High-dimensional Censored Regression via
the Penalized Tobit Likelihood

Tate Jacobson
School of Statistics, University of Minnesota
and

Hui Zou
School of Statistics, University of Minnesota

September 23, 2022

Abstract

High-dimensional regression and regression with a left-censored response are each
well-studied topics. In spite of this, few methods have been proposed which deal
with both of these complications simultaneously. The Tobit model—long the stan-
dard method for censored regression in economics—has not been adapted for high-
dimensional regression at all. To fill this gap and bring up-to-date techniques from
high-dimensional statistics to the field of high-dimensional left-censored regression,
we propose several penalized Tobit models. We develop a fast algorithm which com-
bines quadratic minimization with coordinate descent to compute the penalized Tobit
solution path. Theoretically, we analyze the Tobit lasso and Tobit with a folded con-
cave penalty, bounding the f5 estimation loss for the former and proving that a local
linear approximation estimator for the latter possesses the strong oracle property.
Through an extensive simulation study, we find that our penalized Tobit models
provide more accurate predictions and parameter estimates than other methods on
high-dimensional left-censored data. We use a penalized Tobit model to analyze high-
dimensional left-censored HIV viral load data from the AIDS Clinical Trials Group
and identify potential drug resistance mutations in the HIV genome. A supplemen-
tary file contains intermediate theoretical results and technical proofs.

Keywords: censored regression, coordinate descent, folded concave penalty, high dimen-
sions, strong oracle property, Tobit model



1 Introduction

In many regression problems, the dependent variable can only be observed within a re-
stricted range. We say that such a response is censored if we retain some information
from the observations which fall outside of this range rather than losing them entirely. In
particular, we still observe the predictors for these cases and know whether the unobserved
response value fell below or above the range. Censored data appear in many disciplines,
either as a consequence of the data collection process or due to the nature of the response
itself. For instance, biological assays used to measure human immunodeficiency virus (HIV)
viral load in plasma cannot detect viral concentrations below certain (known) thresholds.
As such, the observed viral load is left-censored. Because censoring violates a key assump-
tion of linear regression, ordinary least squares (OLS) estimates of the regression coefficients
will be biased and inconsistent if the response is censored (Amemiya, 1984). Recognizing
this, researchers in different disciplines have developed regression techniques to deal with
various types of censoring. Among these, the Tobit model has long been the standard
method for modeling a left-censored response in economics.

Tobin (1958) originally developed the Tobit model to study how annual expenditures
on durable goods relate to household income. Noting that most low-income households
spend $0/year on durable goods, he designed the Tobit likelihood to treat response values
at this (known) lower limit differently than those above the limit. He described the Tobit
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model as a “hybrid of probit analysis and multiple regression,” as it models the probability
of the response falling at the lower limit using an approach similar to probit analysis while
still treating the response as continuous (Tobin, 1958). Because left-censored data are
common in household surveys and other micro-sample survey data, the Tobit model has

enjoyed lasting popularity in economics and the social sciences. In the half-century since

its introduction, it has been extended to handle right-censored and interval-censored data



(Amemiya, 1984) and has been adopted in other disciplines.

In recent years, high-dimensional data have become increasingly common in many fields
of study. This presents some researchers with the challenge of analyzing data with both
high-dimensional covariates and a left-censored response. Consider the HIV viral load ex-
ample from earlier. There is now a sizable literature around modeling the relationship
between HIV viral load and mutations in the HIV genome. Given the number of muta-
tions that can occur, this is inherently a high-dimensional problem, where the number of
predictors p is much larger than the number of observations n. At the same time, the
observed viral load is left-censored. Previous studies in this area have avoided the problem
of having both high-dimensional covariates and a left-censored response by reducing HIV
viral load to a binary response, such as ¥ = Lyial 1oad>200 copies/mL- 11 taking this approach,
however, the modelers lose a great deal of information about the response. To directly
model HIV viral load in this setting, researchers need techniques designed specifically for
high-dimensional left-censored regression.

While high-dimensional regression and left-censored regression have been thoroughly
studied as separate topics, few methods have been developed which handle both high-
dimensional covariates and a left-censored response simultaneously. Miiller and van de
Geer (2016) and Zhou and Liu (2016) have extended the least absolute deviation estimator
of Powell (1984) for high-dimensional data while Johnson (2009), Li et al. (2014), and
Soret et al. (2018) have extended the Buckley-James estimator (Buckley and James, 1979).
To our knowledge, no existing methods directly extend the Tobit model. Theoretically,
this under-studied area has fallen behind the broader field of high-dimensional statistics,
with estimators achieving weaker guarantees and requiring stronger assumptions. Among
existing high-dimensional left-censored regression techniques, only Miiller and van de Geer’s
(2016) estimator has any theoretical guarantees in the setting where p > n. This estimator,

however, does not achieve consistent model selection. On the other hand, the estimators of



Johnson (2009), Zhou and Liu (2016), and Li et al. (2014) are shown to possess the weak
oracle property, but only in the fixed p case. We aim to improve on these high-dimensional
left-censored regression techniques by developing an estimator which possesses the strong
oracle property even when p > n.

In this study, we develop penalized Tobit models for high-dimensional censored regres-
sion. The negative log-likelihood in Tobin’s (1958) original formulation of the Tobit model
is non-convex, creating technical problems for optimization in a high-dimensional setting.
We use Olsen’s (1978) convex reparameterization of the negative log-likelihood in our pe-
nalized Tobit models so that we can solve our problem using convex optimization methods.
In particular, we leverage the fact that the negative log-likelihood satisfies the quadratic
majorization condition to develop a generalized coordinate descent (GCD) algorithm (Yang
and Zou, 2013) for minimizing the penalized negative log-likelihood.

For our theoretical study, we analyze the Tobit lasso and Tobit with a folded concave
penalty in a high-dimensional setting with p > n. We derive a bound for the ¢, estimation
loss for the Tobit lasso estimator which holds with high probability. We introduce a local
linear approximation (LLA) algorithm for Tobit regression with a folded concave penalty
and prove that, when initialized with the Tobit lasso estimator, this algorithm finds the
oracle estimator in one step and converges to it in two steps with probability rapidly
converging to 1 as n and p diverge. To our knowledge, this makes the two-step LLA
estimator the first estimator for high-dimensional left-censored regression to possess the
strong oracle property.

We have implemented the GCD algorithm and the LLA algorithm (specifically with
the SCAD penalty (Fan and Li, 2001)) in the tobitnet package in R, which is available at
https://github.com/TateJacobson/tobitnet.

This paper is organized as follows. In Section 2 we review the Tobit model and its

statistical foundations. In Section 3 we introduce penalized Tobit models and develop our



GCD algorithm to fit them. In Section 4 we carry out our theoretical study of the Tobit
lasso and our LLA algorithm for Tobit with a folded concave penalty. Section 5 presents
the results of an extensive simulation study comparing our penalized Tobit models with
penalized least-squares models and Soret et al.’s (2018) high-dimensional Buckley-James
estimator (the best available alternative for high-dimensional left-censored regression) in
terms of their prediction, estimation, and selection performance. In Section 6 we analyze
real high-dimensional left-censored data from the AIDS Clinical Trials Group, modeling the
relationship between HIV viral load and HIV genotypic mutations using the two-step Tobit
LLA estimator and Soret et al.’s Buckley-James estimator in order to identify potential
drug resistance mutations (DRMs). Intermediate theoretical results and technical proofs

are provided in the supplementary material for this paper.

2 The Tobit Model

Suppose that we observe a set of predictors, z1,...,z,, and a response y > ¢ where c is a
known lower limit (for example, ¢ = 50 if our response is HIV viral load and our assays
cannot measure concentrations below 50 copies/mL). In Tobit regression we assume that
there exists a latent response variable y* such that y = max{y*, ¢} and that y* comes from
a linear model y* = x'B+¢, where x = (1,21,...,2,) € RP*Y 8= (0, B4,...,05,) € RPTL,
and € ~ N(0,0%). In the following developments we assume that ¢ = 0 without loss of
generality:.

From this latent-variable formulation we can derive a likelihood for the censored re-
sponse. Let {(v;,x})}"_; be i.i.d copies of (y,x’) and define d; = 1,,50. Let ®(-) denote the

standard normal CDF. The Tobit likelihood is given by
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Noting that P(y; < 0) = P(x;8+¢ < 0) = O <%/B) , we see that this likelihood is a
mixture of a normal density and a point mass at 0. After dropping an ignorable constant

the log-likelihood is given by

log Ln(8, o° Zd { log(a 2(172 (i — Xéﬁ)ﬂ +(1—d;)log (cp (_’j‘ )) '

3 Penalized Tobit Regression

In high-dimensional regression, the most commonly used approach is to exploit sparsity
in the regression coefficient vector. While we might initially consider simply adding a
penalty term to the Tobit log-likelihood to create an objective function for penalized Tobit
regression, log L, (3,0?) is not concave in (3, 0?), frustrating this approach. Thankfully,
Olsen (1978) found that the reparameterization § = (3/0 and v* = o2 results in a concave

log-likelihood:

log L Zd loa(r) — s — X8| + (1~ ) o (& (-x5))

Note that § and B must have the same degree of sparsity. We use Olsen’s reparameterization

to develop our penalized Tobit models. Our objective is to minimize

with respect to (d,7), where £,(8,v) = —% log L,,(8,7) is our convex loss function (the
Tobit loss for short) and Py(d) is a penalty function. Note that, unlike with other loss
functions, we cannot separate out the scale parameter v in the Tobit loss when estimating
the regression coefficients 4.

Coordinate descent (CD) is currently the most popular algorithm for high-dimensional
regression in the literature (Friedman et al., 2010). Given the relatively complex form of

the Tobit loss, the standard CD algorithm requires solving a nonlinear convex program



repeatedly for p variables for many cycles until convergence. As a result, the computation
time will be notably longer than for penalized least squares. Fortunately, another benefit of
using Olsen’s reparameterization is that the Tobit likelihood can be shown to enjoy a nice
quadratic magjorization condition that serves as a foundation for using the majorization-
minimization (MM) principle and coordinate descent to solve penalized Tobit regression.
The combination of the MM principle and CD is called generalized coordinate descent
(Yang and Zou, 2013). By using GCD, each of the coordinate-wise updates becomes a
simple univariate quadratic minimization problem.

For reference, we say that a univariate function f : R — R satisfies the quadratic
magorization condition if there exists M € R such that f(¢t+a) < f(¢) + f/'(t)a+ % a? for
all t,a € R. Without loss of generality, we assume that our predictors are standardized—
that is, 23"  z;; = 0 and 2377 | xz; = 1, for j = 1,...,p. Consider coordinate-wise
updates of dp and ¢;, j = 1,...,p. We treat d, as a special case of d; in the following
developments, keeping in mind that z;y = 1 for all 4. For ease of notation, let x;_; =
(405 Tity - -+, Tij—1, Tijj1, - - - Tip) € RP and 6(_j) = (00,01, ...,0j-1,0,41,0,) € RP.

Let 6 and 4 denote the current values for § and 7. Let j € {0,1,...,p} and leave 5(,])
and 7 fixed. Then the Tobit loss is viewed as a univariate function of ¢;. After dropping
ignorable constants (which have no impact in minimization), we can express the Tobit loss

with respect to J; as
n(9; |‘S Zd (i — x;, j)g(— ) —2i0;)" — (1= dy) 10g®(-x;7(7j)5(_j) = i0;).

Theorem 1. En(5j|5, 7) satisfies the quadratic majorization condition with M = % Sy .CEZQJ

Under the standardization of predictors, M = 1.

To illustrate the whole process of GCD, we focus on the weighted lasso penalty: Py(d) =
i1 Aw;|d5]. When w; = 1 for all j, this penalty reduces to the lasso penalty. The

weighted lasso penalty form will also be used in the computation of the folded-concave-
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penalized Tobit estimator (see the next section for details).

The standard coordinate descent algorithm needs to minimize £,(5,]8,%) + Aw;|d;],
which requires another iterative procedure to find the minimizer. By Theorem 1, we have
that

. e 1 N
Q(6;16,7) = £,,(0510,7) + £,,(6;10,7) - (6; — &;) + 5(@' —0;)°

is a quadratic majorization function for én(éjlg ,7). By the MM principle, we can simply
minimize Q(3;|8, %) + Aw;|d;| to update d;, while leaving the other parameters fixed at their
current values. For j = 1,...,p, we update §; as the minimizer of Q(5j|5,’y) + Aw; o,
which is given by a soft-thresholding rule (Tibshirani, 1996): §; = S <5J —0(5,]8,7), wj/\> :
where S(z,t) = (|z| — t)4sgn(z). For updating &, we use the minimizer of Q(d|d,7),

which is given by & = &y — £, (6o|8,7). Lastly, we need to update 7. We can show that

Sory diyi(48)+y/ (S divi(48)) +4 (00 diy?) S0, ds
2300, diy?

. For

given &, £,(|6) is minimized by 4 =

completeness, we show the whole GCD algorithm in Algorithm 1.

Algorithm 1: GCD algorithm for penalized Tobit with the weighted lasso penalty

Initialize (8,7%);
repeat
Compute dy = by — £,,(50|8,7); Set o = by :
for j=1,....,pdo
Compute 5j =9 (& — €;(5j|5,’~y),wj)\); Set §; = 53‘ ;

end

" diyi(x8 " g (x08)) (T diy?) S d; L
Compute 4 = == W(Zléz@ffl D) MEL AR TR G gop 5 — 5,

until convergence;

4 Theoretical Results

Our objective function (1) is flexible enough to accommodate a wide variety of penalties.

In this section we offer theoretical studies of penalized Tobit estimators. We focus on the



Tobit estimator with the lasso penalty and Tobit estimators with folded concave penalties.

4.1 Setup

Suppose that §* and +* are the true parameter values for § and ~. For notational con-
venience, we define © = (6, ...,0,41) = (§',7). Welet A= {j:d; # 0} C{1,...,p}
denote the true support set and define A" = AU{0,p+ 1} and s = |A|. Under the sparsity
assumption, s < p. Note that we continue to index §, ©, and the columns of X from 0 to
p + 1 to accommodate dq in §.

We adopt the following notation throughout our analysis. For a matrix A € [a;;]nxm
and sets of indices S C {1,...,m} and T C {1,...,n}, we use As) to denote the submatrix
consisting of the columns of A with indices in § and A+ to denote the submatrix consisting
of the rows of A with indices in 7. We let Aax(A) denote the largest eigenvalue of A let
A > 0 signify that A is positive definite, and let vec(A) € R™ denote the vectorization
of A. We define several matrix norms: the fo-norm [|A[[ = max; > |a;;|, the {;-norm
|All, = max; >, |a;;|, the {o-norm ||A]], = )\rln/azx(A’A), the entry-wise maximum [[A|| . =

max(; ;) |a; ;|, and the entry-wise minimum ||A || . = ming ;) |a;;|. Welet Vslog L,,(©) and

VZ%log L, (0) denote the gradient and Hessian, respectively, of log L,(©) with respect to
Os.

Because we handle censored and uncensored observations differently in the Tobit like-
lihood, we introduce notation to clearly differentiate between them. Let n; denote the
number of observations for which y; > 0 and ng = n — n;. Let X; be the n; x (p+ 1)

matrix of predictors corresponding to the observations for which y; > 0 and let X be the

no X (p+ 1) matrix of predictors corresponding to the observations for which y; < 0. Define



yo and y; likewise. We then reorder our observations so that

X Yo
X = and y =

X4 Y1
4.2 The lasso-penalized Tobit estimator

Consider the lasso-penalized Tobit estimator found by minimizing

p
Rn(d, ’}/) = én(é, 'Y) + )\lasso Z ’6J| (2>
j=1

We assume that the following restricted eigenvalue condition holds:

S [S20L | B

uee n |lull3

where C = {u # 0 : ||juac||; < 3|luxl;}. It is worth pointing out that condition (A0) is
similar in spirit to the restricted eigenvalue condition used in lasso-penalized least squares
(Bickel et al., 2009) but also has an important technical difference because the response
variable appears together with the predictors—even in the fixed design setting, the entire
matrix {_Xl yl} is random. Thus we must take the expectation in condition (AO) so
that x will be deterministic.

In the following result, we bound the /5 estimation loss of the Tobit lasso estimator with
high probability. Let g(s) = ¢(s)/®(s), where ¢(-) denotes the standard normal density

function. We assume the following:
(A1) max; [|x( [, = O(v/n), 31, (x}07)* = O(n), max;; 3371, 2z, = O(n),
>oiny (2 + X107 + g(—x;6%))? = O(n), and 3711, 5(x/6°)%(2 + x}0" + g(—x}6"))* =

O(n) where j,k € {0,...,p};

(A2) s =0 (n*), log(p) = O(n*2), where oy, a2 € (0,3);
and define M; = max;n~! HX(J)H; and My =16+ 4n~1 " (x16%)2

10



Theorem 2. Suppose that Y;* = X,5* + ¢; where ¢; b N(0,0*%) and define Y; = Y 1y-~q

fori=1,...,n. Let Osso denote the solution to the lasso-penalized Tobit model (2) with

penalty parameter Aasso = A 10% where A > max {4\/M1, VE8My } If (A0) - (A2) hold,

,\/*
then for large n,p

<

2

Hélasso — o 3 Vs + 2/\lasso
K

_b3n1—2a1

with probability at least 1 — bip~! — bye where by, by, by are constants.

Remark. Under condition (A2), (SH% — 0 and, by extension, the {y estimation loss

for Orasso converges to 0 as n,p — 00. As such, Osso 1S consistent under the {5 norm.

Theorem 2 follows immediately from the more general finite-sample probability bound given

log p

in Theorem S.1 (in supplementary material). Note that we cannot compute A0 = A "

in practice as 6* and ~* are unknown.

4.3 The folded-concave-penalized Tobit estimator

It is now well-understood that a lasso-penalized estimator often does not achieve consis-
tent model selection unless a stringent “irrepresentable condition” (Zhao and Yu, 2006; Zou,
2006) is assumed. To relax this condition, we can try to use a folded-concave-penalized To-
bit estimator. We aim to minimize R,,(d,7) = £,,(9,7)+Pr(d) where Py\(8) = >7_, Px(|9;])

is a folded concave penalty, meaning that Py(|t|) satisfies
(i) Py(t) is increasing and concave in ¢ € [0, 00) with Py(0) = 0.
(ii) Py(t) is differentiable in ¢ € (0, 00) with P;(0) := P5(0+) > a1 A.
(iii) Pi(t) > a1 for t € (0, az)]
(iv) P5(t) =0 for t € [a), 00) where a > as,

where a is pre-specified and a; and ay are fixed positive constants which depend on the

folded concave penalty we choose. Two well-known folded concave penalties are the SCAD
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penalty (Fan and Li, 2001), the derivative of which is given by P (t) = Al;<)+ (a’\_i” Lisa,

a—

where a > 2, and the MCP (Zhang, 2010), the derivative of which is given by Pi(t) =
(/\ — §)+, where @ > 1. One can show that a; = ay = 1 for the SCAD penalty and
a; =1—a"', ay = 1 for the MCP.

The strongest rationale for using a folded concave penalty is that it can produce an
estimator with the strong oracle property—that is, an estimator which is equal to the
oracle estimator with very high probability (Fan and Lv, 2011; Fan et al., 2014). The

oracle estimator knows the true support set A beforehand and, as a result, delivers optimal

estimation efficiency. For the Tobit model, the oracle estimator is given by

©°rle — argmin £,,(O) (3)
Q:GAICZO

Note that we cannot solve (3) in practice because A is unknown. Instead, the oracle
estimator is a theoretical benchmark to compare our estimators against. Because our loss

function is convex, the oracle estimator is unique, meaning that
ngn(éoracle) -0 Vj e A (4)

where V; denotes the derivative with respect to the jth element of ©.

With a folded concave penalty function, the overall objective R, (d,v) may no longer
be convex and, consequently, could have multiple local solutions. As such, theory should
be developed for a specific, explicitly-defined local solution. We examine the local solution
to the folded concave penalization problem which we obtain using the LLA algorithm (Zou
and Li, 2008). This choice is inspired by the general theory developed in Fan et al. (2014)
where the authors established the strong oracle property of the LLA solution for a wide
class of problems. We expect the same result holds for the Tobit model.

The LLA algorithm turns the Tobit model with a folded concave penalty into a sequence

of weighted Tobit lasso models. We can use Algorithm 1 to fit each weighted Tobit lasso
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model. Algorithm 2 shows the complete details of the LLA algorithm for the Tobit model

with a folded concave penalty.

Algorithm 2: The local linear approximation (LLA) algorithm

Initialize ©© = @mitial and compute the adaptive weights

—~

wO = @ a©) = (P8O, Pi(sO)).

hS]

form=1,2,... do
Solve the following optimization problem

O = argming £,(0) + 37_, " 161;
Update the adaptive weight vector with @TJ]( ™ = P’(|(5 ™ |) for j=1,...,p.

end

We aim to show that the LLA algorithm finds the oracle estimator in one step and

converges to it in two steps with probability rapidly converging to 1 as n, p — oo. We define

. 1y —1
Qu= max Amax (A X{agon dine X X agon ): Q2 = [[(B [V og Lu(©7)]) | _: Qs =

Q2 ||E [£[V?1og Ln(0%)] are a/]

o Hi g = E[£V2 log L,(0%)] ® E [+ V%, log L, (67)], where
® denotes the Kronecker product; K = ||E [+ VZ,log L, ()] .; and K = H(Hj‘,’A,)”H

We assume the following:

(A3) 6% [min > (@ + 1)A

(A4) E[V¥ log L,(0%)] =0

(A5) Q1 =0(1), Q2 =0(1), Q3 = 0O(1), K; = O(1), and Ky = O(1);

(A6) J¢,.cp>0 such that Qo > C} and HE [2[V21log L, (0%)] are ']

‘OO > (), for all n.

Theorem 3. Suppose that Y;* = X,[5*+¢; where €; w N(0,0*?) and define Y; = Y Lysso for

i=1,...,n. Let \= B logp with B > max { (0Qs +2) VAN - (OQst2)V2IM2 4y, /N Q2 }

al ary*

Let ag = min{1,ay}. Suppose that our initial estimator O™ satisfies

| ’61n1t1a1 ZLO) | |max S Go>\ (5)
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If (A1) - (A6) hold, then for large n,p the LLA algorithm initialized by @nitial g g Goracle

2a3 éoracle

in one iteration with probability at least 1 — c;p~! — coe™ ™ N and converges to
after two iterations with probability at least 1 —d;p~t — dye4m " where C1,Co,C3,dy, do, ds

are constants.

Remark. Under condition (A2) both of the probability bounds in Theorem 3 rapidly con-

verge to 1 as n,p — o0.

Theorem 3 follows immediately from Theorem S.4 (in supplementary material), which
provides more general finite-sample bounds. Note that we cannot obtain A = B k’% in
practice as 0* and v* are unknown.

All that remains is to pick an initial estimator which satisfies (5) with high probability.
We choose the Tobit lasso as our initial estimator since we already have an estimation loss
bound from Theorem 2. The following corollary combines Theorems 2 and 3 to bound the

probability that the LLA algorithm initialized by Olasso converges to the oracle estimator

in two steps.

Corollary 1. Suppose that Y;* = x,3* + ¢; where ¢; w N(0,0*%) and define Y; = Y ys=0
for i = 1,...,n. Define A and B as in Theorems 2 and 3. If conditions (A0) - (A6)
hold, Magso = A 10% , and A = max {B 1"%, 3—”232‘“*“}, then for large n,p the LLA

algorithm initialized by Olasso converges to @oracle after two iterations with probability at

least 1 — kyp~! — kge_k3”172a1 where ki, ko, k3 are constants.

Remark. Under condition (A2) the probability bound in Corollary 1 rapidly converges to 1
as n,p — 0o. As such, Corollary 1 establishes that the two-step LLA estimator initialized
by the Tobit lasso possesses the strong oracle property in a high-dimensional setting where

p>n.
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5 Simulation Study

In the following simulation study, we compare the Tobit lasso, the two-step Tobit LLA
estimator with a SCAD penalty initialized by the Tobit lasso (Tobit LLA), the least-
squares lasso, least-squares SCAD, and Soret et al.’s(2018) high-dimensional Buckley-James
estimator (SAWCT2018) to determine whether the penalized Tobit models provide an
appreciable improvement in prediction, estimation, and selection performance on high-
dimensional data with a left-censored response. We compare our methods to SAWCT2018
as it is the best available alternative for high-dimensional left-censored regression. For
reference, we set a = 3.7 for Tobit LLA’s SCAD penalty and the least-squares SCAD
penalty throughout these simulations.

For each simulation setting, we generate 100 datasets with 100 training observations
and 5000 test observations. We generate an uncensored response from a linear model
yi = Bo +x.3 + €;, where x; ~ N(0,%) and ¢; ~ N(0,0?), and left-censor it to create y; as
follows. Let g denote the proportion of the y; that are left-censored in a simulated dataset.
We control ¢ by setting ¢, to be the g-quantile of the y; from both the training and test
data and censoring the response at ¢,—that is, we set y; = max{y}, ¢, }.

We have four elements we can vary across our simulation settings: 3, ¢, p, and the
response generating parameters (fy, 8, and o). We run simulations with each of the
following covariance structures for the predictors: independent, CS(0.5), CS(0.8), AR1(0.5),
and AR1(0.8) (CS(p) means that 3;; = p for i # j, ¥;; = 1 for all i and AR1(p) means that
(Xp)ij = p"=Il for all i, j). For each covariance structure, we generate datasets with every
combination of ¢ € {3,%, %} and p € {50,500}. For all of these simulations, we set ) = 3,
8 =(51,0.5,-2,0.1,0,...,0), and o = 1. All together we examine 30 cases. We group
our results into Tables 1, 2, 3, 4, and 5 based on the covariance structure of the predictors

and vary p and ¢ within these tables.
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To assess the prediction performance of the models, we tune each of the models on the
training data using 5-fold CV then compute the MSE of their predictions on the test data.
In our simulation results, we report the average test MSE over 100 replications and give
its standard error in parentheses. We also include prediction results for the ordinary least
squares oracle model (OLS Oracle) and an ordinary least squares model with all of the
predictors (OLS) for cases where p < n.

We use a variety of metrics to compare the parameter estimation and selection perfor-
mance of the penalized models. To compare the accuracy of the parameter estimates, we
report the ¢; loss |3 — B*||; and £, loss |8 — B*||2. To assess the selection performance
of these models, we report the number of false positive (FP) and false negative (FN) vari-
able selections. In our simulation results, we report the average for each metric over 100

replications and give its standard error in parentheses.

5.1 Prediction results

We see a remarkably consistent pattern in our prediction results: in all 30 simulation
settings the penalized Tobit models attain the two lowest average test MSEs, with Tobit
LLA delivering the best prediction performance in 29 of 30 settings. We see a clear gap
in prediction performance separating the three methods which account for censoring (the
Tobit lasso, Tobit LLA, and SAWCT2018) from the least squares methods in that the
average test MSEs for the OLS methods are, at minimum, nearly double those of the Tobit
models and SAWCT2018. As the proportion of censored observations ¢ increases, the test
MSESs for the least-squares models climb upwards while the test MSEs for the Tobit models
and SAWCT2018 largely remain stable. In particular, we see that the average test MSEs
for the least-squares lasso and SCAD are around five times the average test MSE of Tobit
LLA when ¢q = % The message here is clear: failing to account for censoring in the data

can come at a steep price in terms of prediction accuracy, especially when the proportion
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Table 1: Simulation Results with Independent Covariates

q p Method MSE ly 0 FP FN
I750 | Lasso 2.37(0.03) | 1.5(0.06)  3.14(0.09) 4.6(0.4) 0.8(0.1)
SCAD 2.22(0.02) | 0.98(0.05)  2.19(0.06)  2(0.2)  1(0.1)
Tobit Lasso | 1.08(0.01) | 0.24(0.01) 1.61(0.05)  7(0.3)  0.6(0)
Tobit LLA | 1.01(0.01) | 0.15(0.01) 0.81(0.03) 1.1(0.1)  0.9(0)
SAWCT2018 | 1.09(0.01) | 0.28(0.01)  1.47(0.04) 4.4(0.2)  0.7(0)
OLS Oracle 2.1(0.01) - - - -
OLS 3.95(0.07) ; ; - ;
500 | Lasso 2.45(0.04) | 1.87(0.07) 3.85(0.12) 9.6(0.8) L2(0.1)
SCAD 2.1(0.02) | 0.91(0.05) 2.35(0.07) 4.5(0.4) 1.2(0.1)
Tobit Lasso | 1.23(0.01) | 0.49(0.02)  2.61(0.05) 14.5(0.5) 0.9(0)
Tobit LLA | 1.04(0.01) | 0.22(0.01) 1.03(0.03) 2.3(0.2)  1(0)
SAWCT2018 | 1.28(0.02) | 0.6(0.02)  2.51(0.07) 10.6(0.6)  1(0)
OLS Oracle | 1.93(0.01) - - - -
I50 | Lasso 3.24(0.04) | 4.45(0.13) 4.91(0.09)  4(0.3)  L.2(0.1)
SCAD 3.05(0.03) | 3.42(0.11)  4.07(0.08) 2.1(0.2)  1.4(0.1)
Tobit Lasso 0.9(0.01) 0.3(0.01) 1.69(0.05)  5.9(0.3) 0.6(0)
Tobit LLA | 0.84(0.01) | 0.18(0.01) 0.88(0.03) 1(0.1)  0.9(0)
SAWCT2018 | 0.93(0.01) | 0.42(0.02) 1.77(0.04) 4.3(0.2) 0.7(0.1)
OLS Oracle | 2.79(0.01) - - - -
OLS 5.49(0.1) ; ; : :
500 | Lasso 3.58(0.05) | 5.01(0.13)  58(0.15)  9.5(0.9) 1.6(0.1)
SCAD 3.18(0.03) | 3.23(0.11)  4.36(0.08) 6(0.5) 1.5(0.1)
Tobit Lasso | 1.12(0.02) | 0.61(0.03)  2.78(0.06) 13.4(0.4)  1(0)
Tobit LLA | 0.94(0.01) | 0.28(0.02) 1.13(0.03) 2(0.2)  1.1(0)
SAWCT2018 | 1.21(0.02) | 0.91(0.04)  2.95(0.08) 10.5(0.5)  1(0)
OLS Oracle | 2.88(0.02) - - - -
I 50 | Lasso 3.84(0.04) | 15.6(0.21) 8.26(0.07) 3.3(0.3) L.7(0.1)
SCAD 3.66(0.03) | 13.73(0.21)  7.57(0.07)  2.2(0.2)  1.9(0.1)
Tobit Lasso | 0.69(0.01) | 0.55(0.03)  2.24(0.06)  6.1(0.3) 0.6(0.1)
Tobit LLA | 0.6(0.01) |0.31(0.02) 1.14(0.04) 0.8(0.1) 1.1(0)
SAWCT2018 | 0.74(0.01) | 1.43(0.06) 2.87(0.07)  3.6(0.2)  0.8(0.1)
OLS Oracle | 3.45(0.02) - - - -
OLS 6.49(0.1) ; . ; ;
500 | Lasso 3.00(0.04) | 18.11(0.18) 9.66(0.16)  8.4(0.9) 2.2(0.1)
SCAD 3.72(0.03) | 15.21(0.19) 8.48(0.06) 5.5(0.5)  2.2(0.1)
Tobit Lasso | 0.93(0.02) | 1.42(0.07)  3.57(0.08) 10.2(0.4) 1.2(0)
Tobit LLA | 0.69(0.01) | 0.49(0.03) 1.49(0.04) 1.7(0.2)  1.4(0)
SAWCT2018 | 1.11(0.03) | 3.57(0.14)  5.09(0.1)  10.1(0.4)  1.3(0)
OLS Oracle | 3.28(0.01) - - - -
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Table 2: Simulation Results with CS(0.5) Covariates

q p Method MSE ly /4 FP FN
1750 | Lasso 2.02(0.02) | 1.6(0.07)  3.33(0.08) 6.5(0.3) 0.9(0.1)
SCAD 1.93(0.02) | 0.92(0.05)  2.05(0.07) 1.6(0.2) 1.2(0.1)
Tobit Lasso | 1.07(0.01) | 0.41(0.02)  1.94(0.05) 7.3(0.3)  0.6(0)
Tobit LLA 1(0.01) | 0.25(0.01) 1.04(0.03) 1.8(0.2)  0.9(0)
SAWCT2018 | 1.08(0.01) | 0.45(0.02)  1.72(0.04)  5.4(0.2)  0.7(0.1)
OLS Oracle 1.8(0.01) - - - -
OLS 3.48(0.08) ; ; - ;
500 | Lasso 9.37(0.03) | 2.61(0.00) 4.97(0.15) 15.8(0.8) 1.5(0.1)
SCAD 2.03(0.02) | 1.03(0.05)  2.34(0.06) 4.3(0.3) 1.6(0.1)
Tobit Lasso | 1.19(0.01) | 0.84(0.03)  3.11(0.06) 15.8(0.4) 1.2(0)
Tobit LLA 1(0.01) | 0.36(0.02) 1.41(0.04) 5.3(0.3) 1.2(0)
SAWCT2018 | 1.22(0.01) | 0.95(0.03)  3.2(0.07) 15.6(0.5) 1.2(0)
OLS Oracle | 1.87(0.01) - - - -
1 50 | Lasso 2.91(0.03) | 4.83(0.15)  5.31(0.11)  5.9(0.3) 1.1(0.1)
SCAD 2.74(0.03) | 3.31(0.13)  3.9(0.09)  1.8(0.2) 1.6(0.1)
Tobit Lasso | 0.91(0.01) | 0.47(0.02)  2.03(0.05) 7.2(0.3) 0.7(0.1)
Tobit LLA | 0.84(0.01) | 0.28(0.02) 1.1(0.03) 1.4(0.1)  1(0)
SAWCT2018 | 0.95(0.01) | 0.67(0.03)  2.01(0.05)  5(0.2)  0.8(0)
OLS Oracle | 2.57(0.01) - - - -
OLS 4.81(0.08) - - - -
500 | Lasso 2.00(0.03) | 5.94(0.17)  6.46(0.13) 13.3(0.7) L.8(0.1)
SCAD 2.60(0.03) | 3.34(0.14)  4.26(0.09) 5.7(0.4)  1.9(0.1)
Tobit Lasso | 1.06(0.01) | 1.07(0.05)  3.35(0.08) 14.9(0.5) 1.2(0)
Tobit LLA | 0.89(0.01) | 0.47(0.03) 1.58(0.05) 5.4(0.4) 1.2(0.1)
SAWCT2018 | 1.11(0.02) | 1.33(0.05)  3.58(0.08)  14(0.5) 1.2(0.1)
OLS Oracle | 2.41(0.01) - - - -
1750 | Lasso 3.15(0.03) | 15.52(0.21) 8.63(0.08) 5.4(0.3) L1.6(0.1)
SCAD 3.12(0.03) | 13.32(0.24)  7.58(0.1)  2(0.2)  2.2(0.1)
Tobit Lasso | 0.68(0.01) | 0.86(0.05)  2.65(0.08) 6.7(0.3) 0.9(0.1)
Tobit LLA | 0.63(0.01) | 0.55(0.05) 1.52(0.06) 1.3(0.1) 1.3(0.1)
SAWCT2018 | 0.77(0.01) | 2.13(0.1)  3.4(0.08)  4.2(0.2)  1(0.1)
OLS Oracle | 2.87(0.02) - - - -
OLS 5.48(0.08) ; ; ; ;
500 | Lasso 3.43(0.03) | 18.3(0.26) 9.76(0.13) 10.1(0.7) 2.4(0.1)
SCAD 3.25(0.02) | 14.92(0.26) 8.14(0.07) 2.8(0.4)  2.8(0)
Tobit Lasso | 0.94(0.02) | 2.21(0.1)  4.27(0.09) 12.7(0.4) 1.5(0.1)
Tobit LLA | 0.7(0.01) | 0.82(0.05) 1.99(0.06) 4.4(0.3) 1.6(0.1)
SAWCT2018 | 1.02(0.02) | 3.81(0.15)  5.36(0.1) 12.9(0.4) 1.6(0.1)
OLS Oracle | 2.85(0.01) - - - -
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Table 3: Simulation Results with CS(0.8) Covariates

q p Method MSE ly /4 FP FN
1750 | Lasso 2(0.02) | 3.02(0.15) 4.52(0.14)  6(0.3)  1.2(0.1)
SCAD 1.94(0.02) | 1.83(0.13)  2.76(0.11) 0.9(0.1) 2.1(0.1)
Tobit Lasso | 1.06(0.01) | 1.02(0.05)  2.74(0.08)  6(0.2)  1(0.1)
Tobit LLA | 1.02(0.01) | 0.74(0.05) 1.77(0.06) 1.2(0.1) 1.5(0.1)
SAWCT2018 | 1.16(0.01) | 1.61(0.07)  2.71(0.07)  3.4(0.2) 1.2(0.1)
OLS Oracle 1.79(0.01) - - - -
OLS 3.38(0.05) ; ; - ;
500 | Lasso 9.11(0.03) | 4.56(0.17) 6.34(0.22) 13.6(0.7) 1.9(0.1)
SCAD 1.94(0.02) | 2.45(0.17)  3.15(0.11) 1.3(0.2) 2.5(0.1)
Tobit Lasso | 1.21(0.01) | 1.98(0.08)  4(0.08)  11.3(0.4) 1.6(0.1)
Tobit LLA | 1.07(0.01) | 1.09(0.07) 2.26(0.07) 4.1(0.3)  1.8(0.1)
SAWCT2018 | 1.22(0.01) | 2.12(0.08)  3.91(0.07) 10.5(0.3) 1.6(0.1)
OLS Oracle | 1.65(0.01) - - - -
1 50 | Lasso 2.52(0.03) | 5.66(0.22)  5.81(0.12)  5.4(0.3) 1.6(0.1)
SCAD 2.54(0.03) | 4.07(0.26)  4.32(0.18) 0.8(0.1) 2.3(0.1)
Tobit Lasso | 0.92(0.01) | 1.01(0.05)  2.74(0.08) 5.8(0.2) 1.1(0.1)
Tobit LLA | 0.89(0.01) | 0.86(0.05) 1.87(0.06) 1(0.1)  1.7(0)
SAWCT2018 | 1.02(0.01) | 1.8(0.08)  2.94(0.07) 3.3(0.2) 1.4(0.1)
OLS Oracle | 2.29(0.01) - - - -
OLS 4.32(0.07) - - - -
500 | Lasso 2.71(0.03) | 8.37(0.26)  7.56(0.23) 10.8(0.7) 2.4(0.1)
SCAD 2.57(0.02) | 5.55(0.27)  4.92(0.13) 1.1(0.2)  2.7(0)
Tobit Lasso | 1.05(0.02) | 2.29(0.11)  4.17(0.09) 11.3(0.4) 1.6(0.1)
Tobit LLA | 0.93(0.01) | 1.37(0.09) 2.48(0.08) 3.8(0.3)  2(0.1)
SAWCT2018 | 1.09(0.02) | 2.66(0.11)  4.14(0.09) 9.8(0.3) 1.7(0.1)
OLS Oracle 2.2(0.01) - - - -
150 | Lasso 2.74(0.01) | 17.09(0.27) 9.26(0.12)  4.8(0.3)  2.1(0.1)
SCAD 2.74(0.02) | 14.64(0.28)  7.96(0.1)  0.5(0.1)  2.9(0)
Tobit Lasso | 0.63(0.01) | 1.56(0.09) 3.34(0.08)  6(0.3)  1.2(0.1)
Tobit LLA | 0.65(0.01) | 1.67(0.12) 2.54(0.09) 1(0.1)  1.9(0.1)
SAWCT2018 | 0.78(0.01) | 4.06(0.15)  4.34(0.08) 2.8(0.2) 1.7(0.1)
OLS Oracle | 2.56(0.01) - - - -
OLS 4.93(0.07) ; ; ; ;
500 | Lasso 3(0.02) | 19.32(0.31) 10.18(0.19) 8.4(0.6)  2.8(0)
SCAD 2.85(0.02) | 14.99(0.23) 8.03(0.06) 0.4(0.1) 3(0)
Tobit Lasso | 0.82(0.02) | 3.69(0.19)  5.11(0.11)  9.7(0.3) 2.1(0.1)
Tobit LLA | 0.73(0.02) | 2.46(0.17) 3.14(0.09) 2.8(0.3)  2.4(0.1)
SAWCT2018 | 0.89(0.02) | 5.25(0.2)  5.51(0.11) 7.2(0.3)  2.3(0.1)
OLS Oracle | 2.65(0.01) - - - -
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Table 4: Simulation Results with AR1(0.5) Covariates
q p Method MSE Uy 0 FP FN
1750 | Lasso 2.25(0.02) | 1.58(0.07) 3.03(0.07) 3.8(0.3) 1.3(0.1)
SCAD 2.13(0.02) | 1.09(0.05)  2.34(0.06) 1.8(0.2) 1.4(0.1)
Tobit Lasso | 1.02(0.01) | 0.32(0.01)  1.7(0.04)  6(0.3)  0.8(0)
Tobit LLA | 0.97(0.01) | 0.26(0.02) 1.05(0.03) 1.1(0.1)  1(0.1)
SAWCT2018 | 1.03(0.01) | 0.38(0.02)  1.55(0.03) 3.9(0.2)  1(0)
OLS Oracle | 2.02(0.01) - - - -
OLS 3.88(0.07) ; . . ;
500 | Lasso 2.78(0.04) | 2.37(0.00) 418(0.13) 8.9(0.7)  1.8(0)
SCAD 2.48(0.03) | 1.33(0.07)  2.83(0.09) 4.5(0.4) 1.7(0.1)
Tobit Lasso | 1.25(0.01) | 0.69(0.03)  2.73(0.05)  13(0.5)  1.3(0)
Tobit LLA | 1.07(0.01) | 0.36(0.02) 1.35(0.04) 2.4(0.2) 1.2(0)
SAWCT2018 | 1.3(0.02) | 0.82(0.03)  2.64(0.06) 9.7(0.6)  1.4(0.1)
OLS Oracle | 2.23(0.01) - - - -
T30 | Lasso 3.34(0.04) | 4.66(0.14) 5.08(0.11) 4.3(0.3) L5(0.0)
SCAD 3.23(0.04) | 3.64(0.13)  4.19(0.1)  2.3(0.2)  1.7(0.1)
Tobit Lasso | 0.93(0.01) | 0.4(0.02)  1.94(0.05) 6.5(0.3)  0.9(0)
Tobit LLA | 0.88(0.01) | 0.33(0.02) 1.19(0.04) 1(0.1)  1.2(0)
SAWCT2018 | 0.94(0.01) | 0.53(0.02)  1.87(0.03) 4.2(0.2)  1(0)
OLS Oracle | 2.98(0.02) - - - -
OLS 5.64(0.1) . . - -
500 | Lasso 3.72(0.05) | 5.39(0.15)  6(0.13) _ 9.1(0.8) _ L.9(0)
SCAD 3.51(0.04) | 3.74(0.14)  4.85(0.09) 7.1(0.5)  2(0.1)
Tobit Lasso | 1.15(0.02) | 0.86(0.03)  2.95(0.05) 12.6(0.4)  1.4(0)
Tobit LLA | 0.97(0.01) | 0.46(0.02) 1.5(0.04) 2.5(0.2) 1.3(0)
SAWCT2018 | 1.23(0.02) | 1.13(0.04)  3.18(0.07) 11.1(0.6) 1.5(0.1)
OLS Oracle | 3.03(0.01) - - - -
1750 | Lasso 3.88(0.03) | 15.66(0.19) 8.44(0.07) _ 3.4(0.3) 1.8(0.1)
SCAD 3.87(0.04) | 14.01(0.2)  7.84(0.09)  2(0.2)  2.3(0.1)
Tobit Lasso | 0.68(0.01) | 0.67(0.03)  2.3(0.05)  5.4(0.2)  1.1(0)
Tobit LLA | 0.63(0.01) | 0.53(0.03) 1.52(0.04) 0.9(0.1) 1.5(0.1)
SAWCT2018 | 0.73(0.01) | 1.44(0.06)  2.87(0.06)  3(0.2)  1.3(0)
OLS Oracle | 3.54(0.01) - - - -
OLS 6.78(0.1) ; ; ; ;
500 | Lasso 1.08(0.04) | 16.79(0.21)  9.1(0.11) _ 6(0.6)  2.3(0)
SCAD 4.02(0.03) | 14.17(0.21)  8.25(0.08)  3.8(0.5)  2.7(0.1)
Tobit Lasso | 0.82(0.02) | 1.45(0.06)  3.56(0.08)  10(0.4)  1.6(0)
Tobit LLA | 0.64(0.01) | 0.7(0.04) 1.83(0.05) 2.3(0.2) 1.5(0.1)
SAWCT2018 | 0.94(0.02) | 2.93(0.1)  4.57(0.09) 8.5(0.5)  1.7(0)
OLS Oracle | 3.52(0.02) - - - -
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Table 5: Simulation Results with AR1(0.8) Covariates

q p Method MSE Uy 0 FP FN

1750 | Lasso 2.01(0.02) | 2.01(0.1)  3.57(0.1)  4.5(0.3) 1.6(0.1)
SCAD 1.93(0.02) | 1.65(0.09)  2.72(0.07) 1.1(0.1)  2.1(0)
Tobit Lasso | 1.04(0.01) | 0.69(0.03) 2.17(0.06) 4.8(0.2) 1.3(0.1)
Tobit LLA | 0.99(0.01) | 0.69(0.05) 1.72(0.05) 1.5(0.1)  1.8(0)
SAWCT2018 | 1.06(0.01) | 0.9(0.04)  2.06(0.04) 2.6(0.2)  1.6(0)
OLS Oracle 1.8(0.01) - - - -
OLS 3.42(0.07) ; . . ;

500 | Lasso 953(0.04) | 3.42(0.13)  4.69(0.09) 9.1(0.6) _ 2.1(0)
SCAD 2.23(0.02) | 2.18(0.1)  3.3(0.06) 3.9(0.4) 2.5(0.1)
Tobit Lasso | 1.26(0.02) | 1.51(0.06) 3.31(0.05) 11.9(0.4)  2(0)
Tobit LLA | 1.19(0.02) | 1.69(0.1) 2.84(0.07) 4.1(0.4) 2.2(0.1)
SAWCT2018 | 1.3(0.02) | 1.57(0.06)  3.46(0.07) 12(0.5)  2(0)
OLS Oracle 1.9(0.01) - - - -

1 50 | Lasso 2.91(0.03) | 5.08(0.18)  5.45(0.1) 4(0.3) 1.8(0)
SCAD 2.84(0.03) | 4.23(0.19)  4.53(0.13) 1.6(0.2)  2.5(0.1)
Tobit Lasso | 0.91(0.01) | 0.83(0.04)  2.36(0.06) 4.8(0.2) 1.4(0.1)
Tobit LLA | 0.85(0.01) | 0.71(0.05) 1.78(0.05) 1.5(0.2)  1.8(0)
SAWCT2018 | 0.95(0.01) | 1.14(0.05)  2.34(0.05) 2.5(0.2)  1.7(0)
OLS Oracle | 2.55(0.01) - - - -
OLS 5.04(0.09) - - - -

500 | Lasso 3.62(0.04) | 7.15(0.2)  6.6(0.09)  8.1(0.6) 2.4(0.1)
SCAD 3.28(0.02) | 4.81(0.2)  5.07(0.1)  4.2(0.4)  2.8(0)
Tobit Lasso | 1.2(0.02) |1.99(0.09) 3.72(0.07) 10.5(0.4)  2(0)
Tobit LLA | 1.08(0.02) | 2.03(0.1)  3.04(0.07) 3.3(0.3) 2.4(0.1)
SAWCT2018 | 1.25(0.03) | 2.14(0.09)  4.11(0.09) 12.1(0.5) 1.9(0)
OLS Oracle | 2.82(0.02) - - - -

1750 | Lasso 3.33(0.03) | 15.47(0.23) 8.59(0.08)  3.3(0.3) 2.3(0.1)
SCAD 3.27(0.02) | 13.93(0.24) 7.81(0.07)  1(0.2)  2.9(0)
Tobit Lasso | 0.67(0.01) | 1.14(0.06) 2.74(0.07) 4.1(0.2) 1.6(0.1)
Tobit LLA | 0.65(0.01) | 1.33(0.1) 2.31(0.09) 1(0.1)  2.1(0.1)
SAWCT2018 | 0.75(0.01) | 2.2(0.08)  3.34(0.06) 1.8(0.1)  1.9(0)
OLS Oracle | 3.05(0.02) - - - -
OLS 5.93(0.1) ; ; ; ;

500 | Lasso 3.71(0.04) | 18.32(0.2) 9.58(0.16)  6.1(0.7) _ 2.6(0)
SCAD 3.36(0.02) | 15.27(0.22) 8.38(0.07)  2.6(0.3) 3(0)
Tobit Lasso | 1.04(0.03) | 3.33(0.15)  4.51(0.08)  8(0.4)  2.1(0)
Tobit LLA | 0.86(0.02) | 2.98(0.11) 3.53(0.05) 1.7(0.2)  2.9(0)
SAWCT2018 | 1.15(0.03) | 4.81(0.19)  5.75(0.1)  9.7(0.5)  2.1(0)
OLS Oracle | 3.07(0.02) - - - -
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of censored observations is high.

Narrowing our focus to the three models which account for censoring, we see that both
of the penalized Tobit models achieve lower average test MSEs than SAWCT2018 in all
30 simulation settings and that Tobit LLA achieves the lowest average test MSE in most
cases, often by a comfortable margin. In particular, we see that Tobit LLA gains a larger
edge over the Tobit lasso and SAWCT2018 in simulations settings with p = 500 relative to

those with p = 50.

5.2 Estimation results

Turning to estimation performance, we see patterns similar to those that emerged in our
prediction comparison. The penalized Tobit models’ estimates have the two lowest average
05 losses in all 30 simulation settings (the Tobit LLA estimates have the lowest average /5
loss overall in 27 of 30 settings). In addition, the Tobit LLA estimates deliver the lowest
average /1 loss in every simulation setting.

As in the prediction comparison there is a clear gap between the least squares meth-
ods and the models which account for censoring, with the latter consistently having far
lower /5 and ¢; estimation losses. In many cases, the average {5 losses for the Tobit and
SAWCT2018 estimates differ from those of the least squares estimates by an order of mag-
nitude. Additionally, we once again find that the gap in estimation performance between

the models that account for censoring and the least squares models grows as the proportion

1
5

of censored observations increases to ¢ =

Among the models which account for censoring, the penalized Tobit models’ estimates
consistently achieve lower average /5 losses than the SAWCT2018 estimates. Shifting our
focus to the £; loss, we see that the Tobit LLA estimates achieve markedly lower average ¢,

losses than the Tobit lasso and SAWCT2018 estimates in every setting. The competition

between the Tobit lasso and SAWCT2018, however, is closer, with the Tobit lasso estimates
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achieving a lower average /1 loss than the SAWCT2018 estimates in just 18 of 30 settings.

5.3 Selection results

Our variable selection results are somewhat mixed. While the penalized Tobit models and
SAWCT2018 consistently deliver lower average false negative counts than the least squares
models, the differences are relatively small. At the same time, the SCAD and Tobit LLA
models consistently make fewer false positive variable selections than the other models.
Beyond that, neither SCAD nor Tobit LLA appears to have a clear edge in making fewer
false positive selections, though Tobit LLA has a lower average false positive count in 19
of 30 settings.

Overall, the penalized Tobit models deliver comparable (if slightly superior) selection
performances to the least squares models and SAWCT2018 in this study. These results
further suggest that modelers may prefer to use the Tobit lasso if their goal is to minimize
false negative variable selections and Tobit LLA if their goal is to minimize false positive

variable selections.

5.4 Takeaways

Tobit LLA clearly outperformed competing methods in this simulation study, providing
more accurate predictions and parameter estimates than the alternatives. Because it also
has stronger theoretical guarantees than the Tobit lasso, we ultimately recommend Tobit

LLA for analyzing high-dimensional left-censored data.

6 HIV Viral Load and Drug Resistance

Due to its short replication cycle and high mutation rate, human immunodeficiency virus

(HIV) can rapidly develop drug resistance mutations (DRMs) in HIV-infected patients
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receiving antiretroviral therapy. To counter this, guidelines recommended physicians reg-
ularly monitor HIV viral load and, if a patient’s treatment regimen is failing to suppress
the virus, conduct genotypic testing to check for DRMs so they may update the patient’s
drug regimen appropriately (Shafer, 2002).

There is a substantial literature devoted to identifying DRMs and quantifying the de-
gree of resistance they provide against different antiretroviral treatments (Shafer, 2006).
One way to accomplish this is by modeling the relationship between HIV viral load and
mutations in the virus’s genome. This poses two difficulties: (1) the observed viral load
is left-censored because the assays used to measure it cannot detect concentrations below
certain thresholds and (2) genome data are inherently high-dimensional. As we established
in our simulation study, it is necessary to use a model which accounts for censoring when
analyzing these kind of data. As such, we will use Tobit LLA and SAWCT2018 to model
HIV viral load and identify potential DRMs.

Our data for this example come from the OPTIONS trial by the AIDS Clinical Trials
Group (Gandhi et al., 2020) and were downloaded from the Stanford HIV Drug Resis-
tance Database (Shafer, 2006). The OPTIONS trial study population consisted of 413
HIV-infected individuals receiving protease inhibitor (PI)-based treatment and experienc-
ing virological failure. Each participant was given an optimized antiretroviral regimen
based on their viral drug resistance and treatment history. Participants with moderate
drug resistance were randomly assigned to either add nucleoside reverse transcriptase in-
hibitors (NRTTIs) to their optimized regimens or omit NRTIs from their optimized regimens.
Participants with highly drug-resistant HIV all received optimized regimens which included
NRTIs.

We use Tobit LLA and SAWCT2018 to model HIV viral load 12 weeks after drug regi-
men assignment as a function of HIV genotypic mutations, current drug regimen, baseline

viral load, observation week, and HIV subtype using a sample with p > n and a moderate
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Table 6: Prediction Accuracy on HIV Viral Load Data

Model Tobit Loss
SAWCT2018  2.04 (0.02)
Tobit LLA 1.45 (0.01)

amount of left-censoring. Our data come from the n = 407 participants who returned for
their 12-week follow-up evaluations and include p = 1295 predictors, most of which are
indicators for protease (PR) and reverse transcriptase (RT) gene mutations. The assays
used to measure HIV viral load in the OPTIONS trial had a detection threshold of 50
copies/mL. At their 12-week evaluations, 35.6% of study participants had viral loads which
were at or below this lower limit and, consequently, undetectable. Given this limited infor-
mation about these censored viral loads, investigators recorded them as falling at the lower
limit of 50 copies/mL. We use log,,-HIV viral load as our response, as it is often assumed
to be normally distributed (Soret et al., 2018).

We start by comparing the prediction performance of Tobit LLA and SAWCT2018 in
terms of the Tobit loss in order to assess overall model fit. We randomly split the data
into a training set of 326 observations and a test set of 81 observations, using stratified
sampling to ensure that the training and test sets have similar proportions of left-censored
observations. We repeat this process 50 times. Within each of the 50 training sets, we tune
Tobit LLA and SAWCT2018 using 5-fold CV. Table 6 reports the average Tobit loss across
the 50 test sets, with the standard error in parentheses, for each model.

Our primary interest is in the predictors selected by the models, as they may include
potential DRMs. We tune Tobit LLA and SAWCT2018 using 5-fold CV then fit them
to the entire dataset. Tobit LLA selects a sparse model with only three predictors: the
RT mutation M184V, baseline viral load, and whether the participant is taking raltegravir
(RAL), an integrase strand transfer inhibitor (INSTI) included in some of the patients’

optimized regimens. SAWCT2018, on the other hand, selects 51 mutations (including
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M184V), baseline viral load, and whether the patient is taking RAL or the protease inhibitor
saquinavir. While it is possible that the 50 other mutations selected by SAWCT2018
include additional DRMs, the superior prediction performance of the sparse Tobit LLA
model suggests that M184V is uniquely important for predicting HIV viral load in this
population. It seems far more likely that SAWCT2018 is selecting unimportant mutations,
reducing its utility as a method for identifying potential DRMs.

The Tobit LLA model provides some interesting insights into HIV drug resistance.
Most importantly, M184V stands out as the sole mutation selected by Tobit LLA. This
selection is supported by other research: based on an extensive review of the HIV drug
resistance literature, the Stanford HIV Drug Resistance Database lists M184V as a major
NRTT resistance mutation (Shafer, 2006). It is also notable that Tobit LLA did not select
any NRTIs as important predictors. This is consistent with Gandhi et al.’s (2020) finding
that participants who added NRTIs to their regimes did not experience significantly higher

rates of virological failure than those who omitted NRTIs from their regimes.

7 Discussion

As high-dimensional data become increasingly common across disciplines, we expect the
need for reliable, theoretically-supported techniques for high-dimensional left-censored re-
gression to grow. The penalized Tobit models we introduce in this paper fill several gaps
in the literature for high-dimensional left-censored regression. They are among the first
models in this area with theoretical guarantees in the setting where p > n and the lasso-
initialized two-step LLA estimator for folded-concave penalized Tobit regression is the very
first to possess the strong oracle property. In addition, our penalized Tobit models provide
the first high-dimensional extensions of the enduringly popular Tobit model.

Our penalized Tobit models also perform well empirically. In an extensive simulation
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study, our penalized Tobit models delivered superior prediction and estimation performance
relative to least squares models and the best available alternative for high-dimensional left-
censored regression. When applied to real high-dimensional left-censored HIV viral load
data, the Tobit LLA estimator delivered more accurate predictions and selected a more

parsimonious model than the best available alternative.
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