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ABSTRACT

This paper evaluates cognitively plausible geovisualization techniques for mapping movement
data. With the widespread increase in the availability and quality of space-time data capturing
movement trajectories of individuals, meaningful representations are needed to properly visualize
and communicate trajectory data and complex movement patterns using geographic displays.
Many visualization and visual analytics approaches have been proposed to map movement
trajectories (e.g. space-time paths, animations, trajectory lines, etc.). However, little is known
about how effective these complex visualizations are in capturing important aspects of movement
data. Given the complexity of movement data which involves space, time, and context dimensions,
it is essential to evaluate the communicative efficiency and efficacy of various visualization forms in
helping people understand movement data. This study assesses the effectiveness of static and
dynamic movement displays as well as visual variables in communicating movement parameters
along trajectories, such as speed and direction. To do so, a web-based survey is conducted to
evaluate the understanding of movement visualizations by a nonspecialist audience. This and
future studies contribute fundamental insights into the cognition of movement visualizations and
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inspire new methods for the empirical evaluation of geovisualizations.

1. Introduction

Cartographic visualizations have long been used to
communicate spatiotemporal information across
many domains of knowledge to both practitioners
and the public. The origin and history of cartography
show that it has, from the beginning, blended the art
and science of representing and mapping the world.
It is essential, therefore, to know how maps commu-
nicate meaning to the viewer through the symbolic
representation of information (Montello et al., 2018).
Cartographic representation plays an important role
in the graphical display of spatiotemporal informa-
tion (Fairbairn et al., 2001).

Such visualizations, like maps and network diagrams,
are increasingly involved in data exploration and analy-
sis of complex behavior in the fields of movement ecol-
ogy and human mobility science (Demsar et al., 2015;
Yuan & Raubal, 2012), as movement is necessarily spa-
tiotemporal. Movement data is collected through var-
ious means, including the tracking of individuals using
location-aware technologies (LATSs) such as Global
Positioning Systems (GPS), bio-loggers, radar sensors,
and geo-tags in the form of trajectories (i.e. sequence of
locations over time). These data, especially if geo-

enriched with behavioral and environmental variable,
pose complex challenges in the interpretation of pat-
terns that they capture with relation to real-world move-
ment behavior of individuals. The evaluation of
movement visualizations is also relevant in the depic-
tion of large-scale directional movement or flows, such
as for aggregated movement trajectories (Graser et al.,
2020), or in other application areas as ocean currents
and wind patterns (Dong et al., 2018; Fukaya & Misue,
2018). Therefore, it is critical to systematically assess the
components of visual information design for cognitively
plausible mapping of trajectory data and effective com-
munication of movement information.

The field of movement visualization has not always
focused on empirical evaluation of how people cogni-
tively interpret such map displays (Davies et al., 2015),
though there is certainly a need and opportunity (Roth,
2017). Fabrikant has called for a “cognitively inspired
and perceptually salient” approach to cartographic dis-
plays and has done much work on empirically evaluat-
ing map displays for the interpretation of spatial and
spatiotemporal data, such as in the case of weather maps
(Fabrikant et al., 2010). Cognitive evaluation (similarly
referred to as perceptual evaluation; Ware, 2013a) poses
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a key opportunity to learn how to support efficient
visual communication of complex spatiotemporal infor-
mation for applied research and decision-making, such
as in movement visualization (Lautenschiitz, 2012).

Although spatiotemporal displays are critically impor-
tant to public communication and are widely used in the
reporting of both human and animal movement as well as
natural phenomena, the creation of such visualizations is
guided mainly by general aesthetic principles and design
conventions (Dodge & Noi, 2021). In contemporary
times, technology may even be “outpacing” cartographic
theory for mapping movement and its patterns
(Harrower & Fabrikant, 2008). There is certainly a need
for a deeper understanding of how users understand time
and essential movement parameters (e.g. speed and direc-
tion) using spatiotemporal visualizations. This can
inform the design of the next generation of geographic
displays of movement phenomena, rather than represent-
ing movement in a provisional way.

This paper presents an empirical study to evaluate
aspects of the proposed cartographic framework for
movement in Dodge and Noi (2021). The main goal is
to evaluate how different visualization forms impact the
cognitive evaluation of movement parameters in geovi-
sualization. The focus is on two-dimensional trajectory
maps represented using static and dynamic displays.
The study contributes to the understanding of how
people interpret movement parameters visualized
through trajectories on these types of map displays.
Specifically, the main contributions of this study are
twofold: (1) Identify and assess a set of Bertin (1983)’s
visual variables to properly encode and map movement
trajectories and changes in primitive movement para-
meters such as speed, acceleration, and direction
(Dodge et al., 2008). (2) Conduct a web-based survey
to evaluate the efficacy of various visual variables in
capturing movement parameters using static and
dynamic displays. The outcome of this research has
implications not only for the design of digital map
resources and geographic visualizations, such as for
digital navigation aids, but also for understanding real-
time human comprehension of the visual information
display of spatiotemporal phenomena.

2. Background and relevant work
2.1. Visual variables in cartography

Bertin (1983) first described a system of visual variables
to encode attribute information in cartography using
symbolization (White, 2017). Visual variables serve as
a graphic vocabulary for expressing geographic informa-
tion on maps and other graphic representations. The

original system from Bertin comprises location, size,
shape, hue, color, texture, and orientation. Appropriate
symbolizations are based on the empirical level of mea-
surement of the visualized data, whether nominal, ordi-
nal, interval, or ratio, with certain visual variables being
better suited to symbolize certain measurement levels.
Visual variables can be used flexibly and in conjunction
with one another, and are sometimes double-encoded.
For instance, two visual variables may be used to express
the same attribute information, potentially creating
a stronger graphical effect in combination (Roth, 2017).

Bertin’s original system has since been expanded by
others (Roth, 2017; White, 2017). DiBiase et al. (1992)
identified three principal variables for animated (dynamic)
maps: duration, order, and rate of change. MacEachren
(1995) extended this list to include display date, frequency,
and synchronization. These new visual variables are justi-
fied by advancements of technologies in Geographic
Information Science, which now allow for dynamic and
temporally-varying displays. Specific to movement visua-
lization, Graser et al. (2020) describes the use of visual
variables in depicting aggregated movement, such as
through point marker density and the use of color for
mean speed of movement, with a grid-based approach.
Although we focus on individual recorded trajectories
rather than aggregates, the connection to recorded move-
ment tracks is a relevant consideration. This additionally
demonstrates the use of point-based visualizations to
depict movement.

Although the original system of visual variables has
been further developed to adopt it to new computer carto-
graphy methods (Roth, 2017), it is critical that components
of the system be evaluated in the context of expanding data
visualization needs. For instance, we must assess the poten-
tial value of using animation in map displays (Goldsberry
& Battersby, 2009; Griffin et al., 2006), particularly for
mapping movement phenomena and trajectories. Many
current design choices in cartography continue to be based
primarily on aesthetics and convention, with less emphasis
on visualization design principles supported by empirically
and systematically user-tested studies. Therefore, there is
a need to build a cohesive research program for evaluating
these design conventions and newly-enabled approaches
to visualization. This in turn will further support new
insights in visualization-based communication and deci-
sion-making (Padilla et al., 2018).

2.2. The cognitive evaluation of geovisualizations

In a human-centered approach to knowledge discovery
from movement data (Dodge & Noi, 2021), cognitive
evaluations are essential for supporting the human
users’ interpretation of extracted patterns. Cognitive



evaluation in geographic visualization work presents
a key opportunity to learn how to support efficient
visual communication of complex spatiotemporal infor-
mation - such as in movement visualization - for
research purposes and applied decision-making. It is
necessary that we have the tools for testing claims
about the effectiveness or plausibility of a visualization.
Displaying information in ways that take advantage of
our shared cognitive facilities, integrating insights from
psychology, can allow cartographic design to follow
principles for a more natural and efficient understand-
ing of large multidimensional data (Ware, 2013c). For
instance, one of the central methods of supporting
visual perception in the visualization of quantitative
data is to piggyback on our use of spatial metaphors in
cognition. This takes advantage of human cognition of
existing metaphors, such as our understanding of the
“more is more” visual metaphor commonly exploited in
the visual display of quantitative information (Tufte,
2001). For example, this can be used to express higher
values with taller bars in a graph or darker colors in map
symbology. The clear, cognitively based communication
of information through visual means can help both
novices and experienced practitioners grasp concepts
more readily.

With the widespread increase in the availability and
the demand for processing space-time activity data
(Miller, 2005), people increasingly use information dis-
plays with high visual and cognitive load. However, it is
not always clear what level of complexity and realism is
appropriate for geographic visualization displays
(Hegarty et al., 2012). It is therefore essential to evaluate
the communicative efficiency and effectiveness of var-
ious aspects of complex visual displays in helping people
understand information conveyed along both spatial
and temporal dimensions. There is increasing support
for undertaking cognitive research into the design and
interpretation of cartographic visualization approaches
(Fabrikant et al., 2010). This approach highlights the
importance of understanding how internal cognitive
processes interact with external visualization tools
(such as maps). Relevant work includes the empirical
evaluation of spatiotemporal data visualization through
animated maps (Griffin et al., 2006; Harrower, 2007)
and the adaptation of map displays based on context
(Griffin et al., 2017).

Other related work looks at a specific class of geovi-
sualizations, the flow map, to identify and justify best
practices for communicating flow information between
locations (Gu et al., 2018; Jenny et al., 2018). For
instance, Dong et al. (2018) assess the usability of flow
maps using eye-tracking and evaluation tasks to com-
pare straight-line versus curved-line flow visualizations,
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as well as color versus thickness of lines. We mainly
focus on discrete trajectories here, representing the
paths of individuals over time. With trajectories, move-
ment parameters and their variations can be visualized
along the path as the individual moves over time. In
contrast, flow lines and flow matrices are used to repre-
sent speed and other movement parameters at the
aggregate and summary level at different locations or
during the entire flow line. Also, relevant to the com-
parison of spatiotemporal information through point-
based visualizations and additional visual variables is
the example by Fukaya and Misue (2018). Although
dealing with shipping vessels, the example visualizations
(such as varying the hue, saturation, and size/radii of
dots) for the vessels’ movement trajectories in the paper
are similar in terms of data recording and potential
visualization styles for animal movement trajectories.

There is no better example of expressing the
importance of time in visualization as movement
data (Dodge, 2021; Kraak, 2014). Movement is neces-
sarily spatiotemporal: it refers to the change in spa-
tial location over time - but limited empirical
evaluation has been conducted on how people per-
ceive time in geographic displays of movement beha-
vior between static and dynamic displays. Some have
looked at the impacts of using animation more gen-
erally in cartography, for instance in the animation
of choropleth map displays (Fish et al., 2011;
Goldsberry & Battersby, 2009). Such work suggests,
however, many remaining gaps in our understand-
ing: for instance, which aspects of static display form
design and symbolization translate to communicating
dynamic change (see the example of choropleth maps
by Battersby & Goldsberry, 2010). This work funda-
mentally contributes new insights into human cogni-
tion of spatiotemporal visualizations and provides
novel methodological approaches to the evaluation
of visual representations of movement.

2.3. The cartographic framework for movement
visualization

Figure 1 presents a cartographic framework for move-
ment visualization, adopted from the pyramid model of
movement representation (Dodge & Noi, 2021; based
on the triad model proposed in Kraak, 2014). In this
study, we evaluate the efficacy of various elements of
this framework to help the human user in understand-
ing of movement data. The core elements of the frame-
work are as follows. The text highlighted in dark gray in
Figure 1 represents the aspects included in the present
study.
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Figure 1. The cartographic framework for mapping movement, adapted pyramid model of movement representation (Dodge & Noi, 2021).

e Object: Object refers to the moving phenomena
represented in the visualization, either in terms of
discrete trajectories of moving entities or aggregate
indices such as Origin-Destination (OD) flows or
other types of mobility indicators (see, for example,
Noi et al. (2022)). This study focuses on “trajec-
tories” as time-ordered sets of locations represent-
ing the movement paths of one or more moving
entities as discrete objects.

o Attribute: Attributes refer to parameters charac-
terizing movement and its internal and external
contexts, such as movement parameters (e.g.
speed, direction), behavioral state, environmental
condition, etc. Attributes can be derived from
movement trajectories or can be measured and
recorded using auxiliary sensors through multi-
modal tracking, or they can be obtained from addi-
tional data sets such as remote sensing data.
Attributes can be represented as numerical, ordi-
nal, and categorical values and annotated to the
trajectories. This study focuses on the evaluation
of visual representation of movement parameters
such as speed and direction using various forms of
visual variables.

¢ Time: Time includes temporal information about
movement, including start, end, duration, and fre-
quency of movement events. Time can be
expressed in different ways in visualization, such

as through text, graphs, timelines, animation
speed, etc. (Frank, 1998). It can be represented in
a linear or cyclic fashion. We use a linear repre-
sentation of time in this study.

e Location: Movement can be observed in space and
time through two different perspectives:
Lagrangian and Eulerian (Dodge, 2021). We focus
on the Lagrangian perspective of movement, where
individuals’ movement locations are observed from
the perspective of the moving entity along its path
over time; in the Eulerian perspective, movement is
observed at certain fixed locations.

Movement trajectories can be mapped using two-
dimensional maps and three-dimensional space-time
cube representations using static and dynamic dis-
plays. Dodge and Noi (2021) describe a taxonomy of
techniques and tools available in the literature for
mapping movement and flows. Taking the framework
in Figure 1, this study evaluates two-dimensional
depictions of discrete movement using static and
dynamic displays. We use a Lagrangian mode of move-
ment observations, with time treated as linear, to
assess user interpretation of movement parameters,
including distance traveled along track, displacement
from starting point, turn angle, and spatial range. This
work allows us to determine the advantages and
caveats associated with different display forms for the



visual representation of movement data and how they
relate to cartographic visual variables. Elements shown
in the framework in light gray serve as potential
aspects of mapping movement to be evaluated in
future studies.

3. Methods

In this study, we compare the use of static (fixed) versus
dynamic (animated) display forms and visualization
designs based on visual variables for representation of
movement and its attributes. The central hypothesis is
that the cognition of spatiotemporal movement visuali-
zations is impacted by display choices, contingent on
dynamism, with dynamic displays better supporting the
effective understanding of movement parameters. We
expect that movement parameters visualized through
static displays are simpler (and therefore faster) to inter-
pret, because these displays run less risk of information
overload, but they may also fail to completely and pre-
cisely describe movement. To investigate this hypoth-
esis, the study is guided by two objectives: (1)
Determine how well static or dynamic display forms
support peoples’ ability to identify and understand
movement through complex visualizations. (2)
Compare the visual variables of shape, size, and color
to establish which visual variables have greater affor-
dances for displaying movement parameters (speed,
acceleration, distance, and direction) in absolute and
relative terms using spatiotemporal visualizations.

Research Pool

Registration and - Static Condition

Study Sign-Up h
e Consent Form
e Demographics

e SBSOD + GPS Rel.
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3.1. Research design

The study was administered online through a Qualtrics
web-based survey platform. This study employed
a between-subjects design, in which participants were
assigned randomly to either a static or dynamic display
condition. See Figure 2 for a diagram of the study flow.
Depending on the assigned condition, all movement
visualizations used in the study tasks were displayed
either as a static image or a dynamic animation (video
clip), each with a similar visual appearance and without
map interaction elements such as zoom or pan capabil-
ities except for selection by click. Whether assigned to
the static or dynamic study condition, each participant
had the same initial forms to complete related to con-
sent to participate, demographics (age, gender, educa-
tion level, field of work, and location), and the
individual difference measures of sense of direction
and GPS reliance (described in detail in Section 3.4
below).

Participants used geographic visualizations of move-
ment trajectories of animals (described in Section 3.2) to
complete the study tasks (described in Section 3.5). The
tasks aimed at assessment of visualization of movement
parameters in absolute or relative terms. Identification
tasks focused on assessing movement parameters
including pausing, changes in speed, changes in direc-
tion, and direction of movement. Comparison tasks
asked participants to determine the relationship of
speed between trajectory segments within a single tra-
jectory and between separate movement tracks. The

Dynamic Condition |

€ 4

e Consent Form
e Demographics
e SBSOD + GPS Rel.

Line Vis. Points Vis. Line Vis. ‘ Points Vis.
(Btypes) | (3types) . (3 types) (3 types)
Points Vis. | [ Lines Vis. [ Points Vis. ‘ Lines Vis.

(3 types)

‘” Points + Lines |

L (1 type) )

(3 types)

‘ Comparison of All

Visualizations

Figure 2. Study design and the workflow of the experiments.

(3 types) (3 types)

" Points + Lines

- (1type)

‘/ Comparison of All
Visualizations
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same set of task questions were repeated for each of the
seven visualization designs; all participants completed
all tasks for all seven designs. As shown in Figure 2, the
order in which the visualization designs were presented
to participants was counter-balanced by showing half of
the participants in each condition the line-based visua-
lization designs first, and showing the other half the
point-based visualizations first. This allows us to com-
pare the types of designs while accounting for order
effects, such as possible preference for the first designs
viewed.

3.2. Visualization designs

In exploratory movement data analysis using discrete
trajectories (Dodge & Noi, 2021), it is important that
visualization techniques can effectively convey impor-
tant information about movement parameters and their
variations along the individuals’ path or across different
paths. Therefore, identification and comparison of
speed, direction, and recognition of relative motion
patterns (Laube et al., 2005) are important tasks in
exploratory movement analysis for both movement
ecology and human movement applications. In this
study, we include tasks to assess the efficacy of various
visual variables in conveying information about move-
ment speed, acceleration/deceleration, direction, and
relative movement using both static and dynamic
displays.

To complete the tasks, participants used the seven
different visualization designs as shown in Figure 3.
To create the visualizations, we generated 2D displays
of movement trajectories using points and lines in
DynamoVis (Dodge et al., 2021). The design of each
visualization was systematically varied along the
visual variables of shape (lines versus points), color,
and size (line width or point size), representing move-
ment parameters of speed and acceleration (Bertin,
1983; White, 2017). Each visualization displays
a unique one-day movement track of an animal
recorded using GPS at a 1-h interval (in this case
a tiger; see Ahearn et al. (2017) for more details on
the data set). We used one-day tracks for each to
create comparable length trajectories for the visuali-
zation designs.

Of the seven visualization designs (Figure 3), visua-
lization designs 1-3 were line-based, visualization
designs 4-6 were point-based, and visualization design
7 used a point-based visualization combined with
a subtle white line, connecting the sequence of points.
This allowed us to create different visualization designs
in which the speed of trajectories was encoded in the
visualization designs using either color of the lines/

points, size of the lines/points, or both. See Appendix
B for an example of the visualizations as they appeared
to participants in either the static or dynamic
conditions.

3.3. Participants and recruitment

We recruited 100 adult participants from a university
pool of undergraduate students and our external distri-
bution through e-mail lists. Power analysis reveals that
a sample size of 45 participants in each condition would
provide the statistical power to detect a medium effect
size of .6 with a significance level of .05 at the .80 level
(Cohen, 1992). Participants were recruited from the
internal distribution (n = 82) through an online univer-
sity research pool system (UGIG, https://ugig.app) ser-
ving the Department of Geography at the University of
California Santa Barbara (UCSB), as well as through an
external e-mail distribution to students at eight univer-
sities: UCSB, Georgia Tech, University of Minnesota,
University of North Carolina Charlotte, University of
Western Ontario (Canada), Swiss Federal Institute of
Technology Zurich (ETH-Zurich; Switzerland),
University of Applied Sciences Northwestern
Switzerland FHNW, and RMIT University (Australia).
The external distribution had a lower completion rate,
resulting in a smaller number of useable participant
responses (n = 18). Because internal and external parti-
cipants were evenly distributed across study conditions,
we combined participants from both distributions for
the purpose of our general analysis. This work was
approved by the University of California Santa Barbara
(UCSB) Institutional Review Board under Protocol
#1-19-0370.

Approximately half of all participants completed the
static version of the study (n=53) and the other half
completed the dynamic version (n = 47). The number of
participants in each of the two main conditions was not
equal due to differences in completion rates, with
slightly more attrition for participants assigned to the
dynamic condition. Descriptions of initial data cleanup
and removal of incomplete responses (n = 34) are pro-
vided in Appendix A.

3.3.1. Demographics

Of our 100 participants, the gender breakdown is 64
female and 36 male participants. The skew toward
female participants is representative of the departmental
research pool and the typical completion rate of study
participation. The age of participants ranges from 18 to
46, with a mean of 21.3 years old. This younger age
range is not surprising, given that many of the partici-
pants are drawn from an undergraduate student
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Figure 3. All 7 visualization designs. The animal’s movement track is shown with a line or series of points, the yellow arrow indicates
the beginning of the track, and the yellow square indicates the end of the track. The GPS track is recorded at the temporal interval of

1 hour.

population, with 71 of our 100 participants reporting
high school or GED degree as their highest level of
education completed. The most represented field of
study or work was Psychology (selected by 5% of
respondents), followed by Geography or GIS (1.5%),

Other (1.5%), and the Social Sciences generally (1.3%),
which means participant backgrounds are quite broad.
Because the study was conducted remotely, the loca-
tion of participants varied widely. The majority of par-
ticipants were located in the United States, and most of



150 (&) C.J.BAEETAL.

them were located in California at the time of comple-
tion. Other countries represented in the participant pool
were China, Australia, Switzerland, and Canada. Due to
data collection occurring during the COVID-19 pan-
demic, even participants from the home university were
not necessarily located near campus at the time of study
completion. One participant reported a known color
vision deficiency (specifically, red-green colorblind-
ness). We do not exclude the participant response in
our analysis because our red-blue color palette was
likely to still be distinguishable in those visualizations
which used color to encode speed.

3.4. Individual difference measures

We assess participants on two measures of individual
differences: sense of direction and GPS reliance. These
measures and survey instruments are described as
follows:

(a) Sense of direction is measured with the Santa
Barbara Sense of Direction (SBSOD) scale
(Hegarty et al., 2002). The SBSOD is a self-
reported measure which asks participants to
rate their level of agreement with 15 statements
on a 7-point Likert scale. The resulting score has
a possible range of 1.0 to 7.0 (the higher value
being the better sense of direction); for our par-
ticipant pool, responses ranged from 1.3 to 6.8
with an average SBSOD score of 4.3 across all
participants.

(b) GPS reliance is measured using the GPS reliance
scale of the McGill GPS questionnaire (Dahmani
& Bohbot, 2020). This scale asks participants to
rate their agreement with 7 statements on
a 5-point Likert scale. Our participant responses
range from 15.0 to 33.0 with a mean of 24.3.

Sense of direction does not appear to differ between
study conditions (static vs. dynamic), #(98) =—0.81,
p =0.42. However, sense of direction does significantly
differ by gender, #(98) = 4.6, p <.001. Male participants
in our study have a higher average SBSOD score (M =
4.95, SD = 1.22) than female participants (M = 3.9, SD =
1.02), and the direction of this relationship is consistent
with the existing literature for SBSOD by gender
(Hegarty et al., 2006). It is unclear how much self-
reported sense of direction contributes to map interpre-
tation; correlational studies that look at gender differ-
ences in map reading or map interpretation show mixed
results, with no necessary male advantage (Coluccia &
Louse, 2004).

Similarly to sense of direction, GPS reliance does not
appear to differ between study conditions (static vs.
dynamic), #(98) =0.55, p =0.58, but does significantly
differ by gender, #(98) = —3.55, p <.001. Female partici-
pants in the study have a higher average GPS reliance
score (M = 25.5, SD = 4.43) than male participants (M =
22.22, SD = 4.45), meaning they report more reliance on
GPS in their daily and occasional travel.

These patterns for the sense of direction and GPS
reliance suggest that there is no significant difference
between participant conditions, meaning those assigned
to the static and the dynamic conditions are similar on
these measures of individual difference. For compari-
sons between these individual difference measures,
results show that there appears to be a significant and
fairly strong negative relationship between sense of
direction and GPS reliance (r=-0.39, p <.001), mean-
ing those with better sense of direction show less GPS
reliance. This may indicate that those with a better sense
of direction are less reliant on GPS for navigation, or
that those who refer to GPS devices less often to navi-
gate have a better sense of direction. In Section 4.3, we
compare these individual difference measures with par-
ticipant success measures in the study.

3.5. Study tasks

The study tasks include assessment tasks related to
absolute (i.e. value at a certain location) and relative
(i.e. change over a time period or difference in values
across tracks) speed and direction, comparisons of
movement tracks, description of movement tracks, and
visualization ratings based on participant perceptions of
ease and efficacy. Tasks are selected for the study based
on the primary movement analysis tasks necessary to
enable more complex movement behavior interpreta-
tion tasks (Nathan et al., 2008). Our focus is on assessing
how users evaluate speed and direction, as they are
central to the basic evaluation of movement patterns
(Dodge et al.,, 2008), and are therefore critical tasks to
the identification of behavior by movement ecologists.

3.5.1. Assessment of absolute and relative speed and
direction

In our study, identification task questions relate to
absolute and relative movement speed and direction.
Context is provided with a text description stating, “In
this series of tasks, you will be assessing the speed and
direction of an animal’s movement. The key (legend) at
the top of the map explains how you can understand the
information represented.” Actions to identify include:
Stop Movement (Pause); Change Speed from Low to High
(Speed Up); Change Speed from High to Low (Slow



Down); and Major Change in Direction. For each of
these questions, 1 “time” refers to one instance of that
action, such as one stop (zero speed value) or one
change in direction over the duration of the trajectory.
See Figure 4 to see the four questions asked in the
identification task. We assess identification tasks based
on the distribution of responses and the amount of
variation between participants’ responses, rather than
given an objective accuracy score for these questions.
This is because counts of movement actions may be
subjective, based on varied interpretations of the para-
meters to identify actions such as “stopping” or “speed-
ing up.” This is further described in Appendix C.1.

3.5.2. Overall relative direction

In the direction identification questions, participants
are asked to identify: “What is the overall direction of
the animal’s movement from the beginning to the end of
the track?” A compass rose is presented to participants
to select a response by clicking one of the directions
labeled for eight cardinal directions (N, NE, E, SE, S,
SW, W, NW). The compass rose is oriented with
a typical north-up orientation, as is each of the visuali-
zations presented in the study. Responses to these ques-
tions are given a score of 1 for each visualization with
a correctly identified direction.

3.5.3. Absolute speed identification

For each visualization, participants are additionally
asked to identify the fastest point (i.e. the location of
the highest speed value) along the animal’s track by
selecting a point on the visualization image itself: “At
which point does the animal appear to be moving the
fastest in this track? Click to add a point on the image
below.” Responses are counted as correct if they corre-
spond with a point on the movement track visualization
where measured speed falls within the top 10% of over-
all movement speed. Fastest speed responses are scored
(given a score of 1) if participants correctly identified

Answer the following questions about the map shown above. How many times
does the animal do the following along the track displayed on the map?

0 10+
times 1 2 3 4 5 6 7 8 9 times

Stop Movement
(Pause)

Change Speed from

Low to High (Speed

Up)

Change Speed from

High to Low (Slow

Down)

Major Change in O O 0 0 0 .
Direction — U O U O

Figure 4. Format of the response form presented to participants
for the identification tasks.
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a point on the movement track visualization where
measured speed fell within the top 10% of overall move-
ment speed. This assessment is described further in
Appendix C.2.

3.5.4. Comparisons of movement tracks

These tasks include within-track and between-track
comparisons for relative movement speed and distance.
Within-track comparison questions ask participants to
make a speed comparison between two selected seg-
ments of a single movement track. The question prompt
reads, “Was the animal moving faster overall in Segment
A or Segment B?” Participants are shown the map of
movement previously displayed for the Identification
Tasks, with additional call-outs of two segments high-
lighted by a box and labeled “Segment A” and “Segment
B,” with the rest of the track and background grayed out.
See Figure 5 for an example of segments presented to
participants for within-track comparison. Between-
track comparison questions ask participants to make
comparisons between two movement tracks, with each
track representing the movement of a different animal
during the same period of time. These between-track
questions ask:

e Choose which track segment appears to indicate
faster overall movement.

e Which animal covered a longer distance during the
track?

e Which animal moved further away from the begin-
ning point of their track?

0 km/hr 10 km/hr

—i 0.2 km

z>

o

Segment A

SegmentB |

Figure 5. Visualization 3, presented with two highlighted seg-
ments for comparison.
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e Which animal appears to have covered a larger area
(spatial range)?

Participants were given a score of 1 for each accurate
response, for each of the five questions described in this
section, for each of the seven visualizations.

3.5.5. Description of movement tracks

Participants complete a set of open-ended description
tasks for each visualization design using a brief text
entry. For these tasks, participants again use the pre-
viously displayed map with call-outs of the two high-
lighted segments (e.g. Figure 5). Participants are asked
to describe the movement of the tracked individual over
each segment, specifically related to speed, acceleration,
and direction of movement in each segment. The
prompt reads: “Describe movement speed and direction
in Segment A [or B]. No need to use complete sen-
tences.” Two examples of the response format are pro-
vided in the instructions: “moving east at a constant
speed” and “speeding up while moving NW.” To sys-
tematically characterize participant descriptions of
movement, we take a text processing (term frequency)
approach to identify commonalities between descrip-
tions. Responses to these description questions are
assessed by looking at frequency of descriptive phrases
used to describe the movement within the selected seg-
ment for each of the seven visualizations. For a detailed
description of the text processing approach, see
Appendix C.6.

3.5.6. Visualization ratings

To assess participant perceptions of the ease and useful-
ness of the visualization designs, we ask a set of rating
questions related to ease of understanding and per-
ceived efficacy of visual elements. Participants rate
each of the seven visualizations based on these three
prompts:

e Fase of Understanding: “Rate your ease in using
these visualizations for the identification and com-
parison tasks in the study.”

¢ Efficacy for Assessing Movement Speed: “Rate the
efficacy of each visualization for conveying infor-
mation about movement speed.”

o Efficacy for Assessing Movement Path: “Rate the
efficacy of each visualization for conveying infor-
mation about movement path and direction.”

For the ease of understanding prompt, responses are
given using a 5-point Likert scale from 1 being “very
difficult” to 5 being “very easy,” with a rating of 3 being
neutral (“neither easy nor difficult”). For the second two

prompts related to efficacy of visual elements, partici-
pants are asked to rate each of the 7 visualizations for
conveying movement speed and for conveying move-
ment path and direction based on a 5-point Likert scale
from 1: “very unclear” to 5: “very clear.” These rating
questions measure the participants’ perceptions of
visualization design efficacy and therefore complement
the other quantifiable study task measures. In this way,
we provide measures both of participants’ accuracy of
interpretation (as in the tasks above), as well as their
perceptions related to the ease and usefulness of these
visualizations for doing so.

4, Results

This section presents the results of the study with rela-
tion to the two research objectives presented at the
beginning of Section 3. Briefly summarized, the objec-
tives are to determine the relative effectiveness of (1)
static and dynamic display visualization forms, and (2)
the visual variables of shape, size, and color for commu-
nicating the movement parameters. This section sum-
marizes the results in terms of response time for tasks,
responses to identification questions, task success scores
(accuracy), open-ended descriptions of movement, and
participant ratings of the visualization designs based on
perceived ease of use and perceived usefulness of each
design. In this way, we look at several complementary
metrics for evaluating the efficacy of these visualization
designs for communicating movement information:
timing, variation in interpretation, accuracy on tasks,
and user perceptions of efficacy.

4.1. Response time

We measure duration for overall completion of the
study, as well as comparing response time for all tasks,
by study condition (static vs. dynamic), and by task
type. For overall timing, the shortest completion time
for the entire survey is 21 min and the longest com-
pletion time is 113 min (nearly 2 h). Median comple-
tion time for the task questions, excluding the time for
demographics and individual difference measures, is
32.1 min (SD = 12.5 min). Median time taken for tasks
in the static condition is 28.8 min and in the dynamic
condition is 33.1 min, with no significant difference
between conditions. For time spent on tasks, the
Wilcoxon (Mann-Whitney) rank sum test with con-
tinuity correction reveals no significant difference
between study conditions (static vs. dynamic), statis-
tic=1393, p=0.31. Therefore, it takes participants
a comparable amount of time in the static and the
dynamic conditions to complete the visualization task



questions. Overall response times for sets of questions
by specific visualization design are recorded.
However, since the response times for individual
task questions are not recorded, we acknowledge that
the specific interpretation task is likely to impact tim-
ing and should be further distinguished in future
work.

As participants complete the same set of task questions
for each visualization type, we also compare timing across
each visualization design. For time spent on tasks by
visualization type, the Kruskal-Wallis test shows signifi-
cant differences between groups (y* = 47.22, p <.001, df
=6). To identify where there are significant differences
between visualization designs, we run pairwise compar-
isons (see Appendix C.3 for reported differences) and
find that Visualization 7 takes participants significantly
less time to complete as compared to all other visualiza-
tion designs. Visualization 7 is the combined visualization
design, which uses a point-based representation and an
underlying line connecting the sequence of points (see
Figure 3). However, Visualization 7 tasks are presented as
the final set of questions to all participants (while the
order for the previous visualization blocks is counter-
balanced), so order may relate to the faster completion
time with Visualization 7. The difference between
Visualizations 2 and 3 may also be due to order effects
within the block. Furthermore, across both static and
dynamic conditions, tasks take participants 4.81 min per
line-based visualization (1, 2, 3) and 4.49 min per point-
based visualization (4, 5, 6) on average, which is not
significantly different across conditions. The Wilcoxon
rank sum test reveals that task completion time for each
visualization does not significantly differ between the
visualization blocks, statistic = 63533, p = 0.18. We there-
fore assert that overall time differences between visualiza-
tions based on shape (line vs. point visualizations) are not
meaningful. We also compare time differences between
line-based and point-based visualization tasks within the
static participant group and the dynamic participant
group and find no significant differences.

4.2. Assessment and identification tasks

We first observe the distribution of responses in partici-
pants’ identification of movement actions in the study.
For identification tasks, distribution rather than accuracy
is assessed; for accuracy or task success, see sub-section
4.3. In some cases, as summarized in Table 1, response
distributions significantly differ based on condition, more
often for identifying number of stops. For Visualizations
2, 3, and 5, participants in the dynamic condition report
more stops than those in the static condition, potentially
signaling that pauses in movement are more salient when
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Table 1. Comparison of response distributions to identification

tasks in static vs. dynamic conditions. Only significant differ-

ences in distributions reported. DYN = Dynamic; STA = Static.
Vis1 Vis2 Vis3 Vis4 Vis5 Vis6 Vis7

Stop movement DYN DYN DYN
Speed up STA
Slow down STA

Major change in direction

the movement track is animated. Participants in the static
condition report more accelerations (speeding up) for
Visualization 4 than do those in the dynamic condition,
and also more decelerations (slowing down) for
Visualization 5. Participants do not differ by condition
in their identification of major changes in direction for
any of the visualizations, so we are not able to say that
participants identify more or fewer directional changes
based on whether they use the static or dynamic display
forms for this task.

4.3. Overview of task success scores (accuracy)

Total task success scores are a summary measure of all
questions which were scored based on accuracy. These
include the tasks related to Overall Direction, Fastest
Speed Identification, and Comparisons of Movement
Tracks. Combined scores across all the tasks and visua-
lization designs range from 24 to 41 (M =34.05, SD =
3.1), with a maximum possible score of 49 across all
tasks, comprising 7 questions marked as correct or
incorrect for each of 7 visualization designs.

Observing individual differences in relation to total
scores of participants across all tasks for each visualiza-
tion design, we find no reliable relationships between
individual difference measures and total scores. In other
words, there is no significant relationship between total
score and sense of direction (#(98) = —0.72, p = .47), nor
between total score and GPS reliance (#(98) = —0.35,
p=.73), nor any difference in total scores by gender
(£(68.23) = —1.40, p = .17).

4.4. Overall success by static versus dynamic
display forms

With regard to research objective (1), we first evaluate
success across the two participant conditions to com-
pare the use of static versus dynamic display forms.
Figure 6 shows total scores across the study conditions.
The static and dynamic visualization display forms do
not appear to impact success at the aggregate level,
based on the set of movement identification and com-
parison tasks presented in the study. There are no sig-
nificant differences in overall success scores across the
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Total Scores by Condition
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Figure 6. Total scores for all tasks and visualization designs,
comparing participants in static vs. dynamic conditions.

above tasks between participants randomly assigned to
use the static versus the dynamic display forms.
Participants in the static condition have a similar total
score (M =33.66, SD=2.7) to those in the dynamic
condition (M = 34.49, SD = 3.5), of a maximum possible
score of 49, with no significant difference between the
groups, #(86.72) = 1.3, p =.19.

4.5. Overall success by visual variables

To evaluate the research objective (2), which is to com-
pare the use of different visual variable encoding of
movement parameters, we compare participant success
on tasks by visualization type. Broadly, we categorize the
seven visualization designs across the two display form
conditions into four visualization blocks, which we
identify as static lines, static points, dynamic lines, and
dynamic points. In doing so, we note differences in task
scores based on encoding through the visual variables,
as assessed through the visualization designs.

The results comparing scores on tasks for the line-
based versus point-based visualizations suggest that par-
ticipant success differs significantly based on visualiza-
tion design. For participants across both static and
dynamic conditions, task scores are higher on average
on the sets of tasks using line-based visualizations (M =
5.32, SD =1.21) than they are on the sets of tasks using
point-based visualizations (M=4.52, SD=1.16).
Differences in success are more pronounced for those
participants in the condition using dynamic display
forms. The main effect of visualization block (static line-

based, static point-based, dynamic line-based, dynamic
point-based) is significant, F(3, 696) = 35.27, p <.001.

Figure 7 shows differences between overall task scores
based on grouping by line-based and point-based visua-
lization types. Whereas scores on line-based and point-
based visualization tasks do not differ for static partici-
pants, scores are significantly higher for line-based tasks
in the dynamic condition. The outcomes suggest that the
connector trajectory line is an important visual cue when
representing GPS tracking data, while animating trajec-
tories can better capture changes in movement para-
meters. This also suggests that there may be an
interaction between condition and design.

To further distinguish between condition (dynamic,
static) and design (point-based, line-based), we con-
struct a linear model with two factors, condition and
design. To meet ANOVA model assumptions, we apply
a Box-Cox power transformation to stabilize the var-
iances in our dataset. The two-way ANOVA shows that
the main effects of condition (dynamic vs. static),
F(1, 196) =13.101, p <.001, and design (point-based
vs. line-based), F(1, 196) = 128.225, p <.001, are statis-
tically significant. The interaction effect is also signifi-
cant, F(1, 196) =21.617, p <.001. This supports the
finding that the scoring on line-based vs. point-based
tasks is moderated by condition; however, the differ-
ences in means are relatively small. Detailed results are
given in Appendix C.4. Future work should further
investigate the types of visualization interpretation
tasks that are supported by each type of visualization
design (comparisons for individual task types in this
study are described briefly in Appendix C.5).

4.6. Description of movement tracks

We next assess participants’ responses to the open-
ended movement track description questions, as

Histogram of Total Scores

Line-Based: Static and Dynamic Point-Based: Static and Dynamic

80+

60

404

Count

204

25 30 35 40 25 30 35 40

Scores on Tasks

Figure 7. Task scores grouped by visualization type, comparing
across static vs. dynamic conditions. Static histogram bars are
shown in blue, dynamic bars are shown in red, and overlapping
bars are shown in purple.



Table 2. An example of six participant responses to
Visualization 3 segment description questions.
Visualization 3, Segment A

“moving somewhat slow in the NE direction”

“moving NE at a constant speed”

“moving slightly north east with slow speed before stopping
picking up pace a bit then returning to the slow pace”

“moving east at a constant speed”

“Slight decrease in speed going roughly in the northeast direction.”

Visualization 3, Segment B

“speeding up while moving in the S direction”
“speeding up while moving S”

“moving slightly south east while gaining speed”
“speeding up while moving south”

“Speeding up tremendously in the southward direction.”

described in Section 3.5.5. Table 2 presents examples of
the raw descriptions provided by participants for
Segments A and B in Visualization 3, as shown in
Figure 5. Even observing a small subset of descriptions
shows the level of agreement between participants about
the movement occurring in each of these segments.
However, this subset also demonstrates variation in
the level of detail given for change in speed and in
describing direction (i.e. based on four cardinal direc-
tions or eight).

For a high-level summary of frequent bigrams
grouped across visualization design types, we present
wordclouds in Figure 8. A full description of the text
processing approach is given in Appendix C.6.
Wordclouds are generated from participant descrip-
tions, which displays frequency of the bigrams through
text size. Bigram frequency is analyzed and wordclouds
are generated using the “quanteda” R package (Benoit
et al.,, 2018). Overall, the text processing shows more
description of direction for line-based visualizations and
more description of speed for point-based visualizations,
suggesting that those parameters may be more salient to
viewers using those types of movement visualization
designs.

4.7. Participant ratings of visualization designs

Participant ratings of each of the seven visualization
designs are summarized in response to the three ques-
tions described in Section 3.5.6 above.

4.7.1. Participant ratings of ease of understanding

Figure 9 displays summaries of Likert score ratings for
ease of understanding for each of the seven visualiza-
tions. One caveat for the participant rating questions
and the open feedback questions is that there were
missing responses for 7 participants in the dynamic
condition due to a page in the study that was hidden
on Qualtrics for a short period during data collection.
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Hence, the Likert responses for these questions are
summarized for 93 participants rather than the full set
of 100.

Across all participants in either condition, visualiza-
tion design 2 has the highest overall positive ease of
understanding ratings (59% positive) and visualization
4 the lowest (16% positive). All three of the line-based
visualizations (Visualizations 1, 2, 3) are rated more
positively than negatively for overall ease of understand-
ing, whereas all three of the point-based visualizations
(Visualizations 4, 5, 6) along with the point-and-line-
based visualization are rated more negatively. Moreover,
these outcomes suggest that the track complexity (hav-
ing turns and loops, e.g. as in Visualization 5) seems not
to impact the ease of understanding, and the proper use
of the visual variables shape, size, and color can help to
represent movement more intuitively.

4.7.2. Participant ratings of efficacy of visual
elements
Figure 10 shows that the line-based visualizations
(Visualizations 1, 2, 3) are most positively rated for
supporting the interpretation of movement speed.
Visualization 3, which encodes speed as both color and
width of the movement path represented as a line, is
rated most favorably with 73% positive responses.
Visualization 4 is ranked most negatively with only
28% positive ratings. This may suggest that the visual
variable size may be more helpful in communicating
movement speed. While color and size can be effective
variables to communicate movement speed in line-
based visualization, the complexity of the track may
impact the efficacy of these variables, especially when
the connector trajectory lines are not present in point-
based visualizations. In this case, it is possible that the
poor ratings for Visualization 4 may relate partially to
track complexity (and not only visualization inefficacy).
Figure 11 shows that Visualization 1 is ranked highest
for supporting the assessment of the movement path and
direction, followed by the other line-based visualizations (2
and 3) which are also ranked highly positively (over 80%
positive ratings). Visualization 5 is ranked lowest, with
more negative ratings (61%) than positive (22%). As with
efficacy for assessing movement speed, the same general
pattern holds for assessing movement path, where line-
based visualizations are rated more positively and point-
based movement visualizations are ranked more nega-
tively. This indicates that participants felt that line-based
visualization designs gave a better sense of where the
animal went. However, we again see here that
Visualization 5, which uses a more complex overlapping
track, ranks low for rated efficacy in communicating
direction.
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Static Condition,
Line-Based Visualizations

speeding up
fast speed

moving south
constant speed

moving southeast
slowing down

Dynamic Condition,
Line-Based Visualizations

_slowing down
moving southeast

fast speed

moving south

constant speed
speeding up

Static Condition,
Point-Based Visualizations

_ slow speed
moving south - moving north

moving southeast
constant speed
speeding up
moving northwest

slowing down moving west
moving southwest

Dynamic Condition,
Point-Based Visualizations

moving south
. slow speed
moving north

moving southwest

constant speed
speeding up

moving west

Figure 8. Wordclouds displaying frequency of bigrams in descriptions of static and dynamic line-based and point-based visualizations.

5. Discussion
5.1. Assessment of the results

Both static and dynamic display forms take partici-
pants a similar amount of time to interpret in the
context of the study tasks. We also find no significant
difference between participants in task completion
time between blocks of visualization types (line-
based vs. point-based). Therefore, we cannot say that

static or dynamic displays, nor line- or point-based
visualizations, are more efficient to use for the overall
visualization of movement, especially when visualizing
only one track as is the case for most tasks in this
study.

With dynamic visualization styles becoming more
commonplace, it is useful to know that the use of ani-
mated visualizations did not have a noticeable effect on
time for interpretation. This is generally in line with
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Figure 9. Likert plot of participant responses (n = 93) to ease of
understanding questions. Percentages are given for negative vs.
positive responses. Visualization designs 1 and 4 use the visual
variable color, designs 2 and 5 use size, and designs 3 and 6 use
both color and size. Design 7 uses size only.
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Figure 10. Likert plot of participant responses (n=93) to effi-
cacy of visual elements questions for movement speed.
Percentages are given for negative vs. positive responses.
Visualization designs 1 and 4 use the visual variable color,
designs 2 and 5 use size, and designs 3 and 6 use both color
and size. Design 7 uses size only.

previous work in static versus animated presentations of
data visualizations, which has found little evidence for
a reliable advantage of animations (Ware, 2013b). Some
scholars have proposed that the cognitive effort
involved with interpreting a static display may support
information retention and the construction of internal
cognitive models of the information (Mayer et al., 2005),
but we do not explore longer-term effects or learning in
this study, only task-related interpretation of informa-
tion displays.

We find no significant difference in overall success
(accuracy) scores between participants who used static
versus dynamic visualizations. However, in terms of
accuracy on tasks, trends in our results point to
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Figure 11. Likert plot of participant responses (n=93) to effi-
cacy of visual elements questions for movement path and
direction. Percentages are given for negative vs. positive
responses. Visualization designs 1 and 4 use the visual variable
color, designs 2 and 5 use size, and designs 3 and 6 use both
color and size. Design 7 uses size only.

differences in interpretation based on dynamism and
visual variables. Participants in the dynamic condition
are more granular in some of their identification of
different movement parameters, most often for count-
ing the number of stops in movement. This suggests that
dynamic displays can better communicate fine-grained
speed changes. It also suggests that stops are more
salient in dynamic visualizations than in static visualiza-
tions. Identification of major changes in direction does
not differ, however, between static and dynamic condi-
tions, suggesting that the overall path shape of the
movement track is not noticeably different based on
display condition. For movement, it seems intuitive
that the representation of movement speed can be
expressed more directly through animated trajectory
lines and/or points in the display, rather than relying
upon the participant to mentally translate speed infor-
mation from another visual characteristic like color.

For comparisons of movement between two tracks,
participants perform similarly well across static and
dynamic conditions in assessing comparative move-
ment speed, distance, range, and area of coverage.
With relation to the framework of human-centered
knowledge discovery from movement data, it appears
that these location aspects are relatively easy for users to
interpret in both static and animated forms. However,
in this study, we only ask users to make a comparison
between individual animals’ tracks and do not assess
user interpretations of interaction between the animals,
which would potentially be better supported in the
animated form (as it would point to co-incidence in
both space and time, and leave it ambiguous in the static
form).
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In the open-ended descriptions of the track seg-
ments, we note differences in participants’ level of
agreement and use of terms related to movement direc-
tion and speed. By looking at frequencies of term usage
in these descriptions, we find that participants make
more mentions of direction for line-based visualizations
and more mentions of speed for point-based visualiza-
tions. Participants in the study express a general pre-
ference for line-based designs over point-based
visualization designs, with fewer positive rankings of
point-based designs. However, it is worth noting that
a preference for the line-based visualizations is likely to
relate to prior familiarity for those types of designs
depicting movement, which we did not assess in the
study. Considering that movement tracks and routes
are often depicted with a fixed-width line visualization
in popular map applications like Google or Apple Maps,
it is likely that familiarity is higher with line-based
designs over point-based designs.

5.2. Limitations of the work and next steps for
evaluation

This study mainly focused on the two-dimensional
maps and displays. Future studies should consider com-
parisons of human interpretation across two-
dimensional (2D) and three-dimensional (3D) move-
ment visualizations, as well as including comparisons
of movement visualizations that incorporate environ-
mental variables. In general, users are likely to have
greater familiarity with the use of static maps over
dynamic maps, which may have hindered the perfor-
mance of those participants in the dynamic condition.
Future studies comparing static and dynamic maps or
visualizations should include a short tutorial or exam-
ples to ensure that participants are familiar with the
display form type beforehand.

We recognize more need to assess the level of com-
plexity and realism that is most appropriate for geovi-
sualization displays, such as through the addition of
contextual information, and indeed user preference
and efficiency or effectiveness may not always align
(Hegarty et al., 2012). Although in the present study
we attempt to capture more realistic movement visuali-
zations with geographic context, the underlying base-
map in this study is very simple and unlikely to
introduce much complexity, therefore not competing
for visual attention. Future studies should consider the
impact of map design, as the geographic context influ-
encing movement. Additionally, interaction with map
and geovisualization displays is an important area of
further work in the cognition of movement visualiza-
tion. Interaction with map displays provides ample

opportunity for exploratory analysis of geographic
movement data in context.

These results are a significant step toward analyzing
elements within the previously proposed framework for
evaluating approaches to mapping movement (Dodge &
Noi, 2021). The web-based study design has advantages
such as the potential to quickly reach and scale to
a broader pool of users, the allowance for maximum
flexibility in study completion, and greater validity with
regard to transferable use cases for web map visualiza-
tions (Griffin et al., 2017); however, there are trade-offs
in being able to administer the study in a controlled
display resolution and size. Although our participant
descriptions of movement pointed to possible differ-
ences in the salience of movement characteristics,
description of movement tracks may also be automati-
cally processed using machine learning methods in the
future (e.g. Pezanowski et al., 2022).

Considering the relative lack of prior research in the
cognitive evaluation of geovisualizations of movement,
it is important that we start with basic aspects of the
evaluation framework, as we have presented here, and
move onto introducing multifaceted geographic context
information, including environmental variables, and
more complex interaction capabilities in future work.
Future studies would also benefit from having a control
condition by including a design in which movement
parameters such as speed, for instance, is not encoded
through the visual variables.

6. Conclusion

This paper presented an empirical study using web-
based surveys to evaluate the efficacy of various visual
variables in capturing movement parameters along tra-
jectories, such as speed and direction, using static and
dynamic displays. As a result, this study made an impor-
tant contribution toward the assessment of static and
dynamic display forms for movement visualizations,
and additionally highlighted the differences in and pre-
ferences for using size and color to represent movement
speed in such displays. Both static and dynamic display
forms supported participants’ efficient and accurate
interpretation of movement speed and direction and
basic comparison tasks in this study. However, identifi-
cation tasks suggested that dynamic display forms for
movement tracks may support more fine-grained atten-
tion to pauses in movement, whereas static displays may
support the identification of changes in speed.
Participants also showed a strong preference overall
for the line-based visualization designs over the point-
based ones. For future studies, more specific interpreta-
tion tasks can further elucidate how well users can assess



more complex movement trajectories, understand beha-
vioral patterns, or understand visualizations of aggre-
gated movement versus individual trajectories of
movement.

Acknowledgment

The authors gratefully acknowledge the funding support from
the National Science Foundation (Award # BCS-1853681).
We appreciate Kyle Johnson’s assistance as a Research
Assistant on the project in creating the initial visualizations
used for the study and Teresa Gonzalez's assistance as a
Research Assistant working on data analysis. We are grateful
to the anonymous participants for helping us to conduct this
study. We thank the two reviewers for their thorough feed-
back which has greatly improved the quality of the paper, and
thank Research Assistants Micayla Roth and Sean Won for
their assistance with revisions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The main funding source for this research is National Science
Foundation Award # BCS-1853681: Visualizing Motion:
A Framework for the Cartography of Movement.

Author contributions

This research was conceived and led by SD as the PI. CB and
SD designed the study and wrote the paper collaboratively. CB
conducted the experiments, analyzed the results, and prepared
figures.

ORCID

Crystal J. Bae
Somayeh Dodge

http://orcid.org/0000-0001-8126-104X
http://orcid.org/0000-0003-0335-3576

Data availability statement

The figures that support the findings of this study are available
for viewing at https://doi.org/10.25349/D9BCIV.

References

Ahearn, S. C., Dodge, S., Simcharoen, A., Xavier, G., &
Smith, J. L. D. (2017). A context- sensitive correlated ran-
dom walk: A new simulation model for movement.
International Journal of Geographical Information Science,
31(5), 867-883. https://doi.org/10.1080/13658816.2016.
1224887

Battersby, S. E., & Goldsberry, K. P. (2010). Considerations in
design of transition behaviors for dynamic thematic maps.

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE . 159

Cartographic Perspectives, 65, 16-32. https://doi.org/10.
14714/CP65.127

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A,
Miiller, S., & Matsuo, A. (2018). Quanteda: An R package
for the quantitative analysis of textual data. Journal of Open
Source Software, 3(30), 774. https://doi.org/10.21105/joss.
00774

Bertin, J. (1983). Semiology of graphics: Diagrams, networks,
maps. University of Wisconsin Press. (Original work pub-
lished in 1967)

Cohen, J. (1992). A power primer. Psychological Bulletin, 112
(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155

Coluccia, E., & Louse, G. (2004). Gender differences in spatial
orientation: A review. Journal of Environmental Psychology,
24(3), 329-340. https://doi.org/10.1016/j.jenvp.2004.08.006

Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS
negatively impacts spatial memory during self-guided
navigation. Scientific reports, 10, 1-14. https://doi.org/10.
1038/s41598-020-62877-0

Davies, C., Fabrikant, S. I, & Hegarty, M. (2015). Toward
empirically  verified  cartographic  displays. In
R. R. Hoffman, P. A. Hancock, M. W. Scerbo,
R. Parasuraman, & J. L. Szalma (Eds.), The Cambridge
handbook of applied perception research (pp. 711-730).
Cambridge University Press.

Demsar, U., Buchin, K., Cagnacci, F., Safi, K., Speckmann, B.,
Van de Weghe, N., Weiskopf, D. & Weibel, R. (2015).
Analysis and visualisation of movement: An interdisciplin-
ary review. Movement Ecology, 3(1), 1-24. https://doi.org/
10.1186/s40462-015-0032-y

DiBiase, D., MacEachren, A. M., Krygier, J. B., & Reeves, C.
(1992). Animation and the role of map design in scientific
visualization. Cartography and Geographic Information
Systems, 19(4), 201-214. https://doi.org/10.1559/
152304092783721295

Dodge, S. (2021). A data science framework for movement.
Geographical Analysis, 53, 92-112. https://doi.org/10.1111/
gean.12212

Dodge, S., & Noi, E. (2021). Mapping trajectories and flows:
Facilitating a human-centered approach to movement data
analytics. Cartography and Geographic Information Science,
48(4), 353-375. https://doi.org/10.1080/15230406.2021.
1913763

Dodge, S., Toka, M., & Bae, C. J. (2021). DynamoVis 1.0: An
exploratory data visualization software for mapping move-
ment in relation to internal and external factors. Movement
Ecology, 9(1), 55. https://doi.org/10.1186/s40462-021-
00291-5

Dodge, S., Weibel, R., & Lautenschiitz, A. K. (2008). Towards
a taxonomy of movement patterns. Information visualiza-
tion, 7(3-4), 240-252. https://doi.org/10.1057/PALGRAV
E.IVS.9500182

Dong, W., Wang, S., Chen, Y., & Meng, L. (2018). Using eye
tracking to evaluate the usability of flow maps. ISPRS
International Journal of Geo-Information, 7(7), 281.
https://doi.org/10.3390/ijgi7070281

Fabrikant, S. I, Hespanha, S. R., & Hegarty, M. (2010).
Cognitively inspired and perceptually salient graphic dis-
plays for efficient spatial inference making. Annals of the
Association of American Geographers, 100(1), 13-29.
https://doi.org/10.1080/00045600903362378


https://doi.org/10.25349/D9BC9V
https://doi.org/10.1080/13658816.2016.1224887
https://doi.org/10.1080/13658816.2016.1224887
https://doi.org/10.14714/CP65.127
https://doi.org/10.14714/CP65.127
https://doi.org/10.21105/joss.00774
https://doi.org/10.21105/joss.00774
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1016/j.jenvp.2004.08.006
https://doi.org/10.1038/s41598-020-62877-0
https://doi.org/10.1038/s41598-020-62877-0
https://doi.org/10.1186/s40462-015-0032-y
https://doi.org/10.1186/s40462-015-0032-y
https://doi.org/10.1559/152304092783721295
https://doi.org/10.1559/152304092783721295
https://doi.org/10.1111/gean.12212
https://doi.org/10.1111/gean.12212
https://doi.org/10.1080/15230406.2021.1913763
https://doi.org/10.1080/15230406.2021.1913763
https://doi.org/10.1186/s40462-021-00291-5
https://doi.org/10.1186/s40462-021-00291-5
https://doi.org/10.1057/PALGRAVE.IVS.9500182
https://doi.org/10.1057/PALGRAVE.IVS.9500182
https://doi.org/10.3390/ijgi7070281
https://doi.org/10.1080/00045600903362378

160 (&) C.J.BAEETAL.

Fairbairn, D., Andrienko, G., Andrienko, N., Buziek, G., &
Dykes, J. (2001). Representation and its relationship with
cartographic visualization. Cartography and Geographic
Information Science, 28(1), 13-28. https://doi.org/10.1559/
152304001782174005

Fish, C., Goldsberry, K. P., & Battersby, S. (2011). Change
blindness in animated choropleth maps: An empirical
study. Cartography and Geographic Information Science,
38(4), 350-362. https://doi.org/10.1559/15230406384350

Frank, A. U. (1998). Different types of 'times' in GIS. In M. J.
Egenhofer & R. G. Golledge (Eds.), Spatial and Temporal
Reasoning in GIS (pp. 40-61). Oxford University Press.

Fukaya, S., & Misue, K. (2018). Visualization techniques
representing effects of coordination of vessels’ movements.
In 22nd International Conference Information Visualisation
(Vol. IV, pp. 12-18). IEEE Computer Society.

Goldsberry, K., & Battersby, S. (2009). Issues of change detec-
tion in animated choropleth maps. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 44(3), 201-215. https://doi.org/10.3138/
carto.44.3.201

Graser, A., Widhalm, P., & Dragaschnig, M. (2020). The M’
massive movement model: A distributed incrementally upda-
table solution for big movement data exploration.
International Journal of Geographical Information Science, 34
(12), 2517-2540. https://doi.org/10.1080/13658816.2020.
1776293

Griffin, A. L., MacEachren, A. M., Hardisty, F., Steiner, E., &
Li, B. (2006). A comparison of animated maps with static
small-multiple maps for visually identifying space-time
clusters. Anmnals of the Association of American
Geographers, 96(4), 740-753. https://doi.org/10.1111/j.
1467-8306.2006.00514.x

Griffin, A. L., White, T., Fish, C., Tomio, B., Huang, H,,
Sluter, C. R., Bravo, J. V. M., Fabrikant, S. I., Bleisch, S.,
Yamada, M. & Picango, P. (2017). Designing across map
use contexts: A research agenda. International Journal of
Cartography, 3(supl), 90-114. https://doi.org/10.1080/
23729333.2017.1315988

Gu, Y., Kraak, M.-]., & Engelhardt, Y. (2018). Revisiting flow
maps: A classification and a 3D alternative to visual clutter.
Proceedings of the ICA, 1, 1-7. https://doi.org/10.5194/ica-
proc-1-51-2018

Harrower, M. (2007). The cognitive limits of animated maps.
Cartographica: The International Journal for Geographic
Information and Geovisualization, 42(4), 349-357. https://
doi.org/10.3138/cart0.42.4.349

Harrower, M., & Fabrikant, S. (2008). The role of map anima-
tion for geographic visualization. In M. Dodge,
M. McDerby, & M. Turner (Eds.), Geographic visualization
(pp. 49-65). Wiley.

Hegarty, M., Montello, D. R, Richardson, A. E., Ishikawa, T,
& Lovelace, K. (2006). Spatial abilities at different scales:
Individual differences in aptitude-test performance and
spatial- layout learning. Intelligence, 34(2), 151-176.
https://doi.org/10.1016/j.intell.2005.09.005

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K.,
& Subbiah, 1. (2002). Development of a self-report measure
of environmental spatial ability. Intelligence, 30(5),
425-447. https://doi.org/10.1016/S0160-2896(02)00116-2

Hegarty, M., Smallman, H. S., & Stull, A. T. (2012). Choosing
and using geospatial displays: Effects of design on perfor-
mance and metacognition. Journal of Experimental
Psychology Applied, 18(1), 1-17. https://doi.org/10.1037/
20026625

Jenny, B., Stephen, D. M., Muehlenhaus, I., Marston, B. E,,
Sharma, R., Zhang, E., & Jenny, H. (2018). Design princi-
ples for origin-destination flow maps. Cartography and
Geographic Information Science, 45(1), 62-75. https://doi.
0rg/10.1080/15230406.2016.1262280

Kraak, M. J. (2014). Mapping time: Illustrated by Minard’s
map of Napoleon’s Russian Campaign of 1812. Esri Press.

Laube, P., van Kreveld, M., & Imfeld, S. (2005). Finding
REMO — Detecting relative motion patterns in geospatial
lifelines. In Developments in spatial data handling (pp.
201-215). Springer.

Lautenschiitz, A. -K. (2012). Map readers’ assessment of path
elements and context to identify movement behaviour in
visualisations. The Cartographic Journal, 49(4), 337-349.
https://doi.org/10.1179/1743277412Y.0000000029

MacEachren, A. (1995). How Maps Work: Representation,
Visualization and Design. Guilford Press.

Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005).
When static media promote active learning: Annotated illus-
trations versus narrated animations in multimedia
instruction. Journal of Experimental Psychology Applied, 11
(4), 256-265. https://doi.org/10.1037/1076-898X.11.4.256

Miller, H. J. (2005). A measurement theory for time
geography. Geographical Analysis, 37(1), 17-45. https://
doi.org/10.1111/j.1538-4632.2005.00575.x

Montello, D. R., Fabrikant, S. I, & Davies, C. (2018).
Cognitive perspectives on cartography and other geo-
graphic information visualizations. In D. R. Montello
(Ed.), Handbook of Behavioral and Cognitive Geography
(pp. 177-196). Edward Elgar Publishing.

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R,,
Saltz, D., & Smouse, P. E. (2008). A movement ecology
paradigm for unifying organismal movement research.
Proceedings of the National Academy of Sciences, 105(49),
19052-19059. https://doi.org/10.1073/pnas.0800375105

Noi, E., Rudolph, A., & Dodge, S. (2022). Assessing
COVID-induced changes in spatiotemporal structure of
mobility in the United States in 2020: A multi-source ana-
lytical framework. International Journal of Geographical
Information Science, 36(3), 585-616. https://doi.org/10.
1080/13658816.2021.2005796

Padilla, L. M., Creem-Regehr, S. H., Hegarty, M., &
Stefanucci, J. K. (2018). Decision making with visualiza-
tions: A cognitive framework across disciplines. Cognitive
Research: Principles and Implications, 3(1-25), 1. https://
doi.org/10.1186/s41235-018-0120-9

Pezanowski, S., Mitra, P., & MacEachren, A. M. (2022).
Exploring descriptions of movement through geovisual
analytics. KN - Journal of Cartography and Geographic
Information, 72(1), 5-27. https://doi.org/10.1007/s42489-
022-00098-3

Roth, R. E. (2017). Visual variables. In D. Richardson,
N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, &
R. A. Marston (Eds.), International encyclopedia of geogra-
phy: People, the earth, environment and technology (pp.
1-11). Wiley.


https://doi.org/10.1559/152304001782174005
https://doi.org/10.1559/152304001782174005
https://doi.org/10.1559/15230406384350
https://doi.org/10.3138/carto.44.3.201
https://doi.org/10.3138/carto.44.3.201
https://doi.org/10.1080/13658816.2020.1776293
https://doi.org/10.1080/13658816.2020.1776293
https://doi.org/10.1111/j.1467-8306.2006.00514.x
https://doi.org/10.1111/j.1467-8306.2006.00514.x
https://doi.org/10.1080/23729333.2017.1315988
https://doi.org/10.1080/23729333.2017.1315988
https://doi.org/10.5194/ica-proc-1-51-2018
https://doi.org/10.5194/ica-proc-1-51-2018
https://doi.org/10.3138/carto.42.4.349
https://doi.org/10.3138/carto.42.4.349
https://doi.org/10.1016/j.intell.2005.09.005
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.1037/a0026625
https://doi.org/10.1037/a0026625
https://doi.org/10.1080/15230406.2016.1262280
https://doi.org/10.1080/15230406.2016.1262280
https://doi.org/10.1179/1743277412Y.0000000029
https://doi.org/10.1037/1076-898X.11.4.256
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1073/pnas.0800375105
https://doi.org/10.1080/13658816.2021.2005796
https://doi.org/10.1080/13658816.2021.2005796
https://doi.org/10.1186/s41235-018-0120-9
https://doi.org/10.1186/s41235-018-0120-9
https://doi.org/10.1007/s42489-022-00098-3
https://doi.org/10.1007/s42489-022-00098-3

Roth, R. E., Coltekin, A., Delazari, L., Filho, H. F., Griffin, A.,
Hall, A., Korpi J, Lokka I, Mendonga A, Ooms K., & van
Elzakker, C. P. (2017). User studies in cartography:
Opportunities for empirical research on interactive maps and
visualizations. International Journal of Cartography, 3(supl),
61-89. https://doi.org/10.1080/23729333.2017.1288534

Tufte, E. R. (2001). The visual display of quantitative informa-
tion. Graphics Press.

Ware, C. (2013a). Appendix C - the perceptual evaluation of
visualization techniques and systems. In C. Ware (Ed.),
Information visualization (3rd ed., pp. 431-443). Morgan
Kaufmann.

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE . 161

Ware, C. (2013b). Chapter nine - Images, narrative, and
gestures for explanation. In C. Ware (Ed.), Information
Visualization (3rd ed., pp. 325-343). Morgan Kaufmann.

Ware, C. (2013c). Chapter one - foundations for an applied
science of data visualization. In C. Ware (Ed.), Information
visualization (3rd ed., pp. 1-30). Morgan Kaufmann.

White, T. (2017). Symbolization and the visual variables. In J.
P. Wilson (Ed.), The Geographic Information Science ¢
Technology Body of Knowledge (2nd Quarter 2017 Edition).

Yuan, Y., & Raubal, M. (2012). Extracting dynamic urban
mobility patterns from mobile phone data. GIScience
2012, 7478, 354-367.


https://doi.org/10.1080/23729333.2017.1288534

	Abstract
	1. Introduction
	2. Background and relevant work
	2.1. Visual variables in cartography
	2.2. The cognitive evaluation of geovisualizations
	2.3. The cartographic framework for movement visualization

	3. Methods
	3.1. Research design
	3.2. Visualization designs
	3.3. Participants and recruitment
	3.3.1. Demographics

	3.4. Individual difference measures
	3.5. Study tasks
	3.5.1. Assessment of absolute and relative speed and direction
	3.5.2. Overall relative direction
	3.5.3. Absolute speed identification
	3.5.4. Comparisons of movement tracks
	3.5.5. Description of movement tracks
	3.5.6. Visualization ratings


	4. Results
	4.1. Response time
	4.2. Assessment and identification tasks
	4.3. Overview of task success scores (accuracy)
	4.4. Overall success by static versus dynamic display forms
	4.5. Overall success by visual variables
	4.6. Description of movement tracks
	4.7. Participant ratings of visualization designs
	4.7.1. Participant ratings of ease of understanding
	4.7.2. Participant ratings of efficacy of visual elements


	5. Discussion
	5.1. Assessment of the results
	5.2. Limitations of the work and next steps for evaluation

	6. Conclusion
	Acknowledgment
	Disclosure statement
	Funding
	Author contributions
	ORCID
	Data availability statement
	References



