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Abstract

360-degree video based virtual tours are becoming more
and more popular due to travel costs and restrictions. Ex-
isting solutions leverage teleport, 3D modeling or image
morphing, but none of them offers satisfactory immersion
and scalability. In this paper, we propose a morphing based
ultra-sparse 360-degree camera virtual tourism solution. It
uses a novel bus tour mode to improve immersion; besides,
it uses a series of strategies to improve feature matching
such that morphing works well for ultra-sparse (15 m apart)
cameras and the system can be deployed on a large scale.
The experimental results show that our work results in re-
markably better feature matching and synthesized views.

1. Introduction

When watching a video produced by a camera, we are
sharing the camera’s vision and virtually standing at its po-
sition. Such video-based virtual tours have advantages over
physical ones in time and travel costs, and are especially
appreciated during pandemics due to travel restrictions.

A virtual tour will be immersive only if it allows the
viewer to control her viewing position and direction in the
virtual space and receive the corresponding view. Existing
solutions fall into three types. 1) teleport [4, 8, 6, 11]: the
system consists of arbitrarily sparsely deployed 360° cam-
eras; the viewer can switch her view from one camera to
another, changing her viewing position; at each position,
she can control her viewing direction since a 360° camera
has omnidirectional capture. Its drawback is poor immer-
sion: the viewer’s virtual position can only be at a point
where there is a camera, so her movement is discrete. 2)
3D modeling [3, 9, 2]: the system uses a dense (centime-
ters or decimeters apart) camera constellation to conduct
depth estimation and 3D reconstruction; it can synthesize
the view in any direction and at any position within the
space fenced by the constellation; thus, the viewer can con-
tinuously move in the virtual space. Its defect is poor scal-
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ability: because dense cameras are necessary, it cannot be
deployed on a large scale, across a wide area to offer tourists
rich scenery. 3) morphing [7, 5, 10]: it allows for sparser
cameras, and uses image morphing to smoothly transform
one camera’s view to another’s, making the viewer feel like
moving continuously between two cameras’ positions.

We think morphing is the overall best for virtual tourism
due to its higher immersion than teleport and higher scala-
bility than 3D modeling. Even so, its immersion and scala-
bility are far from satisfactory. 1) Morphing can only syn-
thesize views for the positions on a connection line segment
between two cameras; the viewer will be frustrated when
she tries and fails to walk out of a connection line. 2) To
be deployed on a large scale, the cameras need to be ultra-
sparse (tens of meters apart, like streetlights), but morphing
requires the feature correspondences between two cameras’
views as input, and we find that existing algorithms cannot
find correspondences accurately for such sparse cameras.

In this paper, we aim to solve the two challenges of a
morphing based virtual tourism system, where the distance
between two adjacent 360° cameras is ~15 m. To address
the first challenge, we make each camera simulate a tour
station and a connection line simulate a tour road between
two stations; we elaborately position a tour as a bus tour
instead of a pedestrian one, and use visual interfaces (e.g.,
steering wheel, bus window) to make the viewer realize that
she is on a bus instead of walking in the virtual space. Since
in real life a bus cannot go off a road and its passengers
are still happy to see the scenery through the front or side
windows, the viewer in our system should be fine that only
on-road positions can be reached. To address the second
challenge, we devise three filters to reduce the false posi-
tive feature correspondences produced by existing feature
matching algorithms and one interpolator to alleviate the
false negatives. They work in cascade and result in signif-
icantly improved feature correspondences and synthesized
views. We claim our contributions as follows:

1. We propose a morphing based ultra-sparse 360° cam-
era virtual tourism solution. It uses a novel bus tour
mode to offer viewer-expected immersion.
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2. We devise three filters and one interpolator to improve
the flawed feature correspondences produced by exist-
ing feature matching algorithms.

. We conduct experiments using views from four tours,
with four 360° cameras used in each tour. Our results
show that the feature correspondences and synthesized
views are remarkably improved.

Models and Assumptions

Model. We assume a graph formed by ultra-sparse (tens
of meters apart) 360° cameras streaming 360° videos to the
cloud. Each camera C; is a vertex resembling a four station,
if two cameras C;-C); are less than 15 m apart and have a
line of sight, an edge exists and resembles a four road.

A viewer travels in the virtual space along a tour route
(i.e. a sequence of connected edges) made beforehand or
on demand. We assume that she provides the cloud with her
virtual position (which spot of which road) and direction to
the road, and receives the corresponding user view. If she
is at station C;, her view will be a subview of C;’s recorded
omnidirectional view; if she is on road C;-C';, her view will
be synthesized from C; and C;’s views using morphing.

Forward View. For each camera pair C;-C; forming a
road, the subviews along the road direction are called for-
ward views, and those toward the left/right of the road are
left/right views (Fig. 1a). View alignment [12] is conducted
such that each camera pair has forward views located in the
middle of the equirectangular panoramas (Fig. 1b).

180°
8 O\ Road S)forwerd ward— Left || Forward| | Right —Back
e irection View |ew View View View Vi
ci Ci 1°60° 1207 /1807 //240° 300°360°

(a) Camera pair seen from above. (b) View locations in panorama.

Figure 1: 360° camera’s views.

Morphing Based View Synthesis. Morphing takes C;’s
view as Iy (source image) and C;’s view as I; (destina-
tion image), and synthesizes intermediate view I, for any
a € (0,1). Here « increases from O to 1 as the viewer vir-
tually moves from C; to C;. E.g., if she is virtually at the
midpoint, Ij 5 will be synthesized and displayed to her.

Feature Arrow. A feature arrow (FA) is an arrow (de-
noted as M) drawn on the overlay of Iy and I, with
its start point pg,.. (marked with () at a feature in I and
end point pys; (marked with +) at the corresponding feature
in I, as shown in Fig. 2. Thus an FA visualizes a feature
correspondence. Like a vector, an FA’s angle is the one it
makes with the positive x-axis; its length is its magnitude.

282

Fk\ angle

- -

Figure 2: Feature arrow.

2.1 Challenges and Goals

Challenges. 1) Morphing can only synthesize views for
the positions on a road; the viewer will be frustrated when
she tries and fails to walk out of a road. 2) Morphing re-
quires the feature correspondences between two cameras’
views as input, but we find that existing algorithms can-
not accurately detect and match correspondences for ultra-
sparse cameras. Specifically, we test eight commonly used
feature detection algorithms (e.g., SURF, ORB, KAZE [1]),
and find that they generate either many correct FAs (true
positives) with many wrong FAs (false positives) together,
or fewer false positives but insufficient true positives. We
denote the set of FAs produced by existing feature detec-
tion and matching algorithms as F.4p, and show an exam-
ple (produced by KAZE) in Fig. 3. Based on our manual
labeling, F.A, is found to contain many false positives de-
spite a lot of true positives. Its precision is only 0.56. Be-
sides, numerous true positives are missed.

—True Positive
—False Positive

Figure 3: F Ay is highly flawed when two cameras are far
apart from each other.

Goals. In this paper, we aim to offer viewer-expected
immersion, and improve the highly flawed F.4q resulting
from existing detection and matching algorithms and thus
improve view synthesis. Due to space limitation, we focus
on forward view synthesis; left/right views are also desired
during tours and will be studied in the future.

3  Our Approach

Our approach consists of two parts: 1) a bus tour mode
to improve immersion; 2) a series of strategies to improve
FAp under the ultra-sparse camera context.
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3.1 Bus Tour Mode

Without indication, the viewer may think she is a pedes-
trian freely wandering in the virtual space, and will be frus-
trated when she tries to walk out of a road and gets re-
jected. The core of our solution is to proactively regulate
the viewer’s expectation to avoid disappointment.

We elaborately position a tour as a bus tour (Fig. 4) in-
stead of a pedestrian one. Since in real life a bus cannot go
off aroad, but it still offers passengers good scenery through
the front window or side windows, the viewer in our sys-
tem should be fine that only on-road positions are reachable
once she realizes that she is on a virtual bus.
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Figure 4: A virtual bus tour based on ultra-sparse 360° cam-
eras. A viewer can obtain the cameras’ views and virtually
travel to the cameras’ positions (denoted by blue buses); she
can also obtain the synthesized intermediate views and vir-
tually travel to the positions between cameras (orange).

Fig. 5 shows the visual interfaces we use to remind the
viewer that she is on a virtual bus and to indicate which
direction she is looking at. We overlay a shape of bus
front window (including steering wheel and mirror) to the
viewer’s forward view; we overlay a shape of bus left/right
window to the viewer’s left/right view.

(b) Left view.

(a) Forward view.

Figure 5: Visual interfaces.

3.2 Ultra-Sparse Camera View Synthesis

In this section we introduce our pipeline (Fig. 6) to gen-
erate feature correspondences between two cameras’ views
(denoted as F.Ap, highly flawed when cameras are ultra-
sparse) using existing detection and feature matching algo-
rithms, improve them with three filters and one interpolator,
and apply the resulting correspondences F.4, to morphing
for intermediate view synthesis.
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Figure 6: Pipeline.

3.2.1 Feature Detection & Matching (Output: F.4,)

The algorithm first takes the equirectangular panoramas of
two cameras as input: the source camera view is denoted
as Iy and the destination camera view is /7. Originally they
are both 360° horizontally by 180° vertically, we crop them,
keep the central 180° by 180°, and feed the resulting I, and
I, to feature detection and matching algorithms to automat-
ically generate feature arrows F.Ag.

Our contribution here is not to design a new feature de-
tector, but to find an existing one which fits our context the
best. Specifically, a detector producing many correct FAs
(true positives) with many wrong FAs (false positives) to-
gether is preferred to one producing fewer false positives
but missing more true positives. It is because we find filter-
ing out wrong FAs to be much easier than creating correct
FAs missed by the detector. Our experiments on eight com-
monly used detectors show that KAZE [1] produces about
4 times as many FAs as SURF and ORB, and 10 times as
many as others. Thus, we choose to use KAZE.

3.2.2 Abnormal Angle Filter (F.A, to F.A;)

We observe an FA angle pattern that most true positives fol-
low while false positives not. Based on this, we devise a
filter to effectively remove the false positives which have
abnormal angles. The pattern (Fig. 7a) is:

1) Radical in the Middle. The intuition is that as a person
moves forward, the objects in the forward direction (with
an x-coordinate of 180° in the panorama) will expand in
her eyes, so an FA m should radiate outward from
the image center ¢ (i.e., ZPsrcPdst = ZCPsre) if Tgpe (the
x-coordinate of pg,..) is 180°.

2) Horizontal on the Sides. The objects to the person’s
left (x-coordinate: 90°) or right (x-coordinate: 270°) will
move parallel to her, so Am should be 180° if x4, is
90°, or be 0° if x4 is 270°.

As for an FA with x4, € (90°,180°) or (180°,270°),
the expected angle should be a weighted mean of LCDare
(radical) and 180° or 0° (horizontal); the closer it is to the
center ¢, the more weight is given to Ac’p;z. We find that a
simple linear interpolation works well enough. The formula
of the expected angle 6* is:

g J=N- (Dot +XA-0°  ifzge > 180° 0
(1 —=X)- Zcpsre + A-180°  otherwise
A = |Zgre — 180°] = 90° )
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Fig. 7a shows the overall look of the FAs with expected
angles. An FA ]y, cpas; will be regarded as abnormal and
filtered out if |Lm — 0*| > thresholdag, a threshold
for angle error. We empirically set the threshold as 20°.

135 o, | o ¢ °
+o *\-KI{:LMH
90

Y (deg)

45 o L
90 135 180 225 270
X (deg)

(a) Angle filter.

(b) Interpolator.

Figure 7: Angle filter & interpolator.

3.2.3 Abnormal Length Filter (F.A; to F.Ay)

We observe that some false positive FAs have lengths
which are dramatically different from their neighboring
FAs. Thus, we put a filter after the angle one to remove the
FAs with abnormal lengths. Specifically, we use a k-nearest
neighbors filter: the filter computes the average length of an
FA’s k (we set k as 10) nearest neighbors as the FA’s ex-
pected length, and will remove the FA if its actual length is
too different (e.g., the relative error is above 60%).

3.2.4 Repetitive Structure Filter (F.A, to 7 .A3)

By this stage quite some false positives still persist. We no-
tice that many of them appear on repetitive structures like
similar-looking windows, tiles and bricks, which are com-
mon on buildings. E.g., a wrong FA pairs the middle win-
dow of Floor 15 in Iy with the middle window of Floor 14
or 16 in I;. And it is extremely similar to the correct FA
in terms of angle and length thus cannot be detected by the
former two filters. To deal with this issue, we devise a filter
targeting the FAs on repetitive structures.

There seems no good way to accurately distinguish
repetitive structure false positives with true positives
nearby, so highly targeted removal of only false positives
is hard. But what if we aggressively kill those false posi-
tives at the expense of hurting true positives? Our insight
is that the improvement resulting from removing false posi-
tives surpasses the worsening resulting from removing non-
key true positives. We observe that: 1) many repetitive
structures are located on a building image’s interior rather
than borders; 2) interior FAs are not key in image synthesis
while border FAs are. This means that if we blindly remove
interior FAs (both false and true positives are reduced), the
synthesized image will: be improved due to fewer false pos-
itives; be worsened due to fewer true positives. And because

284

those true positives are non-key, the improvement overrides
the worsening. In this way, we no longer need to distinguish
false and true positives; instead we just distinguish interior
and border FAs, which is much more doable.

Based on this idea, we devise a repetitive structure filter
which removes building interior FAs. First we use a ready-
made segmentation CNN (Deeplab v3+) to partition [ into
multiple regions labeled as sky, building, tree, etc. Then
edge detection is applied to find building borders (e.g., the
boundary between a building and the sky). The FAs which
are on buildings but not close enough to building borders
are regarded as interior FAs and removed.

3.2.5 Similar Triangle Interpolator (F A5 to F.4,)

Now the number of false positives is in a low enough level,
but false negatives remain to be improved: FAs are missed
on some borders of some objects. Notice that such a lack of
FAs barely results from the side effect of any of our three
filters; FAs are lacked on some borders because the feature
detector missed them and did no put them in F.4y. To solve
this problem, we choose interpolation, i.e. use existing FAs
to generate new ones. This interpolator is designed based
on the observation that the triangle formed by three neigh-
boring feature points in [ is highly similar to the triangle
formed by their corresponding points in /. It has two steps:

1) Interpolation Destination Determination. We need to
determine which point in I; needs an interpolation. Such
a point pj;¢” must meet two conditions: i) no feature ex-
ists nearby (this avoids overly dense features); ii) it is on
a border, e.g., between the sky and a building (this avoids
non-key interior features). Just like before, here we use the
segmentation CNN to find borders.

2) Interpolation Source Determination. Now we need

to find the corresponding point of p};%” in Iy, which is de-

noted as p_7Y’, then a new FA p?°*p;°" is completely de-
termined. In Fig. 7b, the algorithm searches p;5”’s nearest
left neighbor pys:1 among the original feature points in 7,
and nearest right neighbor pgs2. A triangle is formed with
Ddst1, Pdst2 and p;%”, and vertex angle /1 and /2 are ob-
tained. Then the algorithm uses pgyc1, Psre2, Z1 and /2 to

o . . . - mew
draw a similar triangle in [y, whose third vertex is pho2.

4 Evaluation

We conduct experiments with a self-collected dataset of
360° images corresponding to four outdoor tours. Each tour
has four cameras deployed along a straight line, thus three
pairs of adjacent cameras: C;-C;41,7 = 1,2,3. The spac-
ing of two cameras in each pair is ~15 m. Our algorithm
takes each camera pair’s views as input, finds feature corre-
spondences, and synthesizes intermediate views.
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4.1 Qualitative Evaluation

Fig. 8 shows the synthesized views (o = 0.5, i.e., the
virtual position is the midpoint between two cameras) of
one camera pair using different FAs, to demonstrate how
the view evolves as F.4 passes our filters and interpolator
and gets improved. A view has a red circle to mark the part
which is remarkably better than the previous step.

(a) Synthesized view using F Ag. (b) Synthesized view using F.A4;.

(c) Synthesized view using F.A2.  (d) Synthesized view using F.As3.

(e) Synthesized view using F.A4.

Figure 8: Synthesized views evolve as FAs get improved.

As is seen, the view synthesized using F.A, has unac-
ceptably low quality because F.Ay is highly flawed. F.A;
greatly improves the view as it removes most false positives
with abnormal angles; F.A; makes the view better by fur-
ther removing false positives with abnormal lengths; F A3
effectively reduces the ripples on repetitive structures; F .4,
also alleviates artifacts and brings remarkable improvement.

4.2 Quantitative Evaluation

Here we measure the precision or number of FAs in each
step. Fig. 9a shows that F.Ay’s precision varies from 0.40
to 0.76, and is poorly 0.56 in average, which means that
about half of them are false positives. The average number
of false positives per camera pair is 174.2.

Fig. 9b shows that after the angle filter is applied, we get
a good F1-score of 0.89 (precision 0.82 and recall 0.98). It
reduces the average number of false positives from F.A4,’s
174.2 to FA1’s 51.3. Also, the scores of all camera pairs
are similar, so the angle filter is universally effective.

Fig. 9c shows that the length filter results in an F1-score
of 0.90 (precision 0.86 and recall 0.96), only slightly higher
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Figure 9: Performance evaluation.

than F.A;’s 0.89 since most false positives have already
been removed by the angle filter. It reduces the average
number of false positives from F.A;’s 51.3 to F.As’s 39.2.

The repetitive structure filter preserves building border
FAs and removes interior ones. If an FA is on a building
but its distance to the building’s border is above a thresh-
old of fset, then it is detected as interior. A larger of fset
makes the filter treat more FAs as border ones to preserve.
Note that to this stage F1-score is no longer a good metric
for performance evaluation because the repetitive structure
reduces both true and false positives and F.A3 may have a
lower Fl-score than F.4s; but we have explained in Sec-
tion 3.2.4 and shown in Section 4.1 that F A3 is better than
FAs. So in Fig. 9d we show the numbers of false positives,
false negatives and true positives. We set of fset as 40 pix-
els because it makes the average number of false positives
drop to 19.8 in contrast to offset 100’s 27.8; an offset of 10
pixels leads to even fewer false positives, but meanwhile too
few true positives for view synthesis.

Fig. 9e shows that due to the interpolator, 744 has 53.4
more FAs than F Aj3 in average.
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5 Related Work

A virtual tour will be immersive only if it allows the
viewer to control her viewing position and direction in the
virtual space and receive the corresponding view. Existing
solutions fall into three types.

1) Teleport. A system of this type [4, 8, 6, 11] consists
of arbitrarily sparsely deployed 360° cameras; the viewer
can switch her view from one camera to another, changing
her viewing position; at each position, she can control her
viewing direction since a 360° camera has omnidirectional
capture. However, the viewer’s virtual position can only be
at a point where there is a camera, so her movement in the
virtual space is discrete and unnatural.

2) 3D Modeling. A system of this type [3, 9, 2] uses a
dense (centimeters or decimeters apart) camera constella-
tion to conduct depth estimation and 3D reconstruction; it
can synthesize the view in any direction and at any posi-
tion within the space fenced by the constellation; thus, the
viewer can continuously move in the virtual space. E.g.,
in [2] 46 cameras form a 92 cm diameter rig; in [9] 16 cam-
eras form a 1 m diameter rig). However, because dense
cameras are necessary, it cannot be deployed on a large
scale, across a wide area to offer tourists rich scenery.

3) Morphing. Image morphing [7] is a visual effect tech-
nique transforming a source image I, to a destination im-
age I;. It allows for sparser cameras, and can synthesize
two cameras’ intermediate views, making the viewer feel
like moving continuously between two cameras’ positions.
Lipski et al. present a hybrid approach [5] which combines
3D modeling with morphing but it does not aim at ultra-
sparse cameras like ours. Photo Tourism [10] uses struc-
ture from motion (SfM) to recover the cameras’ poses and
the 3D geometry of the scenes, for browsing unstructured
photos; it also uses morphing when viewers move between
photos, but that is for making the switching process slightly
smoother, neither targets nor achieves seamless transition.
We choose morphing as our base due to its higher immer-
sion than teleport and higher scalability than 3D modeling,
but we improve its immersion and scalability to a new level.

6 Conclusion

In this paper, we introduce the design and evaluation of
a morphing based ultra-sparse 360° camera virtual tourism
solution. It uses a novel bus tour mode to achieve viewer-
expected immersion. Besides, it improves the highly flawed
feature correspondences produced by existing feature de-
tection and matching algorithms when two cameras are far
apart. As a result, our solution fits the ultra-sparse camera
context and can be deployed on a large scale. The exper-
imental results show that our work results in remarkably
better feature matching and synthesized views.
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