability in merging.
To investigate this claim, we repeat the comparison with an

autonomous mission vehicle that is more risk-tolerant and
attempts more creative ways to merge into the highway. In the
AV+E setting that AVs only care about their individual utility,
although the results are better compared to HV+E, even the
autonomous mission vehicle still fails to safely merge in
more than 1/3 of the episodes. We conclude that our test case
indeed creates a competitive and conflictive scene for the
vehicles and showcases how incorporating sympathy and
cooperation components in the reward structure of AVs leads to
socially-desirable outcomes and improves safety and traffic
flow. Figure 7 provides further intuition to this comparison by
depicting a sampled set of mission vehicle’s trajecto-ries in
different experimental settings. It is evident that the un-
sympathetic does not allow the mission vehicle to merge,
causing its trajectory to end in the merging ramp.

2) Examining H2 : Figure 8 illustrates an example of
autonomous agents trained with the sympathetic cooperative
reward and a higher capacity neural network architecture.
Although all AVs in this scenario work together to make the
merging possible, we focus on the most impactful agent which
is the “Guide AV” shown in orange color. Other AVs in this
sample scenario (shown in green) compromise on their
individual reward by accelerating, consuming more energy,
and thus receiving less reward as defined in Section V-C.
Interestingly, the Guide AV learns to first slow down and
then change lane to left and open up space for M . After M
successfully merges, the Guide AV finds its lane blocked by a
HV so makes another lane change to the right and follows
other AVs. Figure 8 demonstrates how AVs receive a
significant reward when M merges into the highway. The
reward structure defined in Section V-C contains multiple
parameters, and the mission reward term r M of Eq. (15) has
a significant impact on the reward signal used to train our
autonomous agents. In other words, the trained agents learn
to take sequences of actions that lead to receiving r M . This
learning process includes learning to avoid collisions,
navigating through the traffic, and if required affecting the
behavior of other HVs.

As was emphasized before, autonomous agents do not have
access to an explicit behavior model of human drivers and
instead implicitly learn this model from experience during the
training episodes. Although we employ a rather conservative
model of human drivers to showcase our concept, it is expected
that given sufficient training data, the autonomous agents can
extract models of more complex human behaviors as well.
However, the sensitivity of our solution to these models and
the effect of human behaviors on inter-agent coordination is a
topic worthy of investigation which we leave for our future
work. As a relevant observation, AVs implicitly learn to predict
the behavior of HVs and the fact that HVs commonly act
egoistically (refer to Figure 2) and do not slow down for the
merging vehicle. Hence, they do not rely on the HVs and
instead compromise on their individual reward to enable the
highway merging.

3) Examining H3: The experimental scenarios in
Section VII-A are defined based on the optimal SVO
angle φ� of the autonomous agents. This parameter clearly
has an important impact on the behavior of AVs and thus
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Fig. 8.     An example of AVs (green) and HVs (blue) in HV+SC setting. Successful merging requires all the AVs to work together and none of them can achieve
this goal alone. We focus on the “Guide AV” that makes the most significant impact and show how it learns to take sequences of actions to not only enable the
mission vehicle to merge (by decelerating and performing a lane change to the left) but also manages to make the minimum compromise on its individual utility
(by another lane change to right and cruising with optimal speed). The diameter of the circles on the trajectory plot shows the vehicles’ speed.

TABLE II

NECESSITY OF MULTI-AGENT COORDINATION: A SINGLE SC AGENT IS

NOT ABLE TO CREATE SOCIALLY-DESIRABLE OUTCOMES

TABLE III

ABLATION STUDY ON REPRESENTING AGENT OBSERVATION Oi

Fig. 9.     Finding the optimal SVO angular phase φ� for AVs that results in the
least number of crashes and failed merges. We performed several training runs
and spent thousands of GPU hours sweeping a range of hyperparameters and
SVO values and studying their impact on the output of driving scenarios. Using
the optimization criteria in Eq. (21), we aim to choose an empirically optimal
SVO value that optimizes both safety and efficiency of the driving scenarios.

the safety and traffic-flow metrics. We trained a large set of
agents with different SVO angles and tested them in our case
study driving scenario. The optimal SVO angle is then defined
as the angle that results in the best performance metrics,
i.e., the least number of episodes with collisions and failed
merges. We formulate this simple optimization objective as
the convex combination of the two metrics,

φ� =  argmin ξ. fC(φ) +  1 −  ξ . fMF(φ) (21)
φ

where fC and fMF are the percentage of episodes with a
crash and failed mission, respectively. The hyper-parameter ξ
determines the importance of each performance metric and we
choose it to be ξ =  0.5 as otherwise, it could bias the
training process by putting more emphasis on either of the
metrics. Figure 9 illustrates how the two metrics change when
the autonomous agents’ SVO is varied from φ =  0 (purely
egoistic) towards φ =  π/2 (purely altruistic). It is worth
mentioning that neither of the two extremes seems optimal
and a point between caring about others and being selfish
leads to the most socially-desirable outcome.

A fair critique of the behavior of sympathetic cooperative
agents can be the fact that the Guide AV, i.e., AV3 in Figure 3,

decelerates and therefore slows down the group of vehicles
behind only to allow the mission vehicle to merge. In other
words, the utility of a big group of vehicles is being com-
promised for the sake of the mission vehicle. To investigate
the fairness and effectiveness of this outcome, we measure
the average distance traveled by HVs and AVs. Figure 10
reveals how despite the fact that in the HV+SC setting a
group of vehicles needs to slow down to open up space for the
mission vehicle, eventually both HVs and AVs manage to travel
more distance when compared to a similar setup with egoistic
agents (HV+E). It should be noted that the effect of Guide
AV’s deceleration gradually propagates through the platoon of
vehicles behind and only affects a limited group of vehicles
as the traffic in the platoon is not rigid and can contract and
expand.

E. Ablation Studies

1) Necessity of Multi-Agent Coordination: Consider the
highway merge scenario of Figure 3. Our claim is that all
AVs require to work together to enable a safe and seamless
merging and none of them can achieve this goal if the others do
not cooperate. As elaborated in Section VI-A, we particularly
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Fig. 10. Focusing on the highway merge problem, one valid question could be
the fairness of slowing down the group of cruising vehicles on the Highway in
order to enable assist the mission vehicle. Investigating the average distance
traveled by vehicles (averaged over the length of the episode and all vehicles),
reveals that despite making a compromise and slowing down a group of
vehicles to allow the mission vehicle to merge, SC agents still lead to better
overall traffic flow for both AVs and HVs.

design our scenarios to gauge the effectiveness of altruistic
agents and inter-agent coordination. To complement our results
in Figure 6 that back the hypothesis H1, we conducted an
ablation study in the driving scenario of Figure 3 with the
difference that only AV3 is sympathetic cooperative and label
this scenario as HV+1SC. Table II demonstrates the
necessity of multi-agent coordination and the fact that a single
sympathetic cooperative AV, i.e., the Guide AV, is not able to
achieve the mission of safe and seamless merging without help
from the other AVs.

2) Designing Non-Trivial and Fair Scenarios : Our method
for initializing simulation episodes is described in Eq. (16).
Parameters μ  and δ determine the range of the allowed values
for the merging vehicle’s initial longitude and speed. Trivial
episodes that are too easy, i.e., always lead to successful
merging, or too challenging, i.e., never result in a successful
merge, can steer the training process in the wrong direction and
must be avoided when initializing the episodes. Furthermore,
the initial state of an episode can benefit different agents
with various SVOs, and thus, one may argue that the superior
performance of sympathetic cooperative agents as observed in
Figures 6 and 7 is an artifact of the episode’s initialization.
We draw the initial values from a region that does not
favor either of the social preferences. Two sets of parameters
(μl , δl , σl =  2δl ) and (μv , δv , σv =  2δv ) are chosen for the
initial longitude lM (t0) and initial speed v M (t0) of the merging
vehicle, as listed in Table IV. Figure 11 illustrates the intuition
behind choosing these values.

3) Observation-Space Representation : We discussed the
details of how information is embedded into an agent’s obser-
vation in Section V-A. Here we justify the design choices
and show their positive impact on the performance. Table III
shows the impact of including om in Eq. (9) as well as the
autonomy flag λ of Eq. (10). Figure 12 summarizes the effect
of integrating H j     in Eq. (10), the history horizon h, and the
type of the action encoding. We also experimented with sorting
the rows of o(i ) in Eq. (9) based on vehicle ID and vehicles’
longitude, as shown in Figure 12.

Fig. 11.     Training episodes should not be trivial nor should they benefit a
specific setting (E, C, SC). We ensure that we initialize our driving simulation
episode in a region of parameters that are equally fair for all three settings.
This has been done to ensure the sanity and validity of our experiments.

TABLE IV

TRAINING AND SIMULATION HYPER-PARAMETERS

Fig. 12.     (a) Length of action history h, (b) embedding type (Section V-A),
(c) Sorting rows of Eq. (9) using longitudinal distance.

VIII. CONCLUDING REMARKS

A. Summary

Autonomous vehicles need to learn to co-exist with human-
driven vehicles on the same road infrastructure. Deploying
egoistic AVs that solely account for their individual interests
on the road leads to sub-optimal and non-desirable social
outcomes. In contrast, we compute the optimal SVO angle that
optimizes the traffic metrics and demonstrates how altruistic
AVs with the corresponding SVO can be trained to optimize a
decentralized social utility that improves traffic flow, safety, and
efficiency. We propose practical solutions to mitigate the non-
stationarity problem in simultaneous multi-agent training and
implicitly learn the behavior of human drivers from
experience. Our experiments reveal that altruistic AVs are able
to form alliances and affect the behavior of HVs in order to
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create socially-desirable outcomes that benefit the group of the
vehicles.

B. Limitations and Future Work

While this paper captures the fundamentals of social coor-
dination and altruism in autonomous driving, many tangential
aspects of the problem can be further studied. For example,
we employed a conservative and limited model of human
drivers. Although we expect our solution to be effective with
other human behavior models as well, it is important to
study its performance under different human behaviors. Also,
the impact of communication imperfections and packet drops
on inter-agent coordination can be further investigated using
more complex communication models than those presented in
this work. On the implementation side, more advanced
neural architectures such as convolutional LSTM masked
autoencoders and transformers can be leveraged to capture
spatial and temporal information more effectively, a direction
that we plan to explore in our future work.
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