
Ultra-Sparse 360-Degree Camera View Synthesis for Immersive Virtual Tourism

Qian Zhou
Department of Computer Science

University of Illinois Urbana-Champaign
Email: qianz@illinois.edu

Klara Nahrstedt
Department of Computer Science

University of Illinois Urbana-Champaign
Email: klara@illinois.edu

Abstract

360-degree video based virtual tours are becoming more
and more popular due to travel costs and restrictions. Ex-
isting solutions leverage teleport, 3D modeling or image
morphing, but none of them offers satisfactory immersion
and scalability. In this paper, we propose a morphing based
ultra-sparse 360-degree camera virtual tourism solution. It
uses a novel bus tour mode to improve immersion; besides,
it uses a series of strategies to improve feature matching
such that morphing works well for ultra-sparse (15 m apart)
cameras and the system can be deployed on a large scale.
The experimental results show that our work results in re-
markably better feature matching and synthesized views.

1. Introduction

When watching a video produced by a camera, we are

sharing the camera’s vision and virtually standing at its po-

sition. Such video-based virtual tours have advantages over

physical ones in time and travel costs, and are especially

appreciated during pandemics due to travel restrictions.

A virtual tour will be immersive only if it allows the

viewer to control her viewing position and direction in the

virtual space and receive the corresponding view. Existing

solutions fall into three types. 1) teleport [4, 8, 6, 11]: the

system consists of arbitrarily sparsely deployed 360◦ cam-

eras; the viewer can switch her view from one camera to

another, changing her viewing position; at each position,

she can control her viewing direction since a 360◦ camera

has omnidirectional capture. Its drawback is poor immer-
sion: the viewer’s virtual position can only be at a point

where there is a camera, so her movement is discrete. 2)

3D modeling [3, 9, 2]: the system uses a dense (centime-

ters or decimeters apart) camera constellation to conduct

depth estimation and 3D reconstruction; it can synthesize

the view in any direction and at any position within the

space fenced by the constellation; thus, the viewer can con-

tinuously move in the virtual space. Its defect is poor scal-

ability: because dense cameras are necessary, it cannot be

deployed on a large scale, across a wide area to offer tourists

rich scenery. 3) morphing [7, 5, 10]: it allows for sparser

cameras, and uses image morphing to smoothly transform

one camera’s view to another’s, making the viewer feel like

moving continuously between two cameras’ positions.

We think morphing is the overall best for virtual tourism

due to its higher immersion than teleport and higher scala-

bility than 3D modeling. Even so, its immersion and scala-

bility are far from satisfactory. 1) Morphing can only syn-

thesize views for the positions on a connection line segment

between two cameras; the viewer will be frustrated when

she tries and fails to walk out of a connection line. 2) To

be deployed on a large scale, the cameras need to be ultra-

sparse (tens of meters apart, like streetlights), but morphing

requires the feature correspondences between two cameras’

views as input, and we find that existing algorithms cannot

find correspondences accurately for such sparse cameras.

In this paper, we aim to solve the two challenges of a

morphing based virtual tourism system, where the distance

between two adjacent 360◦ cameras is ∼15 m. To address

the first challenge, we make each camera simulate a tour

station and a connection line simulate a tour road between

two stations; we elaborately position a tour as a bus tour

instead of a pedestrian one, and use visual interfaces (e.g.,

steering wheel, bus window) to make the viewer realize that

she is on a bus instead of walking in the virtual space. Since

in real life a bus cannot go off a road and its passengers

are still happy to see the scenery through the front or side

windows, the viewer in our system should be fine that only

on-road positions can be reached. To address the second

challenge, we devise three filters to reduce the false posi-

tive feature correspondences produced by existing feature

matching algorithms and one interpolator to alleviate the

false negatives. They work in cascade and result in signif-

icantly improved feature correspondences and synthesized

views. We claim our contributions as follows:

1. We propose a morphing based ultra-sparse 360◦ cam-

era virtual tourism solution. It uses a novel bus tour

mode to offer viewer-expected immersion.

281

2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)

2770-4319/22/$31.00 ©2022 IEEE
DOI 10.1109/MIPR54900.2022.00057

20
22

 IE
EE

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ul
tim

ed
ia

 In
fo

rm
at

io
n

Pr
oc

es
sin

g
an

d
Re

tr
ie

va
l (

M
IP

R)
 |

 9
78

-1
-6

65
4-

95
48

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
M

IP
R5

49
00

.2
02

2.
00

05
7

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2023 at 18:42:32 UTC from IEEE Xplore. Restrictions apply.

2. We devise three filters and one interpolator to improve

the flawed feature correspondences produced by exist-

ing feature matching algorithms.

3. We conduct experiments using views from four tours,

with four 360◦ cameras used in each tour. Our results

show that the feature correspondences and synthesized

views are remarkably improved.

2 Models and Assumptions

Model. We assume a graph formed by ultra-sparse (tens

of meters apart) 360◦ cameras streaming 360◦ videos to the

cloud. Each camera Ci is a vertex resembling a tour station;
if two cameras Ci-Cj are less than 15 m apart and have a

line of sight, an edge exists and resembles a tour road.

A viewer travels in the virtual space along a tour route

(i.e. a sequence of connected edges) made beforehand or

on demand. We assume that she provides the cloud with her

virtual position (which spot of which road) and direction to

the road, and receives the corresponding user view. If she

is at station Ci, her view will be a subview of Ci’s recorded

omnidirectional view; if she is on road Ci-Cj , her view will

be synthesized from Ci and Cj’s views using morphing.

Forward View. For each camera pair Ci-Cj forming a

road, the subviews along the road direction are called for-

ward views, and those toward the left/right of the road are

left/right views (Fig. 1a). View alignment [12] is conducted

such that each camera pair has forward views located in the

middle of the equirectangular panoramas (Fig. 1b).

Forward
View

Left View

Right View
Ci Cj

Road
Direction

(a) Camera pair seen from above.

1° 60° 120° 240° 300° 360°180°

Forward
View

Right
View

Left
View

Back
Vi

ward
ew

180°

(b) View locations in panorama.

Figure 1: 360◦ camera’s views.

Morphing Based View Synthesis. Morphing takes Ci’s

view as I0 (source image) and Cj’s view as I1 (destina-

tion image), and synthesizes intermediate view Iα for any

α ∈ (0, 1). Here α increases from 0 to 1 as the viewer vir-

tually moves from Ci to Cj . E.g., if she is virtually at the

midpoint, I0.5 will be synthesized and displayed to her.

Feature Arrow. A feature arrow (FA) is an arrow (de-

noted as −−−−−→psrcpdst) drawn on the overlay of I0 and I1, with

its start point psrc (marked with ©) at a feature in I0 and

end point pdst (marked with +) at the corresponding feature

in I1, as shown in Fig. 2. Thus an FA visualizes a feature

correspondence. Like a vector, an FA’s angle is the one it

makes with the positive x-axis; its length is its magnitude.

Figure 2: Feature arrow.

2.1 Challenges and Goals

Challenges. 1) Morphing can only synthesize views for

the positions on a road; the viewer will be frustrated when

she tries and fails to walk out of a road. 2) Morphing re-

quires the feature correspondences between two cameras’

views as input, but we find that existing algorithms can-

not accurately detect and match correspondences for ultra-

sparse cameras. Specifically, we test eight commonly used

feature detection algorithms (e.g., SURF, ORB, KAZE [1]),

and find that they generate either many correct FAs (true

positives) with many wrong FAs (false positives) together,

or fewer false positives but insufficient true positives. We

denote the set of FAs produced by existing feature detec-

tion and matching algorithms as FA0, and show an exam-

ple (produced by KAZE) in Fig. 3. Based on our manual

labeling, FA0 is found to contain many false positives de-

spite a lot of true positives. Its precision is only 0.56. Be-

sides, numerous true positives are missed.

Figure 3: FA0 is highly flawed when two cameras are far

apart from each other.

Goals. In this paper, we aim to offer viewer-expected

immersion, and improve the highly flawed FA0 resulting

from existing detection and matching algorithms and thus

improve view synthesis. Due to space limitation, we focus

on forward view synthesis; left/right views are also desired

during tours and will be studied in the future.

3 Our Approach

Our approach consists of two parts: 1) a bus tour mode

to improve immersion; 2) a series of strategies to improve

FA0 under the ultra-sparse camera context.

282

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2023 at 18:42:32 UTC from IEEE Xplore. Restrictions apply.

3.1 Bus Tour Mode

Without indication, the viewer may think she is a pedes-

trian freely wandering in the virtual space, and will be frus-

trated when she tries to walk out of a road and gets re-

jected. The core of our solution is to proactively regulate

the viewer’s expectation to avoid disappointment.

We elaborately position a tour as a bus tour (Fig. 4) in-

stead of a pedestrian one. Since in real life a bus cannot go

off a road, but it still offers passengers good scenery through

the front window or side windows, the viewer in our sys-

tem should be fine that only on-road positions are reachable

once she realizes that she is on a virtual bus.

Views

Virtual
Position forward

left

View1 View2
View3

Figure 4: A virtual bus tour based on ultra-sparse 360◦ cam-

eras. A viewer can obtain the cameras’ views and virtually

travel to the cameras’ positions (denoted by blue buses); she

can also obtain the synthesized intermediate views and vir-

tually travel to the positions between cameras (orange).

Fig. 5 shows the visual interfaces we use to remind the

viewer that she is on a virtual bus and to indicate which

direction she is looking at. We overlay a shape of bus

front window (including steering wheel and mirror) to the

viewer’s forward view; we overlay a shape of bus left/right

window to the viewer’s left/right view.

(a) Forward view. (b) Left view.

Figure 5: Visual interfaces.

3.2 Ultra-Sparse Camera View Synthesis

In this section we introduce our pipeline (Fig. 6) to gen-

erate feature correspondences between two cameras’ views

(denoted as FA0, highly flawed when cameras are ultra-

sparse) using existing detection and feature matching algo-

rithms, improve them with three filters and one interpolator,

and apply the resulting correspondences FA4 to morphing

for intermediate view synthesis.

Abnormal
Angle
Filter

Abnormal
Length
Filter

Repetitive
Structure

Filter

Similar
Triangle

Interpolator

0 1 2 3 4

Figure 6: Pipeline.

3.2.1 Feature Detection & Matching (Output: FA0)

The algorithm first takes the equirectangular panoramas of

two cameras as input: the source camera view is denoted

as I0 and the destination camera view is I1. Originally they

are both 360◦ horizontally by 180◦ vertically, we crop them,

keep the central 180◦ by 180◦, and feed the resulting I0 and

I1 to feature detection and matching algorithms to automat-

ically generate feature arrows FA0.

Our contribution here is not to design a new feature de-

tector, but to find an existing one which fits our context the

best. Specifically, a detector producing many correct FAs

(true positives) with many wrong FAs (false positives) to-

gether is preferred to one producing fewer false positives

but missing more true positives. It is because we find filter-

ing out wrong FAs to be much easier than creating correct

FAs missed by the detector. Our experiments on eight com-

monly used detectors show that KAZE [1] produces about

4 times as many FAs as SURF and ORB, and 10 times as

many as others. Thus, we choose to use KAZE.

3.2.2 Abnormal Angle Filter (FA0 to FA1)

We observe an FA angle pattern that most true positives fol-

low while false positives not. Based on this, we devise a

filter to effectively remove the false positives which have

abnormal angles. The pattern (Fig. 7a) is:

1) Radical in the Middle. The intuition is that as a person

moves forward, the objects in the forward direction (with

an x-coordinate of 180◦ in the panorama) will expand in

her eyes, so an FA −−−−−→psrcpdst should radiate outward from

the image center c (i.e., � −−−−−→psrcpdst = � −−−→cpsrc) if xsrc (the

x-coordinate of psrc) is 180◦.

2) Horizontal on the Sides. The objects to the person’s

left (x-coordinate: 90◦) or right (x-coordinate: 270◦) will

move parallel to her, so � −−−−−→psrcpdst should be 180◦ if xsrc is

90◦, or be 0◦ if xsrc is 270◦.

As for an FA with xsrc ∈ (90◦, 180◦) or (180◦, 270◦),
the expected angle should be a weighted mean of � −−−→cpsrc
(radical) and 180◦ or 0◦ (horizontal); the closer it is to the

center c, the more weight is given to � −−−→cpsrc. We find that a

simple linear interpolation works well enough. The formula

of the expected angle θ∗ is:

θ∗ =

{
(1− λ) · � −−−→cpsrc + λ · 0◦ if xsrc > 180◦

(1− λ) · � −−−→cpsrc + λ · 180◦ otherwise
(1)

λ = |xsrc − 180◦| ÷ 90◦ (2)

283

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2023 at 18:42:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 7a shows the overall look of the FAs with expected

angles. An FA −−−−−→psrcpdst will be regarded as abnormal and

filtered out if | � −−−−−→psrcpdst − θ∗| > thresholdΔθ, a threshold

for angle error. We empirically set the threshold as 20◦.

90 135 180 225 270
X (deg)

45

90

135

Y
 (

d
eg

)

(a) Angle filter. (b) Interpolator.

Figure 7: Angle filter & interpolator.

3.2.3 Abnormal Length Filter (FA1 to FA2)

We observe that some false positive FAs have lengths

which are dramatically different from their neighboring

FAs. Thus, we put a filter after the angle one to remove the

FAs with abnormal lengths. Specifically, we use a k-nearest

neighbors filter: the filter computes the average length of an

FA’s k (we set k as 10) nearest neighbors as the FA’s ex-

pected length, and will remove the FA if its actual length is

too different (e.g., the relative error is above 60%).

3.2.4 Repetitive Structure Filter (FA2 to FA3)

By this stage quite some false positives still persist. We no-

tice that many of them appear on repetitive structures like

similar-looking windows, tiles and bricks, which are com-

mon on buildings. E.g., a wrong FA pairs the middle win-

dow of Floor 15 in I0 with the middle window of Floor 14

or 16 in I1. And it is extremely similar to the correct FA

in terms of angle and length thus cannot be detected by the

former two filters. To deal with this issue, we devise a filter

targeting the FAs on repetitive structures.

There seems no good way to accurately distinguish

repetitive structure false positives with true positives

nearby, so highly targeted removal of only false positives

is hard. But what if we aggressively kill those false posi-

tives at the expense of hurting true positives? Our insight
is that the improvement resulting from removing false posi-
tives surpasses the worsening resulting from removing non-
key true positives. We observe that: 1) many repetitive

structures are located on a building image’s interior rather

than borders; 2) interior FAs are not key in image synthesis

while border FAs are. This means that if we blindly remove

interior FAs (both false and true positives are reduced), the

synthesized image will: be improved due to fewer false pos-

itives; be worsened due to fewer true positives. And because

those true positives are non-key, the improvement overrides

the worsening. In this way, we no longer need to distinguish

false and true positives; instead we just distinguish interior

and border FAs, which is much more doable.

Based on this idea, we devise a repetitive structure filter

which removes building interior FAs. First we use a ready-

made segmentation CNN (Deeplab v3+) to partition I0 into

multiple regions labeled as sky, building, tree, etc. Then

edge detection is applied to find building borders (e.g., the

boundary between a building and the sky). The FAs which

are on buildings but not close enough to building borders

are regarded as interior FAs and removed.

3.2.5 Similar Triangle Interpolator (FA3 to FA4)

Now the number of false positives is in a low enough level,

but false negatives remain to be improved: FAs are missed

on some borders of some objects. Notice that such a lack of

FAs barely results from the side effect of any of our three

filters; FAs are lacked on some borders because the feature

detector missed them and did no put them in FA0. To solve

this problem, we choose interpolation, i.e. use existing FAs

to generate new ones. This interpolator is designed based

on the observation that the triangle formed by three neigh-

boring feature points in I0 is highly similar to the triangle

formed by their corresponding points in I1. It has two steps:

1) Interpolation Destination Determination. We need to

determine which point in I1 needs an interpolation. Such

a point pnewdst must meet two conditions: i) no feature ex-

ists nearby (this avoids overly dense features); ii) it is on

a border, e.g., between the sky and a building (this avoids

non-key interior features). Just like before, here we use the

segmentation CNN to find borders.

2) Interpolation Source Determination. Now we need

to find the corresponding point of pnewdst in I0, which is de-

noted as pnewsrc , then a new FA
−−−−−−→
pnewsrc pnewdst is completely de-

termined. In Fig. 7b, the algorithm searches pnewdst ’s nearest

left neighbor pdst1 among the original feature points in I1,

and nearest right neighbor pdst2. A triangle is formed with

pdst1, pdst2 and pnewdst , and vertex angle � 1 and � 2 are ob-

tained. Then the algorithm uses psrc1, psrc2, � 1 and � 2 to

draw a similar triangle in I0, whose third vertex is pnewsrc .

4 Evaluation

We conduct experiments with a self-collected dataset of

360◦ images corresponding to four outdoor tours. Each tour

has four cameras deployed along a straight line, thus three

pairs of adjacent cameras: Ci-Ci+1, i = 1, 2, 3. The spac-

ing of two cameras in each pair is ∼15 m. Our algorithm

takes each camera pair’s views as input, finds feature corre-

spondences, and synthesizes intermediate views.

284

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2023 at 18:42:32 UTC from IEEE Xplore. Restrictions apply.

4.1 Qualitative Evaluation

Fig. 8 shows the synthesized views (α = 0.5, i.e., the

virtual position is the midpoint between two cameras) of

one camera pair using different FAs, to demonstrate how

the view evolves as FA0 passes our filters and interpolator

and gets improved. A view has a red circle to mark the part

which is remarkably better than the previous step.

(a) Synthesized view using FA0. (b) Synthesized view using FA1.

(c) Synthesized view using FA2. (d) Synthesized view using FA3.

(e) Synthesized view using FA4.

Figure 8: Synthesized views evolve as FAs get improved.

As is seen, the view synthesized using FA0 has unac-

ceptably low quality because FA0 is highly flawed. FA1

greatly improves the view as it removes most false positives

with abnormal angles; FA2 makes the view better by fur-

ther removing false positives with abnormal lengths; FA3

effectively reduces the ripples on repetitive structures; FA4

also alleviates artifacts and brings remarkable improvement.

4.2 Quantitative Evaluation

Here we measure the precision or number of FAs in each

step. Fig. 9a shows that FA0’s precision varies from 0.40

to 0.76, and is poorly 0.56 in average, which means that

about half of them are false positives. The average number

of false positives per camera pair is 174.2.

Fig. 9b shows that after the angle filter is applied, we get

a good F1-score of 0.89 (precision 0.82 and recall 0.98). It

reduces the average number of false positives from FA0’s

174.2 to FA1’s 51.3. Also, the scores of all camera pairs

are similar, so the angle filter is universally effective.

Fig. 9c shows that the length filter results in an F1-score

of 0.90 (precision 0.86 and recall 0.96), only slightly higher

1-2 2-3 3-4
Camera Pair

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Tour1
Tour2

Tour3
Tour4

(a) FA0

1-2 2-3 3-4
Camera Pair

0

0.2

0.4

0.6

0.8

1

F
1-

S
co

re

Tour1
Tour2
Tour3
Tour4

(b) FA1

1-2 2-3 3-4
Camera Pair

0

0.2

0.4

0.6

0.8

1

F
1-

S
co

re

Tour1
Tour2
Tour3
Tour4

(c) FA2

10 30 50 70 90
Offset (pixel)

0

50

100

150

200

250

N
u

m
b

er
 o

f
F

A
s

FP
FN
TP

(d) FA3

1-2 2-3 3-4
Camera Pair

0

50

100

150

200

250

N
u

m
b

er
 o

f
F

A
s

Tour2
Interp2
Tour3

Interp3
Tour4
Interp4

(e) FA4

Figure 9: Performance evaluation.

than FA1’s 0.89 since most false positives have already

been removed by the angle filter. It reduces the average

number of false positives from FA1’s 51.3 to FA2’s 39.2.

The repetitive structure filter preserves building border

FAs and removes interior ones. If an FA is on a building

but its distance to the building’s border is above a thresh-

old offset, then it is detected as interior. A larger offset
makes the filter treat more FAs as border ones to preserve.

Note that to this stage F1-score is no longer a good metric

for performance evaluation because the repetitive structure

reduces both true and false positives and FA3 may have a

lower F1-score than FA2; but we have explained in Sec-

tion 3.2.4 and shown in Section 4.1 that FA3 is better than

FA2. So in Fig. 9d we show the numbers of false positives,

false negatives and true positives. We set offset as 40 pix-

els because it makes the average number of false positives

drop to 19.8 in contrast to offset 100’s 27.8; an offset of 10

pixels leads to even fewer false positives, but meanwhile too

few true positives for view synthesis.

Fig. 9e shows that due to the interpolator, FA4 has 53.4

more FAs than FA3 in average.

285

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2023 at 18:42:32 UTC from IEEE Xplore. Restrictions apply.

5 Related Work

A virtual tour will be immersive only if it allows the

viewer to control her viewing position and direction in the

virtual space and receive the corresponding view. Existing

solutions fall into three types.

1) Teleport. A system of this type [4, 8, 6, 11] consists

of arbitrarily sparsely deployed 360◦ cameras; the viewer

can switch her view from one camera to another, changing

her viewing position; at each position, she can control her

viewing direction since a 360◦ camera has omnidirectional

capture. However, the viewer’s virtual position can only be

at a point where there is a camera, so her movement in the

virtual space is discrete and unnatural.

2) 3D Modeling. A system of this type [3, 9, 2] uses a

dense (centimeters or decimeters apart) camera constella-

tion to conduct depth estimation and 3D reconstruction; it

can synthesize the view in any direction and at any posi-

tion within the space fenced by the constellation; thus, the

viewer can continuously move in the virtual space. E.g.,

in [2] 46 cameras form a 92 cm diameter rig; in [9] 16 cam-

eras form a 1 m diameter rig). However, because dense

cameras are necessary, it cannot be deployed on a large

scale, across a wide area to offer tourists rich scenery.

3) Morphing. Image morphing [7] is a visual effect tech-

nique transforming a source image I0 to a destination im-

age I1. It allows for sparser cameras, and can synthesize

two cameras’ intermediate views, making the viewer feel

like moving continuously between two cameras’ positions.

Lipski et al. present a hybrid approach [5] which combines

3D modeling with morphing but it does not aim at ultra-

sparse cameras like ours. Photo Tourism [10] uses struc-

ture from motion (SfM) to recover the cameras’ poses and

the 3D geometry of the scenes, for browsing unstructured

photos; it also uses morphing when viewers move between

photos, but that is for making the switching process slightly

smoother, neither targets nor achieves seamless transition.

We choose morphing as our base due to its higher immer-

sion than teleport and higher scalability than 3D modeling,

but we improve its immersion and scalability to a new level.

6 Conclusion

In this paper, we introduce the design and evaluation of

a morphing based ultra-sparse 360◦ camera virtual tourism

solution. It uses a novel bus tour mode to achieve viewer-

expected immersion. Besides, it improves the highly flawed

feature correspondences produced by existing feature de-

tection and matching algorithms when two cameras are far

apart. As a result, our solution fits the ultra-sparse camera

context and can be deployed on a large scale. The exper-

imental results show that our work results in remarkably

better feature matching and synthesized views.

Acknowledgment

This research was funded by the NSF CNS 1900875,

by the Postdoctoral Fellowship program at CS UIUC and

by the Grainger College of Engineering funding. The pre-

sented views in the article are of the authors and do not rep-

resent the views of the funding organizations.

References

[1] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. Kaze fea-

tures. In European Conference on Computer Vision, pages

214–227. Springer, 2012.
[2] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hed-

man, M. Duvall, J. Dourgarian, J. Busch, M. Whalen, and

P. Debevec. Immersive light field video with a layered mesh

representation. ACM Transactions on Graphics (TOG),
39(4):86–1, 2020.

[3] I. Choi, O. Gallo, A. Troccoli, M. H. Kim, and J. Kautz.

Extreme view synthesis. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7781–

7790, 2019.
[4] X. Corbillon, F. De Simone, G. Simon, and P. Frossard.

Dynamic adaptive streaming for multi-viewpoint omnidirec-

tional videos. In Proceedings of the 9th ACM Multimedia
Systems Conference, pages 237–249, 2018.

[5] C. Lipski, F. Klose, and M. Magnor. Correspondence and

depth-image based rendering a hybrid approach for free-

viewpoint video. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 24(6):942–951, 2014.

[6] T. Maugey, L. Guillo, and C. L. Cam. Ftv360: a multiview

360° video dataset with calibration parameters. In Proceed-
ings of the 10th ACM Multimedia Systems Conference, pages

291–295, 2019.
[7] P. K. Oswal and P. Y. Govindaraju. Image morphing: a com-

parative study. Department of Electrical and Computer En-
gineering, Clemson University, Clemson, 1998.

[8] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun. Towards

low latency multi-viewpoint 360 interactive video: A multi-

modal deep reinforcement learning approach. In IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communica-
tions, pages 991–999. IEEE, 2019.

[9] A. P. Pozo, M. Toksvig, T. F. Schrager, J. Hsu, U. Mathur,

A. Sorkine-Hornung, R. Szeliski, and B. Cabral. An inte-

grated 6dof video camera and system design. ACM Trans-
actions on Graphics (TOG), 38(6):1–16, 2019.

[10] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:

exploring photo collections in 3d. In ACM siggraph 2006
papers, pages 835–846. 2006.

[11] K. K. Sreedhar, I. D. Curcio, A. Hourunranta, and M. Lep-

istö. Immersive media experience with mpeg omaf multi-

viewpoints and overlays. In Proceedings of the 11th ACM
Multimedia Systems Conference, pages 333–336, 2020.

[12] Q. Zhou, B. Chen, Z. Yang, H. Guo, and K. Nahrstedt.

360viewpet: View based pose estimation for ultra-sparse

360-degree cameras. In 2021 IEEE International Sympo-
sium on Multimedia (ISM), pages 1–8. IEEE, 2021.

286

Authorized licensed use limited to: University of Illinois. Downloaded on August 03,2023 at 18:42:32 UTC from IEEE Xplore. Restrictions apply.

