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Assessing the cognition of movement trajectory visualizations: interpreting 
speed and direction
Crystal J. Bae a,b and Somayeh Dodge a

aDepartment of Geography, University of California, Santa Barbara, CA, USA; bCenter for Spatial Data Science, The University of Chicago, 
IL, USA

ABSTRACT
This paper evaluates cognitively plausible geovisualization techniques for mapping movement 
data. With the widespread increase in the availability and quality of space-time data capturing 
movement trajectories of individuals, meaningful representations are needed to properly visualize 
and communicate trajectory data and complex movement patterns using geographic displays. 
Many visualization and visual analytics approaches have been proposed to map movement 
trajectories (e.g. space-time paths, animations, trajectory lines, etc.). However, little is known 
about how e�ective these complex visualizations are in capturing important aspects of movement 
data. Given the complexity of movement data which involves space, time, and context dimensions, 
it is essential to evaluate the communicative e�ciency and e�cacy of various visualization forms in 
helping people understand movement data. This study assesses the e�ectiveness of static and 
dynamic movement displays as well as visual variables in communicating movement parameters 
along trajectories, such as speed and direction. To do so, a web-based survey is conducted to 
evaluate the understanding of movement visualizations by a nonspecialist audience. This and 
future studies contribute fundamental insights into the cognition of movement visualizations and 
inspire new methods for the empirical evaluation of geovisualizations.
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1. Introduction

Cartographic visualizations have long been used to 
communicate spatiotemporal information across 
many domains of knowledge to both practitioners 
and the public. The origin and history of cartography 
show that it has, from the beginning, blended the art 
and science of representing and mapping the world. 
It is essential, therefore, to know how maps commu-
nicate meaning to the viewer through the symbolic 
representation of information (Montello et al., 2018). 
Cartographic representation plays an important role 
in the graphical display of spatiotemporal informa-
tion (Fairbairn et al., 2001).

Such visualizations, like maps and network diagrams, 
are increasingly involved in data exploration and analy-
sis of complex behavior in the fields of movement ecol-
ogy and human mobility science (Demšar et al., 2015; 
Yuan & Raubal, 2012), as movement is necessarily spa-
tiotemporal. Movement data is collected through var-
ious means, including the tracking of individuals using 
location-aware technologies (LATs) such as Global 
Positioning Systems (GPS), bio-loggers, radar sensors, 
and geo-tags in the form of trajectories (i.e. sequence of 
locations over time). These data, especially if geo- 

enriched with behavioral and environmental variable, 
pose complex challenges in the interpretation of pat-
terns that they capture with relation to real-world move-
ment behavior of individuals. The evaluation of 
movement visualizations is also relevant in the depic-
tion of large-scale directional movement or flows, such 
as for aggregated movement trajectories (Graser et al.,  
2020), or in other application areas as ocean currents 
and wind patterns (Dong et al., 2018; Fukaya & Misue,  
2018). Therefore, it is critical to systematically assess the 
components of visual information design for cognitively 
plausible mapping of trajectory data and effective com-
munication of movement information.

The field of movement visualization has not always 
focused on empirical evaluation of how people cogni-
tively interpret such map displays (Davies et al., 2015), 
though there is certainly a need and opportunity (Roth,  
2017). Fabrikant has called for a “cognitively inspired 
and perceptually salient” approach to cartographic dis-
plays and has done much work on empirically evaluat-
ing map displays for the interpretation of spatial and 
spatiotemporal data, such as in the case of weather maps 
(Fabrikant et al., 2010). Cognitive evaluation (similarly 
referred to as perceptual evaluation; Ware, 2013a) poses 
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a key opportunity to learn how to support efficient 
visual communication of complex spatiotemporal infor-
mation for applied research and decision-making, such 
as in movement visualization (Lautenschütz, 2012).

Although spatiotemporal displays are critically impor-
tant to public communication and are widely used in the 
reporting of both human and animal movement as well as 
natural phenomena, the creation of such visualizations is 
guided mainly by general aesthetic principles and design 
conventions (Dodge & Noi, 2021). In contemporary 
times, technology may even be “outpacing” cartographic 
theory for mapping movement and its patterns 
(Harrower & Fabrikant, 2008). There is certainly a need 
for a deeper understanding of how users understand time 
and essential movement parameters (e.g. speed and direc-
tion) using spatiotemporal visualizations. This can 
inform the design of the next generation of geographic 
displays of movement phenomena, rather than represent-
ing movement in a provisional way.

This paper presents an empirical study to evaluate 
aspects of the proposed cartographic framework for 
movement in Dodge and Noi (2021). The main goal is 
to evaluate how different visualization forms impact the 
cognitive evaluation of movement parameters in geovi-
sualization. The focus is on two-dimensional trajectory 
maps represented using static and dynamic displays. 
The study contributes to the understanding of how 
people interpret movement parameters visualized 
through trajectories on these types of map displays. 
Specifically, the main contributions of this study are 
twofold: (1) Identify and assess a set of Bertin (1983)’s 
visual variables to properly encode and map movement 
trajectories and changes in primitive movement para-
meters such as speed, acceleration, and direction 
(Dodge et al., 2008). (2) Conduct a web-based survey 
to evaluate the efficacy of various visual variables in 
capturing movement parameters using static and 
dynamic displays. The outcome of this research has 
implications not only for the design of digital map 
resources and geographic visualizations, such as for 
digital navigation aids, but also for understanding real- 
time human comprehension of the visual information 
display of spatiotemporal phenomena.

2. Background and relevant work

2.1. Visual variables in cartography

Bertin (1983) first described a system of visual variables 
to encode attribute information in cartography using 
symbolization (White, 2017). Visual variables serve as 
a graphic vocabulary for expressing geographic informa-
tion on maps and other graphic representations. The 

original system from Bertin comprises location, size, 
shape, hue, color, texture, and orientation. Appropriate 
symbolizations are based on the empirical level of mea-
surement of the visualized data, whether nominal, ordi-
nal, interval, or ratio, with certain visual variables being 
better suited to symbolize certain measurement levels. 
Visual variables can be used flexibly and in conjunction 
with one another, and are sometimes double-encoded. 
For instance, two visual variables may be used to express 
the same attribute information, potentially creating 
a stronger graphical effect in combination (Roth, 2017).

Bertin’s original system has since been expanded by 
others (Roth, 2017; White, 2017). DiBiase et al. (1992) 
identified three principal variables for animated (dynamic) 
maps: duration, order, and rate of change. MacEachren 
(1995) extended this list to include display date, frequency, 
and synchronization. These new visual variables are justi-
fied by advancements of technologies in Geographic 
Information Science, which now allow for dynamic and 
temporally-varying displays. Specific to movement visua-
lization, Graser et al. (2020) describes the use of visual 
variables in depicting aggregated movement, such as 
through point marker density and the use of color for 
mean speed of movement, with a grid-based approach. 
Although we focus on individual recorded trajectories 
rather than aggregates, the connection to recorded move-
ment tracks is a relevant consideration. This additionally 
demonstrates the use of point-based visualizations to 
depict movement.

Although the original system of visual variables has 
been further developed to adopt it to new computer carto-
graphy methods (Roth, 2017), it is critical that components 
of the system be evaluated in the context of expanding data 
visualization needs. For instance, we must assess the poten-
tial value of using animation in map displays (Goldsberry 
& Battersby, 2009; Griffin et al., 2006), particularly for 
mapping movement phenomena and trajectories. Many 
current design choices in cartography continue to be based 
primarily on aesthetics and convention, with less emphasis 
on visualization design principles supported by empirically 
and systematically user-tested studies. Therefore, there is 
a need to build a cohesive research program for evaluating 
these design conventions and newly-enabled approaches 
to visualization. This in turn will further support new 
insights in visualization-based communication and deci-
sion-making (Padilla et al., 2018).

2.2. The cognitive evaluation of geovisualizations

In a human-centered approach to knowledge discovery 
from movement data (Dodge & Noi, 2021), cognitive 
evaluations are essential for supporting the human 
users’ interpretation of extracted patterns. Cognitive 
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evaluation in geographic visualization work presents 
a key opportunity to learn how to support efficient 
visual communication of complex spatiotemporal infor-
mation – such as in movement visualization – for 
research purposes and applied decision-making. It is 
necessary that we have the tools for testing claims 
about the effectiveness or plausibility of a visualization. 
Displaying information in ways that take advantage of 
our shared cognitive facilities, integrating insights from 
psychology, can allow cartographic design to follow 
principles for a more natural and efficient understand-
ing of large multidimensional data (Ware, 2013c). For 
instance, one of the central methods of supporting 
visual perception in the visualization of quantitative 
data is to piggyback on our use of spatial metaphors in 
cognition. This takes advantage of human cognition of 
existing metaphors, such as our understanding of the 
“more is more” visual metaphor commonly exploited in 
the visual display of quantitative information (Tufte,  
2001). For example, this can be used to express higher 
values with taller bars in a graph or darker colors in map 
symbology. The clear, cognitively based communication 
of information through visual means can help both 
novices and experienced practitioners grasp concepts 
more readily.

With the widespread increase in the availability and 
the demand for processing space-time activity data 
(Miller, 2005), people increasingly use information dis-
plays with high visual and cognitive load. However, it is 
not always clear what level of complexity and realism is 
appropriate for geographic visualization displays 
(Hegarty et al., 2012). It is therefore essential to evaluate 
the communicative efficiency and effectiveness of var-
ious aspects of complex visual displays in helping people 
understand information conveyed along both spatial 
and temporal dimensions. There is increasing support 
for undertaking cognitive research into the design and 
interpretation of cartographic visualization approaches 
(Fabrikant et al., 2010). This approach highlights the 
importance of understanding how internal cognitive 
processes interact with external visualization tools 
(such as maps). Relevant work includes the empirical 
evaluation of spatiotemporal data visualization through 
animated maps (Griffin et al., 2006; Harrower, 2007) 
and the adaptation of map displays based on context 
(Griffin et al., 2017).

Other related work looks at a specific class of geovi-
sualizations, the flow map, to identify and justify best 
practices for communicating flow information between 
locations (Gu et al., 2018; Jenny et al., 2018). For 
instance, Dong et al. (2018) assess the usability of flow 
maps using eye-tracking and evaluation tasks to com-
pare straight-line versus curved-line flow visualizations, 

as well as color versus thickness of lines. We mainly 
focus on discrete trajectories here, representing the 
paths of individuals over time. With trajectories, move-
ment parameters and their variations can be visualized 
along the path as the individual moves over time. In 
contrast, flow lines and flow matrices are used to repre-
sent speed and other movement parameters at the 
aggregate and summary level at different locations or 
during the entire flow line. Also, relevant to the com-
parison of spatiotemporal information through point- 
based visualizations and additional visual variables is 
the example by Fukaya and Misue (2018). Although 
dealing with shipping vessels, the example visualizations 
(such as varying the hue, saturation, and size/radii of 
dots) for the vessels’ movement trajectories in the paper 
are similar in terms of data recording and potential 
visualization styles for animal movement trajectories.

There is no better example of expressing the 
importance of time in visualization as movement 
data (Dodge, 2021; Kraak, 2014). Movement is neces-
sarily spatiotemporal: it refers to the change in spa-
tial location over time – but limited empirical 
evaluation has been conducted on how people per-
ceive time in geographic displays of movement beha-
vior between static and dynamic displays. Some have 
looked at the impacts of using animation more gen-
erally in cartography, for instance in the animation 
of choropleth map displays (Fish et al., 2011; 
Goldsberry & Battersby, 2009). Such work suggests, 
however, many remaining gaps in our understand-
ing: for instance, which aspects of static display form 
design and symbolization translate to communicating 
dynamic change (see the example of choropleth maps 
by Battersby & Goldsberry, 2010). This work funda-
mentally contributes new insights into human cogni-
tion of spatiotemporal visualizations and provides 
novel methodological approaches to the evaluation 
of visual representations of movement.

2.3. The cartographic framework for movement 
visualization

Figure 1 presents a cartographic framework for move-
ment visualization, adopted from the pyramid model of 
movement representation (Dodge & Noi, 2021; based 
on the triad model proposed in Kraak, 2014). In this 
study, we evaluate the efficacy of various elements of 
this framework to help the human user in understand-
ing of movement data. The core elements of the frame-
work are as follows. The text highlighted in dark gray in 
Figure 1 represents the aspects included in the present 
study.
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● Object: Object refers to the moving phenomena 
represented in the visualization, either in terms of 
discrete trajectories of moving entities or aggregate 
indices such as Origin-Destination (OD) flows or 
other types of mobility indicators (see, for example, 
Noi et al. (2022)). This study focuses on “trajec-
tories” as time-ordered sets of locations represent-
ing the movement paths of one or more moving 
entities as discrete objects.

● Attribute: Attributes refer to parameters charac-
terizing movement and its internal and external 
contexts, such as movement parameters (e.g. 
speed, direction), behavioral state, environmental 
condition, etc. Attributes can be derived from 
movement trajectories or can be measured and 
recorded using auxiliary sensors through multi- 
modal tracking, or they can be obtained from addi-
tional data sets such as remote sensing data. 
Attributes can be represented as numerical, ordi-
nal, and categorical values and annotated to the 
trajectories. This study focuses on the evaluation 
of visual representation of movement parameters 
such as speed and direction using various forms of 
visual variables.

● Time: Time includes temporal information about 
movement, including start, end, duration, and fre-
quency of movement events. Time can be 
expressed in different ways in visualization, such 

as through text, graphs, timelines, animation 
speed, etc. (Frank, 1998). It can be represented in 
a linear or cyclic fashion. We use a linear repre-
sentation of time in this study.

● Location: Movement can be observed in space and 
time through two different perspectives: 
Lagrangian and Eulerian (Dodge, 2021). We focus 
on the Lagrangian perspective of movement, where 
individuals’ movement locations are observed from 
the perspective of the moving entity along its path 
over time; in the Eulerian perspective, movement is 
observed at certain fixed locations.

Movement trajectories can be mapped using two- 
dimensional maps and three-dimensional space-time 
cube representations using static and dynamic dis-
plays. Dodge and Noi (2021) describe a taxonomy of 
techniques and tools available in the literature for 
mapping movement and flows. Taking the framework 
in Figure 1, this study evaluates two-dimensional 
depictions of discrete movement using static and 
dynamic displays. We use a Lagrangian mode of move-
ment observations, with time treated as linear, to 
assess user interpretation of movement parameters, 
including distance traveled along track, displacement 
from starting point, turn angle, and spatial range. This 
work allows us to determine the advantages and 
caveats associated with different display forms for the 

Attribute

LocationTime

Object

Lagrangian
Eulerian

Context parameters
Movement parameters

Linear
Cyclic

Discrete
Aggregate

Figure 1. The cartographic framework for mapping movement, adapted pyramid model of movement representation (Dodge & Noi, 2021).
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visual representation of movement data and how they 
relate to cartographic visual variables. Elements shown 
in the framework in light gray serve as potential 
aspects of mapping movement to be evaluated in 
future studies.

3. Methods

In this study, we compare the use of static (fixed) versus 
dynamic (animated) display forms and visualization 
designs based on visual variables for representation of 
movement and its attributes. The central hypothesis is 
that the cognition of spatiotemporal movement visuali-
zations is impacted by display choices, contingent on 
dynamism, with dynamic displays better supporting the 
effective understanding of movement parameters. We 
expect that movement parameters visualized through 
static displays are simpler (and therefore faster) to inter-
pret, because these displays run less risk of information 
overload, but they may also fail to completely and pre-
cisely describe movement. To investigate this hypoth-
esis, the study is guided by two objectives: (1) 
Determine how well static or dynamic display forms 
support peoples’ ability to identify and understand 
movement through complex visualizations. (2) 
Compare the visual variables of shape, size, and color 
to establish which visual variables have greater affor-
dances for displaying movement parameters (speed, 
acceleration, distance, and direction) in absolute and 
relative terms using spatiotemporal visualizations.

3.1. Research design

The study was administered online through a Qualtrics 
web-based survey platform. This study employed 
a between-subjects design, in which participants were 
assigned randomly to either a static or dynamic display 
condition. See Figure 2 for a diagram of the study flow. 
Depending on the assigned condition, all movement 
visualizations used in the study tasks were displayed 
either as a static image or a dynamic animation (video 
clip), each with a similar visual appearance and without 
map interaction elements such as zoom or pan capabil-
ities except for selection by click. Whether assigned to 
the static or dynamic study condition, each participant 
had the same initial forms to complete related to con-
sent to participate, demographics (age, gender, educa-
tion level, field of work, and location), and the 
individual difference measures of sense of direction 
and GPS reliance (described in detail in Section 3.4 
below).

Participants used geographic visualizations of move-
ment trajectories of animals (described in Section 3.2) to 
complete the study tasks (described in Section 3.5). The 
tasks aimed at assessment of visualization of movement 
parameters in absolute or relative terms. Identification 
tasks focused on assessing movement parameters 
including pausing, changes in speed, changes in direc-
tion, and direction of movement. Comparison tasks 
asked participants to determine the relationship of 
speed between trajectory segments within a single tra-
jectory and between separate movement tracks. The 

Figure 2. Study design and the workflow of the experiments.
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same set of task questions were repeated for each of the 
seven visualization designs; all participants completed 
all tasks for all seven designs. As shown in Figure 2, the 
order in which the visualization designs were presented 
to participants was counter-balanced by showing half of 
the participants in each condition the line-based visua-
lization designs first, and showing the other half the 
point-based visualizations first. This allows us to com-
pare the types of designs while accounting for order 
effects, such as possible preference for the first designs 
viewed.

3.2. Visualization designs

In exploratory movement data analysis using discrete 
trajectories (Dodge & Noi, 2021), it is important that 
visualization techniques can effectively convey impor-
tant information about movement parameters and their 
variations along the individuals’ path or across different 
paths. Therefore, identification and comparison of 
speed, direction, and recognition of relative motion 
patterns (Laube et al., 2005) are important tasks in 
exploratory movement analysis for both movement 
ecology and human movement applications. In this 
study, we include tasks to assess the efficacy of various 
visual variables in conveying information about move-
ment speed, acceleration/deceleration, direction, and 
relative movement using both static and dynamic 
displays.

To complete the tasks, participants used the seven 
different visualization designs as shown in Figure 3. 
To create the visualizations, we generated 2D displays 
of movement trajectories using points and lines in 
DynamoVis (Dodge et al., 2021). The design of each 
visualization was systematically varied along the 
visual variables of shape (lines versus points), color, 
and size (line width or point size), representing move-
ment parameters of speed and acceleration (Bertin,  
1983; White, 2017). Each visualization displays 
a unique one-day movement track of an animal 
recorded using GPS at a 1-h interval (in this case 
a tiger; see Ahearn et al. (2017) for more details on 
the data set). We used one-day tracks for each to 
create comparable length trajectories for the visuali-
zation designs.

Of the seven visualization designs (Figure 3), visua-
lization designs 1–3 were line-based, visualization 
designs 4–6 were point-based, and visualization design 
7 used a point-based visualization combined with 
a subtle white line, connecting the sequence of points. 
This allowed us to create different visualization designs 
in which the speed of trajectories was encoded in the 
visualization designs using either color of the lines/ 

points, size of the lines/points, or both. See Appendix 
B for an example of the visualizations as they appeared 
to participants in either the static or dynamic 
conditions.

3.3. Participants and recruitment

We recruited 100 adult participants from a university 
pool of undergraduate students and our external distri-
bution through e-mail lists. Power analysis reveals that 
a sample size of 45 participants in each condition would 
provide the statistical power to detect a medium effect 
size of .6 with a significance level of .05 at the .80 level 
(Cohen, 1992). Participants were recruited from the 
internal distribution (n = 82) through an online univer-
sity research pool system (UGIG, https://ugig.app) ser-
ving the Department of Geography at the University of 
California Santa Barbara (UCSB), as well as through an 
external e-mail distribution to students at eight univer-
sities: UCSB, Georgia Tech, University of Minnesota, 
University of North Carolina Charlotte, University of 
Western Ontario (Canada), Swiss Federal Institute of 
Technology Zurich (ETH-Zurich; Switzerland), 
University of Applied Sciences Northwestern 
Switzerland FHNW, and RMIT University (Australia). 
The external distribution had a lower completion rate, 
resulting in a smaller number of useable participant 
responses (n = 18). Because internal and external parti-
cipants were evenly distributed across study conditions, 
we combined participants from both distributions for 
the purpose of our general analysis. This work was 
approved by the University of California Santa Barbara 
(UCSB) Institutional Review Board under Protocol 
#1-19-0370.

Approximately half of all participants completed the 
static version of the study (n = 53) and the other half 
completed the dynamic version (n = 47). The number of 
participants in each of the two main conditions was not 
equal due to differences in completion rates, with 
slightly more attrition for participants assigned to the 
dynamic condition. Descriptions of initial data cleanup 
and removal of incomplete responses (n = 34) are pro-
vided in Appendix A.

3.3.1. Demographics
Of our 100 participants, the gender breakdown is 64 
female and 36 male participants. The skew toward 
female participants is representative of the departmental 
research pool and the typical completion rate of study 
participation. The age of participants ranges from 18 to 
46, with a mean of 21.3 years old. This younger age 
range is not surprising, given that many of the partici-
pants are drawn from an undergraduate student 

148 C. J. BAE ET AL.

https://ugig.app


population, with 71 of our 100 participants reporting 
high school or GED degree as their highest level of 
education completed. The most represented field of 
study or work was Psychology (selected by 5% of 
respondents), followed by Geography or GIS (1.5%), 

Other (1.5%), and the Social Sciences generally (1.3%), 
which means participant backgrounds are quite broad.

Because the study was conducted remotely, the loca-
tion of participants varied widely. The majority of par-
ticipants were located in the United States, and most of 

Figure 3. All 7 visualization designs. The animal’s movement track is shown with a line or series of points, the yellow arrow indicates 
the beginning of the track, and the yellow square indicates the end of the track. The GPS track is recorded at the temporal interval of 
1 hour.
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them were located in California at the time of comple-
tion. Other countries represented in the participant pool 
were China, Australia, Switzerland, and Canada. Due to 
data collection occurring during the COVID-19 pan-
demic, even participants from the home university were 
not necessarily located near campus at the time of study 
completion. One participant reported a known color 
vision deficiency (specifically, red-green colorblind-
ness). We do not exclude the participant response in 
our analysis because our red-blue color palette was 
likely to still be distinguishable in those visualizations 
which used color to encode speed.

3.4. Individual di�erence measures

We assess participants on two measures of individual 
differences: sense of direction and GPS reliance. These 
measures and survey instruments are described as 
follows:

(a) Sense of direction is measured with the Santa 
Barbara Sense of Direction (SBSOD) scale 
(Hegarty et al., 2002). The SBSOD is a self- 
reported measure which asks participants to 
rate their level of agreement with 15 statements 
on a 7-point Likert scale. The resulting score has 
a possible range of 1.0 to 7.0 (the higher value 
being the better sense of direction); for our par-
ticipant pool, responses ranged from 1.3 to 6.8 
with an average SBSOD score of 4.3 across all 
participants.

(b) GPS reliance is measured using the GPS reliance 
scale of the McGill GPS questionnaire (Dahmani 
& Bohbot, 2020). This scale asks participants to 
rate their agreement with 7 statements on 
a 5-point Likert scale. Our participant responses 
range from 15.0 to 33.0 with a mean of 24.3.

Sense of direction does not appear to differ between 
study conditions (static vs. dynamic), t(98) = −0.81, 
p = 0.42. However, sense of direction does significantly 
differ by gender, t(98) = 4.6, p < .001. Male participants 
in our study have a higher average SBSOD score (M =  
4.95, SD = 1.22) than female participants (M = 3.9, SD =  
1.02), and the direction of this relationship is consistent 
with the existing literature for SBSOD by gender 
(Hegarty et al., 2006). It is unclear how much self- 
reported sense of direction contributes to map interpre-
tation; correlational studies that look at gender differ-
ences in map reading or map interpretation show mixed 
results, with no necessary male advantage (Coluccia & 
Louse, 2004).

Similarly to sense of direction, GPS reliance does not 
appear to differ between study conditions (static vs. 
dynamic), t(98) = 0.55, p = 0.58, but does significantly 
differ by gender, t(98) = −3.55, p < .001. Female partici-
pants in the study have a higher average GPS reliance 
score (M = 25.5, SD = 4.43) than male participants (M =  
22.22, SD = 4.45), meaning they report more reliance on 
GPS in their daily and occasional travel.

These patterns for the sense of direction and GPS 
reliance suggest that there is no significant difference 
between participant conditions, meaning those assigned 
to the static and the dynamic conditions are similar on 
these measures of individual difference. For compari-
sons between these individual difference measures, 
results show that there appears to be a significant and 
fairly strong negative relationship between sense of 
direction and GPS reliance (r = −0.39, p < .001), mean-
ing those with better sense of direction show less GPS 
reliance. This may indicate that those with a better sense 
of direction are less reliant on GPS for navigation, or 
that those who refer to GPS devices less often to navi-
gate have a better sense of direction. In Section 4.3, we 
compare these individual difference measures with par-
ticipant success measures in the study.

3.5. Study tasks

The study tasks include assessment tasks related to 
absolute (i.e. value at a certain location) and relative 
(i.e. change over a time period or difference in values 
across tracks) speed and direction, comparisons of 
movement tracks, description of movement tracks, and 
visualization ratings based on participant perceptions of 
ease and efficacy. Tasks are selected for the study based 
on the primary movement analysis tasks necessary to 
enable more complex movement behavior interpreta-
tion tasks (Nathan et al., 2008). Our focus is on assessing 
how users evaluate speed and direction, as they are 
central to the basic evaluation of movement patterns 
(Dodge et al., 2008), and are therefore critical tasks to 
the identification of behavior by movement ecologists.

3.5.1. Assessment of absolute and relative speed and 
direction
In our study, identification task questions relate to 
absolute and relative movement speed and direction. 
Context is provided with a text description stating, “In 
this series of tasks, you will be assessing the speed and 
direction of an animal’s movement. The key (legend) at 
the top of the map explains how you can understand the 
information represented.” Actions to identify include: 
Stop Movement (Pause); Change Speed from Low to High 
(Speed Up); Change Speed from High to Low (Slow 
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Down); and Major Change in Direction. For each of 
these questions, 1 “time” refers to one instance of that 
action, such as one stop (zero speed value) or one 
change in direction over the duration of the trajectory. 
See Figure 4 to see the four questions asked in the 
identification task. We assess identification tasks based 
on the distribution of responses and the amount of 
variation between participants’ responses, rather than 
given an objective accuracy score for these questions. 
This is because counts of movement actions may be 
subjective, based on varied interpretations of the para-
meters to identify actions such as “stopping” or “speed-
ing up.” This is further described in Appendix C.1.

3.5.2. Overall relative direction
In the direction identification questions, participants 
are asked to identify: “What is the overall direction of 
the animal’s movement from the beginning to the end of 
the track?” A compass rose is presented to participants 
to select a response by clicking one of the directions 
labeled for eight cardinal directions (N, NE, E, SE, S, 
SW, W, NW). The compass rose is oriented with 
a typical north-up orientation, as is each of the visuali-
zations presented in the study. Responses to these ques-
tions are given a score of 1 for each visualization with 
a correctly identified direction.

3.5.3. Absolute speed identification
For each visualization, participants are additionally 
asked to identify the fastest point (i.e. the location of 
the highest speed value) along the animal’s track by 
selecting a point on the visualization image itself: “At 
which point does the animal appear to be moving the 
fastest in this track? Click to add a point on the image 
below.” Responses are counted as correct if they corre-
spond with a point on the movement track visualization 
where measured speed falls within the top 10% of over-
all movement speed. Fastest speed responses are scored 
(given a score of 1) if participants correctly identified 

a point on the movement track visualization where 
measured speed fell within the top 10% of overall move-
ment speed. This assessment is described further in 
Appendix C.2.

3.5.4. Comparisons of movement tracks
These tasks include within-track and between-track 
comparisons for relative movement speed and distance. 
Within-track comparison questions ask participants to 
make a speed comparison between two selected seg-
ments of a single movement track. The question prompt 
reads, “Was the animal moving faster overall in Segment 
A or Segment B?” Participants are shown the map of 
movement previously displayed for the Identification 
Tasks, with additional call-outs of two segments high-
lighted by a box and labeled “Segment A” and “Segment 
B,” with the rest of the track and background grayed out. 
See Figure 5 for an example of segments presented to 
participants for within-track comparison. Between- 
track comparison questions ask participants to make 
comparisons between two movement tracks, with each 
track representing the movement of a different animal 
during the same period of time. These between-track 
questions ask:

● Choose which track segment appears to indicate 
faster overall movement.

● Which animal covered a longer distance during the 
track?

● Which animal moved further away from the begin-
ning point of their track?

Figure 4. Format of the response form presented to participants 
for the identification tasks.

Figure 5. Visualization 3, presented with two highlighted seg-
ments for comparison.
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● Which animal appears to have covered a larger area 
(spatial range)?

Participants were given a score of 1 for each accurate 
response, for each of the five questions described in this 
section, for each of the seven visualizations.

3.5.5. Description of movement tracks
Participants complete a set of open-ended description 
tasks for each visualization design using a brief text 
entry. For these tasks, participants again use the pre-
viously displayed map with call-outs of the two high-
lighted segments (e.g. Figure 5). Participants are asked 
to describe the movement of the tracked individual over 
each segment, specifically related to speed, acceleration, 
and direction of movement in each segment. The 
prompt reads: “Describe movement speed and direction 
in Segment A [or B]. No need to use complete sen-
tences.” Two examples of the response format are pro-
vided in the instructions: “moving east at a constant 
speed” and “speeding up while moving NW.” To sys-
tematically characterize participant descriptions of 
movement, we take a text processing (term frequency) 
approach to identify commonalities between descrip-
tions. Responses to these description questions are 
assessed by looking at frequency of descriptive phrases 
used to describe the movement within the selected seg-
ment for each of the seven visualizations. For a detailed 
description of the text processing approach, see 
Appendix C.6.

3.5.6. Visualization ratings
To assess participant perceptions of the ease and useful-
ness of the visualization designs, we ask a set of rating 
questions related to ease of understanding and per-
ceived efficacy of visual elements. Participants rate 
each of the seven visualizations based on these three 
prompts:

● Ease of Understanding: “Rate your ease in using 
these visualizations for the identification and com-
parison tasks in the study.”

● Efficacy for Assessing Movement Speed: “Rate the 
efficacy of each visualization for conveying infor-
mation about movement speed.”

● Efficacy for Assessing Movement Path: “Rate the 
efficacy of each visualization for conveying infor-
mation about movement path and direction.”

For the ease of understanding prompt, responses are 
given using a 5-point Likert scale from 1 being “very 
difficult” to 5 being “very easy,” with a rating of 3 being 
neutral (“neither easy nor difficult”). For the second two 

prompts related to efficacy of visual elements, partici-
pants are asked to rate each of the 7 visualizations for 
conveying movement speed and for conveying move-
ment path and direction based on a 5-point Likert scale 
from 1: “very unclear” to 5: “very clear.” These rating 
questions measure the participants’ perceptions of 
visualization design efficacy and therefore complement 
the other quantifiable study task measures. In this way, 
we provide measures both of participants’ accuracy of 
interpretation (as in the tasks above), as well as their 
perceptions related to the ease and usefulness of these 
visualizations for doing so.

4. Results

This section presents the results of the study with rela-
tion to the two research objectives presented at the 
beginning of Section 3. Briefly summarized, the objec-
tives are to determine the relative effectiveness of (1) 
static and dynamic display visualization forms, and (2) 
the visual variables of shape, size, and color for commu-
nicating the movement parameters. This section sum-
marizes the results in terms of response time for tasks, 
responses to identification questions, task success scores 
(accuracy), open-ended descriptions of movement, and 
participant ratings of the visualization designs based on 
perceived ease of use and perceived usefulness of each 
design. In this way, we look at several complementary 
metrics for evaluating the efficacy of these visualization 
designs for communicating movement information: 
timing, variation in interpretation, accuracy on tasks, 
and user perceptions of efficacy.

4.1. Response time

We measure duration for overall completion of the 
study, as well as comparing response time for all tasks, 
by study condition (static vs. dynamic), and by task 
type. For overall timing, the shortest completion time 
for the entire survey is 21 min and the longest com-
pletion time is 113 min (nearly 2 h). Median comple-
tion time for the task questions, excluding the time for 
demographics and individual difference measures, is 
32.1 min (SD = 12.5 min). Median time taken for tasks 
in the static condition is 28.8 min and in the dynamic 
condition is 33.1 min, with no significant difference 
between conditions. For time spent on tasks, the 
Wilcoxon (Mann-Whitney) rank sum test with con-
tinuity correction reveals no significant difference 
between study conditions (static vs. dynamic), statis-
tic = 1393, p = 0.31. Therefore, it takes participants 
a comparable amount of time in the static and the 
dynamic conditions to complete the visualization task 
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questions. Overall response times for sets of questions 
by specific visualization design are recorded. 
However, since the response times for individual 
task questions are not recorded, we acknowledge that 
the specific interpretation task is likely to impact tim-
ing and should be further distinguished in future 
work.

As participants complete the same set of task questions 
for each visualization type, we also compare timing across 
each visualization design. For time spent on tasks by 
visualization type, the Kruskal–Wallis test shows signifi-
cant differences between groups (χ2 = 47.22, p < .001, df  
= 6). To identify where there are significant differences 
between visualization designs, we run pairwise compar-
isons (see Appendix C.3 for reported differences) and 
find that Visualization 7 takes participants significantly 
less time to complete as compared to all other visualiza-
tion designs. Visualization 7 is the combined visualization 
design, which uses a point-based representation and an 
underlying line connecting the sequence of points (see 
Figure 3). However, Visualization 7 tasks are presented as 
the final set of questions to all participants (while the 
order for the previous visualization blocks is counter- 
balanced), so order may relate to the faster completion 
time with Visualization 7. The difference between 
Visualizations 2 and 3 may also be due to order effects 
within the block. Furthermore, across both static and 
dynamic conditions, tasks take participants 4.81 min per 
line-based visualization (1, 2, 3) and 4.49 min per point- 
based visualization (4, 5, 6) on average, which is not 
significantly different across conditions. The Wilcoxon 
rank sum test reveals that task completion time for each 
visualization does not significantly differ between the 
visualization blocks, statistic = 63533, p = 0.18. We there-
fore assert that overall time differences between visualiza-
tions based on shape (line vs. point visualizations) are not 
meaningful. We also compare time differences between 
line-based and point-based visualization tasks within the 
static participant group and the dynamic participant 
group and find no significant differences.

4.2. Assessment and identi�cation tasks

We first observe the distribution of responses in partici-
pants’ identification of movement actions in the study. 
For identification tasks, distribution rather than accuracy 
is assessed; for accuracy or task success, see sub-section 
4.3. In some cases, as summarized in Table 1, response 
distributions significantly differ based on condition, more 
often for identifying number of stops. For Visualizations 
2, 3, and 5, participants in the dynamic condition report 
more stops than those in the static condition, potentially 
signaling that pauses in movement are more salient when 

the movement track is animated. Participants in the static 
condition report more accelerations (speeding up) for 
Visualization 4 than do those in the dynamic condition, 
and also more decelerations (slowing down) for 
Visualization 5. Participants do not differ by condition 
in their identification of major changes in direction for 
any of the visualizations, so we are not able to say that 
participants identify more or fewer directional changes 
based on whether they use the static or dynamic display 
forms for this task.

4.3. Overview of task success scores (accuracy)

Total task success scores are a summary measure of all 
questions which were scored based on accuracy. These 
include the tasks related to Overall Direction, Fastest 
Speed Identification, and Comparisons of Movement 
Tracks. Combined scores across all the tasks and visua-
lization designs range from 24 to 41 (M = 34.05, SD =  
3.1), with a maximum possible score of 49 across all 
tasks, comprising 7 questions marked as correct or 
incorrect for each of 7 visualization designs.

Observing individual differences in relation to total 
scores of participants across all tasks for each visualiza-
tion design, we find no reliable relationships between 
individual difference measures and total scores. In other 
words, there is no significant relationship between total 
score and sense of direction (t(98) = −0.72, p = .47), nor 
between total score and GPS reliance (t(98) = −0.35, 
p = .73), nor any difference in total scores by gender 
(t(68.23) = −1.40, p = .17).

4.4. Overall success by static versus dynamic 
display forms

With regard to research objective (1), we first evaluate 
success across the two participant conditions to com-
pare the use of static versus dynamic display forms. 
Figure 6 shows total scores across the study conditions. 
The static and dynamic visualization display forms do 
not appear to impact success at the aggregate level, 
based on the set of movement identification and com-
parison tasks presented in the study. There are no sig-
nificant differences in overall success scores across the 

Table 1. Comparison of response distributions to identification 
tasks in static vs. dynamic conditions. Only significant differ-
ences in distributions reported. DYN = Dynamic; STA = Static.

Vis 1 Vis 2 Vis 3 Vis 4 Vis 5 Vis 6 Vis 7

Stop movement DYN DYN DYN
Speed up STA
Slow down STA
Major change in direction
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above tasks between participants randomly assigned to 
use the static versus the dynamic display forms. 
Participants in the static condition have a similar total 
score (M = 33.66, SD = 2.7) to those in the dynamic 
condition (M = 34.49, SD = 3.5), of a maximum possible 
score of 49, with no significant difference between the 
groups, t(86.72) = 1.3, p = .19.

4.5. Overall success by visual variables

To evaluate the research objective (2), which is to com-
pare the use of different visual variable encoding of 
movement parameters, we compare participant success 
on tasks by visualization type. Broadly, we categorize the 
seven visualization designs across the two display form 
conditions into four visualization blocks, which we 
identify as static lines, static points, dynamic lines, and 
dynamic points. In doing so, we note differences in task 
scores based on encoding through the visual variables, 
as assessed through the visualization designs.

The results comparing scores on tasks for the line- 
based versus point-based visualizations suggest that par-
ticipant success differs significantly based on visualiza-
tion design. For participants across both static and 
dynamic conditions, task scores are higher on average 
on the sets of tasks using line-based visualizations (M =  
5.32, SD = 1.21) than they are on the sets of tasks using 
point-based visualizations (M = 4.52, SD = 1.16). 
Differences in success are more pronounced for those 
participants in the condition using dynamic display 
forms. The main effect of visualization block (static line- 

based, static point-based, dynamic line-based, dynamic 
point-based) is significant, F(3, 696) = 35.27, p < .001.

Figure 7 shows differences between overall task scores 
based on grouping by line-based and point-based visua-
lization types. Whereas scores on line-based and point- 
based visualization tasks do not differ for static partici-
pants, scores are significantly higher for line-based tasks 
in the dynamic condition. The outcomes suggest that the 
connector trajectory line is an important visual cue when 
representing GPS tracking data, while animating trajec-
tories can better capture changes in movement para-
meters. This also suggests that there may be an 
interaction between condition and design.

To further distinguish between condition (dynamic, 
static) and design (point-based, line-based), we con-
struct a linear model with two factors, condition and 
design. To meet ANOVA model assumptions, we apply 
a Box-Cox power transformation to stabilize the var-
iances in our dataset. The two-way ANOVA shows that 
the main effects of condition (dynamic vs. static), 
F(1, 196) = 13.101, p < .001, and design (point-based 
vs. line-based), F(1, 196) = 128.225, p < .001, are statis-
tically significant. The interaction effect is also signifi-
cant, F(1, 196) = 21.617, p < .001. This supports the 
finding that the scoring on line-based vs. point-based 
tasks is moderated by condition; however, the differ-
ences in means are relatively small. Detailed results are 
given in Appendix C.4. Future work should further 
investigate the types of visualization interpretation 
tasks that are supported by each type of visualization 
design (comparisons for individual task types in this 
study are described briefly in Appendix C.5).

4.6. Description of movement tracks

We next assess participants’ responses to the open- 
ended movement track description questions, as 

Figure 6. Total scores for all tasks and visualization designs, 
comparing participants in static vs. dynamic conditions.

Figure 7. Task scores grouped by visualization type, comparing 
across static vs. dynamic conditions. Static histogram bars are 
shown in blue, dynamic bars are shown in red, and overlapping 
bars are shown in purple.
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described in Section 3.5.5. Table 2 presents examples of 
the raw descriptions provided by participants for 
Segments A and B in Visualization 3, as shown in 
Figure 5. Even observing a small subset of descriptions 
shows the level of agreement between participants about 
the movement occurring in each of these segments. 
However, this subset also demonstrates variation in 
the level of detail given for change in speed and in 
describing direction (i.e. based on four cardinal direc-
tions or eight).

For a high-level summary of frequent bigrams 
grouped across visualization design types, we present 
wordclouds in Figure 8. A full description of the text 
processing approach is given in Appendix C.6. 
Wordclouds are generated from participant descrip-
tions, which displays frequency of the bigrams through 
text size. Bigram frequency is analyzed and wordclouds 
are generated using the “quanteda” R package (Benoit 
et al., 2018). Overall, the text processing shows more 
description of direction for line-based visualizations and 
more description of speed for point-based visualizations, 
suggesting that those parameters may be more salient to 
viewers using those types of movement visualization 
designs.

4.7. Participant ratings of visualization designs

Participant ratings of each of the seven visualization 
designs are summarized in response to the three ques-
tions described in Section 3.5.6 above.

4.7.1. Participant ratings of ease of understanding
Figure 9 displays summaries of Likert score ratings for 
ease of understanding for each of the seven visualiza-
tions. One caveat for the participant rating questions 
and the open feedback questions is that there were 
missing responses for 7 participants in the dynamic 
condition due to a page in the study that was hidden 
on Qualtrics for a short period during data collection. 

Hence, the Likert responses for these questions are 
summarized for 93 participants rather than the full set 
of 100.

Across all participants in either condition, visualiza-
tion design 2 has the highest overall positive ease of 
understanding ratings (59% positive) and visualization 
4 the lowest (16% positive). All three of the line-based 
visualizations (Visualizations 1, 2, 3) are rated more 
positively than negatively for overall ease of understand-
ing, whereas all three of the point-based visualizations 
(Visualizations 4, 5, 6) along with the point-and-line- 
based visualization are rated more negatively. Moreover, 
these outcomes suggest that the track complexity (hav-
ing turns and loops, e.g. as in Visualization 5) seems not 
to impact the ease of understanding, and the proper use 
of the visual variables shape, size, and color can help to 
represent movement more intuitively.

4.7.2. Participant ratings of efficacy of visual 
elements
Figure 10 shows that the line-based visualizations 
(Visualizations 1, 2, 3) are most positively rated for 
supporting the interpretation of movement speed. 
Visualization 3, which encodes speed as both color and 
width of the movement path represented as a line, is 
rated most favorably with 73% positive responses. 
Visualization 4 is ranked most negatively with only 
28% positive ratings. This may suggest that the visual 
variable size may be more helpful in communicating 
movement speed. While color and size can be effective 
variables to communicate movement speed in line- 
based visualization, the complexity of the track may 
impact the efficacy of these variables, especially when 
the connector trajectory lines are not present in point- 
based visualizations. In this case, it is possible that the 
poor ratings for Visualization 4 may relate partially to 
track complexity (and not only visualization inefficacy).

Figure 11 shows that Visualization 1 is ranked highest 
for supporting the assessment of the movement path and 
direction, followed by the other line-based visualizations (2 
and 3) which are also ranked highly positively (over 80% 
positive ratings). Visualization 5 is ranked lowest, with 
more negative ratings (61%) than positive (22%). As with 
efficacy for assessing movement speed, the same general 
pattern holds for assessing movement path, where line- 
based visualizations are rated more positively and point- 
based movement visualizations are ranked more nega-
tively. This indicates that participants felt that line-based 
visualization designs gave a better sense of where the 
animal went. However, we again see here that 
Visualization 5, which uses a more complex overlapping 
track, ranks low for rated efficacy in communicating 
direction.

Table 2. An example of six participant responses to 
Visualization 3 segment description questions.

Visualization 3, Segment A

“moving somewhat slow in the NE direction”
“moving NE at a constant speed”
“moving slightly north east with slow speed before stopping
picking up pace a bit then returning to the slow pace”
“moving east at a constant speed”
“Slight decrease in speed going roughly in the northeast direction.”

Visualization 3, Segment B

“speeding up while moving in the S direction”
“speeding up while moving S”
“moving slightly south east while gaining speed”
“speeding up while moving south”
“Speeding up tremendously in the southward direction.”

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 155



5. Discussion

5.1. Assessment of the results

Both static and dynamic display forms take partici-
pants a similar amount of time to interpret in the 
context of the study tasks. We also find no significant 
difference between participants in task completion 
time between blocks of visualization types (line- 
based vs. point-based). Therefore, we cannot say that 

static or dynamic displays, nor line- or point-based 
visualizations, are more efficient to use for the overall 
visualization of movement, especially when visualizing 
only one track as is the case for most tasks in this 
study.

With dynamic visualization styles becoming more 
commonplace, it is useful to know that the use of ani-
mated visualizations did not have a noticeable effect on 
time for interpretation. This is generally in line with 

Figure 8. Wordclouds displaying frequency of bigrams in descriptions of static and dynamic line-based and point-based visualizations.
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previous work in static versus animated presentations of 
data visualizations, which has found little evidence for 
a reliable advantage of animations (Ware, 2013b). Some 
scholars have proposed that the cognitive effort 
involved with interpreting a static display may support 
information retention and the construction of internal 
cognitive models of the information (Mayer et al., 2005), 
but we do not explore longer-term effects or learning in 
this study, only task-related interpretation of informa-
tion displays.

We find no significant difference in overall success 
(accuracy) scores between participants who used static 
versus dynamic visualizations. However, in terms of 
accuracy on tasks, trends in our results point to 

differences in interpretation based on dynamism and 
visual variables. Participants in the dynamic condition 
are more granular in some of their identification of 
different movement parameters, most often for count-
ing the number of stops in movement. This suggests that 
dynamic displays can better communicate fine-grained 
speed changes. It also suggests that stops are more 
salient in dynamic visualizations than in static visualiza-
tions. Identification of major changes in direction does 
not differ, however, between static and dynamic condi-
tions, suggesting that the overall path shape of the 
movement track is not noticeably different based on 
display condition. For movement, it seems intuitive 
that the representation of movement speed can be 
expressed more directly through animated trajectory 
lines and/or points in the display, rather than relying 
upon the participant to mentally translate speed infor-
mation from another visual characteristic like color.

For comparisons of movement between two tracks, 
participants perform similarly well across static and 
dynamic conditions in assessing comparative move-
ment speed, distance, range, and area of coverage. 
With relation to the framework of human-centered 
knowledge discovery from movement data, it appears 
that these location aspects are relatively easy for users to 
interpret in both static and animated forms. However, 
in this study, we only ask users to make a comparison 
between individual animals’ tracks and do not assess 
user interpretations of interaction between the animals, 
which would potentially be better supported in the 
animated form (as it would point to co-incidence in 
both space and time, and leave it ambiguous in the static 
form).

Figure 9. Likert plot of participant responses (n = 93) to ease of 
understanding questions. Percentages are given for negative vs. 
positive responses. Visualization designs 1 and 4 use the visual 
variable color, designs 2 and 5 use size, and designs 3 and 6 use 
both color and size. Design 7 uses size only.

Figure 10. Likert plot of participant responses (n = 93) to effi-
cacy of visual elements questions for movement speed. 
Percentages are given for negative vs. positive responses. 
Visualization designs 1 and 4 use the visual variable color, 
designs 2 and 5 use size, and designs 3 and 6 use both color 
and size. Design 7 uses size only.

Figure 11. Likert plot of participant responses (n = 93) to effi-
cacy of visual elements questions for movement path and 
direction. Percentages are given for negative vs. positive 
responses. Visualization designs 1 and 4 use the visual variable 
color, designs 2 and 5 use size, and designs 3 and 6 use both 
color and size. Design 7 uses size only.
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In the open-ended descriptions of the track seg-
ments, we note differences in participants’ level of 
agreement and use of terms related to movement direc-
tion and speed. By looking at frequencies of term usage 
in these descriptions, we find that participants make 
more mentions of direction for line-based visualizations 
and more mentions of speed for point-based visualiza-
tions. Participants in the study express a general pre-
ference for line-based designs over point-based 
visualization designs, with fewer positive rankings of 
point-based designs. However, it is worth noting that 
a preference for the line-based visualizations is likely to 
relate to prior familiarity for those types of designs 
depicting movement, which we did not assess in the 
study. Considering that movement tracks and routes 
are often depicted with a fixed-width line visualization 
in popular map applications like Google or Apple Maps, 
it is likely that familiarity is higher with line-based 
designs over point-based designs.

5.2. Limitations of the work and next steps for 
evaluation

This study mainly focused on the two-dimensional 
maps and displays. Future studies should consider com-
parisons of human interpretation across two- 
dimensional (2D) and three-dimensional (3D) move-
ment visualizations, as well as including comparisons 
of movement visualizations that incorporate environ-
mental variables. In general, users are likely to have 
greater familiarity with the use of static maps over 
dynamic maps, which may have hindered the perfor-
mance of those participants in the dynamic condition. 
Future studies comparing static and dynamic maps or 
visualizations should include a short tutorial or exam-
ples to ensure that participants are familiar with the 
display form type beforehand.

We recognize more need to assess the level of com-
plexity and realism that is most appropriate for geovi-
sualization displays, such as through the addition of 
contextual information, and indeed user preference 
and efficiency or effectiveness may not always align 
(Hegarty et al., 2012). Although in the present study 
we attempt to capture more realistic movement visuali-
zations with geographic context, the underlying base-
map in this study is very simple and unlikely to 
introduce much complexity, therefore not competing 
for visual attention. Future studies should consider the 
impact of map design, as the geographic context influ-
encing movement. Additionally, interaction with map 
and geovisualization displays is an important area of 
further work in the cognition of movement visualiza-
tion. Interaction with map displays provides ample 

opportunity for exploratory analysis of geographic 
movement data in context.

These results are a significant step toward analyzing 
elements within the previously proposed framework for 
evaluating approaches to mapping movement (Dodge & 
Noi, 2021). The web-based study design has advantages 
such as the potential to quickly reach and scale to 
a broader pool of users, the allowance for maximum 
flexibility in study completion, and greater validity with 
regard to transferable use cases for web map visualiza-
tions (Griffin et al., 2017); however, there are trade-offs 
in being able to administer the study in a controlled 
display resolution and size. Although our participant 
descriptions of movement pointed to possible differ-
ences in the salience of movement characteristics, 
description of movement tracks may also be automati-
cally processed using machine learning methods in the 
future (e.g. Pezanowski et al., 2022).

Considering the relative lack of prior research in the 
cognitive evaluation of geovisualizations of movement, 
it is important that we start with basic aspects of the 
evaluation framework, as we have presented here, and 
move onto introducing multifaceted geographic context 
information, including environmental variables, and 
more complex interaction capabilities in future work. 
Future studies would also benefit from having a control 
condition by including a design in which movement 
parameters such as speed, for instance, is not encoded 
through the visual variables.

6. Conclusion

This paper presented an empirical study using web- 
based surveys to evaluate the efficacy of various visual 
variables in capturing movement parameters along tra-
jectories, such as speed and direction, using static and 
dynamic displays. As a result, this study made an impor-
tant contribution toward the assessment of static and 
dynamic display forms for movement visualizations, 
and additionally highlighted the differences in and pre-
ferences for using size and color to represent movement 
speed in such displays. Both static and dynamic display 
forms supported participants’ efficient and accurate 
interpretation of movement speed and direction and 
basic comparison tasks in this study. However, identifi-
cation tasks suggested that dynamic display forms for 
movement tracks may support more fine-grained atten-
tion to pauses in movement, whereas static displays may 
support the identification of changes in speed. 
Participants also showed a strong preference overall 
for the line-based visualization designs over the point- 
based ones. For future studies, more specific interpreta-
tion tasks can further elucidate how well users can assess 
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more complex movement trajectories, understand beha-
vioral patterns, or understand visualizations of aggre-
gated movement versus individual trajectories of 
movement.
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