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We review the work of Klaus Hasselmann, one of three recipients of the Nobel
Prize in Physics 2021, from the perspective of computational science and
engineering (CSE). In addition to highlighting Hasselmann’s extensive
contributions to climate science, we shine a light on his groundbreaking work in
ocean surface wave dynamics and prediction, which preceded his career in
climate research. Early on, Hasselmann also gained a strong interest in
elementary particle physics, which led him to develop, in his spare time, a unified
theory of particles and fields, and which we outline here. With this review we
hope to entice computational scientists to delve deeper into Hasselmann’s
extraordinarily broad work at the interface of climate physics, mathematics, and
scientific computing, and to appreciate the central role that CSE continues to
play in climate research.

The Nobel Prize in Physics 2021 was awarded to
Klaus Hasselmann, SyukuroManabe, andGiorgio
Parisi “for groundbreaking contributions to our

understanding of complex systems.”1 The two climate
scientists, Hasselmann and Manabe, shared one half of
the prize “for the physical modelling of Earth’s climate,
quantifying variability and reliably predicting global
warming.” The award recognizes the fundamental phys-
ical insights underlying climate science, and, as such,
affirms climate science as a core discipline of physics.2

Equally important, their work represents a triumph of
the role of computational science and engineering in
today’s research enterprise. Extensive monographs
have recently been published on Hasselmann’s3 and
Manabe’s4 careers. The following is a subjective acc-
ount of Klaus Hasselmann’s work, viewed from a com-
putational science perspective and in the context of his
early contributions to geophysics. This focus is in no
way meant to diminish the groundbreaking contribu-
tions of Syukuro Manabe and Giorgio Parisi, but merely
reflects interactions of the author with Hasselmann
during his time as a Ph.D. student in Hamburg.

Like most branches of the geosciences, climate
sciencea has been, over the course of the 20th cen-
tury, and arguably remains to date, a sparse data
science, at least from an observational perspective.
It is true that stunning advances in satellite remote
sensing and autonomous, uncrewed in situ sensing
are providing us today with an unprecedented
wealth of Earth observations. But in the face of the
wide range of physical processes acting on a con-
tinuum of space and time scales (from seconds to
millennia) observational sampling of most geophys-
ical variables remains sparse geographically and
temporally. For the ocean, in particular, which is
opaque to electromagnetic radiation, remote sens-
ing techniques that have revolutionized everything
from Earth science to astrophysics have been of
limited use in revealing the properties of its interior,
with those vast, barely observed water masses rep-
resenting an essential flywheel of the climate
system.

In view of the above, climate science is a compelling
candidate for productive applications of developments
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in computational science and engineering (CSE), which
according to R€ude et al. (2018)5 is

an essential driving force for progress in
science when classical experiments or
conventional theory reach their limits, and in
applications where experimental approaches
are too costly, slow, dangerous, or impossible.

Their characterization of CSE as “rooted in themathe-
matical and statistical sciences, computer science, the
physical sciences, and engineering,” reflects in many
ways Hasselmann’s broad groundbreaking body of work.
Through implicit or explicit advances in CSE, Hasselmann
has made not one, but (at least) twomajor contributions,
namely in the fields of ocean wave research and climate
research. It is instructive to sketch both of these develop-
ments, as both of their fundamental descriptions rely on
the embedding of the governing dynamics within a sto-
chastic framework and applying judicious approaches of
model reduction to render the problem at hand tractable.
Arguably, Hasselmann’s deep dive into ocean wave phys-
ics and stochastic dynamics provides a fertile canvas for
much of his thinking about, and work in climate dynam-
ics, as well his ideas on fundamental physics, pursued on
the side.

OCEANWAVE RESEARCH
Hasselmann made his first major impact in geophysics
withhis solution to the long-soughtproblemofocean swell

modeling and its prediction. Some progress had been
made in the prediction of wind-generated surface waves
with the ground-breaking work by Sverdrup and Munk
(1943, declassified 1947)6 to support Allied landing opera-
tions in Europe during World War II. Although this work
introduced fundamental statistical descriptions of mean
wave field properties and empirical relationships between
these and the surface wind field, a satisfactory theory for
ocean swell generation remained elusive at the time.

Formulating the General Governing
Equations
Setting the stage for a flurry of papers, Hasselmann
(1960)7 argued that the largely empirical or parametric
relationships between the local wind and wave proper-
ties should give way to a comprehensive energy balance
(or radiative transfer) equation for the local two-dimen-
sional (horizontal) spectral energy density F ðk; x; tÞ
characterizing the wave field as a function of horizontal
wavenumberk, horizontal position x, and time t
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and where s ¼ ðgk tanh kHÞ1=2 is the dispersion rela-
tionship for surface gravity waves in water of depth H.
Unknown to Hasselmann at the time, a similar propo-
sition had been made by Gelci et al. in 19578 but not
further explored.

The energy balance equation accounts for a funda-
mentally statistical description of ocean (surface)
waves.b The local spectral wave energy density then
evolves under the influence of the following three
main “source” terms in (1).

1) A term Sin describing the physics of energy input
from the atmosphere to the surface wave field
(air-sea interactions).

2) A term Snl describing the redistribution of spectral
energy due to resonant nonlinear wave–wave inter-
actions among different spectral components.

3) A term Sds capturing all processes that lead to
spectral energy dissipation, such as white-cap-
ping, wave–bottom interactions and dissipation
in shallow water.

The sum of these source terms, S, represents the net
energy transfer at wavenumber k due to all sources,
sinks, and transfer processes affecting k.

Although the functional form of each of these terms
remained virtually unknown at the time (and for two of
these terms remains subject to considerable uncertainty
today), the very structure of the equations, along with
certain invariance principles provided strong constraints
on the general functional form, thus offering the prospect
of predictive modeling of the surface wave field via inte-
gration of the spectral energy balance equation. Impor-
tantly, such a dynamical wave field description could
account for the integrated effect of wave field evolution
back in time, everywhere in the domain, on the local
wave spectral energy at the current time.

From Invariance to a Closed Nonlinear
Interaction Theory
Within the spectral energy balance framework, Hassel-
mann9–11 cast a conservative weak nonlinear interac-
tion theory that described the gradual growth of long
swell from short windsea through nonlinear resonant
wave–wave interactions, which preserved overall
energy, but led to a redistribution of energy within the
wave spectrum. The theory borrowed concepts from
the description of nonlinear interactions between

lattice vibrations in solids12 and applied in quantum
scattering theory of nonlinearly interacting particles.

First, a Hamiltonian is formulated for the linear system
in terms of generalized momenta and transformed into
normal mode variables for free waves akin to those of the
quantized linear harmonic oscillator. The full nonlinear
Hamiltonian may then be expressed as a Taylor series
expansion around the linear system, where symmetry and
invariance principles impose constraints on the coupling
coefficients of the higher order terms. At each order of
theHamiltonian’s Taylor series expansion, resonance con-
ditions are encountered among a set of N interacting
wave components, which produce dominant contribu-
tions due to the secular energy redistribution over finite
times. Previously, Phillips (1960)13 and Longuet-Higgins
(1962)14 had carried out perturbation expansions to third
order and showed that the dispersion relationship for sur-
face gravity waves did not admit any resonance among
three interacting waves. Carrying out a perturbation
expansion to fifth order, Hasselmann (1962)9 demon-
strated that the resonant wave–wave interaction among
four waves represented a feasible nonlinear interaction
that could account for the growth of long-wavelength
swell by redistributing energywithin thewave spectrum.

Through a wave–particle duality the spectral energy
can be related to the number density of the wave group
in ðk; xÞ phase space. This establishes an analogy
between nonlinear resonant wave–wave interaction and
particle–particle scattering.10 This, in turn, led Hassel-
mann to the description of the perturbation expansion
series through Feynman diagrams representing the vari-
ous processes in the conservative perturbation expan-
sion.15 In this picture, resonance of a wave quadruplet
implied the scattering among three wave components to
a fourth. Hasselmann (1967)16 extended this formalism to
include nonconservative wave–atmosphere turbulence,
wave–ocean turbulence, and wave–ocean current inter-
actions. His initial dive into the conceptual framework of
Feynman diagrams would raise his interest in fundamen-
tal particle physics, as he saw it as an avenue to make
progress on a unified theory of particles and fields. He
would pursue this interest in his free time over the course
of his career, as detailed below.

Concluding an initial flurry of research on surface
waves, Hasselmann (1968)17 proposed a “complete”c

weak nonlinear interaction theory including all expansible

bAnalogy with geometric ray theory enables an interpretation
as the continuity equation for the number density of wave
groups in phase space, along with the application of
Liouville’s theorem.

cThe theory is “complete” in that it accounts for all expansible
processes, including local wave generation, wave–wave inter-
action/scattering, and parametric damping by turbulent pro-
cesses. Nonexpansible processes, in particular dissipation
due to white-capping and turbulent bottom friction cannot
be strictly accounted for within this framework.17
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terms for wave growth, wave dissipation, conservative
nonlinear wave–wave coupling, as well as nonconserva-
tive wave–external field interactions. This work proved
foundational to this day for the development of skillful
global oceanwavemodeling and prediction.

Approximate Solutions
and Experimental Evidence
Solving the perturbation expansion involved a five-
dimensional Boltzmann collision integral for an ensem-
ble of interacting particles. Initial numerical solutions
needed to be carried out in highly approximate form
and for different empirical wave spectral shapes.11

Encouraging qualitative agreement was found with
data obtained during the classic field campaign to
measure ocean swell that originated in the Southern
Ocean during austral winter storms off New Zealand,
propagating across the Pacific Ocean, and detected at
several stations set up along great circle paths all the
way to the coast of Alaska.18

The critical role of nonlinear wave–wave interac-
tions in extracting energy from the central part of the
spectrum and redistributing it at low and high frequen-
cies was further corroborated in the Joint North Sea
Wave Project, a field campaign held during the sum-
mers of 1968 and 1969 (JONSWAP).19 It was the first of
many efforts organized by Hasselmann to bring
together the community to solve complex scientific
problems. JONSWAP enabled the study of wave
growth under quasicontrolled conditions, which led to
a more accurate description of the growth term of
windsea spectra, Sin of (1). It was another scientific
milestone that has withstood the test of time.

From Theory to Numerical Prediction
Moving on fromocean swell and JONSWAP, Hasselmann
laid the foundation to modern ocean surface wave pre-
diction. Together with his wife, Susanne, he guided the
community in the development of the third-generation
WAve Model WAM (WAMDI Group 1988).20 The model
was run at the time on early supercomputers, such as
Cray Research’s Cray-1 and Control Data Corporation’s
Cyber-205. The most important progress compared to
earlier wavemodel generations was an improved numeri-
cal representation of the full five-dimensional Boltzmann
transfer integral underlying the nonlinear wave–wave
interactions, Snl of (1), work that Hasselmann undertook
again with his wife.65 Exploiting a number of symmetries
among the interaction terms, their work led to a both
faster andmore accurate approximation to the full trans-
fer integral. The numerical algorithms underlying WAM
form the backbone of most operational wave forecasting

models in use to this day at leading numerical weather
prediction centers worldwide, including at ECMWF
(“HRES-WAM”) in Europe and at NOAA (WAVEWATCH-
III) in the U.S. The wide interest in, and impact of this
work is evidenced by the fact that it was supported by
entities ranging from the European Space Agency to the
U.S. Office of Naval Research.

In parallel, Hasselmann recognized that forthcom-
ing, ocean-dedicated Earth observing satellites, notably
the first European Remote Sensing satellite ERS-1,
offered the prospect of quasisynoptic wave data for
forecasting applications. Having also published on radar
backscattermodulation fromsea surfacewaves as early
as 1971,22 he once again convened the community in the
Marine Remote Sensing field campaign in 1979,21 during
which radar remote sensing techniques were explored
in preparation for ERS-1. In 1980 Hasselmann became a
member of the European Space Agencies’ High-level
Earth Observation Advisory Committee. He and his wife
went on to derive a computationally efficient algorithm
for inverting the nonlinearmapping betweenwave spec-
tra and the distorted SAR image spectra, which was
eventually implemented for ERS-1.23 To overcome the
practical issues of limited data transmission, Hassel-
mann also devised the so-called ERS-1 SAR “imagette
mode,” which operated over the ocean, taking smaller
subimages (“imagettes”).24 Finally, as early as 1985, he
laid out a framework for assimilating the satellite retriev-
als into a numerical model, preempting modern data
assimilation schemes in operation today at numerical
weather prediction centers.25,26

CLIMATE RESEARCH
It is not hard to imagine that Hasselmann’s approach to
surface wave modeling and forecasting strongly influ-
enced his thinking about the problem of climate dynam-
ics and prediction. Similarly to recognizing the
statistical nature of the evolution of, and nonlinear inter-
action among surface waves, Hasselmann considered
the climate system to require a basic description within
a stochastic dynamical framework. His approach was to
proceed from simple conceptual models capturing
salient features—in part due to severe computational
limitations early on—to models of increasing complex-
ity, always seeking to find methods within which reduc-
tion in complexity was paired with retaining—or
exposing—mathematical structure and physical insight
in the reduced-ordermodels.

Stochastic Climate Models
To understand the origin of natural climate variability,
Hasselmann’s initial goal was to obtain a basic
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description spanning the vast range of time scales,
from seasonal anomalies to that of Pleistocene ice age
cycles. To do so required a description of spectral prop-
erties of climate variations, in particular an explanation
of the substantial variance found at low frequencies.
Deterministic feedback models proposed at the time
tended to produce, according to Hasselmann, artificial
“flip-flop” transitions in discord with the observed
quasicontinuous spectrum of climate variability.d In
his foundational 1976 article27 Hasselmann proposed
instead to describe climate variations in terms of sto-
chastic processes, such as captured in the theory of
Brownian motions28,29 or random walks.30 According
to this description,

the variability of climate is attributed to internal
random forcing by the short time scale ‘weather’
components of the system. Slowly responding
components of the system, such as the ice
sheets, oceans, or vegetation of the Earth’s
surface, act as the integrators of this random
inputmuch in the sameway as heavy particles
embedded in an ensemble ofmuch lighter
particles integrate the forces exerted on themby
the light particles.27

It is important to note that while general circula-
tion models (GCMs) that integrated approximate
forms of the Navier–Stokes equations were beginning
to come online at the time in the developing field of
numerical weather prediction,31,32 integrating such
“GCMs” over climate-relevant time scales (tens to
thousands of years) remained out of reach initially,
despite the seminal work being pursued beginning
with Manabe and colleagues at the NOAA Geophys-
ical Fluid Dynamics Laboratory (GFDL).33–35 Alterna-
tive methods were thus required to quantify climate
variations on time scales of years to millennia. So-
called Statistical Dynamical Models were being
devised, which integrated slow time-scale behavior
while averaging fast time-scale processes using some
closure assumptions. These resulted, however, despite
their naming, in deterministic solutions of the slow
time-scale variables, which were used to investigate
the response of the climate system to external forcing,
but which were limited in their ability to produce “red
noise” behavior of the climate variance spectrum.

The stochastic modeling approach proposed by
Hasselmann overcame this limitation by explicitly

accounting for the fast, high-frequency turbulent
weather fluctuations as stochastic forcing in what is
in practice a stochastic differential equation. An
important result of such processes is that a stationary
random (white noise) forcing may produce a red noise
response.e As a remarkable consequence, Hassel-
mann pointed out that

the problem of climate variability is not to
discover positive feedback mechanisms which
enhance the small variations of external inputs
or produce instabilities, but rather to identify
the negative feedback processes which must
be present to balance the continual generation
of climate fluctuations by the random driving
forces associated with the internal ‘weather’
interactions.27

Such negative feedback processes have subse-
quently been studied.37,38 The stochastic climatemodel
may be reinterpreted as a first-order autoregressive
process that is characterized by a stationary mean, but
whose variance may grow linearly in time.39 Such
behavior is characteristic of Brownianmotions28,29,40 or
randomwalk processes.30

With his 1976 work, Hasselmann formulated the
generic statistical null hypothesis of natural climate
fluctuations: in order to test whether observed low-
frequency or secular changes in the climate record
were due to external forcing (anthropogenic or other-
wise), one had to demonstrate that such changes
could not be explained (to some degree of confidence)
by natural climate variability, whereby low-frequency,
red-noise variations were generated internally (as
opposed to forced externally) due to high-frequency,
white-noise fluctuations.

From here on, a climate research programme
needed to tackle two major issues.

1) A better representation of natural climate vari-
ability beyond simple autoregressive models
through the development and maturation of
sophisticated GCMs that were able to integrate
approximations of the Navier–Stokes equations
for fluids on a rotating sphere, representing the

dThis seemingly subtle distinction has implications for poten-
tial tipping-point behavior of nonlinear systems described as
either deterministic or stochastic processes.

eHasselmann27 draws an explicit connection between the sto-
chastic climate model framework and that of a weak nonlin-
ear interaction theory (see previous section) by noting that
the time-scale separation into a fast time scale of an ensem-
ble of independent random fluctuations and slow response
time scale on the one hand and the weak nonlinear interac-
tion among components of a field of independent random
motions on the other hand. Much more has since been stud-
ied within the stochastic climate modeling framework.36
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atmospheric circulation (later coupled to an
ocean, cryosphere, and land model) over long
time periods relevant to climate variations.

2) A quantitative approach for detecting changes
in the climate system that were due to external
forcing processes within the noise of internal
(i.e., natural) fluctuations of the stochastic cli-
mate system.

Syukuro Manabe, hired by GFDL’s founding director
Joseph Smagorinsky in 1959,41 and colleagues (among
which oceanographer Kirk Bryan, hired in 1961), building
on modeling work in the context of early numerical
weather prediction by Norman Phillips, John von Neu-
mann, and Jules Charney,31 made initial ground-break-
ing contributions to the development of comprehensive
GCMs of the coupled climate system35 (for a detailed
account, see the recent monograph by Manabe and
Broccoli, 20204), thus addressing issue 1). With regard to
issue 2), soon after formulating the null-hypothesis of
natural climate variability that produces internally gen-
erated low frequency variations on all climate-relevant
time scales, Hasselmann developed another computa-
tional framework within which to undertake the formal
detection of externally forced, i.e., human-made climate
change and the attribution of specific patterns of
change to specific external forcing mechanisms, such
as from greenhouse gas emissions versus aerosol forc-
ing.More on this in the following.

From Stochastic to Reduced-Order
Dynamical Models
Complementing efforts to develop comprehensive
GCMs of the global climate system that required sub-
stantial computational resources, Hasselmann recog-
nized a need for reduced order models for at least two
reasons: first, by analogy with nonlinear wave–wave
interaction theory and stochastic dynamics, Hassel-
mann posited that the complex interactions between
a broad range of time scales of the different compo-
nents of the climate system would remain out of reach
of cutting-edge GCMs and available supercomputers
for the foreseeable future, thus limiting the spectral
bandwidth of simulated climate variability by GCMs;
second, identifying a low-order representation of the
full climate system along with associated “patterns”
would lead to considerable understanding of the
underlying dynamics governing large-scale, low-fre-
quency climate variability. It would also pave the way
for making pattern detection tractable.

To proceed, Hasselmann42 sought a representation
that would go beyond accounting only for an optimal

spatial covariance structure among a set of “modes”
over time, as afforded by the principal component analy-
sis (also known as empirical orthogonal function (EOF)
analysis, proper orthogonal decomposition, or Karhu-
nen–Lo"eve decomposition). Instead, the derived “modes”
should also be an optimal representation for the time-
evolution of the reduced-order system. To accomplish
this, Hasselmann42 introduced the framework of princi-
pal interaction patterns (PIPs), which sought to combine
and extend two concepts: 1) the concept of EOFs to rep-
resent low-order aspects of high-dimensional statistical
fields, and 2) the autoregressivemoving average concept
for constructing dynamicalmodels of systemswith a few
degrees of freedom.

The PIP concept consists of determining (either
jointly or separately) an optimal set of spatial patterns
and coefficients of a general linear or nonlinear
dynamical system, represented via a set of ordinary
differential equations (ODEs), through a least squares
minimization of a misfit between the time derivative
of the full system (either from observations or simula-
tion) _F_F ¼ dFF=dt and its low-order representation _̂

F
_̂
F ¼

dF̂̂F=dt. Concretely, the full state vector FF is approxi-
mated by a reduced-order system F̂̂F of time-indepen-
dent PIPs pi with residual error rr, such that

FF ¼ F̂̂F þ rr (3)

where

F̂̂F ¼
Xm

i¼1

ziðtÞpi: (4)

The time-varying expansion coefficients ziðtÞ obey a
set of (in general nonlinear, time-dependent) dynam-
ical systems equations with noise ni

dziðtÞ
dt

¼ GiðzðtÞ; a1; . . . ; apÞ þ ni: (5)

Determining the reduced-order system then con-
sists in finding a set of unknown model parameters
aj; j ¼ 1; . . . ; p and PIPs pi; i ¼ 1; . . . ;m, which mini-
mize the the mean square error

! ¼ jj _̂F_̂F % _F_Fjj2: (6)

Substituting the evolution (5), a general solution to the
problem, i.e., optimal spatial patterns (PIPs) and
dynamical system parameters, may be obtained via
gradient-based optimization, exploiting the gradient of
! with respect to the parameters aj and PIPs pi. The
approach has several striking features: First, an
approach for a general solution involves the adjoint
operator of the dynamical systems operator to effi-
ciently compute the gradient. Hasselmann explicitly
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refers to adjoint gradient techniques as a solution
method. As such, the PIPs may be viewed as low-order
dynamical systems versions of PDE-constrained opti-
mization of inverse problems (e.g., atmospheric data
assimilation43 or ocean parameter and state estima-
tion44). Second, a broad analogy exists to the concept
of neural ODEs45 if the dynamical systems operator is
replaced by a neural ODE operator or neural network.
In this case, the adjoint of the dynamical systems
operator (gradient of the misfit error with respect to
the parameters) is replaced by the mathematically
“equivalent” notion of “backpropagation” (gradient of
the misfit error ! with respect to the network weights).

These examples highlight the way in which Hassel-
mann’s 1988 proposed PIP framework presaged
today’s “data science” or “data driven” algorithms,
notably that of dynamical mode decomposition,46

with the PIP concept retaining important properties of
a dynamical system. Like many of the reduced-order
modeling approaches, whether PIPs lend themselves
to capturing the stringent constraints imposed by
conservation laws remains unclear.

The operator Gi arising in (5) is in general nonlin-
ear. Hasselmann also considered the special case in
which Gv is linear, and the corresponding optimal pat-
terns he termed principal oscillation patterns (POPs).
The linear approach has subsequently been used
extensively in climate diagnostics [see, e.g., the review
by von Storch et al. (1995)47] and more recently in the
disguise of “linear inverse models.”48 In contrast, only
very few direct but noteworthy applications of the
nonlinear PIP framework have been conducted.49,50

Detection and Attribution of
Anthropogenic Climate Change
With the stochastic climate model providing an effec-
tive “null-hypothesis” of natural climate variability that
is well described by a red noise or Markov process, a
question becomes how to distinguish between appar-
ent signals due to external forcing and the low-fre-
quency “noise” generated by natural fluctuations.
Hasselmann recognized the conceptual similarity
between this problem and that of the use of optimal
filters for signal extraction from noisy data encoun-
tered in various areas of engineering and signal proc-
essing. His initial proposition to solving this signal-to-
noise maximization problem in the context of climate
change detection51 received little attention. This was
likely due in part to the lack of appreciation by the
community of its significance, as well as to the fact
that an important ingredient, namely that of robust
estimates of long-term climate variability were not

available at the time. Hasselmann perceived a central
role for climate models in solving this problem not
only in the simulation of “signal patterns” of externally
forced, i.e., anthropogenic climate change, but also—
and equally important—in the provision of long
records of (simulated) natural climate variability that
provide an adequate low-frequency “noise” statistics
(in terms of spectral characteristics and magnitude)
against which to conduct signal detection studies.

The advent of such long (millennial) coupled atmo-
sphere–ocean climate model simulations in the 1990s
opened the door to conducting such rigorous detection
studies. Hasselmann (1993)52 revisited and extended his
1979 treatment to a time-dependent multivariate cli-
mate signal, while also simplifying its mathematical for-
mulation. He laid out amathematical framework for

constructing an optimal space-time
dependent filter—a fingerprint—that
maximizes the signal-to-noise ratio for the
associated detector for any multi-variate,
space-time-dependent climate signal.

The framework has the following three ingredients.

1) A time-dependent (forced) climate change signal
pattern.

2) A statistical estimate of natural climate variability
(noise pattern), e.g., from an ensemble of simula-
tions or from a long integration (and assuming
ergodicity).

3) Construction of an optimal detection variable
(detector) and associated optimal fingerprint.

Given a climate trajectory (either from observa-
tions or from a simulated response to external forc-
ing), represented by a state vector CC (which need not
be spatially or temporally complete, as is typically the
case for measurements) the detection problem con-
sists of determining whether the trajectory can be dis-
tinguished from the statistical ensemble of natural
variability trajectories. Assuming a known space-time
signal pattern cc of the deterministic signal trajectory
CCs ¼ ccc with unknown amplitude c, and separability
between signal and noise trajectory, CCs, CCn (with the
latter a realization of the ensemble of natural variabil-
ity), we can write

CC ¼ CCs þCCn :

An optimal (scalar-valued) detection variable d with
associated optimal fingerprint ff is sought, such that

d ¼ ffT CC ¼ ds þ dn
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where ds ¼ ffT CCs and dn ¼ ffT CCn represent the signal
and natural variability components, respectively. For
the fingerprint ff to be optimal, the signal-to-noise
ratio

R2 ¼ ðdsÞ2

< ðdnÞ2 >

is maximized over all possible patterns ff . Application
of the Lagrange multiplier method leads to a solution
for the optimal fingerprint in terms of the signal pat-
tern cc

ff ¼ C%1 cc : (7)

Here, C is the covariance matrix of natural climate var-
iability, inferred from climate model simulations under
unforced conditions. If the problem is recast in a
reduced order basis with statistical orthogonal eigen-
vectors, such as EOFs or the POPs introduced earlier,
(7) simplifies considerably to

f 0
i ¼ s%2

i c0
i ; i ¼ 1; . . . ;m:

The result has the following important consequences.

1) Having access to a robust estimate of natural cli-
mate variability to obtain an estimate of C%1 is
critical.

2) The optimal fingerprint direction is generally not
parallel to the assumed signal direction.52

Instead, each component of the signal vector is
weighted by the variance (or, more generally,
covariance) of the estimated natural climate var-
iability. Regions of large natural fluctuations may
mask information carried in the climate signal
pattern.

3) With respect to the EOF or POP basis functions,
large variances act to down-weight correspond-
ing components, thus shifting patterns from
high-noise to low-noise directions.

Another important ingredient to increase signifi-
cance in the detection is the dimension reduction of
the complex space-time-dependent natural variabil-
ity.53 Here, the previous development of POPs42 plays
an important role at rendering the problem tractable.

Hasselmann (1993)52 proceeded with generalizing
the framework to a multipattern detection problem,
which lays the foundation for solving another key prob-
lem of climate science, namely that of signal attribution,
beyond its detection. The general multipattern finger-
print method for detection and attribution of climate
change was presented in 1997.54 The breakthrough

application of the optimal fingerprint method to detect-
ing greenhouse-gas induced climate change was con-
ducted by Hegerl et al.55,56 and, using a related method,
by Santer et al.57,58 They are considered as milestones
leading the Intergovernmental Panel onClimateChange
to conclude, in its Second Assessment Report (1995)
that “The balance of evidence suggests a discernible
human influence on global climate.”59 A number of
detection and attribution studies were conducted in the
following years.60

An important aspect of early detection and attribu-
tion studies is the fact that optimal fingerprints are
most likely associated with large-scale patterns. As
Hasselmann pointed out,61 policymakers are inter-
ested in assessing local changes, which may not be
reliably represented in global climate models. Over-
coming the challenge in moving from global scale to
regional or local detectors requires both higher resolu-
tion climate models62 that more reliably capture highly
localized probability distributions of climate-relevant
variables and extended approaches of extreme event
attribution.63,64

TOWARD A UNIFIED THEORY
OF FIELDS AND PARTICLES

Hasselmann’s work on nonlinear resonant wave–wave
interactions during the 1960s and his realization that
the perturbation expansion within a nonlinear interac-
tion theory, which he developed could be cast in terms
of Feynman diagrams developed for particle–particle
scattering15 raised his interest in elementary particle
physics. Being deeply immersed in expressing the non-
linear interactions among a set of wave packets in
terms of particle collision probabilities for the purpose
of practical computation,65 he became suspicious
about the established quantum mechanical interpre-
tation of the fundamental wave–particle duality. In
particular, the inability to give a precise description of
microscopic objects (either as particles or fields), but
instead to resort to the wave function as a fundamen-
tally probabilistic description of such objects was at
odds with his intuition, as was the “imprecise
demarcation” between classical and quantum phe-
nomena. While accepting the many astonishing suc-
cesses that quantum mechanics and quantum field
theory have had—and continue to have—in describing
a wide range of experimental phenomena, he posited
nevertheless that it remained unsatisfactory. In partic-
ular, he shared the skepticism regarding the exhaus-
tive description of reality by a wave function as
expressed in the Einstein, Podolsky, and Rosen (EPR)
paradox66 and was convinced that the unfinished
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program pursued by Einstein of a complete unified
theory would hold the key to a deeper understanding
of fundamental physics. As a prominent example, he
pointed to the Standard Model of elementary particle
physics with its 18 free parameters and which failed to
explain the mass hierarchy of elementary particles
from first principles. Particle physics thus became an
intellectual passion of Hasselmann since the late
1960s, one which he chose to pursue in his spare time
instead of as a professional career, because of his
worry that running against mainstream theoretical
physics would be unsustainable. The following sum-
mary follows that of von Storch and Heimbach
(2022).67

Hasselmann set out to develop a unified determin-
istic theory of particles and fields, which he termed the
“metron model” and which he only published some
three decades after embarking on this work.68–71 He
was guided in his ideas by Einstein’s notion of a unified
field theory, which Einstein had pursued since the early
1920s.72 A starting point of this model was the con-
cept introduced by Theodor Kaluza (1921)73 and Oskar
Klein (1926)74 of a five-dimensional generalization of
Einstein’s equation of general relativity which unified
electromagnetism and general relativity within a higher
dimensional field theory. [Previously, HermannMinkow-
ski (1909)75 had formally combined special relativity
and electromagnetism within a four-dimensional geo-
metric theory.] Hasselmann’s fundamental equations of
motion would consist of a (4þD) dimensional generali-
zation of Einstein’s nonlinear equations in matter-free
space.

Crucial to Hasselmann’s programme is the exis-
tence of soliton solutions to the generalized nonlinear
field equations. These solitons would manifest in dif-
ferent ways, dependent on their near-field and far-field
properties. In the soliton’s localized core or near field,
it would behave strongly nonlinear, a manifestation of
particle-like properties (mass, charge, spin, weak, and
strong coupling constants). In contrast, its far field
manifestation would be linear, i.e., exhibit wave-like
superposition properties consistent with classical
gravitational and electromagnetic fields.

In giving precise meaning to microscopic proper-
ties of wave-like and particle-like behavior, the soliton
solution as a single object thus resolves the wave–par-
ticle duality, avoiding the need for a probabilistic inter-
pretation of wave functions. Hasselmann termed such
soliton solutions metric solitons or Metrons. Further-
more, drawing from his experience in nonlinear reso-
nant wave–wave interactions he surmised that all
quantization phenomena could be described by reso-
nant interactions between scattered far-field waves

and particle trajectories. In today’s parlance, quantum
mechanics could then be regarded as an emergent
property of the generalized nonlinear (classical) field
equations (some theories currently under debate are
pursuing an opposite approach of gravity as an emer-
gent property from quantum mechanics).

Other features of Hasselmann’s metron programme
worth noting are the following.

1) All four fundamental forces should emerge geo-
metrically from the curvature of the spacetime
components, the extra-dimension components,
and mixed spacetime-extra dimension compo-
nents. This generalizes the five-dimensional
Kaluza–Klein theory, within which the energy–
momentum field tensor arises as a geometric
property (i.e., from the metric tensor and its
derivatives).

2) The generalized equations (Einstein’s gravita-
tional field equations in higher dimension) would
have no source term (i.e., matter free), such that
“the curvature is not produced by prescribed
mass fields, but is a self-generated feature of the
nonlinear field equations themselves.”68

3) The “coupling constants and symmetries are not
postulated in the basic field equations, but fol-
low from the specific geometrical properties of
the metron solutions.”68 Avoiding the use of
physical constants in the D-dimensional nonlin-
ear vacuum equations, Hasselmann’s ambition
was to overcome the perceived shortcomings of
the Standard Model and to derive these con-
stants, in particular the hierarchy of observed
particle masses, from solutions to the equations.

4) Addressing the concept of entanglement, the
metron theory regards fermions, bosons, and
gravitons as not independent, but instead as dif-
ferent manifestations of a single particle. As
example, Hasselmann76 invokes the emission of
a photon from an atom as simply the electro-
magnetic far field of an electron as it transitions
from one orbital state to another in its interac-
tion with the atom’s nucleus.

In order for the metron programme to be viable, a
number of challenges need to be solved, some of which
Hasselmann’s addressed, others remaining open ques-
tions. An immediate concern is the metron model’s
apparent violation of Bell’s theorem (a generalization of
the EPR paradox) on the nonexistence of deterministic
hidden-variable theories (Bell, 1964).77 Hasselmann
solved this seeming contradiction by pointing to the fact
that the basic field equations are invariant under time
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reversal at the microscopic level, but which is at odds
with Bell’s theorem which postulates the existence of an
arrow of time (see Hasselmann, 2013,76 for a detailed dis-
cussion in the context of entanglement). A key stepping
stone of the metron programme is the ability to find non-
trivial soliton solutions to the generalized nonlinear vac-
uum field equations. Searching for such solutions has
been a major occupation of Hasselmann, together with
his wife Susanne, since their retirement. Initial progress
has been made and documented for the simplest possi-
ble particle, the electron,76,78 however much of this proj-
ect remains outstanding. Another explicit goal of the
metron programme is the ability to derive the observed,
discrete particle spectrum as solution of the field equa-
tions, which at present remains an unsolved problem.

A compelling test of the metron theory would be its
ability to predict new phenomena in elementary particle
physics or astrophysics that are not being predicted by
established theories and that could be verified experi-
mentally. Such a test is certainly elusive at the present
time, as is a confirmation (or falsification) of the metron
programme. Hasselmann himself invoked the scientific
process to be the ultimate judge of his programme in his
2006 interview, inwhich he states

Once the theory is published in accepted
journals, it will become either accepted or
rejected. This is as it should be. I am not really
concerned about the outcome, which is beyond
my control.” (von Storch and Olbers, 2007,
reproduced in von Storch’s work3).

The challenges ahead are likely as much theoreti-
cal as they are in terms of bringing to bear computa-
tional solution approaches. In light of Hasselmann’s
groundbreaking achievements, it is hoped that physi-
cists will be compelled to examine the metron pro-
gramme and its potential merits more closely.

FINAL THOUGHTS
This review covers some, but by far not all of
Hasselmann’s contributions to climate science, geophys-
ics, and physics more broadly. Several aspects of his
work have been left unmentioned, notably his work on
internal waves in the ocean, and his leadership as found-
ing director of the Max-Planck-Institute for Meteorology
in the development of a comprehensive coupled climate
model that has been among the world’s leading climate
modeling enterprises since the 1980s. In his quest for
tackling the problem of anthropogenic climate change,
Hasselmann also recognized that beyond a sufficient
level of scientific consensus regarding its reality, which
was reached by the late 1990s (despite some lingering

“noise”79), the largest uncertainty became the climate
system’s connection with environmental and socio-eco-
nomic issues. Once again, Hasselmann’s conviction
rested on the need for obtaining some basic quantitative
understanding of the underlying issues through the incor-
poration of socio-economic models into Earth system
models in order to estimate optimal emission path sce-
narios, as well as the exploration of game-theoretic
approaches for understanding multiactor behavior in cli-
mate negotiations.80–82 Whether such integrated assess-
ment models are useful tools has remained subject for
debate, but which prompted Hasselmann to pose as a
challenge to the science community to mature such
approaches into tools that are useful and used in prac-
tice.83 Nevertheless, his work on quantifying feedbacks
between the climate, environmental, socio-economic,
and human systems to infer optimal greenhouse gas
emission paths, led Hasselmann to the conviction that
the climate change problem “is quite solvable,” provided
that adequate investments in available and emerging
renewable energy technologies aremade.

In all of the work reviewed in this article, Hassel-
mann’s foundational contributions are based on pairing
physical insight with extracting essential features from
complex systems through salient mathematical proper-
ties of the governing equations, which permitted the
development of a hierarchy of simulation approaches,
from simple conceptual models to comprehensivemod-
els, which today harness some of the world’s fastest
supercomputers.62 Arguably, he also presaged the era
of “data science” as he sought to develop data-cali-
brated reduced-order models for fast computation, pat-
tern detectionmethods to uncover signals in noisy data,
and inverse methods (data assimilation) to learn from
the incomplete knowledge reservoirs of sparse observa-
tional data and models. In developing these, he was
guided closely by the underlying governing dynamics of
the systems at hand which, he recognized, provided
powerful constraints on the solutionmanifold.

It is hoped that this review will raise the curiosity of
computational scientists and engineers to dive deeper
into Hasselmann’s extraordinarily broad work at the
interface of climate physics, mathematics, and compu-
tational science. They will find that their expertise
remains essential for thinking outside the box and for
making further progress in today’s and tomorrow’s cli-
matemodeling enterprise.84
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