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Abstract

High-dimensional regression and regression with a left-censored response are each
well-studied topics. In spite of this, few methods have been proposed which deal
with both of these complications simultaneously. The Tobit model—long the stan-
dard method for censored regression in economics—has not been adapted for high-
dimensional regression at all. To fill this gap and bring up-to-date techniques from
high-dimensional statistics to the field of high-dimensional left-censored regression,
we propose several penalized Tobit models. We develop a fast algorithm which com-
bines quadratic minimization with coordinate descent to compute the penalized Tobit
solution path. Theoretically, we analyze the Tobit lasso and Tobit with a folded con-
cave penalty, bounding the ℓ2 estimation loss for the former and proving that a local
linear approximation estimator for the latter possesses the strong oracle property.
Through an extensive simulation study, we find that our penalized Tobit models
provide more accurate predictions and parameter estimates than other methods on
high-dimensional left-censored data. We use a penalized Tobit model to analyze high-
dimensional left-censored HIV viral load data from the AIDS Clinical Trials Group
and identify potential drug resistance mutations in the HIV genome. A supplemen-
tary file contains intermediate theoretical results and technical proofs.

Keywords: censored regression, coordinate descent, folded concave penalty, high dimen-
sions, strong oracle property, Tobit model
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1 Introduction

In many regression problems, the dependent variable can only be observed within a re-

stricted range. We say that such a response is censored if we retain some information

from the observations which fall outside of this range rather than losing them entirely. In

particular, we still observe the predictors for these cases and know whether the unobserved

response value fell below or above the range. Censored data appear in many disciplines,

either as a consequence of the data collection process or due to the nature of the response

itself. For instance, biological assays used to measure human immunodeficiency virus (HIV)

viral load in plasma cannot detect viral concentrations below certain (known) thresholds.

As such, the observed viral load is left-censored. Because censoring violates a key assump-

tion of linear regression, ordinary least squares (OLS) estimates of the regression coefficients

will be biased and inconsistent if the response is censored (Amemiya, 1984). Recognizing

this, researchers in different disciplines have developed regression techniques to deal with

various types of censoring. Among these, the Tobit model has long been the standard

method for modeling a left-censored response in economics.

Tobin (1958) originally developed the Tobit model to study how annual expenditures

on durable goods relate to household income. Noting that most low-income households

spend $0/year on durable goods, he designed the Tobit likelihood to treat response values

at this (known) lower limit differently than those above the limit. He described the Tobit

model as a “hybrid of probit analysis and multiple regression,” as it models the probability

of the response falling at the lower limit using an approach similar to probit analysis while

still treating the response as continuous (Tobin, 1958). Because left-censored data are

common in household surveys and other micro-sample survey data, the Tobit model has

enjoyed lasting popularity in economics and the social sciences. In the half-century since

its introduction, it has been extended to handle right-censored and interval-censored data
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(Amemiya, 1984) and has been adopted in other disciplines.

In recent years, high-dimensional data have become increasingly common in many fields

of study. This presents some researchers with the challenge of analyzing data with both

high-dimensional covariates and a left-censored response. Consider the HIV viral load ex-

ample from earlier. There is now a sizable literature around modeling the relationship

between HIV viral load and mutations in the HIV genome. Given the number of muta-

tions that can occur, this is inherently a high-dimensional problem, where the number of

predictors p is much larger than the number of observations n. At the same time, the

observed viral load is left-censored. Previous studies in this area have avoided the problem

of having both high-dimensional covariates and a left-censored response by reducing HIV

viral load to a binary response, such as y = 1viral load>200 copies/mL. In taking this approach,

however, the modelers lose a great deal of information about the response. To directly

model HIV viral load in this setting, researchers need techniques designed specifically for

high-dimensional left-censored regression.

While high-dimensional regression and left-censored regression have been thoroughly

studied as separate topics, few methods have been developed which handle both high-

dimensional covariates and a left-censored response simultaneously. Müller and van de

Geer (2016) and Zhou and Liu (2016) have extended the least absolute deviation estimator

of Powell (1984) for high-dimensional data while Johnson (2009), Li et al. (2014), and

Soret et al. (2018) have extended the Buckley-James estimator (Buckley and James, 1979).

To our knowledge, no existing methods directly extend the Tobit model. Theoretically,

this under-studied area has fallen behind the broader field of high-dimensional statistics,

with estimators achieving weaker guarantees and requiring stronger assumptions. Among

existing high-dimensional left-censored regression techniques, only Müller and van de Geer’s

(2016) estimator has any theoretical guarantees in the setting where p ≫ n. This estimator,

however, does not achieve consistent model selection. On the other hand, the estimators of
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Johnson (2009), Zhou and Liu (2016), and Li et al. (2014) are shown to possess the weak

oracle property, but only in the fixed p case. We aim to improve on these high-dimensional

left-censored regression techniques by developing an estimator which possesses the strong

oracle property even when p ≫ n.

In this study, we develop penalized Tobit models for high-dimensional censored regres-

sion. The negative log-likelihood in Tobin’s (1958) original formulation of the Tobit model

is non-convex, creating technical problems for optimization in a high-dimensional setting.

We use Olsen’s (1978) convex reparameterization of the negative log-likelihood in our pe-

nalized Tobit models so that we can solve our problem using convex optimization methods.

In particular, we leverage the fact that the negative log-likelihood satisfies the quadratic

majorization condition to develop a generalized coordinate descent (GCD) algorithm (Yang

and Zou, 2013) for minimizing the penalized negative log-likelihood.

For our theoretical study, we analyze the Tobit lasso and Tobit with a folded concave

penalty in a high-dimensional setting with p ≫ n. We derive a bound for the ℓ2 estimation

loss for the Tobit lasso estimator which holds with high probability. We introduce a local

linear approximation (LLA) algorithm for Tobit regression with a folded concave penalty

and prove that, when initialized with the Tobit lasso estimator, this algorithm finds the

oracle estimator in one step and converges to it in two steps with probability rapidly

converging to 1 as n and p diverge. To our knowledge, this makes the two-step LLA

estimator the first estimator for high-dimensional left-censored regression to possess the

strong oracle property.

We have implemented the GCD algorithm and the LLA algorithm (specifically with

the SCAD penalty (Fan and Li, 2001)) in the tobitnet package in R, which is available at

https://github.com/TateJacobson/tobitnet.

This paper is organized as follows. In Section 2 we review the Tobit model and its

statistical foundations. In Section 3 we introduce penalized Tobit models and develop our
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GCD algorithm to fit them. In Section 4 we carry out our theoretical study of the Tobit

lasso and our LLA algorithm for Tobit with a folded concave penalty. Section 5 presents

the results of an extensive simulation study comparing our penalized Tobit models with

penalized least-squares models and Soret et al.’s (2018) high-dimensional Buckley-James

estimator (the best available alternative for high-dimensional left-censored regression) in

terms of their prediction, estimation, and selection performance. In Section 6 we analyze

real high-dimensional left-censored data from the AIDS Clinical Trials Group, modeling the

relationship between HIV viral load and HIV genotypic mutations using the two-step Tobit

LLA estimator and Soret et al.’s Buckley-James estimator in order to identify potential

drug resistance mutations (DRMs). Intermediate theoretical results and technical proofs

are provided in the supplementary material for this paper.

2 The Tobit Model

Suppose that we observe a set of predictors, x1, . . . , xp, and a response y ≥ c where c is a

known lower limit (for example, c = 50 if our response is HIV viral load and our assays

cannot measure concentrations below 50 copies/mL). In Tobit regression we assume that

there exists a latent response variable y∗ such that y = max{y∗, c} and that y∗ comes from

a linear model y∗ = x′β+ ϵ, where x = (1, x1, . . . , xp)
′ ∈ Rp+1, β = (β0, β1, . . . , βp)

′ ∈ Rp+1,

and ϵ ∼ N(0, σ2). In the following developments we assume that c = 0 without loss of

generality.

From this latent-variable formulation we can derive a likelihood for the censored re-

sponse. Let {(yi,x′
i)}ni=1 be i.i.d copies of (y,x′) and define di = 1yi>0. Let Φ(·) denote the

standard normal CDF. The Tobit likelihood is given by

Ln(β, σ
2) =

n∏
i=1

[
1√
2πσ

exp

{
− 1

2σ2
(yi − x′

iβ)
2

}]di [
Φ

(
−x′

iβ

σ

)]1−di

.
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Noting that P (y∗i ≤ 0) = P (x′
iβ + ϵi ≤ 0) = Φ

(
−x′

iβ

σ

)
, we see that this likelihood is a

mixture of a normal density and a point mass at 0. After dropping an ignorable constant

the log-likelihood is given by

logLn(β, σ
2) =

n∑
i=1

di

[
− log(σ)− 1

2σ2
(yi − x′

iβ)
2

]
+ (1− di) log

(
Φ

(
−x′

iβ

σ

))
.

3 Penalized Tobit Regression

In high-dimensional regression, the most commonly used approach is to exploit sparsity

in the regression coefficient vector. While we might initially consider simply adding a

penalty term to the Tobit log-likelihood to create an objective function for penalized Tobit

regression, logLn(β, σ
2) is not concave in (β, σ2), frustrating this approach. Thankfully,

Olsen (1978) found that the reparameterization δ = β/σ and γ2 = σ−2 results in a concave

log-likelihood:

logLn(δ, γ) =
n∑

i=1

di

[
log(γ)− 1

2
(γyi − x′

iδ)
2

]
+ (1− di) log (Φ (−x′

iδ)) .

Note that δ and β must have the same degree of sparsity. We use Olsen’s reparameterization

to develop our penalized Tobit models. Our objective is to minimize

Rn(δ, γ) = ℓn(δ, γ) + Pλ(δ) (1)

with respect to (δ, γ), where ℓn(δ, γ) = − 1
n
logLn(δ, γ) is our convex loss function (the

Tobit loss for short) and Pλ(δ) is a penalty function. Note that, unlike with other loss

functions, we cannot separate out the scale parameter γ in the Tobit loss when estimating

the regression coefficients δ.

Coordinate descent (CD) is currently the most popular algorithm for high-dimensional

regression in the literature (Friedman et al., 2010). Given the relatively complex form of

the Tobit loss, the standard CD algorithm requires solving a nonlinear convex program
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repeatedly for p variables for many cycles until convergence. As a result, the computation

time will be notably longer than for penalized least squares. Fortunately, another benefit of

using Olsen’s reparameterization is that the Tobit likelihood can be shown to enjoy a nice

quadratic majorization condition that serves as a foundation for using the majorization-

minimization (MM) principle and coordinate descent to solve penalized Tobit regression.

The combination of the MM principle and CD is called generalized coordinate descent

(Yang and Zou, 2013). By using GCD, each of the coordinate-wise updates becomes a

simple univariate quadratic minimization problem.

For reference, we say that a univariate function f : R → R satisfies the quadratic

majorization condition if there exists M ∈ R+ such that f(t+ a) ≤ f(t)+ f ′(t)a+ M
2
a2 for

all t, a ∈ R. Without loss of generality, we assume that our predictors are standardized—

that is, 1
n

∑n
i=1 xij = 0 and 1

n

∑n
i=1 x

2
ij = 1, for j = 1, . . . , p. Consider coordinate-wise

updates of δ0 and δj, j = 1, . . . , p. We treat δ0 as a special case of δj in the following

developments, keeping in mind that xi0 = 1 for all i. For ease of notation, let xi(−j) =

(xi0, xi1, . . . , xi,j−1, xi,j+1, . . . , xip)
′ ∈ Rp and δ(−j) = (δ0, δ1, . . . , δj−1, δj+1, δp)

′ ∈ Rp.

Let δ̃ and γ̃ denote the current values for δ and γ. Let j ∈ {0, 1, . . . , p} and leave δ̃(−j)

and γ̃ fixed. Then the Tobit loss is viewed as a univariate function of δj. After dropping

ignorable constants (which have no impact in minimization), we can express the Tobit loss

with respect to δj as

ℓn(δj|δ̃, γ̃) =
1

n

n∑
i=1

di
1

2
(γ̃yi − x′

i,(−j)δ̃(−j) − xijδj)
2 − (1− di) log Φ(−x′

i,(−j)δ̃(−j) − xijδj).

Theorem 1. ℓn(δj|δ̃, γ̃) satisfies the quadratic majorization condition with M = 1
n

∑n
i=1 x

2
ij.

Under the standardization of predictors, M = 1.

To illustrate the whole process of GCD, we focus on the weighted lasso penalty: Pλ(δ) =∑p
j=1 λwj|δj|. When wj = 1 for all j, this penalty reduces to the lasso penalty. The

weighted lasso penalty form will also be used in the computation of the folded-concave-
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penalized Tobit estimator (see the next section for details).

The standard coordinate descent algorithm needs to minimize ℓn(δj|δ̃, γ̃) + λwj|δj|,

which requires another iterative procedure to find the minimizer. By Theorem 1, we have

that

Q(δj|δ̃, γ̃) := ℓn(δ̃j|δ̃, γ̃) + ℓ′n(δ̃j|δ̃, γ̃) · (δj − δ̃j) +
1

2
(δj − δ̃j)

2

is a quadratic majorization function for ℓn(δj|δ̃, γ̃). By the MM principle, we can simply

minimize Q(δj|δ̃, γ̃)+λwj|δj| to update δj, while leaving the other parameters fixed at their

current values. For j = 1, . . . , p, we update δj as the minimizer of Q(δj|δ̃, γ̃) + λwj|δj|,

which is given by a soft-thresholding rule (Tibshirani, 1996): δ̂j = S
(
δ̃j − ℓ′n(δ̃j|δ̃, γ̃), wjλ

)
,

where S(z, t) = (|z| − t)+sgn(z). For updating δ0, we use the minimizer of Q(δ0|δ̃, γ̃),

which is given by δ̂0 = δ̃0 − ℓ′n(δ̃0|δ̃, γ̃). Lastly, we need to update γ. We can show that

given δ̃, ℓn(γ|δ̃) is minimized by γ̂ =
∑n

i=1 diyi(x
′
iδ̃)+

√
(
∑n

i=1 diyi(x
′
iδ̃))

2
+4(

∑n
i=1 diy

2
i )

∑n
i=1 di

2
∑n

i=1 diy
2
i

. For

completeness, we show the whole GCD algorithm in Algorithm 1.

Algorithm 1: GCD algorithm for penalized Tobit with the weighted lasso penalty

Initialize (δ̃, γ̃);

repeat

Compute δ̂0 = δ̃0 − ℓ′n(δ̃0|δ̃, γ̃); Set δ̃0 = δ̂0 ;

for j = 1, . . . , p do

Compute δ̂j = S
(
δ̃j − ℓ′n(δ̃j|δ̃, γ̃), wjλ

)
; Set δ̃j = δ̂j ;

end

Compute γ̂ =
∑n

i=1 diyi(x
′
iδ̃)+

√
(
∑n

i=1 diyi(x
′
iδ̃))

2
+4(

∑n
i=1 diy

2
i )

∑n
i=1 di

2
∑n

i=1 diy
2
i

; Set γ̃ = γ̂;

until convergence;

4 Theoretical Results

Our objective function (1) is flexible enough to accommodate a wide variety of penalties.

In this section we offer theoretical studies of penalized Tobit estimators. We focus on the
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Tobit estimator with the lasso penalty and Tobit estimators with folded concave penalties.

4.1 Setup

Suppose that δ∗ and γ∗ are the true parameter values for δ and γ. For notational con-

venience, we define Θ = (θ0, . . . , θp+1)
′ := (δ′, γ)′. We let A = {j : δ∗j ̸= 0} ⊆ {1, . . . , p}

denote the true support set and define A′ = A∪{0, p+1} and s = |A|. Under the sparsity

assumption, s ≪ p. Note that we continue to index δ, Θ, and the columns of X from 0 to

p+ 1 to accommodate δ0 in δ.

We adopt the following notation throughout our analysis. For a matrix A ∈ [aij]n×m

and sets of indices S ⊆ {1, . . . ,m} and T ⊆ {1, . . . , n}, we useA(S) to denote the submatrix

consisting of the columns of A with indices in S and AT to denote the submatrix consisting

of the rows of A with indices in T . We let λmax(A) denote the largest eigenvalue of A, let

A ≻ 0 signify that A is positive definite, and let vec(A) ∈ Rnm denote the vectorization

of A. We define several matrix norms: the ℓ∞-norm ∥A∥∞ = maxi
∑

j |aij|, the ℓ1-norm

∥A∥1 = maxj
∑

i |aij|, the ℓ2-norm ∥A∥2 = λ
1/2
max(A′A), the entry-wise maximum ∥A∥max =

max(i,j) |ai,j|, and the entry-wise minimum ∥A∥min = min(i,j) |ai,j|. We let∇S logLn(Θ) and

∇2
S logLn(Θ) denote the gradient and Hessian, respectively, of logLn(Θ) with respect to

ΘS .

Because we handle censored and uncensored observations differently in the Tobit like-

lihood, we introduce notation to clearly differentiate between them. Let n1 denote the

number of observations for which yi > 0 and n0 = n − n1. Let X1 be the n1 × (p + 1)

matrix of predictors corresponding to the observations for which yi > 0 and let X0 be the

n0× (p+1) matrix of predictors corresponding to the observations for which yi ≤ 0. Define
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y0 and y1 likewise. We then reorder our observations so that

X =

X0

X1

 and y =

y0

y1

 .

4.2 The lasso-penalized Tobit estimator

Consider the lasso-penalized Tobit estimator found by minimizing

Rn(δ, γ) = ℓn(δ, γ) + λlasso

p∑
j=1

|δj|. (2)

We assume that the following restricted eigenvalue condition holds:

κ = min
u∈C

E

[∥∥∥∥[−X1 y1

]
u

∥∥∥∥2

2

]
n ∥u∥22

∈ (0,∞) (A0)

where C = {u ̸= 0 : ∥uA′c∥1 ≤ 3 ∥uA′∥1}. It is worth pointing out that condition (A0) is

similar in spirit to the restricted eigenvalue condition used in lasso-penalized least squares

(Bickel et al., 2009) but also has an important technical difference because the response

variable appears together with the predictors—even in the fixed design setting, the entire

matrix

[
−X1 y1

]
is random. Thus we must take the expectation in condition (A0) so

that κ will be deterministic.

In the following result, we bound the ℓ2 estimation loss of the Tobit lasso estimator with

high probability. Let g(s) = ϕ(s)/Φ(s), where ϕ(·) denotes the standard normal density

function. We assume the following:

(A1) maxj
∥∥x(j)

∥∥
2
= O(

√
n),

∑n
i=1(x

′
iδ

∗)2 = O(n), maxj,k
∑n

i=1 x
2
ijx

2
ik = O(n),∑n

i=1 x
2
ij(2 + x′

iδ
∗ + g(−x′

iδ
∗))2 = O(n), and

∑n
i=1

1
2
(x′

iδ
∗)2(2 + x′

iδ
∗ + g(−x′

iδ
∗))2 =

O(n) where j, k ∈ {0, . . . , p};

(A2) s = O (nα1), log(p) = O(nα2), where α1, α2 ∈
(
0, 1

3

)
;

and define M1 = maxj n
−1

∥∥x(j)

∥∥2

2
and M2 = 16 + 4n−1

∑n
i=1(x

′
iδ

∗)2.
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Theorem 2. Suppose that Y ∗
i = x′

iβ
∗ + ϵi where ϵi

iid∼ N(0, σ∗2) and define Yi = Y ∗
i 1Y ∗

i >0

for i = 1, . . . , n. Let Θ̂lasso denote the solution to the lasso-penalized Tobit model (2) with

penalty parameter λlasso = A
√

log p
n

where A > max
{
4
√
M1,

√
8M2

γ∗

}
. If (A0) - (A2) hold,

then for large n, p ∥∥∥Θ̂lasso −Θ∗
∥∥∥
2
≤ 3

√
s+ 2λlasso

κ

with probability at least 1− b1p
−1 − b2e

−b3n1−2α1 where b1, b2, b3 are constants.

Remark. Under condition (A2),
√

(s+2) log p
n

→ 0 and, by extension, the ℓ2 estimation loss

for Θ̂lasso converges to 0 as n, p → ∞. As such, Θ̂lasso is consistent under the ℓ2 norm.

Theorem 2 follows immediately from the more general finite-sample probability bound given

in Theorem S.1 (in supplementary material). Note that we cannot compute λlasso = A
√

log p
n

in practice as δ∗ and γ∗ are unknown.

4.3 The folded-concave-penalized Tobit estimator

It is now well-understood that a lasso-penalized estimator often does not achieve consis-

tent model selection unless a stringent “irrepresentable condition” (Zhao and Yu, 2006; Zou,

2006) is assumed. To relax this condition, we can try to use a folded-concave-penalized To-

bit estimator. We aim to minimize Rn(δ, γ) = ℓn(δ, γ)+Pλ(δ) where Pλ(δ) =
∑p

j=1 Pλ(|δj|)

is a folded concave penalty, meaning that Pλ(|t|) satisfies

(i) Pλ(t) is increasing and concave in t ∈ [0,∞) with Pλ(0) = 0.

(ii) Pλ(t) is differentiable in t ∈ (0,∞) with P ′
λ(0) := P ′

λ(0+) ≥ a1λ.

(iii) P ′
λ(t) ≥ a1λ for t ∈ (0, a2λ]

(iv) P ′
λ(t) = 0 for t ∈ [aλ,∞) where a > a2,

where a is pre-specified and a1 and a2 are fixed positive constants which depend on the

folded concave penalty we choose. Two well-known folded concave penalties are the SCAD
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penalty (Fan and Li, 2001), the derivative of which is given by P ′
λ(t) = λ1t≤λ+

(aλ−t)+
a−1

1t>λ,

where a > 2, and the MCP (Zhang, 2010), the derivative of which is given by P ′
λ(t) =(

λ− t
a

)
+
, where a > 1. One can show that a1 = a2 = 1 for the SCAD penalty and

a1 = 1− a−1, a2 = 1 for the MCP.

The strongest rationale for using a folded concave penalty is that it can produce an

estimator with the strong oracle property—that is, an estimator which is equal to the

oracle estimator with very high probability (Fan and Lv, 2011; Fan et al., 2014). The

oracle estimator knows the true support set A beforehand and, as a result, delivers optimal

estimation efficiency. For the Tobit model, the oracle estimator is given by

Θ̂oracle = argmin
Θ:ΘA′c=0

ℓn(Θ) (3)

Note that we cannot solve (3) in practice because A is unknown. Instead, the oracle

estimator is a theoretical benchmark to compare our estimators against. Because our loss

function is convex, the oracle estimator is unique, meaning that

∇jℓn(Θ̂
oracle) = 0 ∀j ∈ A′ (4)

where ∇j denotes the derivative with respect to the jth element of Θ.

With a folded concave penalty function, the overall objective Rn(δ, γ) may no longer

be convex and, consequently, could have multiple local solutions. As such, theory should

be developed for a specific, explicitly-defined local solution. We examine the local solution

to the folded concave penalization problem which we obtain using the LLA algorithm (Zou

and Li, 2008). This choice is inspired by the general theory developed in Fan et al. (2014)

where the authors established the strong oracle property of the LLA solution for a wide

class of problems. We expect the same result holds for the Tobit model.

The LLA algorithm turns the Tobit model with a folded concave penalty into a sequence

of weighted Tobit lasso models. We can use Algorithm 1 to fit each weighted Tobit lasso
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model. Algorithm 2 shows the complete details of the LLA algorithm for the Tobit model

with a folded concave penalty.

Algorithm 2: The local linear approximation (LLA) algorithm

Initialize Θ̂(0) = Θ̂initial and compute the adaptive weights

ŵ(0) = (ŵ
(0)
1 , . . . , ŵ(0)

p )′ = (P ′
λ(|δ̂

(0)
1 |), . . . , P ′

λ(|δ̂(0)p |))′.

for m = 1, 2, . . . do

Solve the following optimization problem

Θ̂(m) = argminΘ ℓn(Θ) +
∑p

j=1 ŵ
(m−1)
j · |δj|;

Update the adaptive weight vector with ŵ
(m)
j = P ′

λ(|δ̂
(m)
j |) for j = 1, . . . , p.

end

We aim to show that the LLA algorithm finds the oracle estimator in one step and

converges to it in two steps with probability rapidly converging to 1 as n, p → ∞. We define

Q1 = max
j∈A∪{0}

λmax

(
1
nX

′
(A∪{0}) diag{|X(j)|}X(A∪{0})

)
; Q2 =

∥∥∥(E [
1
n∇

2
A′ logLn(Θ

∗)
])−1

∥∥∥
∞
; Q3 =

Q2 ·
∥∥E [

1
n [∇

2 logLn(Θ
∗)]A′c,A′

]∥∥
∞; H∗

A′,A′ = E
[
1
n∇

2
A′ logLn(Θ

∗)
]
⊗E

[
1
n∇

2
A′ logLn(Θ

∗)
]
, where

⊗ denotes the Kronecker product; K1 =
∥∥E [

1
n∇

2
A′ logLn(Θ

∗)
]∥∥

∞; and K2 =
∥∥∥(H∗

A′,A′)−1
∥∥∥
∞
.

We assume the following:

(A3) ||δ∗
A||min > (a+ 1)λ

(A4) E [∇2
A′ logLn(Θ

∗)] ≻ 0

(A5) Q1 = O(1), Q2 = O(1), Q3 = O(1), K1 = O(1), and K2 = O(1);

(A6) ∃C1,C2>0 such that Q2 > C1 and
∥∥E [

1
n
[∇2 logLn(Θ

∗)]A′c,A′
]∥∥

∞ > C2 for all n.

Theorem 3. Suppose that Y ∗
i = x′

iβ
∗+ϵi where ϵi

iid∼ N(0, σ∗2) and define Yi = Y ∗
i 1Y ∗

i >0 for

i = 1, . . . , n. Let λ = B
√

log p
n

with B > max
{

(9Q3+2)
√
4M1

a1
, (9Q3+2)

√
2M2

a1γ∗ , 4Q2

√
M1,

Q2
√
8M2

γ∗

}
.

Let a0 = min{1, a2}. Suppose that our initial estimator Θ̂initial satisfies

||δ̂initial
(−0) − δ∗

(−0)||max ≤ a0λ (5)
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If (A1) - (A6) hold, then for large n, p the LLA algorithm initialized by Θ̂initial finds Θ̂oracle

in one iteration with probability at least 1 − c1p
−1 − c2e

−c3n1−2α1 and converges to Θ̂oracle

after two iterations with probability at least 1−d1p
−1−d2e

−d3n1−2α1 where c1, c2, c3, d1, d2, d3

are constants.

Remark. Under condition (A2) both of the probability bounds in Theorem 3 rapidly con-

verge to 1 as n, p → ∞.

Theorem 3 follows immediately from Theorem S.4 (in supplementary material), which

provides more general finite-sample bounds. Note that we cannot obtain λ = B
√

log p
n

in

practice as δ∗ and γ∗ are unknown.

All that remains is to pick an initial estimator which satisfies (5) with high probability.

We choose the Tobit lasso as our initial estimator since we already have an estimation loss

bound from Theorem 2. The following corollary combines Theorems 2 and 3 to bound the

probability that the LLA algorithm initialized by Θ̂lasso converges to the oracle estimator

in two steps.

Corollary 1. Suppose that Y ∗
i = x′

iβ
∗ + ϵi where ϵi

iid∼ N(0, σ∗2) and define Yi = Y ∗
i 1Y ∗

i >0

for i = 1, . . . , n. Define A and B as in Theorems 2 and 3. If conditions (A0) - (A6)

hold, λlasso = A
√

log p
n

, and λ = max

{
B
√

log p
n

, 3
√
s+2λlasso

a0κ

}
, then for large n, p the LLA

algorithm initialized by Θ̂lasso converges to Θ̂oracle after two iterations with probability at

least 1− k1p
−1 − k2e

−k3n1−2α1 where k1, k2, k3 are constants.

Remark. Under condition (A2) the probability bound in Corollary 1 rapidly converges to 1

as n, p → ∞. As such, Corollary 1 establishes that the two-step LLA estimator initialized

by the Tobit lasso possesses the strong oracle property in a high-dimensional setting where

p ≫ n.
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5 Simulation Study

In the following simulation study, we compare the Tobit lasso, the two-step Tobit LLA

estimator with a SCAD penalty initialized by the Tobit lasso (Tobit LLA), the least-

squares lasso, least-squares SCAD, and Soret et al.’s(2018) high-dimensional Buckley-James

estimator (SAWCT2018) to determine whether the penalized Tobit models provide an

appreciable improvement in prediction, estimation, and selection performance on high-

dimensional data with a left-censored response. We compare our methods to SAWCT2018

as it is the best available alternative for high-dimensional left-censored regression. For

reference, we set a = 3.7 for Tobit LLA’s SCAD penalty and the least-squares SCAD

penalty throughout these simulations.

For each simulation setting, we generate 100 datasets with 100 training observations

and 5000 test observations. We generate an uncensored response from a linear model

y∗i = β0 + x′
iβ+ ϵi, where xi ∼ N(0,Σ) and ϵi ∼ N(0, σ2), and left-censor it to create yi as

follows. Let q denote the proportion of the yi that are left-censored in a simulated dataset.

We control q by setting cq to be the q-quantile of the y∗i from both the training and test

data and censoring the response at cq—that is, we set yi = max{y∗i , cq}.

We have four elements we can vary across our simulation settings: Σ, q, p, and the

response generating parameters (β0, β, and σ). We run simulations with each of the

following covariance structures for the predictors: independent, CS(0.5), CS(0.8), AR1(0.5),

and AR1(0.8) (CS(ρ) means that Σij = ρ for i ̸= j, Σii = 1 for all i and AR1(ρ) means that

(Σρ)ij = ρ|i−j| for all i, j). For each covariance structure, we generate datasets with every

combination of q ∈ {1
8
, 1
4
, 1
2
} and p ∈ {50, 500}. For all of these simulations, we set β0 = 3,

β = (5, 1, 0.5,−2, 0.1, 0, . . . , 0), and σ = 1. All together we examine 30 cases. We group

our results into Tables 1, 2, 3, 4, and 5 based on the covariance structure of the predictors

and vary p and q within these tables.
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To assess the prediction performance of the models, we tune each of the models on the

training data using 5-fold CV then compute the MSE of their predictions on the test data.

In our simulation results, we report the average test MSE over 100 replications and give

its standard error in parentheses. We also include prediction results for the ordinary least

squares oracle model (OLS Oracle) and an ordinary least squares model with all of the

predictors (OLS) for cases where p ≤ n.

We use a variety of metrics to compare the parameter estimation and selection perfor-

mance of the penalized models. To compare the accuracy of the parameter estimates, we

report the ℓ1 loss ∥β̂ − β∗∥1 and ℓ2 loss ∥β̂ − β∗∥2. To assess the selection performance

of these models, we report the number of false positive (FP) and false negative (FN) vari-

able selections. In our simulation results, we report the average for each metric over 100

replications and give its standard error in parentheses.

5.1 Prediction results

We see a remarkably consistent pattern in our prediction results: in all 30 simulation

settings the penalized Tobit models attain the two lowest average test MSEs, with Tobit

LLA delivering the best prediction performance in 29 of 30 settings. We see a clear gap

in prediction performance separating the three methods which account for censoring (the

Tobit lasso, Tobit LLA, and SAWCT2018) from the least squares methods in that the

average test MSEs for the OLS methods are, at minimum, nearly double those of the Tobit

models and SAWCT2018. As the proportion of censored observations q increases, the test

MSEs for the least-squares models climb upwards while the test MSEs for the Tobit models

and SAWCT2018 largely remain stable. In particular, we see that the average test MSEs

for the least-squares lasso and SCAD are around five times the average test MSE of Tobit

LLA when q = 1
2
. The message here is clear: failing to account for censoring in the data

can come at a steep price in terms of prediction accuracy, especially when the proportion

16



Table 1: Simulation Results with Independent Covariates

q p Method MSE ℓ2 ℓ1 FP FN
Lasso 2.37(0.03) 1.5(0.06) 3.14(0.09) 4.6(0.4) 0.8(0.1)
SCAD 2.22(0.02) 0.98(0.05) 2.19(0.06) 2(0.2) 1(0.1)
Tobit Lasso 1.08(0.01) 0.24(0.01) 1.61(0.05) 7(0.3) 0.6(0)
Tobit LLA 1.01(0.01) 0.15(0.01) 0.81(0.03) 1.1(0.1) 0.9(0)
SAWCT2018 1.09(0.01) 0.28(0.01) 1.47(0.04) 4.4(0.2) 0.7(0)
OLS Oracle 2.1(0.01) - - - -

50

OLS 3.95(0.07) - - - -
Lasso 2.45(0.04) 1.87(0.07) 3.85(0.12) 9.6(0.8) 1.2(0.1)
SCAD 2.1(0.02) 0.91(0.05) 2.35(0.07) 4.5(0.4) 1.2(0.1)
Tobit Lasso 1.23(0.01) 0.49(0.02) 2.61(0.05) 14.5(0.5) 0.9(0)
Tobit LLA 1.04(0.01) 0.22(0.01) 1.03(0.03) 2.3(0.2) 1(0)
SAWCT2018 1.28(0.02) 0.6(0.02) 2.51(0.07) 10.6(0.6) 1(0)

1
8

500

OLS Oracle 1.93(0.01) - - - -
Lasso 3.24(0.04) 4.45(0.13) 4.91(0.09) 4(0.3) 1.2(0.1)
SCAD 3.05(0.03) 3.42(0.11) 4.07(0.08) 2.1(0.2) 1.4(0.1)
Tobit Lasso 0.9(0.01) 0.3(0.01) 1.69(0.05) 5.9(0.3) 0.6(0)
Tobit LLA 0.84(0.01) 0.18(0.01) 0.88(0.03) 1(0.1) 0.9(0)
SAWCT2018 0.93(0.01) 0.42(0.02) 1.77(0.04) 4.3(0.2) 0.7(0.1)
OLS Oracle 2.79(0.01) - - - -

50

OLS 5.49(0.1) - - - -
Lasso 3.58(0.05) 5.01(0.13) 5.8(0.15) 9.5(0.9) 1.6(0.1)
SCAD 3.18(0.03) 3.23(0.11) 4.36(0.08) 6(0.5) 1.5(0.1)
Tobit Lasso 1.12(0.02) 0.61(0.03) 2.78(0.06) 13.4(0.4) 1(0)
Tobit LLA 0.94(0.01) 0.28(0.02) 1.13(0.03) 2(0.2) 1.1(0)
SAWCT2018 1.21(0.02) 0.91(0.04) 2.95(0.08) 10.5(0.5) 1(0)

1
4

500

OLS Oracle 2.88(0.02) - - - -
Lasso 3.84(0.04) 15.6(0.21) 8.26(0.07) 3.3(0.3) 1.7(0.1)
SCAD 3.66(0.03) 13.73(0.21) 7.57(0.07) 2.2(0.2) 1.9(0.1)
Tobit Lasso 0.69(0.01) 0.55(0.03) 2.24(0.06) 6.1(0.3) 0.6(0.1)
Tobit LLA 0.6(0.01) 0.31(0.02) 1.14(0.04) 0.8(0.1) 1.1(0)
SAWCT2018 0.74(0.01) 1.43(0.06) 2.87(0.07) 3.6(0.2) 0.8(0.1)
OLS Oracle 3.45(0.02) - - - -

50

OLS 6.49(0.1) - - - -
Lasso 3.99(0.04) 18.11(0.18) 9.66(0.16) 8.4(0.9) 2.2(0.1)
SCAD 3.72(0.03) 15.21(0.19) 8.48(0.06) 5.5(0.5) 2.2(0.1)
Tobit Lasso 0.93(0.02) 1.42(0.07) 3.57(0.08) 10.2(0.4) 1.2(0)
Tobit LLA 0.69(0.01) 0.49(0.03) 1.49(0.04) 1.7(0.2) 1.4(0)
SAWCT2018 1.11(0.03) 3.57(0.14) 5.09(0.1) 10.1(0.4) 1.3(0)

1
2

500

OLS Oracle 3.28(0.01) - - - -
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Table 2: Simulation Results with CS(0.5) Covariates

q p Method MSE ℓ2 ℓ1 FP FN
Lasso 2.02(0.02) 1.6(0.07) 3.33(0.08) 6.5(0.3) 0.9(0.1)
SCAD 1.93(0.02) 0.92(0.05) 2.05(0.07) 1.6(0.2) 1.2(0.1)
Tobit Lasso 1.07(0.01) 0.41(0.02) 1.94(0.05) 7.3(0.3) 0.6(0)
Tobit LLA 1(0.01) 0.25(0.01) 1.04(0.03) 1.8(0.2) 0.9(0)
SAWCT2018 1.08(0.01) 0.45(0.02) 1.72(0.04) 5.4(0.2) 0.7(0.1)
OLS Oracle 1.8(0.01) - - - -

50

OLS 3.48(0.08) - - - -
Lasso 2.37(0.03) 2.61(0.09) 4.97(0.15) 15.8(0.8) 1.5(0.1)
SCAD 2.03(0.02) 1.03(0.05) 2.34(0.06) 4.3(0.3) 1.6(0.1)
Tobit Lasso 1.19(0.01) 0.84(0.03) 3.11(0.06) 15.8(0.4) 1.2(0)
Tobit LLA 1(0.01) 0.36(0.02) 1.41(0.04) 5.3(0.3) 1.2(0)
SAWCT2018 1.22(0.01) 0.95(0.03) 3.2(0.07) 15.6(0.5) 1.2(0)

1
8

500

OLS Oracle 1.87(0.01) - - - -
Lasso 2.91(0.03) 4.83(0.15) 5.31(0.11) 5.9(0.3) 1.1(0.1)
SCAD 2.74(0.03) 3.31(0.13) 3.9(0.09) 1.8(0.2) 1.6(0.1)
Tobit Lasso 0.91(0.01) 0.47(0.02) 2.03(0.05) 7.2(0.3) 0.7(0.1)
Tobit LLA 0.84(0.01) 0.28(0.02) 1.1(0.03) 1.4(0.1) 1(0)
SAWCT2018 0.95(0.01) 0.67(0.03) 2.01(0.05) 5(0.2) 0.8(0)
OLS Oracle 2.57(0.01) - - - -

50

OLS 4.81(0.08) - - - -
Lasso 2.99(0.03) 5.94(0.17) 6.46(0.13) 13.3(0.7) 1.8(0.1)
SCAD 2.69(0.03) 3.34(0.14) 4.26(0.09) 5.7(0.4) 1.9(0.1)
Tobit Lasso 1.06(0.01) 1.07(0.05) 3.35(0.08) 14.9(0.5) 1.2(0)
Tobit LLA 0.89(0.01) 0.47(0.03) 1.58(0.05) 5.4(0.4) 1.2(0.1)
SAWCT2018 1.11(0.02) 1.33(0.05) 3.58(0.08) 14(0.5) 1.2(0.1)

1
4

500

OLS Oracle 2.41(0.01) - - - -
Lasso 3.15(0.03) 15.52(0.21) 8.63(0.08) 5.4(0.3) 1.6(0.1)
SCAD 3.12(0.03) 13.32(0.24) 7.58(0.1) 2(0.2) 2.2(0.1)
Tobit Lasso 0.68(0.01) 0.86(0.05) 2.65(0.08) 6.7(0.3) 0.9(0.1)
Tobit LLA 0.63(0.01) 0.55(0.05) 1.52(0.06) 1.3(0.1) 1.3(0.1)
SAWCT2018 0.77(0.01) 2.13(0.1) 3.4(0.08) 4.2(0.2) 1(0.1)
OLS Oracle 2.87(0.02) - - - -

50

OLS 5.48(0.08) - - - -
Lasso 3.48(0.03) 18.3(0.26) 9.76(0.13) 10.1(0.7) 2.4(0.1)
SCAD 3.25(0.02) 14.92(0.26) 8.14(0.07) 2.8(0.4) 2.8(0)
Tobit Lasso 0.94(0.02) 2.21(0.1) 4.27(0.09) 12.7(0.4) 1.5(0.1)
Tobit LLA 0.7(0.01) 0.82(0.05) 1.99(0.06) 4.4(0.3) 1.6(0.1)
SAWCT2018 1.02(0.02) 3.81(0.15) 5.36(0.1) 12.9(0.4) 1.6(0.1)

1
2

500

OLS Oracle 2.85(0.01) - - - -
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Table 3: Simulation Results with CS(0.8) Covariates

q p Method MSE ℓ2 ℓ1 FP FN
Lasso 2(0.02) 3.02(0.15) 4.52(0.14) 6(0.3) 1.2(0.1)
SCAD 1.94(0.02) 1.83(0.13) 2.76(0.11) 0.9(0.1) 2.1(0.1)
Tobit Lasso 1.06(0.01) 1.02(0.05) 2.74(0.08) 6(0.2) 1(0.1)
Tobit LLA 1.02(0.01) 0.74(0.05) 1.77(0.06) 1.2(0.1) 1.5(0.1)
SAWCT2018 1.16(0.01) 1.61(0.07) 2.71(0.07) 3.4(0.2) 1.2(0.1)
OLS Oracle 1.79(0.01) - - - -

50

OLS 3.38(0.05) - - - -
Lasso 2.11(0.03) 4.56(0.17) 6.34(0.22) 13.6(0.7) 1.9(0.1)
SCAD 1.94(0.02) 2.45(0.17) 3.15(0.11) 1.3(0.2) 2.5(0.1)
Tobit Lasso 1.21(0.01) 1.98(0.08) 4(0.08) 11.3(0.4) 1.6(0.1)
Tobit LLA 1.07(0.01) 1.09(0.07) 2.26(0.07) 4.1(0.3) 1.8(0.1)
SAWCT2018 1.22(0.01) 2.12(0.08) 3.91(0.07) 10.5(0.3) 1.6(0.1)

1
8

500

OLS Oracle 1.65(0.01) - - - -
Lasso 2.52(0.03) 5.66(0.22) 5.81(0.12) 5.4(0.3) 1.6(0.1)
SCAD 2.54(0.03) 4.07(0.26) 4.32(0.18) 0.8(0.1) 2.3(0.1)
Tobit Lasso 0.92(0.01) 1.01(0.05) 2.74(0.08) 5.8(0.2) 1.1(0.1)
Tobit LLA 0.89(0.01) 0.86(0.05) 1.87(0.06) 1(0.1) 1.7(0)
SAWCT2018 1.02(0.01) 1.8(0.08) 2.94(0.07) 3.3(0.2) 1.4(0.1)
OLS Oracle 2.29(0.01) - - - -

50

OLS 4.32(0.07) - - - -
Lasso 2.71(0.03) 8.37(0.26) 7.56(0.23) 10.8(0.7) 2.4(0.1)
SCAD 2.57(0.02) 5.55(0.27) 4.92(0.13) 1.1(0.2) 2.7(0)
Tobit Lasso 1.05(0.02) 2.29(0.11) 4.17(0.09) 11.3(0.4) 1.6(0.1)
Tobit LLA 0.93(0.01) 1.37(0.09) 2.48(0.08) 3.8(0.3) 2(0.1)
SAWCT2018 1.09(0.02) 2.66(0.11) 4.14(0.09) 9.8(0.3) 1.7(0.1)

1
4

500

OLS Oracle 2.2(0.01) - - - -
Lasso 2.74(0.01) 17.09(0.27) 9.26(0.12) 4.8(0.3) 2.1(0.1)
SCAD 2.74(0.02) 14.64(0.28) 7.96(0.1) 0.5(0.1) 2.9(0)
Tobit Lasso 0.63(0.01) 1.56(0.09) 3.34(0.08) 6(0.3) 1.2(0.1)
Tobit LLA 0.65(0.01) 1.67(0.12) 2.54(0.09) 1(0.1) 1.9(0.1)
SAWCT2018 0.78(0.01) 4.06(0.15) 4.34(0.08) 2.8(0.2) 1.7(0.1)
OLS Oracle 2.56(0.01) - - - -

50

OLS 4.93(0.07) - - - -
Lasso 3(0.02) 19.32(0.31) 10.18(0.19) 8.4(0.6) 2.8(0)
SCAD 2.85(0.02) 14.99(0.23) 8.03(0.06) 0.4(0.1) 3(0)
Tobit Lasso 0.82(0.02) 3.69(0.19) 5.11(0.11) 9.7(0.3) 2.1(0.1)
Tobit LLA 0.73(0.02) 2.46(0.17) 3.14(0.09) 2.8(0.3) 2.4(0.1)
SAWCT2018 0.89(0.02) 5.25(0.2) 5.51(0.11) 7.2(0.3) 2.3(0.1)

1
2

500

OLS Oracle 2.65(0.01) - - - -
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Table 4: Simulation Results with AR1(0.5) Covariates

q p Method MSE ℓ2 ℓ1 FP FN
Lasso 2.25(0.02) 1.58(0.07) 3.03(0.07) 3.8(0.3) 1.3(0.1)
SCAD 2.13(0.02) 1.09(0.05) 2.34(0.06) 1.8(0.2) 1.4(0.1)
Tobit Lasso 1.02(0.01) 0.32(0.01) 1.7(0.04) 6(0.3) 0.8(0)
Tobit LLA 0.97(0.01) 0.26(0.02) 1.05(0.03) 1.1(0.1) 1(0.1)
SAWCT2018 1.03(0.01) 0.38(0.02) 1.55(0.03) 3.9(0.2) 1(0)
OLS Oracle 2.02(0.01) - - - -

50

OLS 3.88(0.07) - - - -
Lasso 2.78(0.04) 2.37(0.09) 4.18(0.13) 8.9(0.7) 1.8(0)
SCAD 2.48(0.03) 1.33(0.07) 2.83(0.09) 4.5(0.4) 1.7(0.1)
Tobit Lasso 1.25(0.01) 0.69(0.03) 2.73(0.05) 13(0.5) 1.3(0)
Tobit LLA 1.07(0.01) 0.36(0.02) 1.35(0.04) 2.4(0.2) 1.2(0)
SAWCT2018 1.3(0.02) 0.82(0.03) 2.64(0.06) 9.7(0.6) 1.4(0.1)

1
8

500

OLS Oracle 2.23(0.01) - - - -
Lasso 3.34(0.04) 4.66(0.14) 5.08(0.11) 4.3(0.3) 1.5(0.1)
SCAD 3.23(0.04) 3.64(0.13) 4.19(0.1) 2.3(0.2) 1.7(0.1)
Tobit Lasso 0.93(0.01) 0.4(0.02) 1.94(0.05) 6.5(0.3) 0.9(0)
Tobit LLA 0.88(0.01) 0.33(0.02) 1.19(0.04) 1(0.1) 1.2(0)
SAWCT2018 0.94(0.01) 0.53(0.02) 1.87(0.03) 4.2(0.2) 1(0)
OLS Oracle 2.98(0.02) - - - -

50

OLS 5.64(0.1) - - - -
Lasso 3.72(0.05) 5.39(0.15) 6(0.13) 9.1(0.8) 1.9(0)
SCAD 3.51(0.04) 3.74(0.14) 4.85(0.09) 7.1(0.5) 2(0.1)
Tobit Lasso 1.15(0.02) 0.86(0.03) 2.95(0.05) 12.6(0.4) 1.4(0)
Tobit LLA 0.97(0.01) 0.46(0.02) 1.5(0.04) 2.5(0.2) 1.3(0)
SAWCT2018 1.23(0.02) 1.13(0.04) 3.18(0.07) 11.1(0.6) 1.5(0.1)

1
4

500

OLS Oracle 3.03(0.01) - - - -
Lasso 3.88(0.03) 15.66(0.19) 8.44(0.07) 3.4(0.3) 1.8(0.1)
SCAD 3.87(0.04) 14.01(0.2) 7.84(0.09) 2(0.2) 2.3(0.1)
Tobit Lasso 0.68(0.01) 0.67(0.03) 2.3(0.05) 5.4(0.2) 1.1(0)
Tobit LLA 0.63(0.01) 0.53(0.03) 1.52(0.04) 0.9(0.1) 1.5(0.1)
SAWCT2018 0.73(0.01) 1.44(0.06) 2.87(0.06) 3(0.2) 1.3(0)
OLS Oracle 3.54(0.01) - - - -

50

OLS 6.78(0.1) - - - -
Lasso 4.08(0.04) 16.79(0.21) 9.1(0.11) 6(0.6) 2.3(0)
SCAD 4.02(0.03) 14.17(0.21) 8.25(0.08) 3.8(0.5) 2.7(0.1)
Tobit Lasso 0.82(0.02) 1.45(0.06) 3.56(0.08) 10(0.4) 1.6(0)
Tobit LLA 0.64(0.01) 0.7(0.04) 1.83(0.05) 2.3(0.2) 1.5(0.1)
SAWCT2018 0.94(0.02) 2.93(0.1) 4.57(0.09) 8.5(0.5) 1.7(0)

1
2

500

OLS Oracle 3.52(0.02) - - - -
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Table 5: Simulation Results with AR1(0.8) Covariates

q p Method MSE ℓ2 ℓ1 FP FN
Lasso 2.01(0.02) 2.01(0.1) 3.57(0.1) 4.5(0.3) 1.6(0.1)
SCAD 1.93(0.02) 1.65(0.09) 2.72(0.07) 1.1(0.1) 2.1(0)
Tobit Lasso 1.04(0.01) 0.69(0.03) 2.17(0.06) 4.8(0.2) 1.3(0.1)
Tobit LLA 0.99(0.01) 0.69(0.05) 1.72(0.05) 1.5(0.1) 1.8(0)
SAWCT2018 1.06(0.01) 0.9(0.04) 2.06(0.04) 2.6(0.2) 1.6(0)
OLS Oracle 1.8(0.01) - - - -

50

OLS 3.42(0.07) - - - -
Lasso 2.53(0.04) 3.42(0.13) 4.69(0.09) 9.1(0.6) 2.1(0)
SCAD 2.23(0.02) 2.18(0.1) 3.3(0.06) 3.9(0.4) 2.5(0.1)
Tobit Lasso 1.26(0.02) 1.51(0.06) 3.31(0.05) 11.9(0.4) 2(0)
Tobit LLA 1.19(0.02) 1.69(0.1) 2.84(0.07) 4.1(0.4) 2.2(0.1)
SAWCT2018 1.3(0.02) 1.57(0.06) 3.46(0.07) 12(0.5) 2(0)

1
8

500

OLS Oracle 1.9(0.01) - - - -
Lasso 2.91(0.03) 5.08(0.18) 5.45(0.1) 4(0.3) 1.8(0)
SCAD 2.84(0.03) 4.23(0.19) 4.53(0.13) 1.6(0.2) 2.5(0.1)
Tobit Lasso 0.91(0.01) 0.83(0.04) 2.36(0.06) 4.8(0.2) 1.4(0.1)
Tobit LLA 0.85(0.01) 0.71(0.05) 1.78(0.05) 1.5(0.2) 1.8(0)
SAWCT2018 0.95(0.01) 1.14(0.05) 2.34(0.05) 2.5(0.2) 1.7(0)
OLS Oracle 2.55(0.01) - - - -

50

OLS 5.04(0.09) - - - -
Lasso 3.62(0.04) 7.15(0.2) 6.6(0.09) 8.1(0.6) 2.4(0.1)
SCAD 3.28(0.02) 4.81(0.2) 5.07(0.1) 4.2(0.4) 2.8(0)
Tobit Lasso 1.2(0.02) 1.99(0.09) 3.72(0.07) 10.5(0.4) 2(0)
Tobit LLA 1.08(0.02) 2.03(0.1) 3.04(0.07) 3.3(0.3) 2.4(0.1)
SAWCT2018 1.25(0.03) 2.14(0.09) 4.11(0.09) 12.1(0.5) 1.9(0)

1
4

500

OLS Oracle 2.82(0.02) - - - -
Lasso 3.33(0.03) 15.47(0.23) 8.59(0.08) 3.3(0.3) 2.3(0.1)
SCAD 3.27(0.02) 13.93(0.24) 7.81(0.07) 1(0.2) 2.9(0)
Tobit Lasso 0.67(0.01) 1.14(0.06) 2.74(0.07) 4.1(0.2) 1.6(0.1)
Tobit LLA 0.65(0.01) 1.33(0.1) 2.31(0.09) 1(0.1) 2.1(0.1)
SAWCT2018 0.75(0.01) 2.2(0.08) 3.34(0.06) 1.8(0.1) 1.9(0)
OLS Oracle 3.05(0.02) - - - -

50

OLS 5.93(0.1) - - - -
Lasso 3.71(0.04) 18.32(0.2) 9.58(0.16) 6.1(0.7) 2.6(0)
SCAD 3.36(0.02) 15.27(0.22) 8.38(0.07) 2.6(0.3) 3(0)
Tobit Lasso 1.04(0.03) 3.33(0.15) 4.51(0.08) 8(0.4) 2.1(0)
Tobit LLA 0.86(0.02) 2.98(0.11) 3.53(0.05) 1.7(0.2) 2.9(0)
SAWCT2018 1.15(0.03) 4.81(0.19) 5.75(0.1) 9.7(0.5) 2.1(0)

1
2

500

OLS Oracle 3.07(0.02) - - - -
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of censored observations is high.

Narrowing our focus to the three models which account for censoring, we see that both

of the penalized Tobit models achieve lower average test MSEs than SAWCT2018 in all

30 simulation settings and that Tobit LLA achieves the lowest average test MSE in most

cases, often by a comfortable margin. In particular, we see that Tobit LLA gains a larger

edge over the Tobit lasso and SAWCT2018 in simulations settings with p = 500 relative to

those with p = 50.

5.2 Estimation results

Turning to estimation performance, we see patterns similar to those that emerged in our

prediction comparison. The penalized Tobit models’ estimates have the two lowest average

ℓ2 losses in all 30 simulation settings (the Tobit LLA estimates have the lowest average ℓ2

loss overall in 27 of 30 settings). In addition, the Tobit LLA estimates deliver the lowest

average ℓ1 loss in every simulation setting.

As in the prediction comparison there is a clear gap between the least squares meth-

ods and the models which account for censoring, with the latter consistently having far

lower ℓ2 and ℓ1 estimation losses. In many cases, the average ℓ2 losses for the Tobit and

SAWCT2018 estimates differ from those of the least squares estimates by an order of mag-

nitude. Additionally, we once again find that the gap in estimation performance between

the models that account for censoring and the least squares models grows as the proportion

of censored observations increases to q = 1
2
.

Among the models which account for censoring, the penalized Tobit models’ estimates

consistently achieve lower average ℓ2 losses than the SAWCT2018 estimates. Shifting our

focus to the ℓ1 loss, we see that the Tobit LLA estimates achieve markedly lower average ℓ1

losses than the Tobit lasso and SAWCT2018 estimates in every setting. The competition

between the Tobit lasso and SAWCT2018, however, is closer, with the Tobit lasso estimates
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achieving a lower average ℓ1 loss than the SAWCT2018 estimates in just 18 of 30 settings.

5.3 Selection results

Our variable selection results are somewhat mixed. While the penalized Tobit models and

SAWCT2018 consistently deliver lower average false negative counts than the least squares

models, the differences are relatively small. At the same time, the SCAD and Tobit LLA

models consistently make fewer false positive variable selections than the other models.

Beyond that, neither SCAD nor Tobit LLA appears to have a clear edge in making fewer

false positive selections, though Tobit LLA has a lower average false positive count in 19

of 30 settings.

Overall, the penalized Tobit models deliver comparable (if slightly superior) selection

performances to the least squares models and SAWCT2018 in this study. These results

further suggest that modelers may prefer to use the Tobit lasso if their goal is to minimize

false negative variable selections and Tobit LLA if their goal is to minimize false positive

variable selections.

5.4 Takeaways

Tobit LLA clearly outperformed competing methods in this simulation study, providing

more accurate predictions and parameter estimates than the alternatives. Because it also

has stronger theoretical guarantees than the Tobit lasso, we ultimately recommend Tobit

LLA for analyzing high-dimensional left-censored data.

6 HIV Viral Load and Drug Resistance

Due to its short replication cycle and high mutation rate, human immunodeficiency virus

(HIV) can rapidly develop drug resistance mutations (DRMs) in HIV-infected patients
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receiving antiretroviral therapy. To counter this, guidelines recommended physicians reg-

ularly monitor HIV viral load and, if a patient’s treatment regimen is failing to suppress

the virus, conduct genotypic testing to check for DRMs so they may update the patient’s

drug regimen appropriately (Shafer, 2002).

There is a substantial literature devoted to identifying DRMs and quantifying the de-

gree of resistance they provide against different antiretroviral treatments (Shafer, 2006).

One way to accomplish this is by modeling the relationship between HIV viral load and

mutations in the virus’s genome. This poses two difficulties: (1) the observed viral load

is left-censored because the assays used to measure it cannot detect concentrations below

certain thresholds and (2) genome data are inherently high-dimensional. As we established

in our simulation study, it is necessary to use a model which accounts for censoring when

analyzing these kind of data. As such, we will use Tobit LLA and SAWCT2018 to model

HIV viral load and identify potential DRMs.

Our data for this example come from the OPTIONS trial by the AIDS Clinical Trials

Group (Gandhi et al., 2020) and were downloaded from the Stanford HIV Drug Resis-

tance Database (Shafer, 2006). The OPTIONS trial study population consisted of 413

HIV-infected individuals receiving protease inhibitor (PI)-based treatment and experienc-

ing virological failure. Each participant was given an optimized antiretroviral regimen

based on their viral drug resistance and treatment history. Participants with moderate

drug resistance were randomly assigned to either add nucleoside reverse transcriptase in-

hibitors (NRTIs) to their optimized regimens or omit NRTIs from their optimized regimens.

Participants with highly drug-resistant HIV all received optimized regimens which included

NRTIs.

We use Tobit LLA and SAWCT2018 to model HIV viral load 12 weeks after drug regi-

men assignment as a function of HIV genotypic mutations, current drug regimen, baseline

viral load, observation week, and HIV subtype using a sample with p ≫ n and a moderate
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Table 6: Prediction Accuracy on HIV Viral Load Data

Model Tobit Loss
SAWCT2018 2.04 (0.02)
Tobit LLA 1.45 (0.01)

amount of left-censoring. Our data come from the n = 407 participants who returned for

their 12-week follow-up evaluations and include p = 1295 predictors, most of which are

indicators for protease (PR) and reverse transcriptase (RT) gene mutations. The assays

used to measure HIV viral load in the OPTIONS trial had a detection threshold of 50

copies/mL. At their 12-week evaluations, 35.6% of study participants had viral loads which

were at or below this lower limit and, consequently, undetectable. Given this limited infor-

mation about these censored viral loads, investigators recorded them as falling at the lower

limit of 50 copies/mL. We use log10-HIV viral load as our response, as it is often assumed

to be normally distributed (Soret et al., 2018).

We start by comparing the prediction performance of Tobit LLA and SAWCT2018 in

terms of the Tobit loss in order to assess overall model fit. We randomly split the data

into a training set of 326 observations and a test set of 81 observations, using stratified

sampling to ensure that the training and test sets have similar proportions of left-censored

observations. We repeat this process 50 times. Within each of the 50 training sets, we tune

Tobit LLA and SAWCT2018 using 5-fold CV. Table 6 reports the average Tobit loss across

the 50 test sets, with the standard error in parentheses, for each model.

Our primary interest is in the predictors selected by the models, as they may include

potential DRMs. We tune Tobit LLA and SAWCT2018 using 5-fold CV then fit them

to the entire dataset. Tobit LLA selects a sparse model with only three predictors: the

RT mutation M184V, baseline viral load, and whether the participant is taking raltegravir

(RAL), an integrase strand transfer inhibitor (INSTI) included in some of the patients’

optimized regimens. SAWCT2018, on the other hand, selects 51 mutations (including
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M184V), baseline viral load, and whether the patient is taking RAL or the protease inhibitor

saquinavir. While it is possible that the 50 other mutations selected by SAWCT2018

include additional DRMs, the superior prediction performance of the sparse Tobit LLA

model suggests that M184V is uniquely important for predicting HIV viral load in this

population. It seems far more likely that SAWCT2018 is selecting unimportant mutations,

reducing its utility as a method for identifying potential DRMs.

The Tobit LLA model provides some interesting insights into HIV drug resistance.

Most importantly, M184V stands out as the sole mutation selected by Tobit LLA. This

selection is supported by other research: based on an extensive review of the HIV drug

resistance literature, the Stanford HIV Drug Resistance Database lists M184V as a major

NRTI resistance mutation (Shafer, 2006). It is also notable that Tobit LLA did not select

any NRTIs as important predictors. This is consistent with Gandhi et al.’s (2020) finding

that participants who added NRTIs to their regimes did not experience significantly higher

rates of virological failure than those who omitted NRTIs from their regimes.

7 Discussion

As high-dimensional data become increasingly common across disciplines, we expect the

need for reliable, theoretically-supported techniques for high-dimensional left-censored re-

gression to grow. The penalized Tobit models we introduce in this paper fill several gaps

in the literature for high-dimensional left-censored regression. They are among the first

models in this area with theoretical guarantees in the setting where p ≫ n and the lasso-

initialized two-step LLA estimator for folded-concave penalized Tobit regression is the very

first to possess the strong oracle property. In addition, our penalized Tobit models provide

the first high-dimensional extensions of the enduringly popular Tobit model.

Our penalized Tobit models also perform well empirically. In an extensive simulation
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study, our penalized Tobit models delivered superior prediction and estimation performance

relative to least squares models and the best available alternative for high-dimensional left-

censored regression. When applied to real high-dimensional left-censored HIV viral load

data, the Tobit LLA estimator delivered more accurate predictions and selected a more

parsimonious model than the best available alternative.
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