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In the age of big data, data integration is a critical step especially in the understanding 
of how diverse data types work together and work separately. Among data integration 
methods, the Angle-Based Joint and Individual Variation Explained (AJIVE) approach is 
particularly attractive because it not only studies joint behavior but also individual 
behavior. Typically AJIVE scores indicate important relationships between data objects, 
such as clusters. An important challenge is understanding which features, i.e. variables, 
are associated with those relationships. This challenge is addressed by the proposal of a 
hypothesis test for assessing statistical significance of features. The new test is inspired by 
the related jackstraw method developed for Principal Component Analysis. We use a high-
dimensional multi-genomic cancer data set as our strong motivation and deep illustration 
of the methodology.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

As modern data sets have grown large they have also grown more complex. A canonical example is cancer genomics 
research. That field made a major transformation in the direction of Big Data over 20 years ago with the advent of micro-
arrays for high throughput measurement of gene expression, resulting in simultaneous quantification of the activity of tens 
of thousands of genes in a single tissue sample. Since then gene expression measurements have been refined by several 
orders of magnitude using next generation sequencing also called RNA seq. These technologies led to many new biological 
discoveries, and also drove the development of many novel statistical methodologies.

An important method for obtaining deep biological insights from such high dimensional data has been Principal Com-
ponent Analysis (PCA) (Hotelling, 1933). As noted in Section 3.1.4 of Marron and Dryden (2021), PCA provides many data 
insights through modes of variation. These are a sequence of orthogonal rank one approximations of the mean-centered data 
matrix, representing the maximal variation explained. They are the products of loading vectors, representing directions of 
maximal variation in the data space, with scores vectors, that are the projection coefficients of each data case onto the 
loading vectors. Alternatively, modes of variation can be defined using Singular Value Decomposition (SVD) of the centered 
data D = U!V " , where U = (u1, . . . , ur) and V = (v1, . . . , vr) are matrices comprised of r orthonormal columns and !
is a diagonal matrix with positive entries (Golub and Kahan, 1965). Each rank 1 matrix uiλi v"

i , i = 1, . . . , r is a mode of 
variation.

PCA scores are very interpretable as they give a clear impression of how the high dimensional data vectors relate to each 
other (often called dimension reduction). Scatter plot matrix views of scores often give clear views of data set structure, e.g. 
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finding scientifically important clusters or groups of samples with shared features (see Section 4.1 of Marron and Dryden 
(2021)). The feature loadings are also key to interpretability as they provide insight about the features driving the population 
structure discovered in the score plots. As an example, genes with major involvement in cancer subtypes (clusters) tend to 
have large magnitude loadings. An important question is which of these loadings are statistically significant which is not 
evident from PCA analysis alone. To overcome this, the jackstraw method (Chung and Storey, 2014) was developed and can 
viewed as a permutation version of jacknife (Quenouille, 1949) designed for high-dimensional problems.

Despite the many useful biological discoveries made from measuring high dimensional gene expression, cancer still re-
mains a major medical challenge, due to incredible diversity and complexity. In addition to gene expression, there are many 
other high-dimensional assays used in cancer that include other measurements of biological functions including mutations, 
copy number variation, DNA methylation, miRNAs, and protein expression. It is important to understand how these different 
measurements work together (e.g. a copy number variation that amplifies a gene region leading to more copies of the gene 
and increased gene expression) or where a data type has independent information. This has motivated the statistical area of 
multi-block analysis (also referred to multi-view in the machine learning literature or multi-omics in bioinformatics). These 
analyses consist of multiple data matrices (one for each data type) called blocks, which consist of data vectors coming from 
a common set of experimental units (e.g. tissue samples).

An important example of multi-omics data is The Cancer Genome Atlas (TCGA) (Hutter and Zenklusen, 2018). The present 
paper focuses on just two of the data types available in TCGA. The first is Gene Expression (GE), widely known to be 
fundamental to cancer biology. The second is Copy Number Variation (CNV), which quantifies repeated replication and 
also deletion of chromosomal parts (that play an important role in many cancer types). In this paper, we work with Copy 
Number Region (CNR), medians of CNV over chromosomal regions called cytobands. There is strong biological interest in 
the association between GE and CNV, which motivates our AJIVE - Jackstraw analyses.

A useful method for analyzing multi-block data is the Angle-based Joint and Individual Variation Explained (AJIVE), 
proposed by Feng et al. (2018). In a similar spirit to PCA, AJIVE reveals population structure through a decomposition into 
modes of variation. However, AJIVE takes multi-block analysis to the next level by providing two types of such modes of 
variation. The first type is joint between data blocks, in the sense of having common scores vectors for each block. Here, each 
data block represents a different type of data measurement made on the same set of experimental samples and therefore it 
is possible to have common scores, but not possible to have common loadings. The second type are modes of variation that 
are individual in the sense of having scores vectors that are orthogonal to the joint scores. Both types of scores are usefully 
visualized to find interesting population structure. The loadings indicate which features in each data block work together 
(joint) or separately (individual).

The main contribution of the present paper is the adaptation of jackstraw for inference on loadings in AJIVE analysis. 
In particular, it assigns statistical significance to both joint and individual loadings, which indicates the significance of the 
ranked feature loadings. Basic ideas are illustrated using a Toy Example in Section 1.1. Section 2 gives the algorithmic 
development of our novel jackstraw for AJIVE. Application of our AJIVE based jackstraw, in the context of cancer genomics 
research appears in Section 3.

1.1. Introduction to AJIVE

Following the standard in bioinformatics, the columns of these matrices represent data vectors or different experimental 
units and the rows represents features sometimes called variables or traits. In particular, all data matrices have the same 
number of columns (experimental units) but potentially different number of rows (features). This is the transpose of what 
is usual in classical statistics. Using this convention, AJIVE (Feng et al., 2018) assumes the following model for each of the 
mean centered data blocks:

Dm = Lm
J × V "

J + Lm
I × V m"

I + Em, m = 1, . . . , M. (1)

Here the low rank matrix of joint scores V J is common for all the data blocks and is composed of r J orthonormal columns. 
The low rank matrices of individual scores V m

I are composed of rm
I orthonormal columns that are orthogonal to V J . Notice 

that opposite to the usual PCA convention, to give the AJIVE analysis scale free properties, it is the scores that are normalized 
to have norm 1 and the loadings (columns of Lm

J and Lm
I ) reflect the variation quantified by singular values. The matrix V J

is determined only up to a left multiplication by an orthogonal matrix. The matrices V m
I are chosen so that, just as in SVD, 

the columns of Lm
I are orthogonal and decreasing in norm. The Em are full rank residual noise matrices.

The AJIVE modes of variation are obtained as outer products of the corresponding columns of the loading and score 
matrices, i.e., if Lm

i, J and V i, J , i = 1, . . . , r J , are the ith column of Lm
j and V J respectively, the ith joint mode of variation for 

block m is the rank 1 matrix Lm
i, J × V "

i, J . Analogously, the jth individual mode of variation is the rank 1 matrix Lm
j,I × V m"

j,I , 
j = 1, . . . , rm

I .
The AJIVE estimator of V J is called the Common Normalized Scores (CNS) matrix, and the estimators of V m

I are called 
the Block Specific Scores (BSS). Similar to PCA scores, the CNS and BSS indicate the relationships between the data vectors. 
Again an important difference from traditional PCA is that the columns of CNS and BSS are normalized to be orthonormal 
vectors, hence they are also direction vectors in Rn . This is because AJIVE inference is based on studying uncertainty in the 
angle distribution of the scores. In particular, the joint space, i.e. subspace of Rn spanned by the columns of CNS, defines 
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Fig. 1. This figure illustrates how we construct the toy example. The top and bottom panels show DataBlocks 1 and 2 respectively. The rows represent 
features/variables and columns represent cases/samples. Each data block has 120 features (rows) and 160 cases (columns). From left to right, the panels 
are: input to AJIVE, simulated joint, individual, and noise matrices. Red indicates values greater than 1 and blue indicates values less than −1, in-between 
values are shown with less color intensity and white is zero. The simulated individual signals are weaker than the joint signal by 20% in each data block 
as indicated by the slightly paler colors. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the estimated joint variation of all data blocks among the experimental subjects. Similarly the subspace of Rn spanned by 
columns of each of the BSS defines the estimated individual variation.

Estimated modes of variation are obtained from the estimated scores and loadings matrices as outer products of the 
corresponding columns. The joint and individual estimated modes of variation reflect how the data blocks work together 
and separately respectively. An important measure of the effectiveness of AJIVE in recovering these modes of variation is 
the angle between the estimated loadings vector and the true underlying direction.

Using a simple Gaussian simulation, we illustrate how AJIVE identifies modes of variation from multiple data blocks that 
is the basis of the inference developed here (Fig. 1). This toy example is constructed as in (1) across two data blocks to 
visibly demonstrate the difference between joint and individual modes of variation. In real data, this is not as clear as in 
this toy example. Fig. 1 shows a number of panels. Each is a heat map view of a data matrix whose entries are coded by 
colors. The color red is coding values that are greater than 1 and blue is coding smaller than −1. White codes zero and in-
between values are lighter shades of red or blue. As discussed above, the columns of these matrices represent data vectors 
or different experimental units. The rows of the matrices represent features sometimes called variables or traits. This toy 
example has two data blocks: Datablock 1 (shown on the top) and Datablock 2 (bottom). Both have 120 features (rows) and 
160 cases (columns). The input data matrices of the toy sample in the far-left panels are the sum of the other three matrices 
representing joint variation, individual variation, and noise respectively shown in the other panels. The second panels on the 
left are rank-1 joint matrices. The first 40 rows in the top (Datablock 1) have a similar pattern to the first 40 rows in the 
bottom, representing important joint features which should be flagged as significant by jackstraw and the remaining rows 
should be insignificant regarding the joint modes of variation. The third panels on the left are rank-1 individual matrices 
and the top and bottom panels are very different. They have a relatively weak signal characterized by a minimum value of 
−0.8 and a maximum of 0.8, as indicated by the paler red and blue colors. The individual jackstraw should label the bottom 
80 rows as significant. The far-right panels show simulated independent Gaussian noise with mean 0 and variance 2.

The different joint/individual signal strengths in the toy example in Fig. 1 are designed to show how AJIVE recovers 
signals that are poorly recovered by PCA. This example will also highlight the fact that this richer information improves the 
statistical power of AJIVE jackstraw tests relative to PCA.

As noted above the jackstraw method (Chung and Storey, 2014) for statistical inference on PCA loadings has inspired 
our approach to AJIVE inference. Technical details are given in Section 2. To demonstrate the improvement of jackstraw 
with AJIVE over PCA, we applied jackstraw to three different sets of data. 1) AJIVE extracted rank-1 Joint and Individual 
datasets (Fig. 2, top row), 2) PCA modes of variation on Datablocks 1 and 2 separately (Fig. 2, middle row) ordered by 
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Fig. 2. Comparison between the AJIVE-jackstraw (top row), PCA-jackstraw applied to each data matrix separate (middle row), and PCA-jackstraw applied to 
a concatenated data matrix. Each heatmap represents the data projected in the corresponding direction indicated in the title with the same color code as 
Fig. 1. The black and white columns on the right of each heatmap indicate the jackstraw significant features. The AJIVE-jackstraw provides more accurate 
results as indicated by the stronger red blue colors and more accurate black and white bars.

best correspondence to the row above, and 3) PCA on the concatenated datablocks 1 and 2 (Fig. 2, bottom row). Jackstraw 
significance is indicated by horizontal black lines on the right of each heatmap matrix (using the same color code as Fig. 1).

The first major take away from this analysis was that stronger signals, indicated through deeper red and blue colors, are 
found in AJIVE compared to PCA (Fig. 2, row 1 versus row 2). Concatenation of the datablocks did improve ability of PCA to 
find joint signal but was not able to resolve individual modes of variation similar to AJIVE (Fig. 2, row 3 versus row 1). The 
second major take away is that the ability for jackstraw to identify the significant joint and individual components. This is 
observed by the higher number of joint (top 40 rows) and individual (bottom 80 rows) identified as significant by jackstraw 
in AJIVE compared to PCA.

2. Jackstraw inference

Recall the definitions of CNS and BSS and corresponding notation at the beginning of Section 1.1. Let Vn×1 be one column 
of either C N Sn×r J , i.e. scores for one joint mode of variation, or B S Sn×rm

I
, i.e., scores for one individual mode of variation.

For one datablock m = 1, ..., M , jackstraw inference is based on either joint or individual loading vectors. The corre-
sponding loading vector (one column in the estimated loading matrix) can be computed as:

Ldm×1 = Ddm×n × Vn×1.

This can also be viewed as the least squares solution of the following linear regression problem:

(Ddm×n)
T = Vn×1 × (Ldm×1)

T + (Edm×n)
T , (2)
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Note that Equation (2) contains dm separate simple linear regressions without an intercept in the following sense:

• Each column of (Ddm×n)T is the response Y in the linear regression. It is centered before AJIVE so no intercept needs 
to be considered.

• Vn×1 represents the predictor of the linear regression.
• The corresponding entry of Ldm×1 is the unknown simple linear regression coefficient, i.e. β in simple linear regression.
• Rows of Edm×n are the residual error terms.

The aim of the proposed jackstraw test is to find which entries of the loadings vector Ldm×1 are statistically significant. 
The following hypothesis test structure forms the basis of our jackstraw inference. Let Ldm×1 = [l1, ..., ldm ]T . For each j =
1, ..., dm , we consider a hypothesis test:

H0 : l j = 0, H1 : l j %= 0.

For each of these tests, we define the test statistic as

F j = (S S E0 − S S E1)/1
S S E1/(n − 1)

,

where S S E0 and S S E1 are the residual sums of squares under H0 and H1.
Unlike in a classical regression model, we do not expect F j to follow an F distribution due to the data not necessarily 

being normal. For each entry l j , jackstraw could be viewed as a regular permutation test, where entries of the corresponding 
row of Ddm×n , i.e. response in the corresponding simple linear regression, are permuted. Therefore we proposed to estimate 
the distribution of F j under the null hypothesis using jackstraw. The proposed algorithm generates the simulated null 
distribution by randomly choosing K rows and within each row randomly permuting the observations. To do this correctly, 
one needs to rerun an AJIVE to re-estimate the V matrices. This is computationally expensive and therefore we recommend 
selecting K rows, permuting those labels then rerunning AJIVE. After that, we do the simple linear regressions corresponding 
to the rows of Ddm×n . To generate the null distributions this is repeated S times. In high dimensional settings we expect 
some of the rows of the data matrix to be very correlated. Therefore, we only want to permute a small number of rows 
perhaps even K = 1.

Thus we have S × K test statistics simulated under the null hypothesis. The parameters K and S are chosen as follows:

• K is the number of rows selected in one step, which should be much less than dm , such as 1, 10, or 100.
• S is the number of times the permutation step is repeated, which should be at least 10 times dm .

The key algorithmic steps are:

1. The test statistics, F j s, are obtained by fitting a linear regression with the rows of mean-centered AJIVE input data as 
the response and with columns of the selected CNS or BSS of interest as the predictors.

2. Randomly select K rows of the original data matrix and permute the observations within each row and recalculate 
the AJIVE CNS and BSS. Then recalculate the test statistics as in Step 1 using the permuted data matrix and the same 
columns as in Step 1 of the new CNSs or BSSs to get K samples from the simulated null distribution. Then Repeat S
times to generate S × K samples from the null distribution F b

null, b = 1, ..., S × K .

3. Calculate an empirical p-value: p j =
∑S×K

b=1 I(F j<=F b
null)

S×K for each observed test statistic F j, j = 1, ..., dm , where I denotes 
the indicator function.

4. Adjust p-values for multiple testing. We recommend using the Bonferroni adjustment (Bonferroni, 1936) for the level 
of the test, i.e. the regular p-value times the number of tests (in this case the number of features dm ) as the adjusted 
p-value. A reasonable alternative would be to consider the false discovery rate (Benjamini and Hochberg, 1995).

As stated in Chung and Storey (2014), smaller K (in Step 2) gives more precise estimation, and larger K gives faster 
calculation. The analyses in this paper use K = 1 and parallel computation for maximal precision per unit time.

2.1. Approximate algorithm for faster computations

Each of the S resamples requires one round of the AJIVE algorithm. When the data matrices are large recomputing AJIVE 
S times could be very computationally intensive. In many situations, the rows are highly correlated and individual features 
tend not to be particularly influential such as the data in Section 3. Thus permuting a small number K out of a large number 
dm of rows will lead to minor changes in the AJIVE results. This is especially true in the case of a joint space estimated 
from multiple data blocks. In that case, one can save a large amount of computational effort by just using the original CNS 
rather than recomputing AJIVE S times. Note this results in a classical permutation test.
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Table 1
Exploration of consistency of significant features. Rows correspond to data blocks and joint compo-
nent numbers. Columns indicate the number of significant features for each of the two algorithms, 
approximate (App) and full. Also explored is the impact of the particular realization of the random 
permutations labeled 1 and 2 in the 3rd to 6th columns. The last column is the total number of 
GE and CNV features. This suggests that randomization only has a minor influence. Recall, CNV is 
an abbreviation for Copy Number Variation, GE for Gene Expression, and CNR for Copy Number 
Region.

Datablock Joint Component App-1 Full-1 App-2 Full-2 Total number

GE 1 11288 11450 11450 11051 20249
GE 2 7058 7765 7859 6918 20249
GE 3 6274 6510 6455 6288 20249
CNV 1 526 557 526 537 806
CNV 2 247 197 276 276 806
CNV 3 302 235 240 247 806

We next demonstrate the effects of not recomputing AJIVE for each of the S replications of jackstraw using TCGA breast 
cancer data, which will be analyzed in detail in Section 3. As noted above, we have 2 data blocks (data matrices): CNV that 
includes as features (rows) CNR, and GE that includes as features normalized log of gene expression.

After AJIVE inference, we identify 3 joint components and we proceed to apply jackstraw to find the significant 
genes/CNRs corresponding to each of the 3 joint components. As an investigation of the Monte Carlo variation, we run 
the 2 algorithms (full and approximate) 2 times using 2 different seeds, denoted as seed1 and seed2. For convenience of 
notation, let ‘App’ denote the approximate algorithm and ‘Full’ denote full algorithm. In Table 1, we will report the number 
of significant CNRs/genes. After a careful comparison, more than 95% of the significant CNRs/genes stay significant if we 
use different algorithms or random permutations. In each row, the subset corresponding to a smaller number of significant 
features is always included in the subset corresponding to the larger number. Thus, jackstraw analysis of TCGA breast cancer 
data is not sensitive to random permutations or algorithms.

While the algorithms gave similar results, the approximate algorithm took about 30 min and the full algorithm takes 
about 30 × dm = 30 × 20249 = 607470 min for GE without parallel computation. With access to parallel computation, the 
full algorithm can be much faster. In practice, we recommend making a careful choice between the 2 algorithms based on 
whether any features are expected to be dominant.

2.2. Jackstraw diagnostic graph

Jackstraw typically involves a very large number of individual hypothesis tests. We recommend three diagnostic graphs 
(kernal density estimates, jackstraw p-values, and Kolmogorov-Smirnov tests) as useful methods for quickly summarizing 
the results of the numerous individual hypothesis tests such as those shown in Fig. 3 of the toy example in Section 1.1. 
In the left panel, the black curve is a kernel density estimate visualization of the F b

null distribution (on the log10 scale) 
calculated in Step 2 of the algorithm in Section 2. The red (significant) and blue (not significant) dots are the observed F 
statistics: F j calculated in Step 1. Significance is at the level of 0.05 using the Bonferroni correction. The middle panel shows 
the sorted jackstraw p-values, computed in Step 3, for all the genes. Out of 120 features, we find 40 significant features in 
the joint component. The right panel shows the results of a Kolmogorov-Smirnov test (K-S test) (Walsh, 1963) for whether 
the first component overall has useful information. This tests the uniformity of the distribution of these p-values. In this 
panel, the colored curve is relatively far from the 45-degree line and the K-S p-value is 1.2 × e−11.

3. TCGA breast cancer data

As noted in the introduction, The Cancer Genome Atlas (TCGA) (Hutter and Zenklusen, 2018) is a multicenter effort to 
generate multiple different data types for a large cohort of patients to comprehensively characterize cancer. TCGA contains 
many cancer types and several different data platforms. We are particularly interested in the breast cancer Ciriello et al. 
(2015) cohort, where prior work has identified molecular subtypes of breast cancer, based on gene expression (Perou et al., 
2000; Sørlie et al., 2001). Therefore, this data set is an excellent case to study the application of jackstraw on the integration 
of multiple data platforms. The 1038 patients are classified into 4 subtypes (185 Basal cases, 81 Her2, 556 LumA, and 216 
LumB). Of particular interest are the relationships between GE and CNV and how those relationships vary by subtype. Hence 
we do a three block AJIVE analysis here: GE (d1 = 20249), CNV (d2 = 806), and subtype (d3 = 4) and n = 1038. Inclusion 
of the third block provides a supervised version of AJIVE, which enables careful focusing on the subtypes. The indicator 
(subtype) matrix has a column corresponding to each of the 1038 patients. Each column of the matrix has four entries, 
which indicate the four subtypes using a one in the appropriate row and zeroes for the other entries.

We use the log2 count GE values. To construct the CNV data, we use the log2 ratio per gene values from GISTIC down-
loaded from TCGA FireBrowse website. All data blocks are feature-centered as the input of AJIVE. Hence, the sign of all 
features is relative to the average.
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Fig. 3. Jackstraw diagnostic graphs using the simulated toy example in Fig. 1. Left panel: the black curve is a kernel density estimate of the null distribution 
and the red (significant) and blue (not significant) dots are the observed F statistics for all genes (both on log10 scale). Middle panel: the sorted p-values, 
one for each feature. Right panel: Kolmogorov-Smirnov test of the uniformity of the p-value. This diagnostic graph shows that the first joint component is 
statistically significant and there are 40 statistically significant features, which are the main drivers of this joint component.

A low-rank approximation is used in the first step of AJIVE for the first two input matrices. Using AJIVE diagnostic 
plots we established low ranks of 77 for CNV, 70 for GE and 3 for the subtype indicator matrix. This resulted in a rank 3 
joint space i.e. 3 joint components overall, 74 and 67 individual components for CNV and GE respectively. In the following 
sections, we investigate the statistical significance of the loadings of the AJIVE joint and individual spaces using jackstraw.

3.1. Joint space

The following discussion demonstrates the kind of information that can be learned from the Common Normalized Scores 
(CNS). Fig. 4 shows a scatter plot matrix view of the CNS, which indicates how the cancer patients relate to each other 
in terms of GE and CNV. This shows a strong visual separation of the subtypes, that is a consequence of subtypes playing 
an important role together in GE and CNV, as well as supervision using the third data block. The CNS (Vn×1 in (2)) is a 
1038 by 3 matrix because of 3 joint components and 1038 cases/patients. The plots on the diagonal are one-dimensional 
views of the scores, columns of the CNS matrix. The subtypes are illustrated with subplot kernel density estimates (KDE). 
Scores are shown using jitter plots (i.e. random heights) to visually separate them in the one-dimensional plots. The overall 
KDEs are shown in black and the subtype KDEs are shown in subtype colors. The area under the curve of each colored 
KDE is proportional to its abundance so that the sum of the areas under the colored curves equals 1, the area under the 
black curve. The off-diagonal plots are scatter plots, i.e. two-dimensional projections of the data onto the planes generated 
by the corresponding CNS vectors. The first joint component strongly separates the Basal subtypes (red). Joint components 
2 and 3 also seem to be strongly related to subtypes even though the separation is less than component 1. The second 
joint component separates the three other subtypes in the order of LumA (blue), LumB (cyan), and Her2 (magenta). This 
is sensible because these subtypes are known to be closer together and Her2 is known to be more distinct from LumA. 
The third joint component separates Her2 (magenta), LumA (blue), and LumB (cyan). For a deeper understanding of this 
relationship between subtypes, Fig. 5 shows the subtype loading for each joint mode of variation from Fig. 4. These loadings 
indicate the impact of each subtype on the mode of variation. This gives another interpretation of the 3 joint components:

1. contrast of Basal vs the rest; contains little Her2 information;
2. contrast of (Her2 & LumB) vs LumA; contains little Basal information;
3. contrast of LumB vs (Her2 & LumA); contains little Basal information.

While AJIVE analysis indicates distinct joint spaces, we implement the jackstraw method to focus on the driving set of 
significant features for each joint component. The column App-1 in Table 1 shows the number of jackstraw significant genes 
and CNRs for each joint component, using the approximate algorithm. For joint component 1, the strong differences between 
Basal-like subtype and non-Basals in Figs. 4 and 5 appear in column App-1 in Table 1 as a large number of significant genes. 
This may be surprising to statisticians who have approached gene selection via sparsity methods, which has a goal of very 
few significant genes. However, it clearly underlines the biological complexity of this cancer. The differences within the 
non-Basal subtypes are weaker, which reflects itself in a smaller number of significant genes.

Our AJIVE version of jackstraw allows us to focus on a set of statistically significant features, giving insight into how 
GE and CNV work together. In cancer, one important mechanism is copy number variation that can influence expression by 
increasing or decreasing the numbers of copies per gene. Hence significant copy number variation is expected to lead to 
significant gene variation. We want to see if genes that are significant in joint space are joint because the copy number is 
directly regulating expression, however, it’s important to note that there can be many genes located in one CNR. We are 
interested in the cis effects where the copy number variation directly regulates the gene expression. As shown in the second 
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Fig. 4. Common normalized scores scatter plot for joined component of supervised AJIVE. Each column of CNS corresponds to one of the joint component, 
i.e. scores. The diagonal panels are jitter plots and kernel density estimates of the univariate distribution of the entries of the corresponding CNS vector. 
The off-diagonal panels are related scatter plots giving a pairwise comparison of the entries of the score vectors. The subtypes are indicated as follows: 
Basal: red; Her2: magenta; LumA: blue; LumB: cyan. This figure shows that the joint variation reflects strong cancer subtype separation.

Table 2
Percentage of overlapped significant genes and CNRs for each joint component. Most CNRs 
contain significant genes, but only some significant genes are located in significant CNRs.

Overlapped Joint Significant % comp 1 comp 2 comp 3

Significant CNRs containing significant genes (%) 95.27 94.57 91.67
Significant genes located in significant CNRs (%) 69.17 39.68 36.27

row of Table 2, almost all significant CNRs contain some significant genes. This is consistent with GE being influenced by its 
local copy number. However, as shown in the third row of Table 2, not all significant genes in joint space have a dependency 
on significant CNRs. There are other mechanisms for GE regulation that are still important and show up in the joint space 
without having a direct dependency on the CNRs. These may be related to a trans effect (non-local regulation) or to presence 
of strongly correlated genes in the same pathway.

We consider how the jackstraw significance relates to the gene/CNR loadings in Fig. 6. Each panel contains colored 
curves which show the sorted loadings for each gene/CNR. The x-axis represents the full set of the sorted features. The 
y-axis shows the corresponding loadings. Recall loading vectors have length one, so the sum of the squared entries must 
be one. In each panel, the curves show joint components 1 (black), 2 (green), and 3 (yellow). Each variable is plotted using 
jitter plots (i.e. random heights) for joint components 1,2,3. Jackstraw significant genes or CNRs are identified with a red 
dot and non-significant features with a blue dot. The GE loadings are very similar across the three curves in the left panel, 
yet the CNV loadings are substantially different in the right panel. In particular, CNV has very few CNRs with very negative 
loadings. Relatively speaking, the signal and gene expression is spread over more genes, so there are fewer loadings that 
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Fig. 5. CNS loadings of the subtype matrix indicating the impact of each subtype on the respective mode of variation. This figure shows the subtype 
contrasts that drive each joint component.

Fig. 6. The colored curves are formed by the sorted loadings of genes/copy number regions. If the corresponding feature is significant, a red dot is placed 
in the central bands (jitter plots), otherwise, a blue dot is placed. Features with large loadings are more likely to be selected as significant. Distributions of 
loadings of CNR for joint components 2 and 3 are dramatically different than what is observed in component 1.

are much different from zero. There are 20249 genes and only 806 CNRs, thus the jitter plots on the left are much denser 
than those on the right. In both panels, joint component 1 has more significant features than joint components 2 and 3. 
This is consistent with the fact that joint component 1 has the most shared variation and is driven mostly by Basal subtype 
information, which is known to be associated with large genomic changes (Hoadley et al., 2018). Generally, features with 
large loadings tend to be more significant. Comparing these significant genes with prior work Weigman et al. (2012) shows 
the jackstraw analysis has picked up biologically important regions previously identified in these types of cancers. Detailed 
analysis is shown in Section 4.3 of Xi Yang’s dissertation (Yang, 2021).

9



X. Yang, K.A. Hoadley, J. Hannig et al. Computational Statistics and Data Analysis 180 (2023) 107649

Fig. 7. DiProPerm Test PDC confidence intervals of GE expression. Left: the test of Basal vs rest, middle: (Her2&LumB) vs LumA, right: (Her2&LumA) vs LumB. 
In each panel, each error bar is a confidence interval of the PDC of the given test based on: all features (left), significant features (middle), non-significant 
features (right). The AJIVE-jackstraw significant features give a higher PDC verifying the stronger signal level.

Next we investigate feature selection using jackstraw. In particular, we study classification by comparing the results based 
on each of jackstraw significant features, jackstraw non-significant features and all features. Significance is assessed using 
the Direction-Projection-Permutation high dimensional hypothesis test (DiProPerm) (Wei et al., 2016; Yang et al., 2021) to 
quantify subtype separations based on different feature sets. Test results are on the scale of Population Difference Criterion 
(PDC) as defined in Yang et al. (2021). PDC works on the scale of Gaussian Z-score, so larger than 2 gives statistical signifi-
cance with larger values reflecting stronger significance. Error bars are included to reflect the simulated variation of the PDC 
using balanced permutations as explained in Section 3.2 in Yang et al. (2021). Each error bar in Fig. 7 shows the confidence 
interval of the PDC of each test, where a large PDC indicates more significance.

In each panel of Fig. 7, we quantify the amount of separation between subtypes and corresponding components indicated 
in the titles using each of the three feature subsets as the input GE data:

1 All 20249 features (shown as ‘All’ in the left)
2 Jackstraw significant features for each joint component (shown as ‘Sig.’ in the middle)
3 Non-significant features for each joint component (shown as ‘Non.sig’ in the right)

The comparator groups in Fig. 7 were taken from the relationships observed in Fig. 5. Comp1 corresponds to Basal vs Rest, 
comp2 corresponds to (Her2&LumB) vs LumA, and comp 3 corresponds to (Her2&LumA) vs LumB. For all 3 panels, the tests 
using all features have very strong PDCs, indicating strong separations of the subtypes. When we focus on the significant 
features only, the separations become even stronger as indicated by larger PDCs demonstrating the value of focusing on the 
jackstraw significance. However, the non-significant features have relatively small PDCs, but still retain some signal (PDCs 
greater than 2). The confidence intervals show that all of these differences are statistically significant relative to the natural 
permutation variation. In summary, the jackstraw significant feature sets provide the strongest subtype distinction.

3.2. Individual space

As we have seen AJIVE is very effective at finding the joint structure between all three data blocks: GE, CNV, and 
subtype. Next we discuss the individual information left for each data block. The DiProPerm investigation of the individual 
GE did not find significant subtype information, PDC of 0.59 (not less than 2). The individual CNV did reveal a significant 
difference between LumA and LumB, i.e. PDC of 12, which is not joint with GE. This was surprising because class labels 
were determined by gene expression, which is expected to have information not contained in CNV. In particular, further 
investigation of the individual space shows that there remains informative GE-independent CNRs that can differentiate 
LumA and LumB. Detailed analysis can be found in Section 4.3 of Xi Yang’s dissertation (Yang, 2021).

4. Discussion

In this paper we propose a novel combination of jackstraw and AJIVE to bring needed inference. The new methodology 
gives more precise statistical inference about the relationship between gene expression and copy number. In particular, we 
found:

• The toy example demonstrated the value of AJIVE jackstraw relative to PCA analyses.
• Jackstraw analysis has picked up biologically important regions previously identified for these types of cancers.
• A large number of genes/copy number regions are related to the very substantial differences between Basal and non-

Basals.
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• The smaller number of significant genes/copy number regions reflect the weaker difference within the non-Basal sub-
types.

• Focusing on significant features (i.e., gene/copy number regions) provides a stronger subtype distinction.
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