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The current methods for quantifying ligand bias involve the construction of bias plots and the calculations of bias
coefficients that can be compared using statistical methods. However, widely used bias coefficients can diverge in
their abilities to identify ligand bias and can give false positives. As the empirical bias plots are considered the
most reliable tools in bias identification, here we develop an analytical description of bias plot trajectories and

introduce a bias coefficient, kappa, which is calculated from these trajectories. The new bias coefficient com-
plements the tool-set in ligand bias identification in cell signaling research.

1. Introduction

“Biased agonism” or “ligand bias” describes the ability of some li-
gands to selectively activate a subset of signaling pathways downstream
of their receptors [1,2,3]. Most studies of bias have thus far focused on
G-protein coupled receptors (GPCRs), which often exhibit biased
signaling in physiological contexts [4,2,5,6,7,8]. The discovery of GPCR
ligand bias has revolutionized the field and has empowered the design of
biased agonists and inhibitors that can target pathogenic signaling
pathways [9,10-12,4,2,5,13,6,14,8]. Recently, receptor tyrosine kinases
(RTKs) were also shown to engage in biased signaling
[15,16,17,18,19,20,21].

The current methods for quantifying ligand bias involve the collec-
tion of experimental dose response curves for two or more ligands and
two or more responses [12,2,18,22]. These responses can include
recruitment of effector molecules, phosphorylation of adaptors, pro-
duction of second messengers, and many other cellular behaviors asso-
ciated with the pathways of interest [23,24,25]. These responses are
quantified in experiments such as western blotting, fluorescence mi-
croscopy, and activity assays. A key requirement is that each response is
measured over a broad range of ligand concentrations. From the dose
response curves, bias plots are generated by plotting each response as a
function of the second response, for the same ligand at the same con-
centration [1,2,26,27]. Bias plots are a method of qualitatively assessing
the presence of bias, by comparing a ligand trajectory to a reference
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ligand trajectory [1,2,5]. There is bias if the trajectories are different,
and there is no bias if the trajectories are the same. However, there is no
statistical test to compare the two trajectories [2,5].

To assess if bias exists or not in a quantitative manner, several types
of bias coefficients are calculated, based on best-fit parameters of the
dose response curves. These different methods have been discussed
extensively and compared in prior studies [9,12,2,28,5,27
,29-31,32,6,33,22]. The different methods can sometimes diverge in
their abilities to identify ligand bias [34,32,6]. Furthermore, these
methods can produce a high level of false positive results [32]. Thus,
bias plots are considered the “most important tool” in the identification
of ligand bias, as they are created directly from the raw data [5]. Here
we introduce a bias coefficient termed “kappa, k", which is derived from
mathematical characterization of the bias plot trajectories and allows
statistical analysis to compare different ligands.

2. Methods
In the general case, an experimental dose response, R, can be fitted
with the generalized Hill equation [35]:

R— Emp* [ L]n

T ke + L) M

Here Ey), is the maximum response to the ligand, achieved at high
ligand concentration (the efficacy), [L] is the ligand concentration, n is
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the Hill coefficient, and kg is an effective dissociation constant. Eq. (1)
represents a general form of an increasing saturable function.

In [6], two approaches were used to calculate bias coefficients. The
first approach, called “equimolar comparison approach” is model-free,
as a bias coefficient pj;g is calculated from the values of Etop and kg,
determined from the fit to eq. (1) when the value of the Hill coefficient is
fixed at 1:

ﬁlig _ log (Elop.Akd,B> (Elop,Bkd.A> (2)
kd,A Elop,B lig kd,B Elop,A ref

where “A” and “B” denote the two responses, Ry and Rg.

The second approach models the ligand/receptor complex as a
“black box” that signals to downstream transducers, and is based on the
so-called “operational model” of Black and Leff [36]. This model as-
sumes that the ligand-bound receptor, RL, activates the cellular response
with an effective equilibrium dissociation constant denoted as Kesp ac-
cording to the equation:

[RL] Emax

R=_———mx
[RL] + Kiesp

3
Here Kiesp denotes the concentration of ligand-bound receptors that
produces 50% of the largest possible response that can be achieved by
the system (Emay)-
The operational model further considers the ligand binding constant
defined as:
[RJL]

Ky = m (€]

where [R] and [L] are the concentrations of free receptor and free
ligand.
Taking into account eq. 4 and the mass balance equation given by

[Rt] = [R] + [RL], 5)

eq. (3) can be re-written as:

_ t[L]Emax
RUe+ 1+ &) ©

where 7 is the “transducer coefficient” defined as:

R
Kresp

= 7
The measured dose responses are fitted with eq. (6), with K;, known

from independent binding experiments, to determine the best-fit t.
Then, the bias coefficient is calculated as:

= (o1 —os) == (tog( ) —10g (D
o= o=y (n(2), ()

In [6], the bias coefficients calculated using the equimolar compar-
ison and the operational model approaches were compared to results
derived from visual inspection of bias plots trajectories.

To derive an equation for the bias plot trajectories, here we first write
the equations for response A and response B to a ligand as:

Eup LI

e e 9

Tt [ ©
Eupa*lL"

Ry, = 7 10

5 s + L] (10)

We rearrange eq. (9) and solve for [L]:

RA*(de 4 [L]rm) — Emp,A * [L]"A

RA*kd.A +RA«,':[L]nA — E!op,A*[L}"A
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Ra*kga = Eppa*[L]"™ — Ry*[L]™

RA *kdf\ = [L}nA * (Epr - RA)

e = Fahas
EIap,A - RA
Ry*k, L
L] = (&) s a1)
Epa — Ra

We then substitute [L] into eq. (10), to obtain an expression for Rp as
a function of Ry:

s Ratkaa \ 3B
Ew” B (Emp)\ —Ra "
Rp=——F—"£— (12)

ban + ({5

Eq. (12) is an analytical expression for a bias plot trajectory. Note
that it depends on all parameters of eq. 1, namely Eq, (the efficacy), kq,
and n. Now, any two trajectories can be compared using mathematical
tools. For instance, the areas under any two bias plot trajectories can be
compared over their common x-axis range, between 0 and the lower of
the E¢op values for response A (termed “m” in Fig. 1D below). The area
can be calculated by either integrating the equation analytically or by
using numerical methods.

Thus, the bias coefficient « is given by the ratio of the areas under
each curve as shown in eq. 13.

o Ratkaa \ 7B
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Or simply:
o areay, (14)
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The standard error of k in (13) is calculated using the functional
approach for multi-variable functions [37], based on the 68% confi-
dence intervals of the fitted kg, n, and Ep. Statistical significance is
determined by performing a one sample t-test and comparing k to 1.
There is bias if k # 1 and no bias if k = 1. The magnitude of the bias
scales with the deviation of k from 1. A larger deviation of k from 1
indicates stronger bias.

3. Results

To demonstrate how to calculate x, we utilized published dose
response curves [6] for a GPCR, angiotensin type II receptor (AT1R) and
their published fit parameters (Tables S1A, S1B, S2A, and S2B Supple-
mental Data in [6]). These results were later independently confirmed
using orthogonal approaches [38]. Rajagopal and colleagues charac-
terized how ATIR responds to its ligand, angiotensin II (chosen as
reference ligand), as well as to a series of angiotensin derivatives [6].
They measured (A) f-arrestin recruitment by the GPCR and (B) the
concentration of inositol 1-phosphate (IP), a downstream signaling
molecule. The dose response curves are shown in Fig. 1A&B. Based on
these responses, the bias plots are created by plotting one response
versus the other (shown in Fig. 1C with the symbols).

We see that the trajectories in the bias plot fall into two major
groups. Four of the derivative trajectories are very similar to the refer-
ence ligand trajectory, while the other five appear distinctly different.
Thus, by comparing the bias plots, we reason that TRV0120026,
TRV0120044, TRV0120045, TRV0120034, S1G4G8 are biased ligands
when compared to angiotensin, while TRV0120055, TRV0120056,
S1C4, and Al are not.
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Fig. 1. (A) and (B) Dose response curves for AT 5R B-arrestin recruitment (A) and concentration of inositol 1-phosphate (IP), a downstream signaling molecule (B).
Shown are raw data and fits to eq. 1 with n = 1, as reported in Tables S1A and S1B in [6]. (C) Bias plots showing the raw data and the analytical curves created with
eq. 12. (D) Illustration of comparison of areas under the bias plot trajectories (hatched areas), used to calculate k. m is the lower of the E, values for response A.

Using the dose response fit parameters of Rajagopal (given in
Tables S1A and S1B in Supplemental Data in [6], we plot the analytical
expressions for the bias plots, as given by eq. 12, in Fig. 1C. We then
calculate k according to eq. 13 using a Matlab code, which calculates the
areas under the curves as shown in Fig. 1D, the ratio of the areas, «, as
well as the k standard error (the 68% confidence interval). The results
are shown in Table 1, and are in complete agreement with the bias plots.
In addition, we obtain p-values which report on the statistical

Table 1
Values of «, calculated for the data set in Fig. 1.
K" p- bias i c m
value” plot®

0.02 + —2.34 + —1.20 +

TRV0120026  0.03 <0.001 o 0.94 0.22 5.73
0.98 &+ —0.03 + 0.40 &

TRV0120055  0.04 >0.05 X 0.12 0.16 96.43
1.02 £ —0.01 = 0.43 &+

TRV0120056 0.04 >0.05 X 0.12 0.16 99.35
0.01 + —-212 £+ —1.50 =

TRV0120044  0.02 <0.001 (¢} 2.31 0.39 0.13
0.02 + -1.81 + —1.47 +

TRV0120045  0.02 <0.001 (¢} 1.19 0.30 2.78
0.08 & -1.35 % —-1.26 +

TRV0120034  0.03 <0.001 (¢} 0.13 0.20 8.53
0.13 &+ —-1.24 + —0.96 =

S1G4G8 0.02 <0.001 (6] 0.28 0.18 14.13
1.09 £ 0.20 &+ 0.64 +

S1C4 0.05 >0.05 X 0.13 0.15 96.27
0.97 + —0.089 + —-0.13 +

Al 0.04 >0.05 X 0.12 0.17 96.30

@ Calculated using eq. 13. Standard error is calculated using the functional
approach for multi-variable functions.

b Calculated using a Wilcoxon t-test.

¢ Based on visual inspection of bias plots. O indicates bias. X indicates no bias.

significance of differences observed between two ligands. A low p-value
suggests that a ligand is strongly biased as compared to the reference
ligand, while a p-value >0.05 indicates no bias.

Two widely used biased coefficients, ¢ and fy;g, based on the opera-
tional model (c) or the equiactive comparison (Pjig), respectively, are
calculated from best-fit parameters of the dose response curves (see
Methods). Results from our « calculations are compared to the values of
Piig and o, calculated by Rajagopal et al., in Table 1. We see that ¢ and
calculations lead to identical conclusions, in agreement with the bias
plots. However, By fails to identify the biased ligands (with the excep-
tion of S1G4G8) [6].

We further used the data for the p-2 Adrenergic Receptor (f2AR) and
its ligands, reported in the same paper [6]. In this data set, two responses
were measured following stimulation with increasing concentrations of
ligand: (A) p-arrestin recruitment and (B) cAMP concentration. The dose
response curves are shown as symbols in Fig. 2A and B and the fits are
shown as solid lines. Fig. 2C shows the bias plots for the raw data
(symbols) and their fits (solid line). As discussed in [6], the bias plots
suggest that dichloroisoproterenol, norepinephrine, salmeterol, and
pindolol are biased when epinephrine is used as the reference ligand.
The bias plots further suggest that salbutamol and formoterol may be
also biased when compared to epinephrine, but the difference is small
and a conclusion cannot be drawn.

We calculate k according to eq. 13, using fit values in Tables S2A and
S2B in [6], and we display the results in Table 2. The calculated p values
suggest that dichloroisoproterenol, norepinephrine, salmeterol, and
pindolol are biased with high statistical significance. The p-values for
salbutamol and formoterol are 0.04 and 0.05, respectively. These values
are close to the cut-off for significance and thus a definitive conclusion
cannot be drawn, similar to the conclusion from the visual inspection of
the bias plot. However, the k analysis produces a distinct p-value, unlike
the bias plot. Interestingly, in this example fy;¢ identifies bias in the cases
of dichloroisoproterenol, norepinephrine, salmeterol, and pindolol, just
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Fig. 2. (A) and (B) Dose response curves for f2AR -arrestin recruitment (A)
and cAMP concentration (B). Shown are raw data and fits to eq. (1) withn =1,
as reported in Tables S1A and S1B in [6]. (C) Bias plots showing the raw data
and the analytical curves corresponding to eq. 12.

as k, but ¢ fails to do so, an intriguing reversal from the example in Fig. 1.
4. Discussion

Here we propose a new method to calculate a bias coefficient called
K, to be used alongside other widely used bias coefficients such as fyg, o,
and AALog [36,1,27,6]. This calculation is meant to recapitulate the
insights gained from bias plots while allowing statistical comparisons of
the data. It involves fitting dose response curves with the Hill equation
and then using the fit parameters to describe the bias plot trajectory
according to eq. 12. With the analytical expressions for the bias plots
known, we compare the areas under the curves for a ligand of interest
and a reference ligand.

To demonstrate the utility of this method, we used published data
sets for AT1R and p2AR. In these examples, ¢ and )iz are able to detect
bias in one or the other data set, in a way that is consistent with the bias
plots, but neither is able to detect bias in both cases. x is able to
consistently detect bias, in agreement with the bias plots in both data
sets. The approach outlined here relies on a calculation of the areas
underneath each trajectory in the bias plots. This results in increased
sensitivity to weakly biased agonists and improved specificity when
there are poor fits to the dose response curves. The unique utility of
over the visual inspection of the bias plot is that k can be analyzed for
statistical significance to obtain a p-value. Here the analysis of k suggests
the presence of slight bias for salbutamol as compared to epinephrine (p
= 0.04), which neither the equiactive or operational model-derived
coefficients are able to detect. Of note, the p-values generated from «
agree with the bias plots, showing borderline significance when the plots
are similar and high statistical significance when the plots are very
different.
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Table 2
Values of k, calculated for the data set in Fig. 2.
K" p- Bias )] c m
value” Plot®
1.02
+ —0.31 —0.22
Isoproterenol 0.05 >0.05 X +0.15 +0.14 0.61
0.88
+ —0.59 0.23 +
Dobutamine 0.08 >0.05 X + 0.26 0.22 0.04
0.12
+ —1.98 —0.45
Dichloroisoproterenol ~ 0.03 <0.001 O +0.45 +0.28 0.02
1.08
+ —-0.27 —-0.11
Fenoterol 0.06 >0.05 X + 0.20 +0.14 0.61
1.14
+ —0.15 0.04 +
Salbutamol 0.06 0.04 - + 0.20 0.13 0.31
1.07
+ —0.49 —-0.19
Norepinephrine 0.07 >0.05 X + 0.23 + 0.14 0.22
0.89
+ —0.98 -0.91
Formoterol 0.05 0.05 - +0.15 +0.14 0.61
0.97
+ -0.73 -0.32
Clenbuterol 0.06 >0.05 X +0.22 +0.14 0.20
0.63
+ —1.38 —0.65
Salmeterol 0.04 <0.001 [¢] + 0.19 +0.13 0.22
0.10
+ -1.76 —0.49
Pindolol 0.03 <0.001 [¢] + 0.56 + 0.53 0.02

@ Calculated using eq. 13. Standard error is calculated using the functional
approach for multi-variable functions.

b Calculated using a Wilcoxon t-test.

¢ Based on visual inspection of bias plots. O indicates bias. X indicates no bias.
- indicates inconclusive.

A unique feature of this method, as compared to all others, is that it
can assess ligand bias over specific ligand concentration ranges. This can
be done simply by adjusting the limits of integration for the area under
the bias plot trajectories in eq. 13. This can be useful in cases such as the
formoterol, as compared to the epinephrine, case shown in Fig. 2C,
where the bias plots clearly diverge over a certain concentration range,
and then cross. If data are truncated before the lines cross, k will predict
more significant bias over the specified concentration range. For
example, if the cutoff is set to 0.45, then x becomes 0.82 + 0.04
(compared to 0.89 + 0.05) and the p-value becomes 0.001 (compared to
0.05). Thus, conclusions about ligand bias can be drawn in the context of
biological processes that occur at a specific range of ligand concentra-
tions, or in the context of specific drug dosages.

As in all methods that calculate bias coefficients, the calculations of k
are largely dependent on the quality of the dose response curve fits
[12,34,6]. Neither of the quantitative approaches used to identify biased
agonists can overcome limitations in the underlying signaling data, such
as artifacts from non-receptor-mediated signaling events, although they
can address amplification that is generated downstream of a receptor-
initiated event. Most dose response curves are well fit by the general-
ized Hill equation, which includes a variable Hill slope to account for
both steep and shallow dose responses. In rare cases when satisfactory
fits cannot be obtained, numerical integration could be applied to the
raw bias plot data points to calculate the area under the curve, even
without fitting. In theory, this is a model-free approach for ligand bias
assessment in cases when the dose response curve fits are not robust.
This makes the approach receptor-agnostic, and it could also be used to
assess other systems that display functional selectivity in the absence of
true ligand bias (e.g., receptor or system bias). However, the numerical
approach also has weaknesses. For example, integration requires
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interpolation between points. Without a theoretical model, the inter-
polation function is arbitrary, which can lead to large errors. Further,
numerical integration can be strongly influenced by the uncertainties in
individual points, especially when combined with large interpolations.

None of the methods to identify bias, discussed here, explicitly
consider the physical chemistry of ligand binding to the receptor, i.e.,
the number of binding sites and the cooperativity of binding. The
effective dissociation constant Kj, in the Black and Leff operational
model is assumed to describe simple 1:1 ligand to receptor binding. This
simplification is justified, as the mode of ligand binding is just one of
many factors that affect the response. The value of Kesp in the opera-
tional model (eq. 3), which describes the coupling between the receptors
and downstream signaling molecules, and therefore the value of 7 in eq.
6, also strongly influences the shape of the dose response curve. On the
phenomenological level, complex modes of ligand binding will manifest
themselves in a binding curve with a Hill slope that is different from 1.
Importantly, the new bias coefficient x does not require that the Hill
slope is fixed at 1 and can be used for any n. Thus, « is well suited for
comparisons of ligands that exhibit different modes of binding, to
determine if they are biased or not.

In conclusion, here we present a new method to calculate bias co-
efficients from bias plots. A Matlab script which calculates kappa using
numerical methods can be found at https://engineering.jhu.edu/h
ristova/.
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