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ABSTRACT

During the deployment of deep neural networks (DNNs) on edge

devices, many research efforts are devoted to the limited hard-

ware resource. However, little attention is paid to the influence

of dynamic power management. As edge devices typically only

have a budget of energy with batteries (rather than almost un-

limited energy support on servers or workstations), their dynamic

power management often changes the execution frequency as in the

widely-used dynamic voltage and frequency scaling (DVFS) tech-

nique. This leads to highly unstable inference speed performance,

especially for computation-intensive DNN models, which can harm

user experience and waste hardware resources. We firstly identify

this problem and then propose All-in-One, a highly representative

pruning framework to work with dynamic power management

using DVFS. The framework can use only one set of model weights

and soft masks (together with other auxiliary parameters of neg-

ligible storage) to represent multiple models of various pruning

ratios. By re-configuring the model to the corresponding pruning

ratio for a specific execution frequency (and voltage), we are able

to achieve stable inference speed, i.e., keeping the difference in

speed performance under various execution frequencies as small as

possible. Our experiments demonstrate that our method not only

achieves high accuracy for multiple models of different pruning

ratios, but also reduces their variance of inference latency for vari-

ous frequencies, with minimal memory consumption of only one

model and one soft mask.

1 INTRODUCTION

As deep neural networks (DNNs) can achieve superior performance

compared with traditional methods, they have been applied to

a wide range of applications including classification [12], object

detection [2], natural language processing [27], and so on recently.

Besides, due to the rapid increasing popularity of edge devices such

as mobile phones, and tablets, there are ever-increasing demands

for deploying DNNs on various resource-limited edge devices.

When deploying DNNs from powerful servers (or workstations)

to resource-intensive edge devices, we need to deal with the signifi-

cant difference of (i) hardware resource and (ii) energy support. The
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hardware resource usually refers to the available memory, computa-

tion units (such as multiplier–accumulator) and so on. Many works

[10, 13, 16, 23, 28, 29, 34–38] investigate how to keep or improve the

DNN performance under a more rigid resource constraint (such as

limited memory or floating point operations per second (FLOPS)).

Though the resource limitation of edge devices receives much

attention from researchers, there are little research efforts devoted

to the energy support. The energy support refers to the power or

energy (including the execution frequency and voltage) to support

the execution of DNNs when performing DNN inference on edge

devices. Different from servers orworkstationswith plenty of power

support, edge devices only have a budget of energy (such as battery)

and need to adopt certain dynamic strategies to manage the energy

usage. For example, if the battery level decreases to 15% (or 10%)

on a mobile phone, it usually switches to the energy saving mode

and reduces the execution frequency to achieve longer availability.

Besides energy saving mode, the dynamic voltage and frequency

scaling (DVFS) technique is widely adopted on edge devices to

adjust the power and speed settings so that the resource allotment

for tasks can be optimized and the power saving can be maximized.

In general, the current energy support with dynamic frequencies is

unstable for the deployment of DNNs on edge devices.

The unstable energy support leads to unstable DNN performance

in terms of inference speed or latency. If the execution frequency

switches to a smaller value, the computation-intensive DNNmodels

need more time to finish the computations, incurring larger infer-

ence latency. The unstable inference latency not only harms the

user experience, but also wastes a lot of hardware resources. DNNs

with original real-time inference capability can hardly achieve real-

time inference when the execution frequency decreases, incurring

stuttering or lag, and poor user experience. Besides, for safety-

critical applications on real-time embedded systems like medical

monitoring on smart watches, the deadline based scheduling is

used to guarantee safety. The deadlines are usually set up based

on the worst-case execution time, which could waste many proces-

sor resources if the worst-case execution time with low execution

frequency is much larger than normal values.

To improve user experience and save hardware resource, it is

necessary to make the DNN performance (especially speed perfor-

mance) as stable as possible under different levels of energy support

(especially the execution frequency). Different from the hardware re-

source limitation which many research efforts focus on during DNN

deployment, little attention is paid to the unstable energy support

or dynamic frequency management. Our work firstly identify the

unstable energy and frequency problem during DNN deployment

and propose a framework to deal with the limited hardware re-

source and unstable energy support. To deal with various execution
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frequencies, our framework can generate multiple sparse models

with different sparsity ratios, such that higher-sparsity models with

less computations can run with a smaller frequency, leading to

smaller variance of the inference time. To achieve this, we propose

parametric pruning together with switchable thresholds and batch

normalization. Thus, after training one model and one soft mask,

we can use switchable thresholds to convert the soft mask into

different binary hard masks of various sparsity ratios to deal with

different execution frequencies. Besides, we further adopt switch-

able batch normalization to improve the accuracy performance of

each sparse model. Our memory cost is only one highly represen-

tative single model and a soft mask, which is much lower than

the cost of training and storing multiple sparse models separately.

As a result, our work can deal with the limited hardware resource

and unstable energy support on edge devices simultaneously. We

summarize our contributions as follows.

• We firstly identify the unstable energy support problem with

dynamic frequencies for DNN deployment on edge devices

and evaluate the influence of dynamic frequency and power

for DNN inference.

• To deal with the limited hardware resource and unstable en-

ergy support on edge devices, we propose parametric prun-

ing together with switchable threshold and batch normal-

ization to generate one single highly representative model

and soft mask, which can represent multiple sparse models

to work with different execution frequency.

• Our experimental results demonstrate that we can use a mini-

mal memory cost with one model and one rescaled soft mask,

to obtain multiple models of various sparsity levels with

state-of-the-art classification accuracy compared with base-

line methods. Moreover, by using a higher-sparsity model

for a lower frequency, we can keep the latency under various

frequencies as close as possible and significantly reduce the

variance of the inference latency.

2 RELATED WORK

2.1 Sparse Models

Weight pruning [10, 13, 14, 23, 28] is an effective method to re-

duce model redundancy. Various pruning methods with different

sparsity types have been proposed in the literature. Irregular prun-

ing [11] achieves high accuracy but the reduction in parameters

cannot be transformed into inference speedup. Structured sparsity

[18, 22, 23, 39–41] such as column pruning and row pruning are

hardware-friendly, but the coarse-grained pruning nature causes

accuracy degradation. Recently proposed fine-grained structured

pruning regularities including pattern-based pruning [7, 20, 24]

and block-based pruning [5, 6, 17, 21] preserve high accuracy while

maintaining structures that can be exploited by compiler for hard-

ware accelerations. However, most of the sparse model methods

focus on the fixed resource scenarios without considering the hard-

ware environment change. The resulting models have one fixed

architecture and parameters that only satisfy one sparsity ratio.

2.2 Re-configurable DNNs

To obtain multiple models with different sparsity ratios, the most

straightforward method is to train multiple models with different

Table 1: Frequency/Voltage levels on Adreno 650 GPU of

Qualcomm Snapdragon 865 Chipset in OnePlus T8 platform

N1 N2 N3 N4 N5

clk/freq (mHz) 305 400 442 525 587

Vol (mV) 0.47-0.73 0.52-0.79 0.55-0.84 0.58-0.89 0.61-0.90

sizes using the sparse model methods. However, this causes huge

computation burden during training and requires storing multiple

models on the device. To decrease the computation and storage cost,

recent works consider to train e�cient architectures that can be re-

configured at runtime. NS [32] and US-Nets [31] train a model with

multiple switches corresponding to different number of channels.

This method simply retains the channels in the front of each layer,

which neglects the different importance of each channel to the

whole model performance. Furthermore, removing entire channels

incurs severe accuracy loss. Joslim [4] extends in this direction by

further allowing the joint optimization of width configurations and

weights. But the method still relies on the coarse-grained structure

pruning, incurring accuracy loss. Paper [3] proposes to train a large

dense model and queries sub-models upon requirement. However,

the method has to store a dense model and needs additional weights

to achieve model transformation. LCS [25] learns a compressible

subspace to obtain models with different sparsity ratio settings,

but the accuracy degradation is non-negligible. RT3 [26] discovers

multiple pattern sets with different sparsity ratio settings to be

switched during runtime. The drawback is that the pattern sets

have to be stored individually, consuming a large amount of storage,

and are too irregular to achieve e�cient hardware accelerations.

3 MOTIVATION

Many deep learning (DL) based applications are deployed on edge

devices such as mobile phones. Although many research efforts are

devoted to the limited hardware resource on edge devices, little

attention is paid to the influence of unstable energy support or

dynamic frequency management. As edge devices typically only

have a budget of energy with batteries (rather than almost unlim-

ited energy support on servers or workstations), their dynamic

power management often changes the execution frequency, lead-

ing to highly unstable inference speed performance, especially for

computation-intensive DNNmodels. Table 1 demonstrates the avail-

able Frequency/Voltage levels on Adreno 650 GPU in OnePlus T8

platform. For example, if the battery level of a OnePlus T8 phone

is below 15%, the phone switches to the energy saving mode and

the frequency is reduced to 52% of that of full battery. The signifi-

cant reduction on the frequency leads to longer inference time for

these computation-intensive DL applications. We observe that the

dense ResNet-18 on ImageNet dataset takes 18.86 ms to inference

on the mobile GPU. But after the mobile frequency reduces to 52%,

the inference time extends to 30.74 ms, 62.99% longer. Besides the

energy saving mode, the DVFS technique is widely applied on edge

devices to adjust the power and frequency to optimize resource

allotment for tasks and maximize power saving. It is common that

the applications need to run under dynamic execution frequencies.

If the frequency becomes smaller, the model may be slower with

longer inference time. The DNNs with original real-time inference
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Figure 1: Illustration of All-in-One framework in the case of three battery modes. Lower battery level requires a more sparse

model to reduce the latency under a lower frequency. The framework learns one shared set of model weights and one soft mask.

Each battery mode 𝑛 is paired with a threshold value 𝑡ℎ𝑟𝑒𝑠𝑛 to transform the soft mask to a hard mask. The hard mask with a

higher threshold value is the subset of the hardmaskwith a lower threshold. During inference, there is no need to store the dense

model, only the model weights in the largest compact model needs to be stored. The model can be switched instantaneously

according to 𝑡ℎ𝑟𝑒𝑠𝑛 when the battery mode changes.

capability may fail to achieve real-time inference and cause stutter-

ing or lag, leading to poor user experience. Besides user experience,

many hardware resource can be wasted. For example, for safety-

critical applications like medical monitoring on smart watches, the

deadline based scheduling is used by the real-time scheduler to

guarantee safety. The deadlines are usually set up based on the

worst-case execution time, which could waste many processor re-

sources if it is much larger than normal values.

To guarantee user experience and save hardware resource, we

should keep consistent performance of DL applications (especially

speed performance), under various execution frequencies. In this

paper, we focus on image classification application as an example.

But our method is not only limited to image classification. To keep

consistent speed performance under different frequencies, inspired

by the model pruning methods to achieve on-mobile real-time in-

ference, we propose to use one model with switchable different

pruning masks corresponding to various sparsity ratios. Thus, for

higher frequency where the computation could be faster, we can

adopt the mask with fewer pruned weights and more computations.

For lower frequency where the computation could be slower, we

can switch to the mask with more pruned weights and fewer com-

putations. In this way, we may keep the inference latency under

different execution frequency as close as possible.

We highlight that it is non-trivial to design such one model

with multiple switchable pruning masks corresponding to various

sparsity ratios. One naive alternative method is to train multiple

pruned models, each model corresponding to one single sparsity

ratio. However, DL models usually consume a lot of memory and

the available memory on mobile devices is limited. Thus, we choose

the method with one single model and multiple masks for this

model. There are still several requirements for this method: (i) The

memory cost of each mask should be significantly smaller than the

whole model to save memory cost. (ii) The accuracy under each

mask should be as high as possible. We should keep consistent

classification performance after switching to different masks.

Our setting is different from previous pruning work [10, 13, 14,

23, 28] as most pruning methods only design one single pruning

mask for one model given one sparsity ratio. Specifically, our work

designs multiple pruning masks simultaneously for one model and

each mask can achieve high classification accuracy under the cor-

responding sparsity ratio. Compared with methods with only a

single mask design, our work has the following advantages: (i) The

training cost is saved. After the training, we can obtain multiple

sparse masks corresponding to multiple sparsity ratios simulta-

neously, while the single mask design methods need to run their

algorithm multiple times to obtain multiple masks, incurring much

larger training cost. (ii) The memory cost is saved. The single mask

design methods usually need to fine-tune based on each mask to

improve the final accuracy. Thus, each mask is not able to represent

the pruned model and each pruned model is stored instead of each

mask, incurring much larger memory cost. Moreover, we further

adopt switchable threshold and batch normalization to derive one

highly representative model and one soft mask so that multiple

sparse models can be obtained from them. Thus the memory cost

can be further saved.

4 PROPOSED METHOD

The framework overview of All-in-One in the case of three battery

modes is illustrated in Figure 1. Our objective is to design one

model and multiple masks where each mask corresponds to one

sparsity ratio under a certain battery mode. The model can be easily

switched during inference. When the frequency becomes smaller

(battery level is lower), the model can switch to a mask with a larger

sparsity ratio and becomes more sparse with fewer computations.

Thus though the computation may be slower with lower frequency,

the inference time with the more sparse model may not change
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Figure 2: Fine-grained structured pruning schemes.

greatly. More specifically, as in the Figure 1, a sparse model with

green mask is used when the battery level is high. When the battery

level decreases, the framework switches to use the orange mask. As

the battery is almost out of power, the mask is switched to the red

one. The switch can be achieved instantly without any retraining.

To achieve this, we propose the parametric pruning method to

parameterize the pruning. The traditional pruning usually needs

the in-differentiable sorting operations, which are unfriendly for

the model training especially with multiple sparse masks. With

the proposed parametric pruning, we do not need to incorporate

sorting operations, improving pruning and training e�ciency. As

different sparsity ratios cause different mean and variance for the

feature map, we further adopt switchable batch normalization (BN)

to improve the classification accuracy under each sparsity ratio.

Based on the parametric pruning, we use switchable threshold

𝑡ℎ𝑟𝑒𝑠𝑛 to switch among masks of various sparsity ratios during

training. When deployed for inference, the soft mask and switch-

able thresholds can be further re-scaled into low-bit format. There-

fore, we do not need to store 𝑁 binary masks for 𝑁 sparsity ratios.

Instead, we only need to store one re-scaled mask together with

multiple thresholds (each threshold can determine one binary mask

based on the re-scaled mask). The re-scaled threshold transforms

the re-scaled soft mask into the corresponding hard mask when

the battery mode changes. The hard mask with a higher threshold

value is the subset of the hard mask with a lower threshold value.

For instance, in Figure 1, the mask in red color which corresponds

to the low battery mode is the subset of the mask in green color. Fur-

thermore, instead of storing the entire dense model on the mobile

device, only the weights in the largest compact model needs to be

stored, which significantly reduces the memory cost. Taking Figure

1 as an example, there is no need to store the entire 5×5 weight

matrix. Alternatively, the 4×4 weight matrix is stored. Detailed

designs are presented in the following sections.

4.1 Pruning Schemes

In this work, we adopt fine-grained structured pruning including

pattern-based pruning and block-based pruning, to e�ciently accel-

erate the on-mobile inference while maintaining high accuracy. For

both of the pruning schemes, the only set of weights to be stored

is the largest compact model to accommodate the limited storage

resources on the edge devices.

Pattern-based pruning. Pattern-based pruning is a combina-

tion of kernel pattern pruning and connectivity pruning, as shown

in Figure 2 (a), where grey color represents removed weight. Ker-

nel pattern pruning removes a fixed number of weights in each

kernel and the locations of the remaining weights form specific

patterns. The total number of pattern styles in the pattern library is

limited for hardware accelerations. In our framework, each kernel

pattern reserves 4 non-zero weights to match the single-instruction

multiple-data (SIMD) architecture of embedded CPU/GPU proces-

sors to maximize the hardware throughput. As the sparsity ratio

is constant for kernel pattern pruning, connectivity pruning is

adopted as the supplementary to kernel pattern pruning for a higher

sparsity ratio. Connectivity pruning cuts the connections between

certain input and output channels, which is equivalent as removing

whole kernels. To provide a re-configurable sparse model with 𝑁

switches, our framework first applies kernel pattern pruning to

obtain a compressed model. 𝑁 − 1 different levels of connectivity

pruning are further applied to the kernel pattern pruned model so

that 𝑁 models of different sparsity are available at runtime.

Block-based pruning. Block-based pruning divides the weight

matrix into equal-sized blocks and apply independent column prun-

ing for each block, as shown in Figure 2 (b). To find a re-configurable

sparse model, our framework prunes columns in each block with 𝑁

different sparsity ratio settings to obtain well-trained 𝑁 switches.

4.2 Parametric Pruning

We first need to make the pruning parametric to avoid the use

of in-differentiable sorting operations. To achieve this, we assign

importance scores to groups of weights. Let w𝑙 ∈ R𝑂𝑙×𝐼𝑙×𝐻𝑙×𝑊𝑙

denote the weights for the 𝑙-th convolution (CONV) layer, with 𝑂𝑙

output channels, 𝐼𝑙 input channels, and kernels of size 𝐻𝑙 ×𝑊𝑙 . The

output feature of the 𝑙-th layer is represented as a𝑙 ∈ R𝐵×𝑂𝑙×𝑓𝑙×𝑓
′
𝑙 ,

with 𝑂𝑙 channels and 𝑓𝑙 × 𝑓 ′
𝑙
feature size. The operation for the

𝑙-th layer is represented as a𝑙 = w𝑙 � a𝑙−1, where � denotes the

convolution operation. For pattern-based pruning, as kernel pat-

tern pruning results in a fixed sparsity ratio, a higher sparsity is

achieved by pairing with connectivity pruning that removes whole

kernels. Therefore, to perform connectivity pruning, for each ker-

nel w
(𝑘 )

𝑙
∈ R𝐻𝑙×𝑊𝑙 , 𝑘 = 1, · · · ,𝑂𝑙 𝐼𝑙 , in the 𝑙-th layer, we assign

an importance score 𝑠
(𝑘 )

𝑙
as a soft mask to weight the importance

of each kernel. The importance scores in the 𝑙-th layer form the

soft mask matrix s𝑙 ∈ R𝑂𝑙×𝐼𝑙 . For block-based pruning, the weight

matrixw𝑙 is first reshaped to a 2D matrix with size𝑂𝑙 × 𝐼𝑙𝐻𝑙𝑊𝑙 and

divided into 𝑃𝑙 equal-sized blocks with size R𝑜𝑙×𝑖𝑙𝐻𝑙𝑊𝑙 , namely,

w𝑙 = [w𝑙,1,w𝑙,2, · · · ,w𝑙,𝑃𝑙 ]. An importance score 𝑠
(𝑘 )

𝑙
is assigned

for each column 𝑘 in every block 𝑝 .
We use each element of s𝑙 as the pruning indicator for corre-

sponding weights. Larger value of 𝑠
(𝑘 )

𝑙
indicates a more important

group of weights that should be preserved while smaller value
means that the weights may be removed. In this problem, we would
like to achieve 𝑁 level sparsity, i.e., 𝑁 target sparsity ratios. The
𝑛-th target sparsity ratio is paired with a predefined threshold value

𝑡ℎ𝑟𝑒𝑠𝑛 to convert the score 𝑠
(𝑘 )

𝑙
into a binary mask as below,

𝑏
(𝑘 )

𝑙
=

{

1, 𝑠
(𝑘 )

𝑙
≥ 𝑡ℎ𝑟𝑒𝑠𝑛

0, 𝑠
(𝑘 )

𝑙
< 𝑡ℎ𝑟𝑒𝑠𝑛

, (1)
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where 𝑏
(𝑘 )

𝑙
∈ {0, 1} is the binarized 𝑠

(𝑘 )

𝑙
. The non-binary s𝑙 is a

soft mask and the binary b𝑙 is a hard mask. During the inference

of model pruning and training, we first obtain the binary mask b𝑙

from s𝑙 . Then we apply the binary mask 𝑏
(𝑘 )

𝑙
to the corresponding

weightsw
(𝑘 )

𝑙
following 𝑏

(𝑘 )

𝑙
w

(𝑘 )

𝑙
in each layer to achieve kernel or

block pruning. 𝑏
(𝑘 )

𝑙
= 1 means that the group of weights is reserved

and 𝑏
(𝑘 )

𝑙
= 0 means the group of weights is pruned.

Thus we are able to obtain a binary mask for weights in each
CONV layer. The next problem is how to make the soft mask train-
able, as the binarization operation is non-differentiable, leading to
di�culties for back-propagation. To solve this, we integrate Straight
Through Estimator (STE) [1] as shown below,

𝜕L

𝜕𝑠
(𝑘 )

𝑙

=

𝜕L

𝜕𝑏
(𝑘 )

𝑙

, (2)

where we can directly pass the gradients through the binarization.

STE is originally applied in quantization tasks [19, 30] to avoid the

non-differentiable issues. If we do not use STE, more complicated

strategies may be applied to deal with non-differentiable binary

masks such as [8, 9]. With binarization and STE, we are able to

build a trainable soft mask to incorporate pruning in model train-

ing without using sorting operations. The trainable mask has the

following advantages: (i) The soft mask can be e�ciently trained

along with the network parameters via gradient descent optimizers,

thus saving training cost compared with [8, 9]. (ii) Different from

previous methods [11, 15, 33], which determine the pruning accord-

ing to the parameter magnitudes, we use the soft mask to serve as

the pruning indicator, rather than the parameter magnitudes. Thus

pruning is decoupled from the parameter magnitudes.

We can train the model weights and the soft masks simulta-

neously. As we need to achieve high accuracy for multiple spar-

sity ratios, one model and one soft mask is not able to achieve

this. So we assign each sparsity ratio a corresponding threshold

and batch normalization parameters as introduced in Sec. 4.3 and

Sec. 4.4, respectively. The classification loss can be expressed as

L(W, S, 𝑡ℎ𝑟𝑒𝑠𝑛,B𝑛), where W denotes the model weights, S repre-

sents the soft mask, 𝑡ℎ𝑟𝑒𝑠𝑛 and B𝑛 denote the threshold and the

BN parameters for the 𝑛-th sparsity ratio, respectively. Note thatW

and S are shared between different sparsity ratios when performing

training and inference. Besides W and S, each sparsity ratio has its

specific threshold and BN parameters.

4.3 Switchable Threshold

Given 𝑁 level sparsity or 𝑁 sparsity ratios, we can design 𝑁 masks

where each mask can satisfy one sparsity ratio. However, multiple

masks still cost a lot of memory. To further reduce the memory cost,

based on the parametric pruning, we can only use one soft mask

with 𝑁 thresholds (i.e., 𝑁 scales with negligible memory cost). For

each sparsity ratio, we can use the soft mask and the corresponding

threshold 𝑡ℎ𝑟𝑒𝑠𝑛 following Eq. (1) to obtain the binary mask for this

sparsity ratio. The illustration of the switchable threshold is shown

in Figure. 3. By using a higher threshold value, more weights are

removed, which are denoted with the light blue circles. With the

switchable threshold, the more sparse model uses a subset of the

collection of weights in a more dense model.

Figure 3: Illustration of switchable threshold. Each battery

mode corresponds to one threshold. Dark blue circles rep-

resent weights participating computation. White circles are

weights that do not need to be stored. Light blue circles indi-

cate the weights pruned by 𝑡ℎ𝑟𝑒𝑠𝑛 .

Figure 4: Switchable Batch Normalization.

Algorithm 1 Pruning with Switchable Batch Normalization

Require: Target MACs list C = {C𝑛}
𝑁
𝑛=1

Require: 𝛼 , 𝛽 : step size hyperparameters

1: Randomly initialize score values S

2: Initialize independent BN parameters for each target MACs

3: for 𝑖 = 1, · · · , 𝑛𝑖𝑡𝑒𝑟𝑠 do

4: Get mini-batch of data 𝑥 and label 𝑦

5: for target MACs C𝑛 do

6: Switch to the threshold parameter 𝑡ℎ𝑟𝑒𝑠𝑛 and the BN pa-

rameters B𝑛 of current target MACs

7: Compute loss L and sparse gradients

8: end for

9: Apply accumulated gradient descent on weights

10: end for

4.4 Switchable Batch Normalization

As accumulating model parameters with different sparsity ratio re-

sults in different feature mean and variance, the discrepancy across

different configurations leads to inaccurate statistics of shared BN

layers. Therefore, to maintain high accuracy for each sparsity ratio,

we create independent BN parameters for each sparsity ratio, as

shown in Figure 4. When inference under the sparsity ratio 𝑛, only

the corresponding BN 𝑛 with parameters B𝑛 participates into the

computation. With the switchable BN, for a model with 𝑁 target

sparsity ratios, we need to store 𝑁 set of BN parameters. In most

cases, BN layers only have less than 1% of the model size. Besides,

the BN runtime cost is also negligible for deployment. Compared to

separately trained models or using two sets of weights for learning

compressible subspaces [25], the usage of switchable BN is memory

e�cient while keeping competitive accuracy performance.



ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Y. Gong and Z. Zhan, et al.

4.5 Training Method
With the differentiable soft mask, we can train and prune the model
via SGD simultaneously with the loss function,

min
W,S,B𝑛

L(W, S, 𝑡ℎ𝑟𝑒𝑠𝑛,B𝑛 ) + 𝛾 · L𝑟𝑒� (S, 𝑡ℎ𝑟𝑒𝑠𝑛 ), (3)

where L is the cross entropy classification loss, and L𝑟𝑒𝑔 is the
regularization term related to the computation complexity. For
simplicity, we take Multiply-Accumulate operations (MACs) as the
constraint/target rather than parameter number to estimate on-
device execution cost. 𝛾 can weight the loss and stabilize training.
L𝑟𝑒𝑔 can be simply defined as ℓ2 norm between current MACs and
target MACs C. For connectivity pruning, L𝑟𝑒𝑔 is defined as

L𝑟𝑒� =

�

�

�

�

�

4

9

∑

𝑙

(𝑓𝑙 𝑓
′
𝑙 𝐻𝑙𝑊𝑙 (𝑂𝑙 𝐼𝑙 − ‖b𝑙 ‖0 ) ) − C

�

�

�

�

�

2

, (4)

where b𝑙 is obtained by converting the score s𝑙 into binary values

according to Eq. (1), and ‖b𝑙 ‖0 indicates the number of remaining

kernels in the 𝑙-th layer. The constant 4/9 is attributed to kernel

pattern pruning that reserves four weights in each 3 × 3 kernel.

For block-based column pruning, L𝑟𝑒𝑔 is defined as

L𝑟𝑒𝑔 =

�

�

�

�

�

∑

𝑙

∑
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′
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, (5)

where ‖b𝑙� ‖0 represents the number of the remaining columns in

the block 𝑝 of the 𝑙-th layer.

Given 𝑁 different battery modes, we could set 𝑁 different target

MACs to satisfy different sparsity ratio requirements and form a

list of target MACs as C = {C𝑛}
𝑁
𝑛=1. With parametric pruning and

switchable threshold & BN, we can perform our training following

Algorithm 1. With 𝑁 target MACs, in every iteration, for each

target MACs, we first switch to the corresponding 𝑡ℎ𝑟𝑒𝑠𝑛 and BN

parameters, and then compute the loss with the target MACs to

obtain gradients through back-propagation. After we collect and

accumulate the gradients of all target MACs, we update the weights.

Note that the model weights and the soft masks are updated with

the gradients accumulated through all target MACs since they are

shared between various target MACs. But the BN parameters are

updated with the gradients of the single corresponding target MAC,

rather than the accumulated gradients, as the BN parameters are

switched when moving to another target sparsity ratio.

4.6 Cost Analysis

To satisfy the a total of 𝑁 sparsity ratios simultaneously, we only

need to store onemodel, one re-scaled soft mask,𝑁 re-scaled thresh-

olds, and 𝑁 sets of BN, where the memory cost of thresholds and

BN are negligible. With a well-trained soft mask, there is no need

to store its precise floating point values during inference. To save

the storage cost, the soft mask can be transformed/re-scaled into

the low-bit format (named the re-scaled soft mask). For instance,

for 𝑁 = 3, the re-scaled soft mask is composed of values of 0, 1,

and 2, with element 2 indicating the scores for the most compact

model corresponding to the lowest frequency. Besides, since we

perform kernel or block pruning and the soft mask corresponds to

the number of kernels or columns/rows in the block rather than all

parameters in the model, the memory cost of the soft mask is much

smaller than the model weights. Our method can greatly reduce the

memory cost compared with using 𝑁 models for 𝑁 sparsity ratios.

5 EXPERIMENT RESULTS

In this section, we compare All-in-One with state-of-the-art re-

configurable DNN methods. The comparison is conducted on both

CIFAR-10 and ImageNet datasets. We demonstrate the following:

(i) By comparing All-in-One with baseline methods, All-in-One can

maintain high accuracy under different sparsity ratio settings with

only one set of model weights. (ii) Through real implementations on

an off-the-shelf mobile device, All-in-One can mitigate the problem

of unstable inference time due to the change of battery level.

5.1 Experiment Setting

In order to evaluate whether All-in-One can consistently attain

e�cient pruned models for tasks with different complexities, we

test on two major image classification datasets, i.e., CIFAR-10 and

ImageNet. For CIFAR-10, we experiment with Resnet-18, Resnet-20,

and Resnet-32. For ImageNet dataset, we experiment on Resnet-18

and MobileNet-v2. We conduct our multi-model training method

on an 8× NVIDIA GTX 1080Ti GPU server using Pytorch. During

pruning, The SGD optimizer is utilized with a learning rate of

1 × 10−3.

All the mobile results are measured on the GPU of an OnePlus

8T mobile phone, which has a Li-Po 4500 mAh battery. The phone

itself is equipped with a Qualcomm Snapdragon 865 mobile plat-

form which including a Qualcomm Kryo 585 Octa-core CPU and

a Qualcomm Adreno 650 GPU. The same compiler techniques in

[24] are applied to optimize the DNN execution.

5.2 Accuracy Performance

The accuracy performance on the CIFAR-10 dataset is shown in

Table 2. We run our method with pattern-based pruning and block-

based pruning respectively and obtain two sets of accuracy. The

results show that All-in-One can maintain high accuracy for all

switches with only one set of model weights. It significantly out-

performs all other state-of-the-art re-configurable DNN methods

on all three models with non-negligible improvements (such as our

accuracy above 94% v.s. 92% or lower from baseline methods for

Resnet-32). Besides, our method with pattern-based pruning usually

achieves higher accuracy than ours with block-based pruning.

The accuracy improvements of All-in-One are mainly attributed

to two aspects. The first is the fine-grained structured pruning

scheme that removes weight at a finer granularity compared to

US-Net [31] and LCS-S [25] that employs coarse-grained structured

pruning. The second is the separate BN for each configuration that

preserves the distinct mean and variance with different sparsity

ratios, which is not considered in RT3 [26].

We further evaluate on the ImageNet dataset and the results are

shown in Table 3. For Resnet-18, both pattern-based pruning and

block-based pruning are conducted. For MobileNet-v2, as the com-

putations are mainly from 1×1 CONV layers, which is not suitable

for pattern-based pruning, the results using block-based pruning

are presented. According to the results, All-in-One again provides

the best accuracy performance on both models for each switch

in the re-configurable model with non-negligible improvements

compared with baseline methods (such as our accuracy above 67%

v.s. 65% or below from baselines for the 350M MACs case).
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Table 2: Accuracy of All-in-One and state-of-the-art re-

configurable DNN methods on CIFAR-10 dataset.

Method Pruning Scheme
MACs under Resnet-18

250M 80M 40M

RT3 [26] Unstructured 92.86 91.88 87.10

All-in-One (Block) Structured 94.98 94.61 94.01

All-in-One (Pattern) Structured 95.19 94.59 93.89

MACs under Resnet-20

20M 11M 7M

US-Net [31] Structured 90.77 89.13 87.10

Joslim [4] Structured 90.99 89.43 87.43

LCS-S [25] Structured 86.56 83.13 78.75

LCS-U [25] Unstructured 89.58 87.51 85.29

RT3 [26] Unstructured 88.13 86.62 83.83

All-in-One (Block) Structured 91.83 91.23 90.65

All-in-One (Pattern) Structured 92.49 90.97 90.42

MACs under Resnet-32

33M 20M 13M

US-Net [31] Structured 92.06 90.56 89.83

Joslim [4] Structured 92.26 90.70 89.82

RT3 [26] Unstructured 91.04 90.03 86.31

All-in-One (Block) Structured 94.79 94.55 94.05

All-in-One (Pattern) Structured 95.07 94.63 94.31

Table 3: Top-1 accuracy performance on ImageNet dataset.

Method Pruning Scheme
MACs under Resnet-18

850M 480M 350M

US-Net [31] Structured 66.51 63.42 61.49

Joslim [4] Structured 68.49 64.51 61.82

LCS-S [25] Structured 57.61 53.70 51.30

LCS-U [25] Unstructured 68.75 67.51 65.62

RT3 [26] Unstructured 66.72 65.39 63.87

All-in-One (Block) Structured 69.97 68.28 67.02

All-in-One (Pattern) Structured 70.22 69.28 67.87

MACs under MobileNet-v2

210M 170M 150M

US-Net [31] Structured 69.71 68.19 67.59

Joslim [4] Structured 70.60 69.90 69.10

RT3 [26] Unstructured 68.12 66.97 65.65

All-in-One (Block) Structured 70.79 70.01 69.25

In general, All-in-One possesses the ability to maintain high

accuracy for each switch with only one set of weights. When the

battery level changes, the model can be easily switched with negli-

gible accuracy degradation compared to other re-configurable DNN

methods, greatly improving user experience.

5.3 Speed Performance

To show that All-in-One can reduce the inference variance when the

frequency changes, we show the speed performance comparison of

single model and our method. Table 4 and 5 show the results for

ImageNet with 𝑁 = 2 and 𝑁 = 3 under various GPU frequencies

on mobile devices using Resnet-18. Single model refers to the case

with one single model to work with various frequencies.

From Table 4 and 5 we can notice that our structured pruning

scheme can achieve inference speedup compared to the densemodel

on both datasets. Though reducing the latency, using a single sparse

model cannot provide stable inference when the frequency changes.

Table 4: Speed performance of single model and All-in-One

with 𝑁 = 2 under various GPU frequencies.

Method
MACs under

Resnet-18

Latency under various

GPU frequencies (ms)
Var. of

latency

Reduct.

rate
400mHz 525mHz

Dense 1820M 33.7 28.1 15.68 –

Single model

(Block)
480M 25.7 21.6 8.41 187×

Single model

(Block)
350M 21.9 18.6 5.45 121×

All-in-One

(Block)
480M, 350M 21.9 21.6 0.045 1×

Single model

(Pattern)
480M 25.9 22.0 7.61 381×

Single model

(Pattern)
350M 22.2 18.9 5.45 272×

All-in-One

(Pattern)
480M, 350M 22.2 22.0 0.02 1×

Different from single model, our method can dynamically reconfig-

ure to a suitable model once the frequency switches. For example,

in the case of 𝑁 = 3, our method can generate three sparse models

with different MACs of 850M, 480M, and 350M on ImageNet. The

more sparse model is used for the lower frequency. For example,

in Table 5, given three frequencies 305mHz, 442mHz, and 587mHz,

the model with 850M MACs is applied for the 587mHz frequency,

the model with 480M MACs is used for the 442mHz, and the model

with 350M MACs is adopted for the 305mHz.

Combining the results in Table 4 and 5, we have the following

observations. (i) A more sparse model runs faster under the same

frequency (such as 29.1ms for the model with 850M MACs v.s.

23.5ms for the model with 480M MACs under 442mHz using block-

based pruning in Table 5). (ii) Besides, for the same model, a higher

frequency leads to a faster inference speed (such as 21.9ms under

400mHz v.s. 18.6ms under 525mHz for the model with 480M MACs

in Table 4). The significant changes of the inference latency under

various frequencies lead to large variance of inference latency (such

as 29.64 for the single block-pruned model with 850M MACs in

Table 5).

To deal with the different execution frequencies, our method uses

models of various sparsity levels so that a more sparse model with

less computations can be adopted for a lower frequency, leading to

a smaller change to the inference latency. As shown in the results,

the latency under difference frequencies are very close with our

method (such as 21.9ms and 21.6ms under 400mHz and 525mHz,

respectively, in Table 4). All-in-One can significantly reduce the

variance of the inference latency. For example, In the case of 𝑁 = 2

on ImageNet, our variance with pattern-based pruning is just 0.02,

much lower than the single pattern-based sparse model with 480M

MACs (7.61) or the sparse model with 350M MACs (5.45), with

a reduction rate on the latency variance as high as 381×. In the

case of 𝑁 = 3, our variance is 0.76 and 0.97 for block-based and

pattern-based pruning, respectively, also significantly smaller than

the variance of the single model method.

We further show the variance on the CIFAR-10 dataset using

Resnet-32 in Figure. 5, where the red line is the worst-case execution

time. All-in-One not only reduces the inference time compared to

storing a dense model but also mitigates the inference variance

problem due to frequency change.
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Table 5: Speed performance of single model and All-in-One

with 𝑁 = 3 under various GPU frequencies.

Method
MACs under

Resnet-18

Latency under various

GPU frequencies (ms)
Var. of

latency

Reduct.

rate
305mHz 442mHz 587mHz

Dense 1820M 37.5 31.9 26.6 29.71 –

Single model

(Block)
850M 35.7 29.1 24.9 29.64 39.0×

Single model

(Block)
480M 29.7 23.5 18.8 29.89 39.3×

Single model

(Block)
350M 25.1 20.3 15.8 21.63 28.5×

All-in-One

(Block)

850M, 480M,

350M
25.1 23.5 24.9 0.76 1×

Single model

(Pattern)
850M 35.9 29.4 25.5 27.60 28.5×

Single model

(Pattern)
480M 30.1 23.7 19.0 31.04 32.0×

Single model

(Pattern)
350M 25.3 20.6 16.0 21.62 22.3×

All-in-One

(Pattern)

850M, 480M,

350M
25.3 23.7 25.5 0.97 1×

Figure 5: Speed performance with 𝑁 = 3 of Resnet-32 on

CIFAR-10 under various GPU frequencies.

5.4 Memory Cost

We compare the memory cost of our method and other baselines in

Table 6. To obtain 𝑁 models of 𝑁 sparsity ratios, our method only

need to store one model and one re-scaled soft mask. Since each

element of the mask represents a group of weights, the memory

cost of a soft mask is much smaller than that of a model. For other

methods, the naive method to train multiple models each for a

sparsity ratio needs to store 𝑁 models. RT3 [26] needs to store

a model and 𝑁 masks so that each mask can convert the dense

model into a sparse model corresponding to a specific sparsity ratio.

LCS-U or LCS-S [25] need to one model for the compressible points

case, or two models for the compressible lines case, together with

a mask. Some other methods may have similar memory cost with

ours such as Joslim and US-Net. But as shown in Table 2 and 3,

unlike our method with high accuracy performance, they are not

able to achieve state-of-the-art accuracy on CIFAR-10 or ImageNet.

More specifically, take storing a Resnet-18 model on ImageNet with

𝑁 = 3 sparsity ratios as an example, All-in-One only requires two

additional sets of BNs, which accounts for only 0.14% of the total

number of parameters, and one set of re-scaled soft mask which

accounts for 0.69% of the total number of parameters. The total

extra parameters incurred by All-in-One is 0.83%. As All-in-One

only needs to store the largest compact model, which is already

compressed by 55% of the total parameters, the overall memory cost

is saved by 54.17% comparing to saving a single dense Resnet-18.

Therefore, All-in-One is memory-e�cient.

Table 6: Memory cost of various methods.

Method Stored model num. Stored mask num.

Multiple models N -

US-Net [31] 1 -

Joslim [4] 1 1

LCS-S [25] 1 or 2 1

LCS-U [25] 1 or 2 1

RT3 [26] 1 N

All-in-One 1 1

Figure 6: Performance of All-in-One with di�erent switch

number 𝑁 on CIFAR-10 using Resnet-18.

5.5 Ablation Study

We compare the accuracy performance of various 𝑁 (𝑁 = 2, 3, or 4)

in Figure 6. The model architecture is Resnet-18 and the accuracy

is tested on CIFAR-10. Pattern-based pruning is applied. We test

the accuracy of the models with 250M and 80M MACs for 𝑁 = 2,

models with 250M, 80M, and 40M MACs for 𝑁 = 3, and the models

with 250M, 80M, 55M, and 40M MACs for 𝑁 = 4, respectively.

We also show the accuracy of the single sparse models which are

separately trained for each target MACs.

As shown in Figure 6, generally a lower target MACs leads to

a lower accuracy. Different 𝑁 values does not lead to significant

changes on the accuracy. For example, the max accuracy difference

of various 𝑁 and separately trained models at each target MACs is

no larger than 0.5%. In some cases, our method can achieve even

higher accuracy than the separately trained models (such as 𝑁 = 4

for the model with 40M MACs). Moreover, though 𝑁 increases, the

memory consumption of our method does not increase as we only

need to store one model and one soft mask for various 𝑁 .

6 CONCLUSION

We propose All-in-One, a highly representative pruning framework

to work with dynamic power management using DVFS. Extensive

experiments and real-world edge device evaluations show that All-

in-One maintains high accuracy for each switch with low memory

cost, and provide stable inference speed performance. It indicates

that our work can deal with the limited hardware resource and

unstable energy simultaneously on the widely adopted edge device.
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